Finite Field Experiments

Institut für Algebraische Geometrie
Leibniz Universität Hannover
Welfengarten 1
D-30167 Hannover

e-mail: bothmer@math.uni-hannover.de

Hans-Christian GRAF V. BOTHMER

Abstract. We show how to use experiments over finite fields to gain information about the solution set of polynomial equations in characteristic zero.

Introduction

Let X be a variety defined over \mathbb{Z}. According to Grothendieck we can picture X as a family of varieties X_p over $\text{Spec} \mathbb{Z}$ with fibers over closed points of $\text{Spec} \mathbb{Z}$ corresponding to reductions modulo p and the generic fiber over (0) corresponding to the variety $X_\mathbb{Q}$ defined by the equations of X over \mathbb{Q}.

The generic fiber is related to the special fibers by semicontinuity theorems. For example, the dimension of X_p is upper semicontinuous with

$$\dim X_\mathbb{Q} = \min_{p>0} \dim X_p.$$

This allows us to gain information about $X_\mathbb{Q}$ by investigating X_p which is often computationally much simpler.

Even more surprising is the relation between the geometry of X_p and the number of \mathbb{F}_p rational points of X_p discovered by Weil:

Theorem 0.1. Let $X_p \subset \mathbb{P}^n_{\mathbb{F}_p}$ be a smooth curve of genus g, and N be the number of \mathbb{F}_p-rational points of X_p. Then

$$|1 - N + p| \leq 2g\sqrt{p}.$$

He conjectured even more precise relations for varieties of arbitrary dimension which were proved by Deligne using l-adic cohomology.

In this tutorial we will use methods which are inspired by Weil’s ideas, but are not nearly as deep. Rather we will rely on some basic probabilistic estimates which
are nevertheless quite useful. I have learned these ideas from my advisor Frank Schreyer, but similar methods have been used independently by other people, for example Joachim von zur Gathen and Igor Shparlinski [1], Oliver Labs [2], and Noam Elkies [3].

The structure of these notes is as follows: We start in Section 1 by evaluating the polynomials defining a variety X at random points. This can give some heuristic information about the codimension c of X and about the number d of codimension-c components of X.

In Section 2 we refine this method by looking at the tangent spaces of X in random points. This gives a way to also estimate the number of components in every codimension. As an application we show how this can be applied to gain new information about the Poincaré center problem.

In Section 3 we explain how it is often possible to prove that a solution found over \mathbb{F}_p actually lifts to \mathbb{Q}. This is applied to the construction of new surfaces in \mathbb{P}^4.

Often one would like not only to prove the existence of a lift, but explicitly find one. It is explained in Section 4 how this can be done if the solution set is zero dimensional.

We close in Section 5 with a beautiful application of these lifting techniques found by Oliver Labs, showing how he constructed a new septic with 99 real nodes in $\mathbb{P}^3_{\mathbb{R}}$.

For all experiments in this tutorial we have used the computer algebra system Macaulay 2 [4]. The most important Macaulay 2 commands used are explained in Appendix A. For more detailed information we refer to the online help of Macaulay
In Appendix Stefan Wiedmann provides a MAGMA translation of the Macaulay 2 scripts in this tutorial. All scripts are available online at [5]. We would like to include translations to other computer algebra packages, so if you are for example a Singular-expert, please contact us.

Finally I would like to thank the referee for many valuable suggestions.

1. Guessing

We start by considering the most simple case, namely that of a hypersurface \(X \subset \mathbb{A}^n \) defined by a single polynomial \(f \in \mathbb{F}_p[x_1, \ldots, x_n] \). If \(a \in \mathbb{A}^n \) is a point we have

\[
f(a) = \begin{cases} 0 & \text{one possibility} \\ \neq 0 (p - 1) & \text{possibilities} \end{cases}
\]

Naively we would therefore expect that we obtain zero for about \(\frac{1}{p} \) of the points.

Experiment 1.1. We evaluate a given polynomial in 700 random points, using Macaulay 2:

```plaintext
R = ZZ[x,y,z,w] -- work in AA^4
F = x^23+1248*y*z+w+129269698 -- a Polynomial
K = ZZ/7 -- work over \mathbb{F}_7
L = apply(700, -- substitute 700
   i->sub(F,random(K^1,K^4))) -- random points
   tally L -- count the results
```

obtaining:

```
o5 = Tally{-1 => 100}
   -2 => 108
   -3 => 91
   0  => 98
   1  => 102
   2  => 101
   3  => 100
```

Indeed, all elements of \(\mathbb{F}_7 \) occur about \(700/7 = 100 \) times as one would expect naively.

If \(f = g \cdot h \in \mathbb{F}_p[x_1, \ldots, x_n] \) is a reducible polynomial we have

\[
f(a) = g(a)h(a) = \begin{cases} 0 \cdot 0 & 1 \text{ possibility} \\ 0 \cdot \ast (p - 1) & \text{possibilities} \\ \ast \cdot (p - 1) & \text{possibilities} \\ \ast \cdot (p - 1)^2 & \text{possibilities} \end{cases}
\]
so one might expect a zero for about $\frac{2p-1}{p^2} \approx \frac{2}{p}$ of the points.

Experiment 1.2. We continue Experiment 1.1 and evaluate a product of two polynomials in 700 random points:

\[
G = x\cdot y\cdot z\cdot w + z^{25} - 938493 + x - z\cdot w \quad \text{-- a second polynomial}
\]

\[
tally apply(700, \quad \text{-- substitute 700}
\]

\[
i->sub(F\cdot G, \text{random}(K^1, K^4)) \quad \text{-- random points & count}
\]

This gives:

\[
o8 = Tally\{-1 \Rightarrow 86\}
\]

\[
-2 \Rightarrow 87
\]

\[
-3 \Rightarrow 77
\]

\[
0 \Rightarrow 198
\]

\[
1 \Rightarrow 69
\]

\[
2 \Rightarrow 84
\]

\[
3 \Rightarrow 99
\]

Indeed, the value 0 now occurs about twice as often, i.e. $198 \approx \frac{2}{p} \cdot 700$.

Repeating Experiments 1.1 and 1.2 for 100 random polynomials and 100 random products we obtain Figure 2.

![Figure 2](image-url)

Figure 2. Evaluating 100 random polynomials and 100 random products at 700 points each.

Observe that the results for irreducible and reducible polynomials do not overlap. Evaluating a polynomial at random points might therefore give some indication on the number of its irreducible factors. For this we will make the above naive observations more precise.
Definition 1.3. If \(f \in \mathbb{F}_p[x_1, \ldots, x_n] \) is a polynomial, we call the map
\[
f|_{\mathbb{F}_p^n} : \mathbb{F}_p^n \to \mathbb{F}_p \\
a \mapsto f(a)
\]
the corresponding polynomial function. We denote by
\[
V_p := \{ f : \mathbb{F}_p^n \to \mathbb{F}_p \}
\]
the vector space of all polynomial functions on \(\mathbb{F}_p^n \).

Being a polynomial function is nothing special:

Lemma 1.4 (Interpolation). Let \(\phi : \mathbb{F}_p^n \to \mathbb{F}_p \) be any function. Then there exists a polynomial \(f \in \mathbb{F}_p[x_1, \ldots, x_n] \) such that \(\phi = f|_{\mathbb{F}_p^n} \).

Proof. Notice that \((1 - x^p)^{-1} = 0 \iff x \neq 0\). For every \(a \in \mathbb{F}_p^n \) we define
\[
f_a(x) := \prod_{i=1}^{n}(1 - (x_i - a_i)^{p-1})
\]
and obtain
\[
f_a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{if } x \neq a. \end{cases}
\]
Since \(\mathbb{F}_p^n \) is finite we can consider \(f := \sum_{a \in \mathbb{F}_p^n} \phi(a)f_a \) and obtain \(f(x) = \phi(x) \) for all \(x \in \mathbb{F}_p^n \).

Remark 1.5. From Lemma 1.4 it follows that

(i) \(V_p \) is a vector space of dimension \(p^n \).

(ii) \(V_p \) is a finite set with \(p^{pn} \) elements.

(iii) Two distinct polynomials can define the same polynomial function, for example \(x^p \) and \(x \). More generally if \(F : \mathbb{F}_p \to \mathbb{F}_p \) is the Frobenius endomorphism then \(f(a) = f(F(a)) \) for all polynomials \(f \) and all \(a \in \mathbb{F}_p^n \).

This makes it easy to count polynomial functions:

Proposition 1.6. The number of polynomial functions \(f \in V_p \) with \(k \) zeros is
\[
\binom{p^n}{k} \cdot 1^k \cdot (p - 1)^{p^n - k}.
\]

Proof. Since \(V_p \) is simply the set of all functions \(f : \mathbb{F}_p^n \to \mathbb{F}_p \), we can enumerate the ones with \(k \) zeros as follows: First choose \(k \) points and assign the value 0 and then chose any of the other \((p - 1) \) values for the remaining \(p^n - k \) points.
Corollary 1.7. The average number of zeros for polynomial functions $f \in V_p$ is

$$
\mu = p^{n-1}
$$

and the standard deviation of the number of zeros in this set is

$$
\sigma = \sqrt{p^n \left(\frac{1}{p} \right) \left(\frac{p-1}{p} \right) < \sqrt{\mu}}.
$$

Proof. Standard facts about binomial distributions. \qed

Remark 1.8. Using the normal approximation of the binomial distribution, we can estimate that more than 99% of all $f \in V_p$ satisfy

$$
|\#V(f) - \mu| \leq 2.58 \sqrt{\mu}.
$$

For products of polynomials we have

Proposition 1.9. The number of pairs $(f, g) \in V_p \times V_p$ whose product has k zeros is

$$
\# \{(f, g) | \#V(f \cdot g) = k\} = \left(\begin{array}{c} p^n \\ k \end{array} \right) \cdot (2p-1)^k \cdot ((p-1)^2)^{p^n-k}.
$$

In particular, the average number of zeros in this set is

$$
\mu' = p^n \left(\frac{2p-1}{p^2} \right) \approx 2\mu
$$

and the standard deviation is

$$
\sigma' = \sqrt{p^n \left(\frac{2p-1}{p^2} \right) \left(\frac{(p-1)^2}{p^2} \right) < \sqrt{\mu'}}.
$$

Proof. As in the proof of Proposition 1.6 we first choose k points. For each of these points x we choose either the value of $f(x) = 0$ and $g(x) \neq 0$ or $f(x) \neq 0$ and $g(x) = 0$ or $f(x) = g(x) = 0$. This gives $2p-1$ possibilities. For the remaining $p^n - k$ we choose f and q nonzero. For this we have $(p-1)^2$ possibilities. The formulas then follow again from standard facts about binomial distributions. \qed

Remark 1.10. It follows that more than 99% of pairs $(f, g) \in V_p \times V_p$ satisfy

$$
|\#V(f \cdot g) - \mu'| \leq 2.58 \sqrt{\mu'}.
$$

In particular, if a polynomial f has a number of zeros that lies outside of this range one can reject the hypothesis that f is a product of two irreducible with 99% confidence.
Even for small p the distributions of Proposition 1.6 and Proposition 1.9 differ substantially (see Figure 3).

Remark 1.11. For plane curves we can compare our result to the Weil conjectures. Weil shows that 100% of smooth plane curves of genus g in $\mathbb{P}^2_{\mathbb{F}_p}$ satisfy

$$|N - (p + 1)| \leq 2g\sqrt{p}$$

while we proved that 99% of the polynomial functions on \mathbb{A}^2 satisfy

$$|N - p| \leq 2.58\sqrt{p}.$$

Of course Weil’s theorem is much stronger. If $p > 4g^2$ Weil’s theorem implies for example that every smooth curve of genus g over \mathbb{F}_p has a rational point, while no such statement can be derived from our results. If on the other hand one is satisfied with approximate results, our estimates have the advantage that they are independent of the genus g. In Figure 4 we compare the two results with an experiment in the case of plane quartics. (Notice that smooth plane quartics have genus 3.)

For big n it is very time consuming to count all \mathbb{F}_p-rational points on $V(f) \subset \mathbb{A}^n$. We can avoid this problem by using a statistical approach once again.

Definition 1.12. Let $X \subset \mathbb{A}^n$ be a variety over \mathbb{F}_p. Then

$$\gamma_p(X) := \frac{\#X(\mathbb{F}_p)}{\#\mathbb{A}^n(\mathbb{F}_p)}$$
is called the fraction of zeros of X. If furthermore $x_1, \ldots, x_m \in \mathbb{A}^n(\mathbb{F}_p)$ are points then

$$\hat{\gamma}_p(X) := \frac{\# \{ i \mid x_i \in X \}}{m}$$

is called an empirical fraction of zeros of X.

Remark 1.13. If we choose the points x_i randomly and independently, the probability that $x_i \in X$ is $\gamma_p(X)$. Therefore we have the following:

(i) $\mu(\hat{\gamma}_p) = \gamma_p$, i.e. for large m we expect $\hat{\gamma}_p(X) \approx \gamma_p(X)$

(ii) $\sigma(\hat{\gamma}_p) \approx \sqrt{\frac{2 \gamma_p}{m}}$, i.e. the quadratic mean of the error $|\gamma_p - \hat{\gamma}_p|$ decreases with \sqrt{m}.

(iii) Since for hypersurfaces $\gamma_p \approx \frac{1}{p}$ the average error depends neither on the number of variables n nor on the degree of X.

(iv) Using the normal approximation again one can show that it is usually enough to test about $100 \cdot p$ points to distinguish between reducible and irreducible polynomials (for more precise estimates see [6]).

Experiment 1.14. Consider quadrics in \mathbb{P}^3 and let

$$\Delta := \{ \text{singular quadric} \} \subset \{ \text{all quadrics} \} \cong \mathbb{P}^9$$

be the subvariety of singular quadrics in the space of all quadrics. Since having a singularity is a codimension 1 condition for surfaces in \mathbb{P}^3 we expect Δ to be a hypersurface. Is Δ irreducible? Using our methods we obtain a heuristic answer using Macaulay 2:
-- work in characteristic 7
K = ZZ/7
-- the coordinate Ring of IP^3
R = K[x,y,z,w]
-- look at 700 quadrics
tally apply(700, i->codim singularLocus(ideal random(2,R)))

giving

do12 = Tally{2 => 5 }
3 => 89
4 => 606.

We see 95 = 89 + 5 of our 700 quadrics were singular, i.e. \(\hat{\gamma}(\Delta) = \frac{95}{700} \). Since this is much closer to \(\frac{1}{7} \), then it is to \(\frac{2}{7} \) we guess that \(\Delta \) is irreducible. Notice that we have not even used the equation of \(\Delta \) to obtain this estimate.

Let’s now consider an irreducible variety \(X \subset A^n \) of codimension \(c > 1 \). Projecting \(A^n \) to a subspace \(A^{n-c+1} \) we obtain a projection \(X' \subset A^{n-c+1} \) of \(X \) (see Figure 5). Generically \(X' \) is a hypersurface, so by our arguments above \(X' \) has approximately \(p^{n-c} \) points. Generically most points of \(X' \) have only one preimage in \(X \) so we obtain the following very rough heuristic:

Heuristic 1.15. Let \(X \subset A^n_{\mathbb{F}_p} \) be a variety of codimension \(c \) and \(d \) the number of components of codimension \(c \), then

\[
\hat{\gamma}_p(X) \approx \frac{d}{p^c}
\]

Remark 1.16. A more precise argument for this heuristic comes from the Weil Conjectures. Indeed, the number of \(\mathbb{F}_p \)-rational points on an absolutely irreducible projective variety \(X \) is

\[
p^{\dim X} + \text{lower order terms},
\]

so \(\gamma_p \approx \frac{1}{p^c} \). Our elementary arguments still work in the case of complete intersections and determinantal varieties [6].

Remark 1.17. Notice that Heuristic 1.15 involves two unknowns: \(c \) and \(d \). To determine these one has to measure over several primes of good reduction.

Experiment 1.18. As in Experiment 1.14 we look at quadrics in \(\mathbb{P}^3 \). These are given by their 10 coefficients and form a \(\mathbb{P}^9 \). This time we are interested in the variety \(X \subset \mathbb{P}^3 \) of quadrics whose singular locus is at least one dimensional. For this we first define a function that looks at random quadrics over \(\mathbb{F}_p \) until it has found at least \(k \) examples whose singular locus has codimension at most \(c \). It then returns the number of trials needed to do this.
Figure 5. The projection of a curve in \mathbb{A}^3 is a hypersurface in \mathbb{A}^2 and most points have only one preimage.

```plaintext
findk = (p,k,c) -> ( 
    K := ZZ/p;
    R := K[x,y,z,w];
    trials := 0;
    found := 0;
    while found < k do ( 
        Q := ideal random(2,R);
        if c>=codim (Q+ideal jacobian Q) then ( 
            found = found + 1;
            print found;
        );
        trials = trials + 1;
    );
    trials 
)
```

Here we use $(Q+\text{ideal jacobian } Q)$ instead of $\text{singularLocus}(Q)$, since the second option quickly produces a memory overflow.

The function `findk` is useful since the error in estimating γ from $\hat{\gamma}$ depends on the number of singular quadrics found. By searching until a given number of singular quadrics is found make sure that the error estimates will be small enough.

We now look for quadrics that have singularities of dimension at least one

```plaintext
k=50; time L1 = apply({5,7,11},q->(q,time findk(q,k,2)))
```

obtaining
Figure 6. Measuring the codimension of quadrics with zero and one dimensional singular loci. Here we compare the measurements with lines of the correct slope 1 and 3.

\{(5, 5724), (7, 17825), (11, 68349)\}

i.e. $\gamma_5 \approx \frac{50}{5724}$, $\gamma_7 \approx \frac{50}{17825}$ and $\gamma_{11} \approx \frac{50}{68349}$. The codimension c of X can be interpreted as the negative slope in a log-log plot of $\hat{\gamma}_p(X)$ since Heuristic 1.15 gives

$$\hat{\gamma}_p(X) \approx \frac{d}{p^c} \iff \log(\hat{\gamma}_p(X)) \approx \log(d) - c \log(p).$$

This is illustrated in Figure 6.

By using \texttt{findk} with $k = 50$ the errors of all our measurements are of the same magnitude. We can therefore use regression to calculate the slope of a line fitting these measurements:

```plaintext
-- calculate slope of regression line by
-- formula from [2] p. 800
slope = (L) -> (
  xbar := sum(apply(L,l->l#0))/#L;
  ybar := sum(apply(L,l->l#1))/#L;
  sum(apply(L,l->(l#0-xbar)*(l#1-ybar)))/
    sum(apply(L,l->(l#0-xbar)^2))
)

-- slope for dim 1 singularities
slope(apply(L1,l->(log(1/l#0),log(k/l#1))))
```

```
o5 = 3.13578
```
The codimension of X is indeed 3 as can be seen by the following geometric argument: Each quadric with a singular locus of dimension 1 is a union of two hyperplanes. Since the family \mathbb{P}^3 of all hyperplanes in \mathbb{P}^3 is 3-dimensional, we obtain $\dim X = 6$ which has codimension 3 in the \mathbb{P}^9 of all quadrics.

The approach presented in this section measures the number of components of minimal codimension quite well. At the same time it is very difficult to see components of larger codimension. One reason is that the rough approximations that we have made introduce errors in the order of $\frac{1}{p^{c+1}}$.

We will see in the next section how one can circumvent these problems.

2. Using Tangent Spaces

If $X \subset \mathbb{A}^n$ has components of different dimensions, the guessing method of Section 1 does not detect the smaller components.

If for example X is the union of a curve and a surface in \mathbb{A}^3, we expect the surface to have about p^2 points while the curve will have about p points (see Figure 7).

![Figure 7. Expected number of \mathbb{F}_p rational points on a union of a curve and a surface.](image)

Using Heuristic 1.15 we obtain

$$\gamma_p = \frac{p^2 + p}{p^3} \approx \frac{1}{p}$$

indicating that X has 1 component of codimension 1. The codimension 2 component remains invisible.

Experiment 2.1. Let’s check the above reasoning in an experiment. First define a function that produces a random inhomogeneous polynomial of given degree:

```
randomAffine = (d,R) -> sum apply(d+1,i->random(i,R))
```
with this we choose random polynomials F, G and H in 6 variables

\begin{verbatim}
n=6
R=ZZ[x_1..x_n];
F = randomAffine(2,R)
G = randomAffine(6,R);
H = randomAffine(7,R);
\end{verbatim}

and consider the ideal $I = (FG, FH)$

\begin{verbatim}
I = ideal(F*G,F*H);
\end{verbatim}

Finally, we evaluate the polynomials of I in 700 points of characteristic 7 and count how many of them lie in $X = V(I)$:

\begin{verbatim}
K = ZZ/7
t = tally apply(700,i->(
 0 == sub(I,random(K^1,K^n))
))
\end{verbatim}

This yields

\begin{verbatim}
o9 = Tally{false => 598}
 true => 102
\end{verbatim}

i.e. $\hat{\gamma}_7(X) = \frac{102}{700}$ which is very close to $\frac{1}{7}$. Consequently we would conclude that X has one component of codimension 1. The codimension 2 component given by $G = H = 0$ remains invisible.

To improve this situation we will look at tangent spaces. Let $a \in X \subset \mathbb{A}^n$ be a point and $T_{X,a}$ the tangent space of X in a. If $I_X = (f_1, \ldots, f_m)$, let

\[
J_X = \begin{pmatrix}
\frac{df_1}{dx_1} & \cdots & \frac{df_1}{dx_n} \\
\vdots & \ddots & \vdots \\
\frac{df_m}{dx_1} & \cdots & \frac{df_m}{dx_n}
\end{pmatrix}
\]

be the Jacobian matrix. We know from differential geometry that

\[
T_{X,a} = \ker J_X(a) = \{ v \in \mathbb{K}^n \mid J_X(a)v = 0 \}.
\]

We can use tangent spaces to estimate the dimension of components of X:

Proposition 2.2. Let $a \in X \subset \mathbb{A}^n$ be a point and $X' \subset X$ a component containing a. Then $\dim X' \leq \dim T_{X,a}$ with equality holding in smooth points of X.

Proof. [8, II.1.4. Theorem 3]
In particular, we can use the dimension of the tangent space in a point \(a \in X \) to separate points that lie on different dimensional components, at least if these components are non-reduced (see Figure 8). For each of these sets we use Heuristic 1.15 to obtain

![Figure 8](image.png)

Figure 8. Dimension of tangent spaces in \(\mathbb{F}_p \) rational points on a union of a curve and a surface.

Heuristic 2.3. Let \(X \subset \mathbb{A}^n \) be a variety. If \(J_X \) is the Jacobian matrix of \(X \) and \(a_1, \ldots, a_m \in \mathbb{A}^n \) are points, then the number of codimension \(c \) components of \(X \) is approximately

\[
\frac{\# \{ i \mid a_i \in X \text{ and } \text{rank} \ J_X(a_i) = c \} \cdot p^c}{m}
\]

Experiment 2.4. Let’s test this heuristic by continuing Experiment 2.1. For this we first calculate the Jacobian matrix of the ideal \(I \)

\[
J = \text{jacobian } I;
\]

Now we check again 700 random points, but when we find a point on \(X = V(I) \) we also calculate the rank of the Jacobian matrix in this point:

\[
K = \mathbb{Z}/7
\]

\[
\text{time t = tally apply(700,i->}(\text{point := random}(K^1,K^n);\text{if sub(I,point) == 0 then rank sub(J,point))})
\]

The result is

\[
o12 = \text{Tally}\{0 \Rightarrow 2, 1 \Rightarrow 106, 2 \Rightarrow 14, \text{null} \Rightarrow 578\}
\]
Indeed, we find that there are about \(\frac{106 \cdot 7^1}{700} = 1.06 \) components of dimension 1 and about \(\frac{14 \cdot 7^2}{700} = 0.98 \) components of codimension 2. For codimension 0 the result is \(\frac{2 \cdot 7^0}{700} \approx 0.003 \) consistent with the fact that there are no components of codimension 0.

Remark 2.5. It is a little dangerous to give the measurements as in Experiment 2.4 without error bounds. Using the Poisson approximation of binomial distributions with small success probability we obtain

\[
\sigma(\text{number of points found}) \approx \sqrt{\text{number of points found}}.
\]

In the above experiment this gives

\[
\# \text{ codim 1 components} = \frac{(106 \pm 2.58\sqrt{106}) \cdot 7^1}{700} = 1.06 \pm 0.27
\]

and

\[
\# \text{ codim 2 components} = \frac{(14 \pm 2.58\sqrt{14}) \cdot 7^2}{700} = 0.98 \pm 0.68.
\]

where the error terms denote the 99% confidence interval. Notice that the measurement of the codimension 2 components is less precise. As a rule of thumb good error bounds are obtained if one searches until about 50 to 100 points of interest are found.

Remark 2.6. This heuristic assumes that the components do not intersect. If components do have high dimensional intersections, the heuristic might give too few components, since intersection points are singular and have lower codimensional tangent spaces.

In more involved examples calculating and storing the Jacobian matrix \(J_X \) can use a lot of time and space. Fortunately one can calculate \(J_X(a) \) directly without calculating \(J_X \) first:

Proposition 2.7. Let \(f \in \mathbb{F}_p[x_1, \ldots, x_n] \) be a polynomial, \(a \in \mathbb{F}_p^n \) a point and \(b \in \mathbb{F}_p^n \) a vector. Then

\[
f(a + be) = f(a) + d_b f(a) \varepsilon \in \mathbb{F}_p^n \varepsilon / (\varepsilon^2).
\]

with \(d_b f \) denoting the derivative of \(f \) in direction of \(b \). In particular, if \(e_i \in \mathbb{F}_p^n \) is the \(i \)-th unit vector, we have

\[
f(a + e_i \varepsilon) = f(a) + \frac{df}{dx_i}(a) \varepsilon.
\]

Proof. Use the Taylor expansion.

Example 2.8. \(f(x) = x^2 \implies f(1 \pm \varepsilon) = (1 + \varepsilon)^2 = 1 + 2\varepsilon = f(1) + \varepsilon f'(1) \)
Experiment 2.9. To compare the two methods of calculating derivatives, we consider the determinant of a random matrix with polynomial entries. First we create a random matrix

\[
\begin{align*}
K &= \mathbb{Z}/7 \quad \text{-- characteristic 7} \\
R &= K[x_1..x_6] \quad \text{-- 6 variables} \\
M &= \text{random}(R^{5:0}, R^{5:-2}) \quad \text{-- a random 5x5 matrix with quadratic entries}
\end{align*}
\]

calculate the determinant

\[
\text{time } F = \text{det } M; \\
\text{-- used 13.3 seconds}
\]

and its derivative with respect to \(x_1\).

\[
\text{time } F1 = \text{diff}(x_1,F); \\
\text{-- used 0.01 seconds}
\]

Now we substitute a random point:

\[
\begin{align*}
\text{point} &= \text{random}(K^1, K^6) \\
\text{time } \text{sub}(F1, \text{point}) \\
\text{-- used 0. seconds}
\end{align*}
\]

\(o7 = 2\)

By far the most time is used to calculate the determinant. With the \(\varepsilon\)-method this can be avoided. We start by creating a vector in the direction of \(x_1\):

\[
\begin{align*}
T &= K[e]/(e^2) \quad \text{-- a ring with } e^2 = 0 \\
e1 &= \text{matrix}\{1,0,0,0,0,0\} \quad \text{-- the first unit vector} \\
\text{point1} &= \text{sub}(\text{point},T) + e*\text{sub}(e1,T) \quad \text{-- point with direction}
\end{align*}
\]

Now we first evaluate the matrix \(M\) in this vector

\[
\text{time } M1 = \text{sub}(M, \text{point1}) \\
\text{-- used 0. seconds}
\]

and only then take the determinant

\[
\begin{align*}
\text{time } \text{det sub}(M, \text{point1}) \\
\text{-- used 0. seconds}
\end{align*}
\]

\(o12 = 2e + 1\)
Figure 9. A focus and a center.

Indeed, the coefficient of e is the derivative of the determinant in this point. This method is too fast to measure by the `time` command of Macaulay 2. To get a better time estimate, we calculate the derivative of the determinant at 5000 random points:

```plaintext
    time apply(5000,i->(
        point := random(K^1,K^6); -- random point
        point1 := sub(point,T)+e*sub(e1,T); -- tangent direction
        det sub(M,point1); -- calculate derivative
    ));
```

Notice that this is still faster than calculating the complete determinant once.

Remark 2.10. The ε-method is most useful if there exists a fast algorithm for evaluating the polynomials of interest. The determinant of an $n \times n$ matrix for example has $n!$ terms, so the time to evaluate it directly is proportional to $n!$. If we use Gauss elimination on the matrix first, the time needed drops to n^3.

For the remainder of this section we will look at an application of these methods to the Poincaré center problem. We start by considering the well known system of differential equations

\[
 \dot{x} = -y \\
 \dot{y} = x
\]

whose integral curves are circles around the origin. Let’s now disturb these equations with polynomials P and Q whose terms have degree at least 2:

\[
 \dot{x} = -y + P \\
 \dot{y} = x + Q.
\]
Near zero the integral curves of the disturbed system are either closed or not. In the second case one says that the equations have a focus in \((0,0)\) while in the first case they have a center (see Figure 9).

The condition of having a center is closed in the space of all \((P,Q)\):

Theorem 2.11 (Poincaré). There exists an infinite series of polynomials \(f_i\) in the coefficients of \(P\) and \(Q\) such that

\[
\begin{align*}
\dot{x} &= -y + P \\
\dot{y} &= x + Q
\end{align*}
\]

has a center \(\iff f_i(P,Q) = 0\) for all \(i\).

We call \(f_i(P,Q)\) the \(i\)-th focal value of \((P,Q)\).

If the terms of \(P\) and \(Q\) have degree at most \(d\) then the \(f_i\) describe an algebraic variety \(X_\infty\) in the finite-dimensional space of pairs \((P,Q)\). This variety is called the center variety.

Remark 2.12. By Hilbert’s Basis Theorem \(I_\infty := (f_0, f_1, \ldots)\) is finitely generated. Unfortunately, Hilbert’s Basis Theorem is not constructive, so it is a priori unknown how many generators \(I_\infty\) has. It is therefore useful to consider the \(i\)-th partial center varieties \(X_i = V(f_0, \ldots, f_i)\).

The following is known:

Theorem 2.13. If \(d = 2\) then the center variety has four components

\[X_\infty = X_H \cup X_{III} \cup X_{II} \cup X_I \subset \mathbb{A}^6,\]

three of codimension 2 and one of codimension 3. Moreover \(X_\infty = X_3\).

Proof. Decompose \(I_3 = (f_1, f_2, f_3)\) with a computer algebra system and show that all solutions do have a center [9], [10].

Figure 10. Geometric interpretation of the components of the center variety in the case \(d = 2\).
Looking at algebraic integral curves one even obtains a geometric interpretation of the components in this case (see Figure 11).

For \(d = 3 \) almost nothing is known. The best results so far are lists of centers given by Zoladec\[11, 12\]. The problem from a computer algebra perspective is that the \(f_i \) are too large to be handled, already \(f_5 \) has 5348 terms and it is known that \(X_{\infty} \neq X_{10} \).

Experiment 2.14. Fortunately for our method, Frommer\[9\] has devised an algorithm to calculate \(f_i(P, Q) \) for given \((P, Q)\). A closer inspection shows that Frommer’s Algorithm works over finite fields and will also calculate \(f_i(P+\varepsilon P', Q+\varepsilon Q') \). So we have all ingredients to use Heuristic 2.3. Using a fast C++ implementation of Frommer’s Algorithm by Martin Cremer and Jacob Kröker\[13\] we first check our method on the known degree 2 case. For this we evaluate \(f_1, \ldots, f_{10} \) for \(d = 2 \) at 1,000,000 random points in characteristic 23. This gives

\[
\begin{align*}
\text{codim tangent space} &= 0: 5 \\
\text{codim tangent space} &= 1: 162 \\
\text{codim tangent space} &= 2: 5438 \\
\text{codim tangent space} &= 3: 88 \\
\end{align*}
\]

Heuristic 2.3 translates this into

\[
\text{codim 0 components: } 0.00 +/- 0.00
\]
Table 1. Known families of cubic centers that could have codimension below 8 in A^{14}.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Codimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darboux</td>
<td>CD_1</td>
<td>5</td>
</tr>
<tr>
<td>Darboux</td>
<td>CD_2</td>
<td>6</td>
</tr>
<tr>
<td>Darboux</td>
<td>CD_3</td>
<td>7</td>
</tr>
<tr>
<td>Darboux</td>
<td>CD_4</td>
<td>7</td>
</tr>
<tr>
<td>Darboux</td>
<td>CD_5</td>
<td>7</td>
</tr>
<tr>
<td>Reversible</td>
<td>CR_1</td>
<td>≥ 6</td>
</tr>
<tr>
<td>Reversible</td>
<td>CR_5</td>
<td>≥ 7</td>
</tr>
<tr>
<td>Reversible</td>
<td>CR_7</td>
<td>≥ 7</td>
</tr>
<tr>
<td>Reversible</td>
<td>CR_{11}</td>
<td>≥ 7</td>
</tr>
<tr>
<td>Reversible</td>
<td>CR_{12}</td>
<td>≥ 7</td>
</tr>
<tr>
<td>Reversible</td>
<td>CR_{16}</td>
<td>≥ 7</td>
</tr>
</tbody>
</table>

- codim 1 components: 0.00 +/- 0.00
- codim 2 components: 2.87 +/- 0.10
- codim 3 components: 1.07 +/- 0.29

This agrees well with Theorem 2.11.

For $d = 3$ we obtain the measurements in Figure 11. One can check these results against Zoladec’s lists as depicted in Table 1. Here the measurements agree in codimension 5 and 6. In codimension 7 there seem to be 8 known families while we only measure 4. Closer inspection of the known families reveals that CR_5 and CR_7 are contained in CD_4 and that CR_{12} and CR_{16} are contained in CD_2. After accounting for this our measurement agrees with Zoladec’s results and we conjecture that Zoladec’s lists are complete up to codimension 7.

3. Existence of a Lift to Characteristic Zero

Often one is not interested in characteristic p solutions, but in solutions over \mathbb{C}. Unfortunately, not all solutions over \mathbb{F}_p lift to characteristic 0.

Example 3.1. Consider the variety $X = V(3x) \subset \mathbb{P}^1_3$ over Spec \mathbb{Z}. As depicted in Figure 12, X decomposes into two components: $V(3) = \mathbb{P}^1_{\mathbb{F}_3}$ which lives only over \mathbb{F}_3 and $V(x) = \{(0 : 1)\}$ which has fibers over all of Spec \mathbb{Z}. In particular, the point $(1 : 0) \in \mathbb{P}^1_{\mathbb{F}_3} \subset X$ does not lift to characteristic 0.

To prove that a given solution point over \mathbb{F}_p does lift to characteristic zero the following tool is very helpful:

Proposition 3.2 (Existence of a Lifting). Let $X \subset Y \subset \mathbb{A}^n$ be varieties with $\dim Y_{\mathbb{F}_p} = \dim Y_{\mathbb{Z}} - 1$ for all p and $X \subset Y$ determinantal, i.e. there exists a vector bundle morphism

$$\phi: E \to F$$
on Y and a number $r \leq \min(\rank E, \rank F)$ such that $X = X_r(\phi)$ is the locus where ϕ has rank at most r. If $x \in X_{\mathbb{F}_p}$ is a point with

$$\dim T_{X_{\mathbb{F}_p}, x} = \dim Y_{\mathbb{F}_p} - (\rank E - r)(\rank F - r)$$

then X is smooth in x and there exists a component Z of $X_{\mathbb{Z}}$ containing x and having a nonzero fiber over (0).

Proof. Set $d = \dim Y_{\mathbb{F}_p} - (\rank E - r)(\rank F - r)$. Since $X_{\mathbb{F}_p}$ is determinantal, we have

$$\dim Z_{\mathbb{F}_p} \geq d$$

for every irreducible component $Z_{\mathbb{F}_p}$ of $X_{\mathbb{F}_p}$ and d is the expected dimension of $Z_{\mathbb{F}_p}$ [15, Ex. 10.9, p. 245]. If $Z_{\mathbb{F}_p}$ contains the point x we obtain

$$d \leq \dim Z_{\mathbb{F}_p} \leq \dim T_{Z_{\mathbb{F}_p}, x} \leq \dim T_{X_{\mathbb{F}_p}, x} = d$$

by our assumptions. So $Z_{\mathbb{F}_p}$ is of dimension d and smooth in x. Let now $Z_{\mathbb{Z}}$ be a component of $X_{\mathbb{Z}}$ that contains $Z_{\mathbb{F}_p}$ and x. Since $X_{\mathbb{Z}}$ is determinantal in $Y_{\mathbb{Z}}$ and $\dim Y_{\mathbb{Z}} = \dim Y_{\mathbb{F}_p} + 1$ we have

$$\dim Z_{\mathbb{Z}} \geq d + 1.$$

Since $\dim Z_{\mathbb{F}_p} = d$ the fiber of $Z_{\mathbb{Z}}$ over p cannot contain all of $Z_{\mathbb{Z}}$. Indeed, in this case we would have $Z_{\mathbb{F}_p} = Z_{\mathbb{Z}}$ since both are irreducible, but $\dim Z_{\mathbb{F}_p} \neq \dim Z_{\mathbb{Z}}$. It follows that $Z_{\mathbb{Z}}$ has nonempty fibers over an open subset of $\Spec \mathbb{Z}$ and therefore also over (0) [16, 17].
Example 3.3. The variety $X = V(3x)$ is determinantal on $Y = \mathbb{P}^1_{\mathbb{Z}}$ since it is the rank 0 locus of the vector bundle morphism

$$\phi: \mathcal{O}_{\mathbb{P}^1_{\mathbb{Z}}}^{3x} \to \mathcal{O}_{\mathbb{P}^1_{\mathbb{Z}}}(1).$$

Furthermore $\dim \mathbb{P}^1_{\mathbb{F}_p} = 1 = \dim \mathbb{P}^1_{\mathbb{Z}} - 1$ for all p. The expected dimension of $X_{\mathbb{F}_p}$ is therefore $1 - (1 - 0) \cdot (1 - 0) = 0$. As depicted in Figure 13 we have three typical examples:

(i) $x = (0 : 1)$ over \mathbb{F}_p with $p \neq 3$. Here the tangent space over \mathbb{F}_p is zero dimensional and the point lifts according to Proposition 3.2.

(ii) $x = (0 : 1)$ over \mathbb{F}_3. Here the tangent space is 1-dimensional and Proposition 3.2 does not apply. Even though the point does lift.

(iii) $x = (1 : 0)$ over \mathbb{F}_3. Here the tangent space is also 1-dimensional and Proposition 3.2 does not apply. In this case the point does not lift.

This method has been used first by Frank Schreyer [16] to construct new surfaces in \mathbb{P}^4 which are not of general type. The study of such surfaces started in 1989 when Ellingsrud and Peskine showed that their degree is bounded [18] and therefore only finitely many families exist. Since then the degree bound has been sharpened by various authors, most recently by [19] to 52. On the other hand a classification is only known up to degree 10 and examples are known up to degree 15 (see [19] for an overview and references).

Here I will explain how Cord Erdenberger, Katharina Ludwig and I found a new family of rational surfaces S of degree 11 and sectional genus 11 in \mathbb{P}^4 with finite field experiments.
Our plan is to realize S as a blowup of \mathbb{P}^2. First we consider some restrictions on the linear system that embeds S into \mathbb{P}^4.

Proposition 3.4. Let $S = \mathbb{P}^2_{\mathbb{C}}(p_1, \ldots, p_l)$ be the blowup of $\mathbb{P}^2_{\mathbb{C}}$ in l distinct points. We denote by E_1, \ldots, E_l the corresponding exceptional divisors and by L the pullback of a general line in $\mathbb{P}^2_{\mathbb{C}}$ to S. Let $[aL - \sum_{i=1}^{l} b_i E_i]$ be a very ample linear system of dimension four and set $\beta_j = \# \{i \mid b_i = j \}$. Then

$$d = a^2 - \sum_j \beta_j j^2$$

$$\pi = \left(a - \frac{1}{2} \right) - \sum_j \beta_j \binom{j}{2}$$

$$K^2 = 9 - \sum_j \beta_j .$$

where d is the degree, π the sectional genus and K the canonical divisor of S.

Proof. Intersection theory on S [17, Corollary 4.1].

By the double point formula for surfaces in \mathbb{P}^4 [20, Appendix A, Example 4.1.3] a rational surface of degree 11 and sectional genus 11 must satisfy $K^2 = -11$. For fixed a the equations above can be solved by integer programming, using for example the algorithm described in Chapter 8 of [21].

In the case $a < 9$ we find that there are no solutions. For $a = 9$ the only solution is $\beta_3 = 1$, $\beta_2 = 14$ and $\beta_1 = 5$. Our first goal is therefore to find 5 simple points, 14 double points and one triple point in \mathbb{P}^2 such that the ideal of the union of these points contains 5 polynomials of degree 9.

To make the search fast, we would like to use characteristic 2. The difficulty here is that \mathbb{P}^2 contains only 7 rational points, while we need 20. Our solution to this problem was to choose

$$P \in \mathbb{P}^2(\mathbb{F}_2) \quad Q \in \mathbb{P}^2(\mathbb{F}_{2^4}) \quad R \in \mathbb{P}^2(\mathbb{F}_{2^5})$$

such that the Frobenius orbit of Q and R are of length 14 and 5 respectively. The ideals of the orbits are then defined over \mathbb{F}_2.

```plaintext
-- define coordinate ring of P^2 over F_2
F2 = GF(2)
S2 = F2[x,y,z]

-- define coordinate ring of P^2 over F_2^14 and F_2^5
St = F2[x,y,z,t]
use St; I14 = ideal(t^14+t^13+t^11+t^10+t^8+t^6+t^4+t+1); S14 = St/I14
use St; I5 = ideal(t^5+t^3+t^2+t+1); S5 = St/I5
```
-- the random points
use S2; P = matrix{{0_S2, 0_S2, 1_S2}}
use S14; Q = matrix{{t^(random(2^14-1)), t^(random(2^14-1)), 1_S14}}
use S5; R = matrix{{t^(random 31), t^(random 31), 1_S5}}

-- their ideals
IP = ideal ((vars S2)*syz P)
IQ = ideal ((vars S14)_{0..2}*syz Q)
IR = ideal ((vars S5)_{0..2}*syz R)

-- their orbits
f14 = map(S14/IQ,S2); Qorbit = ker f14
degree Qorbit -- hopefully degree = 14

f5 = map(S5/IR,S2); Rorbit = ker f5
degree Rorbit -- hopefully degree = 5

If Q and R have the correct orbit length we calculate |9H - 3P - 2Q - R|

-- ideal of 3P
P3 = IP^3;

-- orbit of 2Q
f14square = map(S14/IQ^2,S2); Q2orbit = ker f14square;

-- ideal of 3P + 2Qorbit + 1Rorbit
I = intersect(P3,Q2orbit,Rorbit);

-- extract 9-tics
H = super basis(9,I)
rank source H -- hopefully affine dimension = 5

If at this point we find 5 sections, we check that there are no unassigned base points

-- count basepoints (with multiplicities)
degree ideal H -- hopefully degree = 1x6+14x3+1x5 = 53

If this is the case, the next difficulty is to check if the corresponding linear system is very ample. On the one hand this is an open condition, so it should be satisfied by most examples, on the other hand we are in characteristic 2, so exceptional loci can have very many points. An irreducible divisor for example already contains approximately half of the rational points.

-- construct map to P^4
T = F2[x0,x1,x2,x3,x4]
\[fH = map(S2,T,H); \]

\[-- \text{calculate the ideal of the image} \]
\[\text{Isurface} = \ker fH; \]

\[-- \text{check invariants} \]
\[\text{betti res coker gens Isurface} \]
\[\text{codim Isurface} \quad -- \quad \text{codim} = 2 \]
\[\text{degree Isurface} \quad -- \quad \text{degree} = 11 \]
\[\text{genera Isurface} \quad -- \quad \text{genera} = \{0,11,10\} \]

\[-- \text{check smoothness} \]
\[J = \text{jacobian Isurface}; \]
\[mJ = \text{minors}(2,J) + \text{Isurface}; \]
\[\text{codim mJ} \quad -- \quad \text{hopefully codim} = 5 \]

Indeed, after about 100,000 trials one comes up with the points

\[\text{use S14;Q} = \text{matrix}\{\{t^\ast 11898, t^\ast 137, 1_{S14}\}\} \]
\[\text{use S5; R} = \text{matrix}\{\{t^\ast 6, t^\ast 15, 1_{S5}\}\} \]

These satisfy all of the above conditions and prove that rational surfaces of degree 11 and sectional genus 11 in \(\mathbb{P}^4\) exist over \(\mathbb{F}_2\).

As a last step we have to show that this example lifts to char 0. For this we consider the morphism

\[\tau_k: H^0(O_{\mathbb{P}^2}(a)) \rightarrow O_{\mathbb{P}^2}(a) \oplus 3O_{\mathbb{P}^2}(a-1) \oplus \cdots \oplus \binom{k+2}{2}O_{\mathbb{P}^2}(a-k) \]

on \(\mathbb{P}^2\) that associates to each polynomial of degree \(a\) the coefficients of its Taylor expansion up to degree \(k\) in a given point \(P\).

Lemma 3.5. If \(a > k\) then the image of \(\tau_k\) is a vector bundle \(F_k\) of rank \(\binom{k+2}{2}\) over \(\text{Spec}\ \mathbb{Z}\).

Proof. In each point we consider an affine 2-dimensional neighborhood where we can choose the \(\binom{k+2}{2}\) coefficients of the affine Taylor expansion independently. This shows that the image has at least this rank everywhere. If follows from the Euler relation for homogeneous polynomials

\[\frac{df}{dx} + y \frac{df}{dy} + z \frac{df}{dz} = (\text{deg} f) \cdot f \]

that this is also the maximal rank. \(\square\)
Now set $Y_Z = \text{Hilb}_{1, Z} \times \text{Hilb}_{14, Z} \times \text{Hilb}_{5, Z}$ where $\text{Hilb}_{k, Z}$ denotes the Hilbert scheme of k points in \mathbb{P}^2_Z over $\text{Spec} \mathbb{Z}$, and let

$$X_Z = \{(p, q, r) \mid h^0(9L - 3p - 2q - 1r) \geq 5\} \subset Y_Z$$

be the subset where the linear system of nine-tics with a triple point in p, double points in q and single base points in r is at least of projective dimension 4.

Proposition 3.6. There exist vector bundles E and F of ranks 55 and 53 respectively on Y_Z and a morphism

$$\phi: E \to F$$

such that $X_{50}(\phi) = X_Z$.

Proof. On the Cartesian product

$$\begin{array}{ccc}
\text{Hilb}_{d, Z} \times \mathbb{P}^2_Z & \xrightarrow{\pi_2} & \mathbb{P}^2_Z \\
\downarrow \pi_1 & & \\
\text{Hilb}_{d, Z}
\end{array}$$

we have the morphisms

$$\pi_2^* \tau_k: H^0(\mathcal{O}_{\mathbb{P}^2_Z}(9)) \otimes \mathcal{O}_{\text{Hilb}_{d, Z} \times \mathbb{P}^2_Z} \to \pi_2^* \mathcal{F}_k.$$

Let now $P_d \subset \text{Hilb}_{d, Z} \times \mathbb{P}^2_Z$ be the universal set of points. Then P_d is a flat family of degree d over $\text{Hilb}_{d, Z}$ and

$$\mathcal{G}_k := (\pi_1)_*(\pi_2^* \mathcal{F}_k)|_{P_d}$$

is a vector bundle of rank $d \binom{k+2}{2}$ over $\text{Hilb}_{d, Z}$. On

$$Y_Z = \text{Hilb}_{1, Z} \times \text{Hilb}_{14, Z} \times \text{Hilb}_{5, Z}$$

the induced map

$$\phi: H^0(\mathcal{O}_{\mathbb{P}^2_Z}(9)) \otimes \mathcal{O}_{X_Z} \xrightarrow{\tau_2 \oplus \tau_1 \oplus \tau_0} \sigma_d^* \mathcal{G}_2 \oplus \sigma_{14}^* \mathcal{G}_1 \oplus \sigma_5^* \mathcal{G}_0$$

has the desired properties, where σ_d denotes the projection to $\text{Hilb}_{d, Z}$.

So we have to show that the tangent space of $X_{\mathbb{P}^2_Z}$ in our base locus has codimension $(55 - 50)(53 - 50) = 15$. This can be done by explicitly calculating the differential of ϕ in our given base scheme using the ε-method. The script is too long for this paper, but can be downloaded at [22]. Indeed, we find that the codimension of the tangent space is 15, so this shows that our example lies on an irreducible component that is defined over an open subset of $\text{Spec} \mathbb{Z}$. \qed
Remark 3.7. The overall time to find smooth surfaces that lift to characteristic zero can be substantially reduced if one calculates the tangent space of a given point \((P, Q, R)\) in the Hilbert scheme \(X_Z\) directly after establishing \(|9H - 3P - 2Q - R| = \mathbb{P}^4\). One then needs to check very ampleness only for smooth points of \(X_Z\). This is useful since the tangent space calculation is just a linear question, while the check for very ampleness requires Gröbner bases. We use a very fast \(C\)-implementation by Jakob Kröker to do the whole search algorithm up to checking smoothness. Only the (very few) remaining examples are then checked for very ampleness using Macaulay 2.

Experiment 3.8. We also tried to reconstruct the other known rational surfaces in \(\mathbb{P}^4\) with our program. The number of trials needed is depicted in Figure 14. The expected codimension of \(X\) in the corresponding Hilbert scheme turns out to be 5 times the speciality \(h^1(O_X(1))\) of the surface. As expected, the logarithm of the number of trials needed to find a surface is proportional to the codimension of \(X\).

Remark 3.9. We could not reconstruct all known families. The reason for this is that we only look at examples where the base points of a given multiplicity form an irreducible Frobenius orbit. In some cases such examples do not exist for geometric reasons.

Experiment 3.10. Looking at the linear system \(|14H - 4P - 3Q - R|\) with \(\deg P = 8\), \(\deg Q = 6\) and \(\deg R = 2\), we find rational surfaces of degree 12 and sectional genus 12 in \(\mathbb{P}^4\) with this method (not published).

4. Finding a Lift

In some good cases characteristic \(p\) methods even allow one to find a solution over \(\mathbb{Q}\) quickly. Basically this happens when the solution set is zero dimensional with two different flavors.
The first good situation, depicted in Figure 15, arises when $X = V(f_1, \ldots, f_m) \subset \mathbb{A}_\mathbb{Z}^n$ has a unique solution over $\overline{\mathbb{Q}}$, maybe with high multiplicity. In this case it follows that the solution is defined over \mathbb{Q}.

Algorithm 4.1. If the coordinates of the unique solution over \mathbb{Q} are even in \mathbb{Z} one can find this solution as follows:

(i) Reduce mod p_i and test all points in $\mathbb{F}_{p_i}^n$.
(ii) Find many primes p_i with a unique solution in $\mathbb{F}_{p_i}^n$.
(iii) Use Chinese remaindering to find a solution mod $\prod_i p_i$.
(iv) Test if this is a solution over \mathbb{Z}. If not, find more primes p_i with unique solutions over \mathbb{F}_{p_i}.

Remark 4.2. Even if the solution y over \mathbb{Q} is unique, there can be several solutions over \mathbb{F}_p. Since the codimension of points in \mathbb{A}^n is n we expect that the probability of a random point $x \in \mathbb{A}^n$ to satisfy $x \in X$ is $\frac{1}{p^n}$ by Heuristic 1.15. We therefore expect that the probability of $x \not\in X$ for all points $x \neq y$ is

$$\left(1 - \frac{1}{p^n}\right)^{p^n-1} \approx \frac{1}{e}.$$

Experiment 4.3. Let’s use this Algorithm 4.1 to solve

$$-8x^2 - xy - 7y^2 + 5238x - 11582y - 7696 = 0$$
$$4xy - 10y^2 - 2313x - 16372y - 6462 = 0$$

For this we need a function that looks at all points over a given prime:
allPoints = (I,p) -> (
 K = ZZ/p;
 flatten apply(p,i->
 flatten apply(p,j->
 if (0==codim sub(I,matrix{{i*1_K,j*1_K}}))
 then {(i,j)}
 else {}
))
)

With this we look for solutions of our equations over the first nine primes.

R = ZZ[x,y]
-- the equations
I = ideal (-8*x^2-x*y-7*y^2+5238*x-11582*y-7696,
 4*x*y-10*y^2-2313*x-16372*y-6462)
-- look for solutions
tally apply({2,3,5,7,11,13,17,19,23},p->(p,time allPoints(I,p)))

We obtain:

```
o8 = Tally{(2, {(0, 0)}) => 1  
            (3, {(0, 2), (1, 0), (2, 0)}) => 1  
            (5, {(4, 1)}) => 1  
            (7, {(2, 3), (5, 5)}) => 1  
            (11, {(2, 7), (8, 1)}) => 1  
            (13, {(3, 4), (12, 6)}) => 1  
            (17, {(10, 8)}) => 1  
            (19, {(1, 3), (1, 17), (18, 5), (18, 18)}) => 1  
            (23, {(15, 8)}) => 1}
```

As expected for the intersection of two quadrics we find at most 4 solutions. Over four primes we find unique solutions, which is reasonably close to the expected number $9/e \approx 3.31$. We now combine the information over these four primes using the Chinese remainder Theorem.

```
-- Chinese remaindering  
-- given solutions mod m and n find  
-- a solution mod m*n  
-- sol1 = (n,solution)  
-- sol2 = (m,solution)  
chinesePair = (sol1, sol2) -> (  
  n = sol1#0;an = sol1#1;  
  m = sol2#0;am = sol2#1;  
  drs = gcdCoefficients(n,m);  
```
-- returns \(\{d,r,s\} \) so that \(a*r + b*s \) is the
-- greatest common divisor \(d \) of \(a \) and \(b \).
\[
\begin{align*}
 r &= \text{drs}\#1; \\
 s &= \text{drs}\#2; \\
 \text{amn} &= s*m*an + r*n*am; \\
 \text{amn} &= \text{amn} - (\text{round}(\text{amn}/(m*n)))*(m*n); \\
\end{align*}
\]
if (drs\#0) == 1 then (m*n,amn) else print "m and n not coprime"

-- take a list \(\{(n_1,s_1),\ldots,(n_k,s_k)\} \)
-- and return \((n,a) \) such that
-- \(n = n_1 \cdot \ldots \cdot n_k \) and
-- \(s_i = a \mod n_i \)
chineseList = (L) -> (fold(L,chinesePair))

-- x coordinate
chineseList((2,0),(5,4),(17,10),(23,15))
-- y coordinate
chineseList((2,0),(5,1),(17,8),(23,8))

This gives
\[
\begin{align*}
o11 &= (3910, 1234) \\
o12 &= (3910, -774)
\end{align*}
\]
i.e. \((1234, -774)\) is the unique solution mod \(3910 = 2 \cdot 5 \cdot 17 \cdot 23 \). Substituting this into the original equations over \(\mathbb{Z} \) shows that this is indeed a solution over \(\mathbb{Z} \).
\[
\text{sub(I,matrix{{1234,-774}})}
\]
o13 = ideal (0, 0)

If the unique solution does not have \(\mathbb{Z} \) but \(\mathbb{Q} \) coordinates then one can find the solution using the extended Euclidean Algorithm [23, Section 5.10].

Example 4.4. Let’s try to find a small solution to the equation
\[
\frac{r}{s} \equiv 7 \mod 37.
\]
Each solution satisfies
\[
r = 7s + 37t
\]
with \(s \) and \(t \) in \(\mathbb{Z} \). Using the extended Euclidean Algorithm
we find the solution

\[1 = \gcd(7, 37) = 7 \cdot 16 + 37 \cdot (-3) \]

to our linear equation. Observe, however, that the intermediate step in the Euclidean Algorithm also gives solutions, most of them with small coefficients. Indeed, \(r/s = -2/5 \) is a solution with \(r, s \leq \sqrt{37} \) which is the best that we can expect.

If we find a small solution by this method, we even can be sure that it is the only one satisfying the congruence:

Proposition 4.5. There exist at most two solutions \((r, s)\) of

\[r \equiv as + bt \mod m \]

that satisfy \(r, s \leq \sqrt{m} \). If a solution satisfies \(r, s \leq \frac{1}{2}\sqrt{m} \), then this solution is unique.

Proof. [23, Section 5.10]

Experiment 4.6. Let’s find a solution to

\[
176x^2 + 148xy + 301y^2 - 742x + 896y + 768 = 0
\]
\[-25xy + 430y^2 + 33x + 1373y + 645 = 0\]

As in Experiment 4.3 we search for primes with unique solutions

\[
I = \text{ideal } (176*x^2+148*x*y+301*y^2-742*x+896*y+768, \\
-25*x*y+430*y^2+33*x+1373*y+645)
\]
\[
tally \text{ apply}((2,3,5,7,11,13,17,19,23,29,31,37,41), \\
p->(p,\text{time allPoints(I,p))))
\]

and obtain

\[
o10 = \text{Tally}(\{(2, \{(1, 0)}) \} => 1 \\
(3, \{(0, 0), (0, 1), (2, 0)) \}) => 1 \\
(5, \{(3, 2), (4, 1)) \}) => 1 \\
(7, \{(2, 6), (4, 0)) \}) => 1 \\
(11, \{\}) => 1 \\
(13, \{(5, 10)) \}) => 1
\]
Notice that there is no solution mod 11. If there is a solution over \mathbb{Q} this means that 11 has to divide at least one of the denominators. Chinese remaindering gives a solution mod $2 \cdot 13 \cdot 31 \cdot 37 \cdot 41 = 1222702$:

-- x coordinate
chineseList({(2,1),(13,5),(31,7),(37,14),(41,0)})
o11 = (1222702, 138949)

-- y coordinate
chineseList({(2,0),(13,10),(31,22),(37,18),(41,23)})
o12 = (1222702, -526048)

Substituting this into the original equations gives

sub(I,matrix{{138949,-526048}})
o13 = ideal (75874213835186, 120819022681578)

so this is not a solution over \mathbb{Z}. To find a small possible solution over \mathbb{Q} we use an implementation of the extended Euclidean Algorithm from \cite{23} Section 5.10].

-- take (a,n) and calculate a solution to
-- r = as mod n
-- such that r,s < sqrt(n).
-- return (r/s)
recoverQQ = (a,n) -> (
 r0:=a;s0:=1;t0:=0;
 r1:=n;s1:=0;t1:=1;
 r2:=0;s2:=0;t2:=0;
 k := round sqrt(r1*1.0);
 while k <= r1 do (
 q = r0//r1;
 r2 = r0-q*r1;
 s2 = s0-q*s1;
 t2 = t0-q*t1;
 --print(q,r2,s2,t2);
 r0=r1;s0=s1;t0=t1;
 r1=r2;s1=s2;t1=t2;
);
 (r2/s2))
This yields

```
-- x coordinate
recoverQQ(138949, 2*13*31*37*41)
```

```
123
```

```
o21 = ---
```

```
22
```

Notice that Macaulay reduced $246/44$ to $123/22$ in this case. Therefore this is not a solution mod 2. Indeed, no solution mod 2 exists, since the denominator of the x coordinate is divisible by 2. For the y coordinate we obtain

```
-- y coordinate
recoverQQ(-526048, 2*13*31*37*41)
```

```
77
```

```
o22 = - --
```

```
43
```

As a last step we substitute this \mathbb{Q}-point into the original equations.

```
sub(I, matrix{{123/22, -77/43}})
```

```
o24 = ideal (0, 0)
```

This shows that we have indeed found a solution over \mathbb{Q}. Notice also that as argued above one of the denominators is divisible by 2 and the other by 11.

Remark 4.7.

(i) The assumption that we have a unique solution over \mathbb{Q} is not as restrictive as it might seem. If we have for example 2 solutions, then at least the line through them is unique. More generally, if the solution set over \mathbb{Q} lies on k polynomials of degree d then the corresponding point in the Grassmannian $G(k, \binom{d+m}{n})$ is unique.

(ii) Even if we do not have isolated solutions, we can use this method to find the polynomials of $\text{rad}(I(X))$, at least if the polynomials are of small degree.

(iii) For this method we do not need explicit equations, rather an algorithm that decides whether a point lies on X is enough. This is indeed an important distinction. It is for example easy to check whether a given hypersurface is singular, but very difficult to give an explicit discriminant polynomial in the coefficients of the hypersurface that vanishes if and only if it is singular.

Before we finish this tutorial by looking at a very nice application of this method by Oliver Labs, we will look briefly at a second situation in which we can find explicit solutions over \mathbb{Q}. I learned this method from Noam Elkies in his talk at the Clay Mathematics Institute Summer School “Arithmetic geometry” 2006.
Figure 16. A scheme X over Spec \mathbb{Z} with a smooth isolated solution over \mathbb{Q}.

Algorithm 4.8. Assume that X has a smooth point x over \mathbb{Q} that is isolated over $\overline{\mathbb{Q}}$ as depicted in Figure 16 and that p is a prime that does not divide the denominators of the coordinates of x. Then we can find this point as follows:

(i) Reduce mod p and test all points.
(ii) Calculate the tangent spaces at the found points. If the dimension of such a tangent space is 0 then the corresponding point is smooth and isolated.
(iii) Lift the point mod p^k with k large using p-adic Newton iteration, as explained in Prop 4.9.

Proposition 4.9. Let $a \in \mathbb{A}^n_{\mathbb{Z}}$ be a solution of

$$f_1(a) = \cdots = f_n(a) = 0 \mod p^k$$

and assume that the Jacobian matrix $J = \left(\frac{df_i}{dx_j} \right)$ is invertible at $a \mod p$. Then

$$a' = a - (f_1(a), \ldots, f_n(a))J(a)^{-1}$$

is a solution mod p^{2k}.

Proof. Use the Taylor expansion as in the proof of Newton iteration.

Experiment 4.10. Let’s solve the equations of Experiment 4.3 using p-adic Newton iteration. For this we need some functions for modular calculations:

```plaintext
-- calculate reduction of a matrix M mod n
modn = (M,n) -> (
    matrix apply(rank target M, i->
        apply(rank source M,j-> M_j_i-round(M_j_i/n)*n)))

-- divide a matrix of integers by an integer
```
divn = (M,n) -> (matrix apply(rank target M, i-> apply(rank source M, j-> M_j_i//n)))

invn = (i,n) -> (c := gcdCoefficients(i,n); if c#0 == 1 then c#1 else "error"
)

invMatn = (M,n) -> (Mn := modn(M,n); MQQ := sub(Mn,QQ); detM = sub(det Mn,QQ); modn(invn(sub(detM,ZZ),n)*sub(detM*MQQ^-1,ZZ),n))

With this we can implement Newton iteration. We will represent a point by a pair (P,eps) with P a matrix of integers that is a solution modulo eps.

newtonStep = (Peps,M,J) -> (P := Peps#0; eps := Peps#1; JPinv := invMatn(sub(J,P),eps); correction := eps*modn(divn(sub(M,P)*JPinv,eps),eps); {modn(P-correction,eps^2),eps^2})

newton = (Peps,M,J,num) -> (i := 0; localPeps := Peps; while i < num do (localPeps = newtonStep(localPeps,M,J); print(localPeps); i = i+1;); localPeps)
We now consider equations of Example 4.3

\[I = \text{ideal} \left(-8x^2 - xy - 7y^2 + 5238x - 11582y - 7696, \\
4x^2 - 10y^2 - 2313x - 16372y - 6462 \right) \]

their Jacobian matrix

\[J = \text{jacobian}(I) \]

and their solutions over \(F_7 \):

\[
\text{apply(allPoints(I,7),Pseq -> (P := matrix \{toList Pseq\}; (P,0!=det modn(sub(J,P),7)))}
\]

\[
(2,3), (5,5)
\]

Both points are isolated and smooth over \(F_7 \) so we can apply \(p \)-adic Newton iteration to them. The first one lifts to the solution found in Experiment 4.3:

\[
\text{newton((matrix}\{\{2,3\}\},7),\text{gens I, J,4)}
\]

\[
(9,10), 49 \]
\[
(-1167, -774), 2401 \]
\[
(1234, 5764801) \]
\[
(1234, 33232930569601) \]

while the second point probably does not lift to \(\mathbb{Z} \):

\[
\text{newton((matrix}\{\{5,5\}\},7),\text{gens I, J,4)}
\]

\[
(5, -9), 49 \]
\[
(-926, 1234), 2401 \]
\[
(359224, 33232930569601) \]
\[
(11082657337694, 33232930569601) \]

\textbf{Remark 4.11.} Noam Elkies has used this method to find interesting elliptic fibrations over \(\mathbb{Q} \). See for example [3, Section III, p. 11].

\textbf{Remark 4.12.} The Newton method is much faster than lifting by Chinese remaindering, since we only need to find one smooth point in one characteristic. Unfortunately, it does not work if we cannot calculate tangent spaces. An application where this happens is discussed in the next section.
5. Surfaces with Many Real Nodes

A very nice application of finite field experiments with beautiful characteristic zero results was done by Oliver Labs in his thesis \(^2\). We look at his ideas and results in this section.

Consider an algebraic surface \(X \subset \mathbb{P}_\mathbb{R}^3\) of degree \(d\) and denote by \(N(X)\) the number of real nodes of \(X\). A classical question of real algebraic geometry is to determine the maximal number of nodes a surface of degree \(d\) can have. We denote this number by

\[
\mu(d) := \max\{N(X) \mid X \subset \mathbb{P}_\mathbb{R}^3 \land \deg X = d\}.
\]

Moreover one would like to find explicit equations for surfaces \(X\) that do have \(\mu(d)\) real nodes. The cases \(\mu(1) = 0\) and \(\mu(2) = 1\), i.e the plane and the quadric cone, have been known since antiquity.

Cayley \(^{24}\) and Schäfi \(^{25}\) solved \(\mu(3) = 4\), while Kummer proved \(\mu(4) = 16\) in \(^{26}\). Plaster models of a Cayley-Cubic and a Kummer-Quartic are on display in the Göttingen Mathematical Institute as numbers 124 and 136, see Figure 17 and 18. These and many other pictures are available at

http://www.uni-math.gwdg.de/modellsammlung.

For the case \(d = 5\), Togliatti proved in \(^{27}\) that quintic surfaces with 31 nodes exist. One such surface is depicted in Figure 20. It took 40 years before Beauville \(^{28}\) finally proved that 31 is indeed the maximal possible number.

In 1994 Barth \(^{29}\) found the beautiful sextic with the icosahedral symmetry and 65 nodes shown in Figure 21. Jaffe and Rubermann proved in \(^{30}\) that no sextics with 66 or more nodes exist.
For \(d = 7 \) the problem is still open. By works of Chmutov \[31\], Breske/Labs/van Straten \[32\] and Varchenko \[33\] we only know \(93 \leq \mu(7) \leq 104 \). For large \(d \) Chmutov and Breske/Labs/van Straten show
\[
\mu(d) \geq \frac{5}{12}d^3 + \text{lower order terms},
\]
while Miyaoka \[34\] proves
\[
\mu(d) \leq \frac{4}{5}d^3 + \text{lower order terms}.
\]

Here we explain how Oliver Labs found a new septic with many nodes, using finite field experiments \[35\].

Experiment 5.1. The most naive approach to find septics with many nodes is to look at random surfaces of degree 7 in some small characteristic:

```plaintext
-- Calculate milnor number for hypersurfaces in IP^3
-- (for nonisolated singularities and smooth surfaces 0 is returned)
mu = (f) -> (
    J := (ideal jacobian ideal f)+ideal f;
    if 3==codim J then degree J else 0
)
K = ZZ/5 -- work in char 5
R = K[x,y,z,w] -- coordinate ring of IP^3

-- look at 100 random surfaces
time tally apply(100, i-> mu(random(7,R)))
```

After about 18 seconds we find

```
[object Object]
```

which is still far from 93 nodes. Since having an extra node is a codimension-one condition, a rough estimation gives that we would have to search \(5^{89} \approx 1.6 \times 10^{62} \) times longer to find 89 more nodes in characteristic 5.

One classical idea to find surfaces with many nodes, is to use symmetry. If for example we only look at mirror symmetric surfaces, we obtain singularities in pairs, as depicted in Figure\[19\].
Experiment 5.2. We look at 100 random surfaces that are symmetric with respect to the $x = 0$ plane

```plaintext
-- make a random f mirror symmetric
sym = (f) -> f+sub(f,{x=>-x})

time tally apply(100, i-> mu(sym(random(7,R))))
o6 = Tally{0 => 57}
   1 => 10
   2 => 11
   3 => 9
   4 => 4
   5 => 3
   6 => 3
   7 => 1
   9 => 1
  13 => 1
```

Indeed, we obtain more singularities, but not nearly enough.

The symmetry approach works best if we have a large symmetry group. In the $d = 7$ case Oliver Labs used the D_7 symmetry of the 7-gon. If D_7 acts on \mathbb{P}^3 with symmetry axis $x = y = 0$ one can use representation theory to find a 7-dimensional family of D_7-invariant 7-tic we use in the next experiment.

Experiment 5.3. Start by considering the cone over a 7-gon given by

$$P = 2^6 \prod_{j=0}^{6} \left(\cos \left(\frac{2\pi j}{7} \right) x + \sin \left(\frac{2\pi j}{7} \right) y - z \right),$$

which can be expanded to
Figure 19. A mirror symmetric cubic

\[P = x(x^6 - 3x^7 + 5x^5 + 7x^4 - 2x^2 + 4 - 7y^6) + 7z(x^2 + y^2)^3 - 2^3 z^2 (x^2 + y^2)^2 + 2^4 z^4 \]
\[(x^2 + y^2)^2 - 2^6 z^7 \]

Now parameterize \(D_7 \) invariant septics \(U \) that contain a double cubic.

\[S = K[a1, a2, a3, a4, a5, a6, a7] \]
\[RS = R**S \quad -- \quad \text{tensor product of rings} \]
\[U = (z+a5*w)^* \]
\[(a1*z^3+a2*z^2*w+a3*z*w^2+a4*w^3+(a6*z+a7*w)*(x^2+y^2))^2 \]

We will look at random sums of the form \(P + U \) using

\[
\text{randomInv} = () \rightarrow (\\
\quad \text{P-sub(U,vars R|random(R^{0},R^{7:0}))} \\
\)

Let’s try 100 of these

\[
\text{time tally apply(100, i-> mu(randomInv()))} \\
\]
\[o9 = \text{Tally\{63 => 48} \]
\[64 => 6 \]
\[65 => 4 \]
\[... \]
\[136 => 1 \]
\[140 => 1 \]

Unfortunately, this looks better than it is, since many of the surfaces with high Milnor numbers have singularities that are not ordinary nodes. We can detect this by looking at the Hessian matrix which has rank \(\geq 3 \) only at smooth points and
ordinary nodes. The following function returns the number of nodes of \(X = V(f) \) if all nodes are ordinary and 0 otherwise.

\[
\text{numA1} = (f) \rightarrow (\\
\quad \text{-- singularities of } f \\
\quad \text{singf := (ideal jacobian ideal f) + ideal f; } \\
\quad \text{if } 3 = \text{codim singf} \text{ then (} \\
\quad\quad \text{-- calculate Hessian} \\
\quad\quad \text{Hess := diff(transpose vars R,diff(vars R,f)); } \\
\quad\quad \text{ssf := singf + minors(3,Hess); } \\
\quad\quad \text{if } 4 = \text{codim ssf} \text{ then degree singf else 0 } \\
\quad\quad \text{else 0 } \\
\quad \text{else 0 } \\
\)
\]

With this we test another 100 examples:

\[
\text{time tally apply}(100, i \rightarrow \text{numA1(randomInv()))}
\]

\[
o12 = \text{Tally}(0 \Rightarrow 28) \\
63 \Rightarrow 51 \\
64 \Rightarrow 13 \\
65 \Rightarrow 1 \\
70 \Rightarrow 6 \\
72 \Rightarrow 1
\]

which takes about 30 seconds. Notice that most surfaces have \(N(X) \) a multiple of 7 as expected from the symmetry.

To speed up these calculations Oliver Labs intersects the surfaces \(X = V(P + U) \) with the hyperplane \(y = 0 \) see Figure 22. Since the operation of \(D_7 \) moves
this hyperplane to 7 different positions, every singularity of the intersection curve C that does not lie on the symmetry axis corresponds to 7 singularities of X. Singular points on C that do lie on the symmetry axis contribute only one node to the singularities of X. Using the symmetry of the construction one can show that for surfaces X with only ordinary double points all singularities are obtained this way [36, p. 18, Cor. 2.3.10], [35, Lemma 1].

Experiment 5.4. We now look at 10000 random D_7-invariant surfaces and their intersection curves with $y = 0$. We estimate the number of nodes on X from the number of nodes on C and return the point in the parameter space of U if this number is large enough.

```plaintext
use R
time tally apply(10000,i-> (  
  r := random(R^{0},R^{7:0});  
  f := sub(P-sub(U,vars R|r),y_R=>0);  
  singf := ideal f + ideal jacobian ideal f;  
  if 2 == codim singf then (  
    -- calculate Hessian  
    Hess := diff(transpose vars R,diff(vars R,f));  
    ssf := singf + minors(2,Hess);  
    if 3==codim ssf then (  
      d := degree singf;  
      -- points on the line x=0  
      singfx := singf+ideal(x);  
      dx := degree singfx;  
      if 2!=codim singfx then dx=0;  
      d3 = (d-dx)*7+dx;  
      (d,d-dx,dx,d3,if d3>=93 then r)  
    )  
    else -1  
  )
)}
In this way we find

$$o_{16} = \text{Tally}\{(9, 9, 0, 63, ) => 5228 \}
\quad \text{(10, 9, 1, 64, ) => 731}$$

$$\ldots$$

$$\quad \text{(16, 14, 2, 100, | 1 2 2 1 1 0 1 |) => 1}$$

$$\text{-1 => 3071}$$

$$null => 8$$

It remains to check whether the found $U$ really gives rise to surfaces with 100 nodes

$$f = \text{P-sub}(U, vars R|_{\text{sub(matrix}\{1,2,2,1,1,0,1\}},R))$$

$$\text{numA1}(f)$$

$$o_{18} = 100$$

This proves that there exists a surface with 100 nodes over $F_5$.

Looking at other fields one finds that $F_5$ is a special case. In general one only finds surfaces with 99 nodes. To lift these examples to characteristic zero, Oliver Labs analyzed the geometry of the intersection curves of the 99-nodal examples and found that

(i) All such intersection curves decompose into a line and a 6-tic.
(ii) The singularities of the intersection curves are in a special position that can be explicitly described (see [35] for details)
These geometric properties imply (after some elimination) that there exists an $\alpha$ such that

\begin{align*}
\alpha_1 &= \alpha^7 + 7\alpha^5 - \alpha^4 + 7\alpha^3 - 2\alpha^2 - 7\alpha - 1 \\
\alpha_2 &= (\alpha^2 + 1)(3\alpha^5 + 14\alpha^4 - 3\alpha^2 + 7\alpha - 2) \\
\alpha_3 &= (\alpha^4 + 1)^2(3\alpha^3 + 7\alpha - 3) \\
\alpha_4 &= (\alpha(1 + \alpha^2) - 1)(1 + \alpha^2)^2 \\
\alpha_5 &= \frac{\alpha^2}{1 + \alpha^2} \\
\alpha_6 &= \alpha_7 = 1
\end{align*}

It remained to determine which $\alpha$ lead to 99-nodal septics. Experiments over many primes show that there are at most 3 such $\alpha$. Over primes with exactly 3 solutions, Oliver Labs represented them as zeros of a degree 3 polynomial. By using the Chinese remaindering method, he lifted the coefficients of this polynomial to characteristic 0 and obtained

$$7\alpha^3 + 7\alpha + 1 = 0.$$ 

This polynomial has exactly one real solution, and with this $\alpha$ one can calculate this time over $\mathbb{Q}(\alpha)$ that the resulting septic has indeed 99 real nodes. Figure 23 shows the inner part of this surface.

A movie of this and many other surfaces in this section can be found on my home page

[www.iag.uni-hannover.de/~bothmer/goettingen.php](http://www.iag.uni-hannover.de/~bothmer/goettingen.php)

on the home page of Oliver Labs
http://www.algebraicsurface.net/

or on YouTube.com

http://www.youtube.com/profile?user=bothmer

The movies and the surfaces in this article were produced using the public domain programs *surf* by Stefan Endraß [37] and *surfex* by Oliver Labs [38].

## A. Selected Macaulay Commands

Here we review some Macaulay 2 commands used in this tutorial. Lines starting with “i” are input lines, while lines starting with “o” are output lines. For more detailed explanations we refer to the online help of Macaulay2 [4].

### A.1. apply

This command applies a function to a list. In Macaulay 2 this is often used to generate loops.

```macaulay2
i1 : apply({1,2,3,4},i->i^2)
o1 = {1, 4, 9, 16}
o1 : List
```

The list \{0,1,\ldots,n−1\} can be abbreviated by \(n\):

```macaulay2
i2 : apply(4,i->i^2)
o2 = {0, 1, 4, 9}
o2 : List
```

### A.2. map

With `map(R,S,m)` a map from \(S\) to \(R\) is produced. The matrix \(m\) over \(S\) contains the images of the variables of \(R\):

```macaulay2
i1 : f = map(ZZ,ZZ[x,y],matrix{{{2,3}}})
o1 = map(ZZ,ZZ[x,y],{2, 3})
o1 : RingMap ZZ <--- ZZ[x,y]
```

```macaulay2
i2 : f(x+y)
o2 = 5
```

If no matrix is given, all variables to variables of the same name or to zero.
i3 : g = map(ZZ[x],ZZ[x,y])
o3 = map(ZZ[x],ZZ[x,y],{x, 0})
o3 : RingMap ZZ[x] <--- ZZ[x,y]
i4 : g(x+y+1)
o4 = x + 1
o4 : ZZ[x]

A.3. random

This command can be used either to construct random matrices

i1 : K = ZZ/3
o1 = K
o1 : QuotientRing
i2 : random(K^2,K^3)
o2 = | 1 0 -1 |
    | 1 -1 1 |
    2     3
o2 : Matrix K <--- K

or to construct random homogeneous polynomials of given degree

i3 : R = K[x,y]
o3 = R
o3 : PolynomialRing
i4 : random(2,R)

2 2
o4 = x + x*y - y
o4 : R

A.4. sub

This command is used to substitute values for the variables of a ring:

i1 : K = ZZ/3
o1 = K
o1 : QuotientRing
Another application is the transfer a polynomial, ideal or matrix from one ring $R$ to another ring $S$ that has some variables in common with $R$

```
i5 : S = K[x,y,z]
o5 = S
o5 : PolynomialRing
i6 : sub(f,S)
o6 = x*y
o6 : S
```

### A.5. `syz`

The command is used here to calculate a presentation for the kernel of a matrix:

```
i1 : M = matrix{{1,2,3},{4,5,6}}
o1 = | 1 2 3 |
 | 4 5 6 |
 2 3
o1 : Matrix ZZ <--- ZZ
i2 : syz M
o2 = | -1 |
 | 2 |
 | -1 |
 3 1
o2 : Matrix ZZ <--- ZZ
```
A.6. tally

With `tally` one can count how often an element appears in a list:

```plaintext
i1 : tally{1,2,1,3,2,2,17}
 o1 = Tally{1 => 2 } 2 => 3 3 => 1 17 => 1
 o1 : Tally
```

B. Magma Scripts (by Stefan Wiedmann)

Stefan Wiedmann [5] has translated the Macaulay 2 scripts of this article to Magma. Here they are:

**Experiment B.1.1.** Evaluate a given polynomial in 700 random points.

```plaintext
K := FiniteField(7); //work over F_7
R<x,y,z,w> := PolynomialRing(K,4); //Polynomialring in 4 variables over F_7
K4:=CartesianPower(K,4); //K^4
F := x^23+1248*y*z*w+129269698; //a polynomial
M := [Random(K4): i in [1..700]]; //random points
T := {*Evaluate(F,s): s in M*};
Multiplicity(T,0); //Results with multiplicity
```

**Experiment B.1.2.** Evaluate a product of two polynomials in 700 random points

```plaintext
K := FiniteField(7); //work over F_7
R<x,y,z,w> := PolynomialRing(K,4); //AA^4 over F_7
K4:=CartesianPower(K,4); //K^4
F := x^23+1248*y*z*w+129269698; //a polynomial
G := x*y*z*w+z^25-938493+x-z*w; //a second polynomial
H := F*G;
M := [Random(K4): i in [1..700]]; //random points
T := {*Evaluate(H,s): s in M*};
T;
Multiplicity(T,0);
```

**Experiment B.1.14.** Count singular quadrics.

\begin{verbatim}
K := FiniteField(7);
R<X,Y,Z,W> := PolynomialRing(K,4);
{* Dimension(JacobianIdeal(Random(2,R,0))) : i in [1..700]*};

Experiment B.1.18. Count quadrics with dim > 0 singular locus

function findk(n,p,k,c)
//Search until k singular examples of codim at most c are found,
//p prime number, n dimension
K := FiniteField(p);
R := PolynomialRing(K,n);
trials := 0;
found := 0;
while found lt k do
    Q := Ideal([Random(2,R,0)]);
    if c ge n - Dimension(Q+JacobianIdeal(Basis(Q))) then
        found := found + 1;
    else
        trials := trials + 1;
    end if;
end while;
print "Trails: ", trials;
return trials;
end function;

k := 50;

time L1 := [[p,findk(4,p,k,2)] : p in [5,7,11]]; L1;

time findk(4,5,50,2);
time findk(4,7,50,2);
time findk(4,11,50,2);

function slope(L)
xbar := &+[L[i][1] : i in [1..#L]]/#L;
ybar := &+[L[i][2] : i in [1..#L]]/#L;
return &+[(L[i][1]-xbar)*(L[i][2]-ybar) : i in [1..3]]/
        &+[(L[i][1]-xbar)^2 : i in [1..3]];
end function;

//slope for dim 1 singularities
slope([[Log(1/x[1]), Log(k/x[2])] : x in L1]);

Experiment B.2.1. Count points on a reducible variety.
\end{verbatim}
K := FiniteField(7);
V := CartesianPower(K,6);
R<x1,x2,x3,x4,x5,x6> := PolynomialRing(K,6);

//random affine polynomial of degree d
randomAffine := func< d | &+[ Random(i,R,7) : i in [0..d]]>;

//some polynomials
F := randomAffine(2);
G := randomAffine(6);
H := randomAffine(7);

//generators of I(V(F) \cup V(H,G))
I := Ideal([F*G,F*H]);

//experiment
null := [0 : i in [1..#Basis(I)]];

t := {**};

for j in [1..700] do
    point := Random(V);
    Include(~t, null eq [Evaluate(Basis(I)[i],point) : i in [1..#Basis(I)]]);
end for;

//result
t;

Experiment B.2.4. Count points and tangent spaces on a reducible variety.
//the Jacobi-Matrix
J := JacobianMatrix(Basis(I));
size := [NumberOfRows(J),NumberOfColumns(J)];

A := RMatrixSpace(R,size[1],size[2]);
B := KMatrixSpace(K,size[1],size[2]);

t := {**};

time
for j in [1..700] do
    point := Random(V);
    substitute := map< A -> B | x :-> [Evaluate(t,point): t in ElementToSequence(x)];
    if null eq [Evaluate(Basis(I)[i], point): i in [1..#Basis(I)]]
        then Include(~t, Rank(substitute(J)));
    else
        Include(~t,-1);
    end if;
end for;

//result
t;

Experiment B.2.9.

K := FiniteField(7); //charakteristik 7
R<x1,x2,x3,x4,x5,x6> := PolynomialRing(K,6); //6 variables
V := CartesianPower(K,6);

//consider an 5 x 5 matrix with degree 2 entries
r := 5;
d := 2;
Mat := MatrixAlgebra(R,r);

//random matrix
M := Mat![Random(d,R,7) : i in [1..r^2] ];

//calculate determinant and derivative w.r.t x1
time F := Determinant(M);
time F1 := Derivative(F,1);

//substitute a random point
point := Random(V);
time Evaluate(F1,point);

//calculate derivative with epsilon
\text{Ke}<e> := \text{AffineAlgebra}\langle K, e | e^2 \rangle; \quad \text{// a ring with } e^2 = 0

\text{Mate} := \text{MatrixAlgebra}(\text{Ke}, r);

\text{// the first unit vector}
\text{e1} := < >;
\text{for i in } [1..6] \text{ do}
\hspace{1em} \text{if } i \text{ eq 1 then}
\hspace{2em} \text{Append}(!e1, e);
\hspace{1em} \text{else}
\hspace{2em} \text{Append}(!e1, 0);
\hspace{1em} \text{end if;}
\text{end for;}

\text{// point with direction}
\text{point1} := < \text{point}[i]+e1[i] : i \in [1..6]>;

\text{time Mate!}[\text{Evaluate}(x,\text{point1}): x \text{ in ElementToSequence(M)}];
\text{time Determinant(Mate!}[\text{Evaluate}(x,\text{point1}): x \text{ in ElementToSequence(M)}]);

\text{// determinant at 5000 random points}

\text{time}
\text{for i in } [1..5000] \text{ do}
\hspace{1em} \text{point} := \text{Random}(V); \quad \text{// random point }
\hspace{1em} \text{point1} := <\text{point}[i]+e1[i] : i \in [1..6]>; \quad \text{// tangent direction }
\hspace{1em} \text{// calculate derivative}
\hspace{2em} _:=\text{Determinant(Mate!}[\text{Evaluate}(x,\text{point1}): x \text{ in ElementToSequence(M)}]);
\text{end for;}

\text{Experiment B.4.3.}

\text{R<x,y> := PolynomialRing(IntegerRing(),2); \quad \text{// two variables}}

\text{// the equations}
\text{F} := -8x^2-xy-7y^2+5238x-11582y-7696;
\text{G} := 4xy-10y^2-2313x-16372y-6462;
\text{I} := \text{Ideal}([F,G]);

\text{// now let's find the points over } \text{F}_p
\text{function allPoints} (\text{I}, p)
\hspace{1em} \text{M} := [];
\hspace{1em} \text{K} := \text{FiniteField}(p);
\hspace{1em} \text{A} := \text{AffineSpace}(K, 2);
\hspace{1em} \text{R} := \text{CoordinateRing}(A);
\hspace{1em} \text{for } \text{pt} \text{ in CartesianPower}(K, 2) \text{ do}
Ipt := Ideal([R|Evaluate(Basis(I)[k],pt) : k in [1..#Basis(I)]]);
SIpt := Scheme(A,Ipt);
if Codimension(SIpt) eq 0 then;
  Append(~M,pt);
end if;
end for;
return M;
end function;

for p in PrimesUpTo(23) do
  print p, allPoints(I,p);
end for;

/*Chinese remaindering
given solutions mod m and n find
a solution mod m*n
sol1 = [n,solution]
sol2 = [m,solution]*/
function chinesePair(sol1,sol2)
  n := sol1[1];
  an := sol1[2];
  m := sol2[1];
  am := sol2[2];
  d,r,s := Xgcd(n,m);
  amn := s*m*an+r*n*am;
  amn := amn - (Round(amn/(m*n)))*(m*n);
  if d eq 1 then
    return [m*n,amn];
  else
    print "m and n not coprime";
    return false;
  end if;
end function;

/*take a list {(n_1,s_1),...,(n_k,s_k)}
and return (n,a) such that
n=n_1* ... * n_k and
s_i = a mod n_i*/
function chineseList(L)
  //#L >= 2
  erg := L[1];
  for i in [2..#L] do
    erg := chinesePair(L[i],erg);
  end for;
  return erg;
end function;

// x coordinate
chineseList([[2,0],[5,4],[17,10],[23,15]]);
// y coordinate
chineseList([[2,0],[5,1],[17,8],[23,8]]);

// test the solution
Evaluate(F,[1234,-774]);
Evaluate(G,[1234,-774]);

**Experiment B.4.6.** Rational recovery, as suggested in von zur Gathen in Section 5.10. Uses the functions `allPoints` and `chineseList` from Experiment B.4.3.

\[ R<x,y> := \text{PolynomialRing}(\text{IntegerRing}(),2); \] // two variables

// equations
F := 176*x^2+148*x*y+301*y^2-742*x+896*y+768;
G := -25*x*y+430*y^2+33*x+1373*y+645;
I := Ideal([F,G]);

for p in PrimesUpTo(41) do
  print p, allPoints(I,p);
end for;

// x coordinate
chineseList([[2,1],[13,5],[31,7],[37,14],[41,0]]);
// y coordinate
chineseList([[2,0],[13,10],[31,22],[37,18],[41,23]]);

// test the solution
Evaluate(F,[138949,-526048]);
Evaluate(G,[138949,-526048]);

/* take \((a,n)\) and calculate a solution to
\( r = a \mod n \)
such that \( r,s < \sqrt{n} \).
return \((r/s)\)*/
function recoverQQ(a,n)
  r0:=a;
  s0:=1;
  t0:=0;
  r1:=n;
  s1:=0;
  t1:=1;
  r2:=0;
s2:=0;
t2:=0;
k := Round(Sqrt(r1*1.0));
while k le r1 do
    q := r0 div r1;
    r2 := r0-q*r1;
    s2 := s0-q*s1;
    t2 := t0-q*t1;
    r0:=r1;
    s0:=s1;
    t0:=t1;
    r1:=r2;
    s1:=s2;
    t1:=t2;
end while;
return (r2/s2);
end function;

//x coordinate
recoverQQ(138949,2*13*31*37*41);
//y coordinate
recoverQQ(-526048,2*13*31*37*41);

//test the solution
Evaluate(F,[123/22,-77/43]);
Evaluate(G,[123/22,-77/43]);

Experiment B.4.10. Lifting solutions using \(p\)-adic Newton iteration (as suggested by N. Elkies). Uses the function allPoints from Example B.4.3.

//calculate reduction of a matrix \(M\) mod \(n\)
function modn(M,n)
    return Matrix(Nrows(M),Ncols(M),[x - Round(x/n)*n : x in Eltseq(M)]);
end function;

//divide a matrix of integer by an integer
//in our application this division will not have a remainder)
function divn(M,n)
    return Matrix(Nrows(M),Ncols(M),[x div n : x in Eltseq(M)]);
end function;

// invert number mod \(n\)
function invn(i,n)
    a,b := Xgcd(i,n);
    if a eq 1 then
        return b;
    else return false;
end function;
// invert a matrix mod n
// M a square matrix over ZZ
// (if M is not invertible mod n, then 0 is returned)
function invMatn(M,n)
    Mn := modn(M,n);
    MQQ := MatrixAlgebra(RationalField(),Nrows(M))!Mn;
    detM := Determinant(Mn);
    if Type(invn(detM,n)) eq BoolElt then
        return 0;
    else
        return
            (MatrixAlgebra(IntegerRing(),Nrows(M))!
                modn(invn(detM,n)*detM*MQQ^(-1),n));
    end if;
end function;

// (P,eps) an approximation mod eps (contains integers)
// M affine polynomials (over ZZ)
// J Jacobian matrix (over ZZ)
// returns an approximation (P,eps^2)
function newtonStep(Peps,M,J)
    P := Peps[1];
    eps := Peps[2];
    JatP := Matrix(Ncols(J),Nrows(J),[Evaluate(x,Eltseq(P)) : x in Eltseq(J)]);
    JPinv := invMatn(JatP,eps);
    MatP := Matrix(1,#M,[Evaluate(x,Eltseq(P)) : x in Eltseq(M)]);
    correction := eps*modn(divn(MatP*Transpose(JPinv),eps),eps);
    return <modn(P-correction,eps^2),eps^2>;
end function;

// returns an approximation mod Peps^(2^num)
function newton(Peps,M,J,num)
    localPeps := Peps;
    for i in [1..num] do
        localPeps := newtonStep(localPeps,M,J);
        print localPeps;
    end for;
    return localPeps;
end function;

// c.f. example 4.3
R<x,y> := PolynomialRing(IntegerRing(),2); // two variables

// the equations
F := -8*x^2-x*y-7*y^2+5238*x-11582*y-7696;
G := 4*x*y-10*y^2-2313*x-16372*y-6462;
I := Ideal([F,G]);
J := JacobianMatrix(Basis(I));

Ap := allPoints(I,7);
for x in Ap do
  MatP := Matrix(Nrows(J),Ncols(J),[Evaluate(j,x): j in Eltseq(J)]);
  print x, (0 ne Determinant(MatP));
end for;

Peps := <Matrix(1,2,[2,3]),7>;
newton(Peps,Basis(I),J,4);

Peps := <Matrix(1,2,[5,5]),7>;
newton(Peps,Basis(I),J,4);

Experiment B.5.1. Count singularities of random surfaces over $F_5$.

K := FiniteField(5); //work in char 5
A := AffineSpace(K,4);
R<x,y,z,w> := CoordinateRing(A); //coordinate ring of $IP^3$

//Calculate milnor number
//((For nonisolated singularities and smooth surfaces 0 is returned)
function mu(f)
  SJ := Scheme(A,(Ideal([f])+JacobianIdeal(f)));
  if 3 eq Codimension(SJ) then
    return Degree(ProjectiveClosure(SJ));
  else
    return 0;
  end if;
end function;

//look at 100 random surfaces
M := {**};
time
for i in [1..100] do
  f := Random(7,CoordinateRing(A),5);
  Include(~M,mu(f));
end for;
print "M:", M;

Experiment B.5.2. Count singularities of mirror symmetic random surfaces. Uses the function mu from Example B.5.1.
K := FiniteField(5); //work in char 5
A := AffineSpace(K,4);
R<x,y,z,w> := CoordinateRing(A); //coordinate ring of IP^3

//make a random f mirror symmetric
function mysym(f)
    return (f + Evaluate(f,x,-x));
end function;

//look at 100 random surfaces
M := {**};
time
for i in [1..100] do
    f := R!mysym(Random(7,CoordinateRing(A),5));
    Include(~M,mu(f));
end for;
print "M:", M;

Experiment B.5.3. Count A1-singularities of D_7 invariant surfaces. Uses the function mu from Experiment B.5.1.

K := FiniteField(5); //work in char 5
A := AffineSpace(K,4);
R<X,Y,Z,W> := CoordinateRing(A); //coordinate ring of IP^3
RS<x,y,z,w,a1,a2,a3,a4,a5,a6,a7> := PolynomialRing(K,11);

//the 7-gon
P := X*(X^6-3*7*X^4*Y^2+5*7*X^2*Y^4-7*Y^6)
    +7*Z*((X^2+Y^2)^3-2^3*Z^2*(X^2+Y^2)^2+2^4*Z^4*(X^2+Y^2))-2^6*Z^7;

//parametrising invariant 7 tics with a double cubic
U := (z+a5*w)*(a1*z^3+a2*z^2*w+a3*z*w^2+a4*w^3+(a6*z+a7*w)*(x^2+y^2))^2;

//random invariant 7-tic
function randomInv()
    return (P - Evaluate(U,[X,Y,Z,W] cat [Random(K):i in [1..7]]));
end function;

//test with 100 examples
M1 := {**};
time
for i in [1..100] do
    Include(~M1,mu(randomInv()));
end for;
print "M1:", M1;
//singularities of f
function numA1(f)
    singf := Ideal([f])+JacobianIdeal(f);
    Ssingf := Scheme(A,singf);
    if 3 eq Codimension(Ssingf) then
        T := Scheme(A, Ideal([f]));
        //calculate Hessian
        Hess := HessianMatrix(T);
        ssf := singf + Ideal(Minors(Hess,3));
        if 4 eq Codimension(Scheme(A, ssf)) then
            return Degree(ProjectiveClosure(Ssingf));
        end if;
        return 0;
    end if;
    return 0;
end function;

//test with 100 examples
M2 := {**};
time
for i in [1..100] do
    Include(~M2, numA1(randomInv()));
end for;
print "M2:", M2;

Experiment B.5.4. Estimate number of A1-singularities by looking at y = 0. Uses the function numA1 from Experiment B.5.3.

K := FiniteField(5); //work in char 5
A := AffineSpace(K,4);
R<X,Y,Z,W> := CoordinateRing(A); //coordinate ring of IP^3
RS<x,y,z,w,a1,a2,a3,a4,a5,a6,a7> := PolynomialRing(K,11);

//the 7-gon
P := X*(X^6-3*7*X^4*Y^2+5*7*X^2*Y^4-7*Y^6)
  +7*Z*((X^2+Y^2)^3-2^3*Z^2*(X^2+Y^2)^2+2^4*Z^4*(X^2+Y^2))-2^6*Z^7;

//parametrising invariant 7 tics with a double cubic
U := (z+a5*w)*(a1*z^3+a2*z^2*w+a3*z*w^2+a4*w^3+(a6*z+a7*w)*(x^2+y^2))^2;

//estimate number of nodes
function numberofsing()
r := [Random(K): i in [1..7]];
f := Evaluate(P - Evaluate(U, [X, Y, Z, W] cat r), Y, 0);
singf := Ideal([f]) + JacobianIdeal(f);
Ssingf := Scheme(A, singf);
if 2 eq Codimension(Ssingf) then
  // calculate Hessian
  S := Scheme(A, Ideal([f]));
  Hess := HessianMatrix(S);
  ssf := singf + Ideal(Minors(Hess, 2));
  Sssf := Scheme(A, ssf);
  if 3 eq Codimension(Sssf) then
    d := Degree(ProjectiveClosure(Ssingf));
    // points on the line x=0
    singfx := singf + Ideal([X]);
    Ssingfx := Scheme(A, singfx);
    dx := Degree(ProjectiveClosure(Ssingfx));
    if 2 ne Codimension(Ssingfx) then
      dx := 0;
    end if;
    d3 := (d-dx)*7+dx;
    if d3 ge 93 then
      return <d, d-dx, dx, d3>, r;
    else
      return <d, d-dx, dx, d3>, _;
    end if;
  else
    return <-1,0,0,0>, _;
  end if;
end if;
else return <0,0,0,0>, _;
end if;
end function;

M1 := {**};
M1hit := {**};
time
for i in [1..10000] do
  a, b := numberofsing();
  if assigned(b) then
    Include(~M1hit, <a, b>);
  else
    Include(~M1, a);
  end if;
end for;
print "M1:", M1;
print "M1hit:", M1hit;
\begin{verbatim}
//test
f := P-Evaluate(U,[X,Y,Z,W,1,2,2,1,1,0,1]);
umA1(f);
\end{verbatim}

References


