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ABSTRACTS

Euclidean propagators in noncommutative quantum field theory
DOROTHEA BAHNS . . .ottt e e e e e et e en 1

It is shown that the 2-point and the 4-point function of bosonic fields on
the noncommutative Minkowski space are distributions which are bound-
ary values of analytic functions. Contrary to what one might expect, this
connection to analytic functions does not provide a connection to the pop-
ular Euclidean Feynman rules of noncommutative field theory, and thereby
explains why renormalization in the framework of those latter rules crudely
differs from renormalization in the Minkowskian regime.

Geometric construction of cluster algebras and cluster categories
KARIN BAUR. .t i e e 13

In this note we explain how to obtain cluster algebras from triangula-
tions of (punctured) discs following the approach of [13]. Furthermore, we
give a description of m-cluster categories via diagonals (arcs) in (punctured)
polygons and of m-cluster categories via powers of translation quivers as
given in joint work with R. Marsh ([1], [3]).

Dispersive Equations and Hyperbolic Orbits
HANS CHRISTIANSON . . .« .t ettt ettt et et et et et et e e e aeanenes 31

We consider several related problems in linear PDE on manifolds, both
when the underlying manifold is compact and when it is non-compact. Our
general assumption is that the classical flow has a single periodic hyperbolic
(unstable) orbit. The standard techniques from linear PDE relying on dis-
persive effects and non-trapping assumptions do not directly apply in this
situation, but the unstable nature of the periodic orbit allows us to prove
slightly weaker results.

Forms in many variables
RAINER DIETMANN . « ¢t ettt ettt ettt et et e e e e a e eaenes 47

We give a survey about two new applications of the Hardy-Littlewood
circle method from analytic number theory to arithmetic problems. These
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problems are finding a polynomial bound for the smallest integer solution
of a quadratic Diophantine equation, and showing that the intersection of a
system of rational cubic forms in sufficiently many variables admits a ratio-
nal linear space of zeros of given dimension.

On the topology of the moduli stack of stable curves
JOHANNES EBERT . ..ottt ittt e iiiee e 57

This note is an informal report on the joint paper [4] of the author with
Jeffrey Giansiracusa, which grew out of the attempt to understand the topol-
ogy of the moduli stack of stable curves. The main result is the construction
of a map from the moduli stack to a certain infinite loop space, which is sur-
jective on homology in a certain range. This shows the existence of many
torsion classes in the homology of ﬁg,n. We give a geometric description
of some of the new torsion classes. Also, we give a new proof of an (old)
theorem computing the second homology of the moduli stack.

Three tropical enumerative problems
HANNAH MARKWIG . . ¢ttt ettt et iii i i aaas 69

In this survey, we describe three tropical enumerative problems and the
corresponding moduli spaces of tropical curves. They have the structure of
weighted polyhedral complexes. We observe similarities in the definitions of
the weights, aiming at a better understanding of the tropical structure of the
moduli spaces.

Volume and L?-Betti numbers of aspherical manifolds
ROMAN SAUER. . . oottt et 97

We give a leisurely account of the relationship between volume and L?-
Betti numbers on closed, aspherical manifolds based on the results in [4] —
albeit with a different point of view. This paper grew out of a talk presented
at the first colloquium of the Courant Center in Géttingen in October 2007.

The global structure of affine Deligne-Lusztig varieties
EVA VIEHMANN . oottt ittt et e ees 107

We give an overview over current results on the global structure of affine
Deligne-Lusztig varieties associated to a hyperspecial maximal compact
subgroup. In particular, we discuss a formula for their dimensions and the
set of connected components of the closed affine Deligne-Lusztig varieties.
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Lie II theorem for Lie algebroids via stacky Lie groupoids
CHENCHANG ZHU .« oottt ittt ittt it it e e it 115

Unlike Lie algebras which one-to-one correspond to simply connected
Lie groups, Lie algebroids (integrable or not) one-to-one correspond to a
sort of étale stacky groupoids (W-groupoids). Following Sullivan’s spacial
realization of a differential algebra, we construct a canonical integrating Lie
2-groupoid for every Lie algebroid. Finally we discuss how to lift Lie alge-
broid morphisms to W-groupoid morphisms (Lie II). Examples of Poisson
manifolds and symplectic stacky groupoids are provided. This paper con-
tains essentially some ideas of proofs and examples, for a complete treat-
ment please refer to [29] which also proves some connectedness result.
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Abstract. It is shown that the 2-point and the 4-point function of bosonic fields on the noncom-
mutative Minkowski space are distributions which are boundary values of analytic functions.
Contrary to what one might expect, this connection to analytic functions does not provide a con-
nection to the popular Euclidean Feynman rules of noncommutative field theory, and thereby
explains why renormalization in the framework of those latter rules crudely differs from renor-
malization in the Minkowskian regime.

1. Introduction

A quantum field theoretic model is to a large part determined by the choice of
a partial differential operator. For physical reasons, this operator has to be hyper-
bolic, and one of its fundamental solutions, the so-called Feynman propagator, is
the building block in any calculation of physically relevant quantities. Nonetheless,
ever since proposed by Symanzik in 1966 [9] based on ideas of Schwinger, the so-
called Euclidean framework has played a very important role. In this framework,
the building block is the so-called Schwinger function, a fundamental solution of
an elliptic partial differential operator. The Euclidean formalism not only simplifies
calculations, but seems to be indispensable in constructive quantum field theory.
The remarkable theorem of Osterwalder and Schrader gives sufficient conditions
for the possibility to recover the original hyperbolic (physically meaningful) field

2000 Mathematics Subject Classification. 81T75,46F20.
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theory from a Euclidean framework, and therefore justifies the Euclidean frame-
work in ordinary quantum field theory. I will recall below how the Schwinger func-
tion of the Euclidean framework of scalar field theory is derived by analytic contin-
uation from the hyperbolic theory and how it relates to the Feynman propagator.

As one possibility to incorporate gravitational aspects into quantum field theory,
for some years now, much research has been done on quantum fields on noncom-
mutative spaces, the most popular of which is the noncommutative “Moyal space”
whose coordinates are subject to commutation relations of the Heisenberg type [4].
Already in that early paper, a possible setting for hyperbolic perturbative quantum
field theory was proposed, where the field algebra is endowed with a noncommuta-
tive product, the twisted (convolution) product. Notwithstanding, the vast majority
of publications on field theory on noncommutative spaces (“noncommutative field
theory”) has been and still is formulated within a Euclidean setting. This setting
was not derived from a hyperbolic noncommutative theory but from the Euclidean
framework of ordinary field theory by replacing all products with twisted ones. I
shall refer to this approach as the traditional noncommutative Euclidean frame-
work. Despite some attempts, it has not been possible to relate this traditional
noncommutative Euclidean setting to some hyperbolic noncommutative theory —
in fact, there is evidence that it might be impossible to do so, unless the time vari-
able commutes with all space variables.

After some years, it became clear that even the simplest quantum field theoretic
models, the massive scalar models, have very peculiar properties when formulated
within the traditional Euclidean noncommutative framework."” Most notably, the
so-called ultraviolet-infrared mixing problem noted in [7] severly limits the type of
models that can be defined at all [5, 6].

In contrast to these results, I have shown [1] that in a hyperbolic setting, the
ultraviolet-infrared mixing effect is not present at least in the most prominent ex-
ample graph that exibits ultraviolet-infrared mixing in the traditional Euclidean
realm. I shall present this result in a longer and more technical article shortly.
However, the calculations and the combinatorial aspects being quite complicated,
I have not yet been able to find a general proof of the conjecture that the ultraviolet-
infrared mixing problem may be absent in this hyperbolic noncommutative setting.

@1n fact, as is common in the literature, I will only consider this simplest example of field theories
here. Already such massive scalar models have enough structure to enable us to study the principles of
noncommutative field theory, while massless theories and gauge theories are notoriously difficult.
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For this reason, I thought it desirable to find a Euclidean framework that was actu-
ally derived from a hyperbolic noncommutative setting. This being achieved, it is
to be hoped that a Schwinger functional can be found which should greatly sim-
plify the combinatorial aspects of perturbation theory, and that the full Euclidean
machinery might indeed make it possible to investigate renormalizability and the
possible absence of the ultraviolet-infrared mixing problem in general.

In this note, I will show that one can indeed derive a noncommutative Euclidean
framework from a hyperbolic theory on the Moyal space, and that this framework
is not the traditional one that is investigated in the literature. In contrast to this
traditional framework, the new Euclidean framework can moreover be related to a
setting involving Feynman propagators via an analytic continuation similar to the
one of ordinary quantum field theory. To start, I will recall in the next section how
the Schwinger function is derived in ordinary massive scalar quantum field theory
and how it is related to the Feynman propagator. In the third section, I will then
derive a Euclidean 4-point function from a noncommutative hyperbolic Wightman
function and comment on how to proceed for arbitrarily high order. I will show
that the Euclidean framework thus derived differs from the traditional noncommu-
tative approach. Moreover, the relation to Feynman propagators is clarified. In an
outlook I will briefly comment on further possible research that ensues from these
new results.

2. Euclidean methods in quantum field theory

The hyperbolic partial differential operator of massive scalar field theory is the
massive Klein-Gordon operator P := % — Ax + m? on R* where A4 denotes the
Laplace operator on R%, x € R%, and m > 0 is a real parameter, called the field’s mass.
As mentioned in the introduction, all the relevant quantities of a scalar field theo-
retic model can be calculated from a fundamental solution of this operator. Recall
here that a distribution E € 2'(R") is a fundamental solution (or Green’s function)
of a partial linear differential operator P(d) on R” provided that in the sense of dis-
tributions, P(9) E = —6 with 6 denoting the §-distribution.

Our starting point here, however, is the 2-point-function A, € .%'(R*), a tem-
pered distribution which is a solution (not a fundamental solution) of the Klein—
Gordon equation, PA, = 0 in the sense of distributions. For x = (x(,X) € R4, xp € R,
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x € R3, it is given explicitly by

As(x) = ;f ﬁ e i@iXo ke where wy = VK2 + m2,
em)3 ) 2wk

an expression which in fact makes sense as an oscillatory integral, see [8, Sec 1X.10]

for details. Here and in what follows, boldface letters denote elements of R® and an

expression such as kx is shorthand for the canonical scalar product of k and x.

It is well-known that A is the boundary value (in the sense of distributions) of
an analytic function. To see this, let us first fix some notation. Let a € R"” with
lal =1,let0 € (0,7/2), and let ay denote the canonical scalar product in R”. The set
Tuo={yeR"|ya>|ylcosf} c R" is called the cone about a with opening angle 6.
Let with F* denote the dual cone, I’ ) =T, z_g. For temperered distributions
whose support is contained in the closure of a cone, the following general assertion
holds:

Theorem 1 ([8], Thm IX.16). Let u be a tempered distribution with support in
the closure of a coneT 9, a € R", 0 < 0 < n/2. Then its Fourier transform 1 is the
boundary value (in the sense of ') of a function f which is analytic in the tube
R” —il";e ={zeC" -imze FZ'B} cC™,

Observe that for # to be the boundary value of f in the sense of .#’ means that
foranyne FZ g We have for ¢\ 0 in R from above,

ff(x—itn)g(x) dx — @(g) VgeSRY.
The Fourier transform A, of the 2-point function,
2.1 AL (po,p) = 76(po—wp),

is a tempered distribution whose support (the positive mass shell) is contained in
the closure of the cone V = I'(; g) /4 (the forward light cone). Applied to u:= A4,
Theorem 1 thus guarantees that & = A is the boundary value of a function f which
is analytic in R* —iV (observe that V* = V). Explicitly, for x = (x9,x) € R* and n =
(x4,0) € V (hence x4 > 0), we have in this case

1 &k, :
2.2 _ R +1kx—wk(x4+1x0)‘
@2 fle=im = (271)3f Zwke
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We now define a function s via s(x, x4 +ixp) := f(x—in) for x and n as above. Making
use of the identity

2.3) Le_“"‘x4 = ifoo dky ejk—4X4 forx, >0
2wk 27 J—oo k% + m?
where k = (k, ks) € R*, k* =k? + kZ, and setting xo = 0 in (2.2), we then find that
eikx

_ 1 4
2.4) s(x) = 20t fd k e

where x = (x,x4) € R, x4, > 0. One now considers a distribution S € ./ (R%), the
so-called Schwinger function, whose formal integral kernel is given by the Fourier
transform of the smooth function on R?,

1
k2 +m?’
By definition, when restricted to the upper half space x4 > 0, S(x, x4) is (pointwise)
equal to the function s given in (2.4). Observe also that S is the unique fundamen-
tal solution of the elliptic partial differential operator A — m? with A the Laplace
operator on R?,

As mentioned in the introduction, the building block in hyperbolic perturba-
tion theory is the Feynman propagator Ar, a fundamental solution for the Klein-

S(k) =

Gordon operator P = % — Ax + m?. Without going into details, let me mention
that, remarkably, the Fourier transform S of the Schwinger function is the ana-
lytic continuation of the Fourier transform Ar of the Feynman propagator (up to
a sign), where, formally, for w given by w(p, ps —ipo) := Ar(po + ips, p) we have
S(p, pa) = ~w(p, pa).

3. Analytic continuation in the noncommutative case

It would be beyond the scope of this note to explain the possible perturbative se-
tups for massive scalar fields on the noncommutative Moyal space with hyperbolic
signature (see [2] for a comparison). Only two features of such noncommutative
(hyperbolic) field theories matter here. The first is the fact that our starting point
still is the Klein—-Gordon operator and the 2-point-function discussed in the previ-
ous section. The second important feature — and this feature is shared by the tradi-
tional noncommutative Euclidean formalism - is the fact that one has to consider
not only products but also twisted products of distributions.
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To fix notation, we note here that for two Schwartz functions f,g € .%/ (RY) this
twisted product (Moyal product) is

@.D frgx) =fd4kfd4p Fk) g(p) e 1P+hix g=3 POk

for x € R*, where f and g denote the Fourier transforms of f and g, respectively, and
where 0 is a nondegenerate antisymmetric 4 x 4-matrix. Observe that in a Euclidean
theory, a product such as kx stands for the canonical scalar product, whereas in
a hyperbolic setting, it denotes a Lorentz product, kx = koxo — kx. The oscillating

1
factor e 2P0k

is also called the twisting.

3.1. Tensor product of 2-point functions. Since the 2-point function remains
unchanged in noncommutative field theory, we have to consider higher order cor-
relation functions in order to see a difference between field theory on Moyal space
and ordinary field theory. Again, it would be beyond the scope of this note to ex-
plain the whole setup. It will be sufficient to consider the particular example of the
so-called 4-point function of massive scalar field theory. In ordinary field theory,
this is a distribution given by 2-fold tensor products of 2-point functions,

3 3
1 fﬁ d_pe—i(wkxo+pr/o)+i(kX+py)

AP (x,y) =
+ (0y) @2m)¢ ) 2wy 2wp

By standard arguments from microlocal analysis involving the wavefront set of dis-
tributions, it can be shown that even the pullback of this tensor product with re-
spect to the diagonal map, that is, the product in the sense of Hormander, is a well-
defined distribution € .’ (R*) (see for instance [8, Chap IX.10]). In order to avoid
issues regarding renormalization later, in this note, however, only tensor products
of distributions will be considered.

It is not difficult to see that Af) is again the boundary value of an analytic func-
tion:

Lemma 2. The tempered distribution Af) is the boundary value of a function f,
which is analytic inR* x R* =iV x V. Explicitly, for

z2=(x0,% V0,V ER*xR*  and n=(x4,0,y4,0 eV XV

(hence x4 and y, > 0), we have

3 3
folz—in = 1 fd kf d’p e~ k(X +ixo)—wp (ya+iyo) +ikx+ipy
2m8J 2w J 2wp
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and for the function s, defined by s» (X, x4 +1x9,V, Y4 +iy0) = fo(z —in) withn and z
as above, we find for (x,y) = (X, X4,Y, Y1) € R* x R*, x4 and ¥4>0,

1 4 4 1 1 +ikx+i
2 ) = k % 5 3 e
(3.2) 52(x%,¥) (27,)8[(1 fd Preim? p%+m? ¢

where p? = p* + p3, likewise for k*.

Proof. The first claim is a direct consequence of Theorem 1 applied with respect to
x and y separately, and the second claim follows again from the identity (2.3). O

As in the previous section, one now defines a distribution S, as the Fourier trans-
form (in R* x R*) of the smooth function
S0 S(p) = 1 1
S(k)S(p) = mm
which, when restricted to R% x R.o x R3 x Rsg, is equal to s,. The reader who is famil-
iar with quantum field theory will of course recognize that when one considers the
pullback of Af) with respect to the diagonal map, formally, one finds x = y in (3.2)
and that in this case S, becomes the Fourier transform (in R*) of the convolution
It is well-known that the same procedure can be applied more generally. Each
contribution to the (hyperbolic) 2n-point function (or Wightman function) is an
n-fold tensor product of 2-point functions (n-point functions for odd »n vanish).
In order to find the corresponding higher order Schwinger function, one considers
the analytic continuation according to Theorem 1 in each of the n variables and
proceeds in the same manner as explained for the 4-point function above.

3.2. Twisted product of 2-point functions. In [3], it was shown how 2n-point
functions are calculated in hyperbolic massive scalar field theory on the noncom-
mutative Moyal space (n-point functions for n odd still vanish). As it turns out, the
first deviation from ordinary field theory shows up in the 4-point function, where
one of the contributions is a twisted tensor product of two 2-point functions,

3 3 -
(3.3) AP (x,y) = K AP wix+wpyo) Hillocrp) o-ipok

2wy 2wp
where k = (wi, k), and p = (wp,P), such that their Lorentz square is k- k = (m? +
k?) —k? = m? and their first component is positive. In the terminology of physics,
this means that the “momenta” k and p in the oscillating factor are on-shell. This
will turn out to be very important later on. It is important to note that, while our
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starting point is the twisted product (3.1), the vectors in the twisting are on-shell
as a consequence of the support properties of AL (koK) = wlk 6 (ko — wy). Note also
that the factor 2 in the oscillating factor compared to the ordinary twisting in (3.1)
is correct.

Once more, we now apply Theorem 1.

Lemma 3. The tempered distribution AEr*Z) is the boundary value of a function
fz19 which is analytic in R* x R* —iV x V. Explicitly, for z = (xo,X, yo,y) € R* x R* and
1N =(x4,0,4,0) € V x V (hence x4 and y, > 0), we have

3 3 ~
02— im = 1 K (AP (g i) —wp (s +iye) Hikecripy -ipOk
fo(z=in @2m¢J) 2wk ) 2w € €

p

where k = (w1, K), p = (wp,p). For the function 329 defined by
Sg (X, x4 +ix0,y, ya +iyo) = fge(z —in)
withn and z as above, we then find for (x,y) = (X, X4,V, ya) € R* x R* with x4,y4 >0,

fd4kfd4p kz: 5 2:‘ 5 e+ikx e+ipy e*iﬁ@f(
m? p*+m

0 —
(3.4) Sy (x,y) = on)®

where p? = p? + p3, likewise for k?, and with p and k as above.

Proof. Since the Fourier transform of A(+*2) is still a tempered distribution with sup-
port contained in the closure of V x V, the first claim follows from Theorem 1. The
second claim again follows from the identity (2.3) — which, as should be noted, does
not affect the twisting factor. O

Observe that sg and s, from Lemma 2 differ only by the oscillating factor e~ipOk,
As before, we now define a distribution Sg as the Fourier transform (in R* x R*) of
the smooth function

~ 1 1 a0 T
3.5 Sk, p)=— —— POk,
(5 A p? + m?
Again, the reader who is familiar with the field will recognize that in the case of
coinciding points, instead of §g(k, p) one considers the Fourier transform of the
twisted convolution
1 1

a4 —ipOk—p
f p(k—p)2+m2 pz+m2e

where k/179 = (Wk—p» k—-p).
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It is very important to note that all the momenta which appear in the oscillating
factors in all the above expressions are on-shell, being of the form p = (wp, p), like-
wise for k or p — k. The oscillating factor therefore distinguishes the components
of (p, ps) and is, in particular, independent of the fourth component ps. The rea-
son for this lies in the fact that the Fourier transform of the 2-point function forces
the momenta in the oscillating factor to be on-shell, and this is not changed by the
analytic continuation.

This turns out to be crucial in the following assertion:

Remark 4. Since the oscillating factor in (3.5) is independent of one of the com-
ponents of k and p € R%, it is obvious that §g is the analytic continuation a product
of Feynman propagators with an on-shell twisting: For

w (&, ky —iko, p, pa —ipo) := Ap (ko +ika, K) Ap(po +ipa, p) e POk

we find 52 &, kg, p, ps) = —wO (k, ks, p, pa).

All this remains true when one calculates the higher order Schwinger functions
from the 2n-point functions that were calculated in [3]. Again, performing the ana-
lytic continuation in the n variables separately, one finds on-shell twistings (though
they become more and more complicated), and the analytic continuation of the
corresponding Fourier transform of Feynman propagators can be performed as in
Remark 4 while leaving the twistings unchanged.

This is the essential difference to the traditional noncommutative Euclidean
framework employed in the literature. In this latter framework, starting point are
Schwinger functions, and of course, when twisted products appear, by (3.1) the os-
cillating factors depend on all four components of a momentum vector k = (k, k4).
For instance, instead of §g as in (3.5), one finds the following expression

1 1

e e—ip@k
k?+m? p?+m?

(3.6) &k, p) =
where k = (k, k4) and p = (p, p4) and 0 is a nondegenerate 4 x 4-matrix. So far, it
was not possible to relate this framework to a hyperbolic one, the main difficulty
being the dependence of the oscillating factor on k4. Naively copying the procedure
sketched on page 5 and in Remark 4 leads to exponentially increasing terms which
render the integrals ill-defined. So far, the only way out found seems to be to make
the oscillating factor independent of one of the components in an ad hoc way, by
requiring 6 to be a matrix of rank 2 (“spacelike noncommutativity”).
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Remark 4 shows that such measures are unnecessary when the new noncom-
mutative Euclidean framework derived from the hyperbolic n-point functions is
employed.

4. Outlook

It will be shown elsewhere that at least in the most prominent example graphs,
the ultraviolet-infrared mixing problem is absent in this new Euclidean framework.
However, as can be easily seen already in the example Sg discussed above, the
higher order Schwinger functions are not symmetric with respect to reflections in
the origin. This may jeopardize the possibility to set up a complete consistent per-
turbative framework using a Schwinger functional and further research must be
done in that direction.

Other than that, the results presented here open many interesting possibilities
for future research. For one thing, one should try to generalize the Osterwader
Schrader Theorem in this setting. Also, it would be most interesting to study
whether the ultraviolet-infrared mixing problem appears in this setting at all. And
last but not least, a thorough understanding of the new Euclidean setup should
enable us to learn more about hyperbolic noncommutative models — which in
themselves have proved to be quite difficult to treat. It is certainly to be hoped that
from a Euclidean perturbative setup to be developped from the ideas presented
here, general proofs of renormalizability of hyperbolic noncommutative field
theory will at last be possible.
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Abstract. In this note we explain how to obtain cluster algebras from triangulations of (punc-
tured) discs following the approach of [13]. Furthermore, we give a description of m-cluster
categories via diagonals (arcs) in (punctured) polygons and of m-cluster categories via powers of
translation quivers as given in joint work with R. Marsh ([1], [3]).

1. Introduction

This article is an expanded version of a talk presented at the Courant-
Colloquium “Géttingen trends in Mathematics” in October 2007. It is a survey
on two approaches to cluster algebras and (m-)cluster categories via geometric
constructions.

Cluster algebras where introduced in 2001 by Fomin and Zelevinsky, cf. [14].
They arose from the study of two related problems.

Problem 1 (Canonical basis). Understand the canonical basis (Lusztig), or crys-
tal basis (Kashiwara) of quantized enveloping algebras associated to a semisimple
complex Lie algebra. It is expected that the positive part of the quantized envelop-
ing algebra has a (quantum) cluster algebra structure, with the so-called cluster
monomials forming part of the dual canonical basis.

This picture motivated the definition of cluster variables.

2000 Mathematics Subject Classification. 16G20, 16G70, 18E30.
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Problem 2 (Total positivity). An invertible matrix with real entries is called fo-
tally positive if all its minors are positive. This notion has been extended to all re-
ductive groups by Lusztig [28]. To check total positivity of an upper uni-triangular
matrix, only a certain collection of the non-zero minors needs to be checked (dis-
regarding the minors which are zero because of the uni-triangular from). The min-
imal sets of such all have the same cardinality. When one of them is removed, it can
often be replaced by a unique alternative minor. The two minors are connected
through a certain relation.

This exchange (mutation for minors) motivated the definition of cluster muta-
tion.

The subject of cluster algebra is a very young and dynamic one. In the past few
years, connections to various other fields arose. We briefly mention a few of them
here.

— Poisson geometry (integrable systems), Teichmiiller spaces (local coordinate
systems), cf. Gekhtman-Shapiro-Vainshtein [22, 23] and
Fock-Goncharov [12];

— Y-systems in thermodynamic Bethe Ansatz (families of rational functions de-
fined by recurrences which were introduced by Zamolodchikov [35]), cf. [14];

— Stasheff polytopes, associahedra, Chapoton-Fomin-Zelevinsky [8];

— ad-nilpotent ideals of Borel subalgebras in Lie algebras, Panyushev [29];

— Preprojective algebra models, Geiss-Leclerc-Schroéer, [20], [21];

— Representation theory, tilting theory, cf. [6].

In this article, we will first recall triangulations of surfaces with marked points
and associate certain integral valued matrices to them. Then we will give a brief
introduction to cluster algebras (Section 3). In Section 4 we show how to associate
cluster algebras to triangulations of (punctured) discs. Then we explain what clus-
ter categories and m-cluster categories are (Section 5) and give a combinatorial
model to describe m-cluster categories via arcs in a polygon in Section 6, cf. The-
orems 6.3, 6.4 as given in our joint work with R. Marsh ([1], [3]). In addition, we
obtain a descriptions of the m-cluster categories using the notion of the power of
a translation quiver (Theorem 6.5). At the end we describe connections to other
work, pose several questions and show new directions in this young and dynamic
field (Section 7).
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A A L L

(a) Once-punctured triangle

©@©®

(b) Annulus

FIGURE 1. Examples of triangulations

2. Triangulated surfaces

Now we recall the triangulation of surfaces following the approach of Fomin,
Shapiro and Thurston [13]. Let S be a connected oriented Riemann surface with
boundary. Fix a finite set M of marked points on S. Marked points in the interior of
S are called punctures.

We consider triangulations of S whose vertices are at the marked points in M
and whose edges are pairwise non-intersecting curves, so-called arcs connecting
marked points. The most important example for us is the case where S is a disc
with marked points on the boundary and with at most one puncture. We will later
restrict to that case but for the moment we explain the general picture.

It is convenient to exclude cases where there are no such triangulations (or only
one such). We always assume that M is non-empty and that each boundary com-
ponent has at least one marked point. And we disallow the cases (S, M) with one
boundary component, |M| = 1 with < 1 puncture and | M| € {2, 3} with no puncture.

In case S is a (punctured) disc we will also call it a (punctured) polygon. E.g. if
(S, M) has three marked points on the boundary and a puncture, we will say that S
is a once-punctured triangle.

Note that the pair (S, M) is defined (up to homeomorphism) by the genus of S, by
the numbers of boundary components, of marked points on each boundary com-
ponent and of punctures. Two examples of such triangulations are given in Figure 1.



16 Mathematisches Institut, Courant-Colloquium Zzewede coe Yathematics, 2008

Definition. A curvein S (up to isotopy relative M) is an arcy in (S, M) if
) the endpoints of y are marked points in M;
(i) 7y does notintersect itself (but its endpoints might coincide);
(iii) relative interior of y is disjoint from M and from the boundary of S;
(iv) 7y does not cut out an unpunctured monogon or digon.

The set of all arcs in (S, M) is usually infinite as we can already see in the case of
the annulus of Figure 1(b). One can show that it is finite if and only if (S, M) is a disk
with at most one puncture, i.e. if (S, M) is the object of our interest.

Two arcs are said to be compatible if they do not intersect in the interior of S. An
ideal triangulation is a maximal collection T of pairwise compatible arcs. The arcs
of T cut S into the so-called ideal triangles. These triangles may be self-folded, e.g.
along the horizontal arc in the picture below:

<

An easy count shows that the once-punctured triangle has ten ideal triangula-
tions, the four of Figure 1, with the rotations of the last three (by 120° and 240°).

In fact we can say more: the number of arcs in an ideal triangulation is an invari-
ant of (S, M), we call it the rank of (S, M). There is a formula for it, cf. [11]: if g is the
genus of S, b the number of boundary components, p the number of punctures, ¢
the number of marked points on the boundary, then the rank of (S, M) is

6g+3b+3p+c—6

The rank of the once punctured triangle of Figure 1(a) is thus three as expected.
For small rank, [13, Example 2.12] gives a list of all possible choices of (S, M). The
word “type” appearing in the list refers to the Dynkin type of to the corresponding
cluster algebra as will be explained later:
Rank 1 unpunctured square (type A;)
Rank2 unpunctured pentagon (type A)
once-punctured digon (type A} x A;)
annulus with one marked point on each boundary component
Rank 3 unpunctured hexagon (type Az)
once-punctured triangle (type A3z = D3)
annulus with one marked point on one boundary component,

two on the other once-punctured torus.
If T is an ideal triangulation of (S, M) and p an arc of T as in the picture below,

we can replace p by an arc p’ through a so-called flip or Whitehead move:
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Fal
G

Here we allow that some of the sides {a, b, ¢,d} coincide. A consequence of a
result of Hatcher ([25]) is that for any two ideal triangulations T and T’ there exists
a sequence of flips leading from T to T".

We next want to associate a matrix to an ideal triangulation of (S, M). This works
as follows. Let T be an ideal triangulation of (S, M), label thearcsof T by 1, 2, ..., n.
Then define B(T) to be the following n x n-square matrix

B(T)=) B*
A

where the n x n-matrices B® are defined for each triangle A of T by

1 if A hassides i and jwhere jis a clockwise neighbour of
biAj =< -1 if Ahassides iand jwhere iis a clockwise neighbour of j;
0 otherwise.

The matrix B(T) is skew-symmetric with entries 0, +1, +2.

Remark. In order to simplify the definition of biAj we have cheated a little bit.
Whenever the triangle A is self-folded along an arc i, then in the right hand side of
the definition of the entry biAj, the arc i has to be replaced by its enclosing loop (i),
cf. Figure 2.

2N

FIGURE 2. Enclosing loop I(i) of the arc i

Example 2.1. (1) We compute B(T) for the triangulated punctured triangle.

i\
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Itis:
o0 1 -1\ (0 0 0 0 1 -1
BPv4pP2yBPs = |1 o0 1 |+]|0 0 -1|=|[-1 0 o
~~
-0 1 -1 0 01 0 1 0 0

(2) Take an annulus with one marked point on each boundary and the triangu-
lation T as in the picture. Then B(T) is

goiapge [0 1 ) [0 1_[o 2
-1 0 -1 0] (-2 o

3. Cluster algebras

In this section we present a very short introduction to cluster algebras, following
Fomin-Zelevinsky [14]. A cluster algebra .«f = </ (x, B) is a subring of the ring [ =
Q(uy, ..., um), associated to a seed (x, B) defined in the following way.

(i) A seed is a pair (x, B) consisting of a cluster x = (xy,...,X;;) where x is a free
generating set of F over Q and B = (byy)xy is a sign-symmetric m x m matrix with
integer coefficients, i.e. byy € Zforall 1 < x,y < mand if by, >0 then by, <0.

(ii) Aseed (x, B) can be mutated to another seed (x', B'): mutation at z € x is the
map (z: (x,B) — (X, B’): X = x— z Uz where 7' is defined via the exchange relation

zz = [] x4 [T x b

XEX XEX

byz>0 byz<0

and B' is defined similarly via matrix mutation:

b;c_y:{ —bxy1 ifx:zF)ryzz

byy+ 5(Ibxzl - bzy+ by -1bzyl)  otherwise.

Note: u is involutive, i.e. , (u,((x, B))) = (x, B).

Two seeds (x, B) and (x/, B') are said to be mutation-equivalent if one can be ob-
tained from the other through a sequence of mutations. The cluster variables are
defined to be the union of all clusters of a mutation-equivalence class (of a given
seed). These appear in overlapping sets. Finally, the corresponding cluster algebra
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o/ = 2/ (x, B) is the subring of F generated by all the cluster variables. (Here we are
defining cluster algebras with trivial coefficients.) A cluster algebra is said to be of
finite type if there exists only a finite number of cluster variables.

One can show that up to isomorphism of cluster algebras <7 (x, B) does not de-
pend on the initial choice of a free generating set x.

0 1
Example 3.1. (Type Ay). We start with the pair x = (x, x2), B= ( ] 0). In a

first step we mutate x;. from xlxi =1+ x» we obtain xi = 1;% The next mutation

is at x, (mutation at x; would lead us back to x), we have x; = x}—:l And then
/" X1t+xo+1,

xl - x1x2

In particular, we obtain five cluster variables in this example.

" _ " _
)C2 =X, xl = X2.

Some of the main results on cluster algebras are summarized here:

— Laurent phenomenon: </ (x, B) sits inside Z[xf, ...,x,in], i.e. every element of
the cluster algebra is an integer Laurent polynomial in the variables of x (cf. [15]);

— Classification of finite type cluster algebras by roots systems, [16] (cluster al-
gebras of finite type can be classified by Dynkin diagrams);

- Realizations of algebras of regular functions on double Bruhat cells in terms of
cluster algebras ([4]).

Examples of cluster algebras are: Coordinate rings of SLy, SL3 ([17]); Pliicker
coordinates on Gry, ,+3 ([32], [22]).

Cluster algebras and quivers. We will now explain how to associate a quiver to
a seed of a cluster algebra.
Recall that a quiver T’ = (I'g,I'y) is an oriented graph with vertices I'g and arrows
I'; between them. E.g.
B

15253

with Ty ={1,2,3} and I'; = {«a, B};

Any skew-symmetric m x m-matrix B determines a quiver I'(B) with m vertices.
One labels the columns of B by {1,2,...,m} and sets I'y = {1,2,...,m}. Then one
draws by arrows from x to y if byy >0 (for x, y € Tp).

Such a quiver has no loops and for any two vertices i # j of I'(B), there are only
arrows in one direction between them.

So in particular, if the matrix B of a seed (x, B) is skew-symmetric, it determines
a quiver in this way:.
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0 1
Example 3.2. The matrix B= ( . 0) from Example 3.1 above gives the quiver:

1—2

Clearly, this process is reversible: a quiver whose arrows only go in one direction
between any given pair i # j of vertices and without loops gives rise to a skew-
symmetric matrix which we will denote by B(I').

4. From triangulations to cluster algebras

From now on we assume that (S, M) is a disc with at most one puncture. We want
to show how a triangulation T of (S, M) determines a cluster algebra. Label the arcs
of Tbyl,2,...,n.

Then we define a cluster x, = (xy,..., X;) by sending i — x; and choose as a ma-
trix the the skew-symmetric matrix associated B(T) associated to T in Section 2.
This clearly produces a seed (x,, B(T)). Thus to the triangulation T of the disc
(S, M) we have associated the seed (x,, B(T)) and hence obtain a cluster algbra
o = o (xp,B(T)).

Example 4.1. Consider an unpunctured pentagon as below. In the triangula-
tion, we label the arcs 1 and 2. They form a triangle D; together with a boundary
arc and 2 is the clockwise neighbour of 1.

‘ 1——=2
.. . 0 1 .
Then the seed we obtain is ((x;, x2), B(T)) with B(T) = (_1 0) as in Example 3.1

above.

5. Cluster categories

Cluster categories are quotients of derived categories of module categories. They
were introduced by Buan-Marsh-Reineke-Reiten-Todorov ([6]).

Independently, Caldero-Chapoton-Schiffler have introduced the cluster cate-
gories (in type A,) in 2005 ([7]) using a graphical description. Later, Schiffler ex-
tended this to type D, in ([31]).
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The aim behind the definition of cluster categories was to model cluster algebras
using the representation theory of quivers. This was motivated by the observation
that the cluster variables of a cluster algebra of finite type are parametrized by the
almost positive roots of the corresponding root system.

Cluster categories have led to new developments in the theory of the (dual of
the) canonical bases, they provide insight into cluster algebras. They have also de-
veloped into a field of their own. E.g. they have led to the definition of cluster-tilting
theory.

Let us describe the construction of cluster categories, following [6].

We start with a quiver Q whose underlying graph is a simply-laced Dynkin di-
agram (i.e. of type ADE). Denote by D?(kQ) the bounded derived category of fi-
nite dimensional kQ-modules (we assume that the field k is algebraically closed).
Note that the shape of the quiver of D?(kQ) is Q x Z with certain connecting ar-
rows. By quiver of D’ (kQ) we mean the Auslander-Reiten quiver of D?(kQ), i.e.
the quiver whose vertices are the isomorphism classes of indecomposable modules
and whose arrows come from irreducible maps between them.

This quiver has two well-known graph automorphisms: 7 (“Auslander-Reiten
translate”) which sends each vertex to its neighbour to the left. And [1] (the “shift”)
which sends a vertex in a copy of the module category of kQ to the corresponding
vertex in the next copy of the module category.

The cluster category, €, is now defined as the orbit category of Db (kQ) under a
canonical automorphism:

€ :=%(Q):=D (kQ) /T o [1]

One can show that this is independent of the chosen orientation of Q. More gener-
ally, Keller ([27]) has introduced the m-cluster category, € as follows:

EM:=€"™(Q):=D’(kQ) /Tt o [m]

Keller has shown in [27] that ¥ is triangulated and a Calabi-Yau category of di-
mension m+1. Furthermore, ¥ is Krull-Schmidt ([6]). The m-cluster category has
attracted a lot of interest over the last few years. In particular, it has been studied by
Keller-Reiten, Thomas, Wralsen, Zhu, B-Marsh, Assem-Briistle-Schiffler-Todorov,
Amiot, Wralsen, etc.

Our goal for this note is to describe 6™ using diagonals of a polygon (type A,)
and arcs in a punctured polygon (type D).
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6. From arcs via quivers to cluster categories

Let us first recall the notion of a stable translation quiver due to Riedtmann [30].

Definition. A stable translation quiver is a pair (I',t) where I' = (I'0,T';) is a
quiver (locally finite, without loops) and 7 : Iy — Iy is a bijective map such that
the number of arrows from x to y equals the number of arrows from 7y to x for all
x, y €. The map T is called the translation of (T, 7).

Now we are ready to define a quiver I" from a hexagon (see figure below) as fol-
lows:

5 4

Ty: The vertices are the diagonals (i j) of the hexagon (1<i<j—-1<7).

I'y: The arrows are of the form (i j) — (i, j + 1), (ij) — (i + 1, j) provided the target is
also a diagonal in the hexagon (i, j € Zg).

Sett: (ij)— (i—1, j—1) to be anti-clockwise rotation about the center.

The quiver obtained this way from the hexagon is the following:

13--—-—-— 24-———— 35-———— 46— ——— — 15

It clearly is an example of a stable translation quiver.

Note that such a quiver can be defined for any polygon. Denote the quiver aris-
ing in that way by I'(n, 1) if n + 2 is the number of vertices of the polygon. (The use
of n instead of n + 2 in the notation of the quiver I'(n,1) and the extra entry 1 are
used to make this compatible with the more general setting involving m-diagonals
described below). Caldero, Chapton and Schiffler have shown that the cluster cat-
egory can be obtained via diagonals in a polygon:

Theorem 6.1 ([7]). The quiver of the cluster category € = € (A,-1) is isomorphic
to the quiver I'(n, 1) obtained from an (n + 2)-gon.
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As before in the case of the bounded derived category, the quiver of ¢ is an ab-
breviation for the Auslander-Reiten quiver of €. It has as vertices the indecompos-
able objects of ¢, and as arrows are the irreducible maps between them.

To be able to model m-cluster categories we now generalize the notion of diago-
nal and introduce the so-called m-diagonals. We start with a polygon IT with nm+2
vertices (n,meN), labeled by 1,2,...,nm+2.

Definition. An m-diagonalis a diagonal (i j) dividing IT into an m j + 2-gon and
an m(n— j)+2-gon (1 < j < 27,

Example 6.2. To illustrate this, let I be an octagon, n = 3, m = 2. In that case,
1< j <1, soany 2-diagonal has to divide IT into a quadrilateral and a hexagon.
1 2

Observe that each maximal set of non-crossing 2-diagonals contains two elements.
They are {(16), (36)}, {(16), (25)}, {(16), (14)} and rotated version of these.

Recall that the number of arcs in a triangulation (see Section 2) is an invariant
of a disc (S, M), called the rank of (S, M). In the same way, the maximal number of
non-crossing m-diagonals is an invariant of the polygon. It is equal to n—1 (for the
nm+2-gonII).

Using m-diagonals we can now define a translation quiver I'(n, m) = (T, 7,,):

T1: (ij) — (ij") if (if), Bjj and (ij') span an m +2-gon (B is the boundary j to
j', going clockwise).

Ty: The vertices are the m-diagonals (ij) inIT (with1 <i < j — m).

I'y: The arrows are of the form (i j) — (i, j + m), (ij) — (i + m, j) provided the target
is still inside the polygon. In other words: (i j), (i, j + m) and the boundary arc j to
j+m (resp. (i), (i +m, j) and the boundary arc from i to i + m) form an m+2-gon
as in the picture:

Furthermore, let 7,, be anti-clockwise rotation (about center) through the angle

21
m nm+2°
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Remark. It is clear that I'(n, m) is a stable translation quiver. In case m =1, we
recover the usual diagonals.

The quiver I'(3,2) for the octagon from the previous example is thus:

16— — —38— — —25— — —47— — — 16

SN NSNS NS

14— — —36— — —58— — —27— — — 14

Then one can show that the A-type m-cluster category can be obtained using
m-diagonals in a polygon:

Theorem 6.3 ([1]). The quiver of the m-cluster category €™ = €™ (A1) is iso-
morphic to the quiver (I'(m, n), T,,) obtained from m-diagonals in an nm +2-gon.

The proof of our result uses Happel’s description of the Auslander-Reiten-quiver
of D?(kQ) where Q is of Dynkin type A,_; and combinatorial analysis of I'(n, m).
For details we refer to [1, Section 5].

The description in type D. We have a similar description of the m-cluster cate-
gories of D-type. Instead of working with a polygon (or unpunctured disc) we now
have to use a punctured polygon. Let Il be a punctured nm — m + 1-gon. Instead
of using the term diagonal, we now speak of arcs in I1. An arc going from i to j,
homotopic equivalent to the boundary B; j from i to j (going clockwise) is denoted
by (ij). By (ii) we denote an arc homotopic equivalent to the boundary B;; with
endpoints in i. And (i0) is an arc homotopic equivalent to the arc between i and
the puncture 0. We will say that an n-gon is degenerate if it has n sides and n—1
vertices.

For details and examples we refer to [3, Section 3].

Definition. An m-arcofIlis an arc (i j) such that

(i) (ij) and B;; (the boundary from i to j, going clockwise) form an km +2-gon
for some k,

(i) (i j) and Bj; (the boundary from j to i, going clockwise) form an Im +2-gon
for some .

Furthermore, (ii) and (i0) are called m-arcs if (ii) and B;; form a degenerate
km + 2-gon for some k.
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Then we can define a translation quiver I' = I'¢ (1, m) as follows:
I'o: The vertices are the m-arcs of IT
I';: The arrows are the so-called m-moves between vertices:

We say that (i j) — (ik) is an m-move if (i j), Bji and (ik) span a (degenerate)

m+ 2-gon. In the figure below there are two examples of 2-moves.
1 2

T,: rotation anti-clockwise (about center), through an angle of #

Clearly, the pair (I'c (1, m), T,,) is also a stable translation quiver. We can now
formulate the statement.

Theorem 6.4 (Theorem 3.6 of [3]). The quiver of the m-cluster category
€™ = €™ (Dy) is isomorphic to the quiver (I'c(m, n),T,,) obtained from m-arcs in
annm-—m+1-gon.

The m-th power of a translation quiver. We will now describe another way
to obtain m-cluster categories directly from the diagonals or arcs in a (punctured)
polygon. Let (T, ) a translation quiver as before. Then we define the m-th power of
I, T™, to be the quiver whose vertices are the vertices of I' (i.e. T'j’ =T'9). The arrows
in I'™ are paths of length m, going in an unique direction. (To be precise, we ask
that such a path is sectional, i.e. thatin a path xo — x; — -+ — x;,-1 — X, of length
mwe have T7x;,] # x;—1 whenever 7x;,1 is defined.) And the translation 7" of I'"" is
obtained by repeating the original translation m times.

Definition. The quiver (I'"*,7™) as defined above is called the m-th power of
T, 7).

With this we are ready to formulate the result:

Theorem 6.5 ([1]1). I'(n, m) is a connected component of

(T'(nm,1))™ = (U (cluster category))™.

Remark. Observe that (I'"*,7") is again a stable translation quiver. However,
even if (', 7) is connected, the m-th power is not connected in general!
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Example 6.6. To illustrate this consider the quiver I'(6,1) of an octagon.

17— - —-28—-—-——13

/” \\,/ \\ /’\\
//
\

7
// \\,/ \\ " /”‘\
13— - ——-24————-35——— —46——— —57————68— — — —17
Its second power has three components: one component is I'(2,2). The two other
components are both quivers of quotients D”(A3)/[1] of D?(A3) by the shift. In
particular, we have thus given a geometric construction of a quotient of D?(A3)
which is not an m-cluster category!
The three components of the second power of I'(6, 1) are:

16— — —38— — —25— — —47— — —16
SN NSNS NS
14— — —36— — —58— — —27— — — 14

17— —13

N /N 28— —24
15— —37— —15 7 N/ \

AN/ N /N 26— —48—- —26
13— -=35— =57— =17 / N/ N\ / \
24— —46— —68— —24

Remark. We have a corresponding result for type D, see Theorem 5.1 of [3]. In

addition, in type D we give an explicit description of all connected components
appearing in the m-th power of ' (nm—-m+1,1)

7. Connections and future directions

To finish we want to provide a short outlook and describe some open problems
and possible future directions.

— Inrecent work with Robert Marsh ([2]) we provide a link between cluster alge-
bra combinatorics and perfect matchings (for vertices and edges of a triangulation).
This uses work of Conway-Coxeter ([9], [10]), and of Broline-Crowe-Isaacs ([5]) on
frieze patterns of positive integers.
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- Y-systems can be defined in general for pairs (G,H) of Dynkin types.
Zamolodchikovs periodicity conjecture for general Y -systems have been proved for
G = A; and H = A, by Frenkel-Szenes ([19]), by Gliozzi-Tateo ([24]) and for G = A,
H any Dynkin type by Fomin-Zelevinsky ([18]) using cluster algebras theory. More
recently, the cases G = Ay, H = A, have been solved ([33], [34], independently).
In this context, there are various open questions. First of all: can periodicity be
proved for G of arbitrary of Dynkin type using the theory of cluster algebras? This
is not even known for G = Aj. Second: what would be a good counterpart on the
side of Y-systems to the geometric model for m-cluster categories? And thirdly: In
current work with Marsh we have discovered classes of infinite periodic systems
(G = A;, H=Ax). Does this have a translation to the setting of Y-systems?

— The approach to model cluster algebras with discs (S, M) works for types A
and D ([13]) and for types B, C under certain modifications ([8]).

Open: what can be said about the exceptional types, in particular, is there a way to
model type E using a disc with marked points?

— Jorgensen ([26]) has obtained m-cluster categories as quotient categories of
cluster categories via deletion of rows (7-orbits). They inherit a triangulated struc-
ture. This process can be viewed as a reverse to our construction using the m-th
power of a quiver. Question: how can we explain the triangulated structure of m-
cluster categories via the m-th power of a quiver?
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DISPERSIVE EQUATIONS AND HYPERBOLIC ORBITS

Hans Christianson

Department of Mathematics, Massachusetts Institute of Technology, 77 Mass. Ave.,
Cambridge, MA 02139, USA e E-mail :hans@math.mit.edu

Abstract. We consider several related problems in linear PDE on manifolds, both when the
underlying manifold is compact and when it is non-compact. Our general assumption is that the
classical flow has a single periodic hyperbolic (unstable) orbit. The standard techniques from
linear PDE relying on dispersive effects and non-trapping assumptions do not directly apply in
this situation, but the unstable nature of the periodic orbit allows us to prove slightly weaker
results.

1. Introduction and Applications in PDE

In this note we report on some recent results in the field of Partial Differential
Equations (PDE) on manifolds. The most fundamental problems in this area stem
from trying to understand the effects of classical geometry on the solutions to PDE.
We consider the effects of a single hyperbolic “trapped” ray on solutions to a num-
ber of problems on both compact and noncompact Riemannian manifolds.

1.1. Eigenfunction Concentration. Let (M,g) be a smooth, compact, Rie-
mannian manifold with or without boundary, and let —A; be the (non-negative)
Laplace-Beltrami operator acting on functions (with Dirichlet boundary conditions
if OM # @). We consider the eigenvalue problem:

(—Ag—AHu=0
(1.1 ) )
Sy lu*dx =1, and ulopps =0if OM # @

2000 Mathematics Subject Classification. 58]99, 35B99.
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A very natural question to ask is “what do the solutions look like?” The idea is that
the underlying classical geometry (of Hamiltonian dynamics on the cotangent bun-
dle) affects solutions to PDE on the manifold. For eigenfunctions, the presence of
periodic geodesics may cause concentration or “scarring” phenomena. There are
3 cases we describe here: ergodic classical dynamics, elliptic periodic geodesics,
and hyperbolic periodic geodesics. The first two cases are well-studied in the liter-
ature (see references below), and the case of an isolated hyperbolic geodesic is the
subject of these notes.

The ergodic case was studied first by Zelditch [20] and Colin de Verdiere [17],
and has been generalized to many different situations (Figure 1 is an example of
ergodic dynamics). The idea is that since ergodic flow is roughly “evenly-mixing”,
then eigenfunctions should somehow become evenly distributed as the eigenvalue
or energy increases. To be more precise, let U ¢ M be an open set. Then it is known
that

Area U
flulzdxz—, A — oo
U Area M

along a density 1 subsequence of eigenvalues 1.

VY,

FIGURE 1. The Bunimovich stadium is known to have ergodic billiard dynamics.

In the case of an elliptic (stable) periodic geodesic (see Figure 2), we expect
the stability of the classical dynamics to lead to well-concentrated eigenfunctions.
What we can prove is that there are well-localized quasimodes (approximate eigen-
functions). In fact, the techniques used to prove Theorem 2 below provide a new
proof of the following well-known Theorem.
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FIGURE 2. A compact manifold without boundary and stable geodesic.

Theorem 1 (Theorem 6, [6]). Suppose thaty c M is an elliptic periodic geodesic
(making only transversal reflections with OM if yn0M = @). Let U >y be any open
neighbourhood. Then there exist functions ¢ € L2(X) and values A ; € [0,00) satisfy-

ing

{ (=Ag=AD)gj = O(A;%)
fMI(pjlzdx: 1, and @jlop =0 ifOM # @,
and

Jylos? =027
asAj— oo.

In the case of an unstable geodesic (see Figures 3 and 4), the situation changes. If
the classical flow is not also ergodic, there is no reason to expect eigenfunctions will
not concentrate on the orbit. However, the unstable nature of the geodesic suggests
if there is concentration, it will be very weak. We have the following Theorem.

Theorem 2 (Main Theorems [7, 6]). Suppose that y € M is an unstable closed
geodesic, making only transversal reflections with OM if ynOM # @, and U Dy is
a sufficiently small neighbourhood. Then there exists a constant C > 0 such that if u
satisfies (1.1),

1
f x> ——— 1A — oo.
M\U CloglA|

Remark 1. The conclusion of Theorem 2 applies also to semi-hyperbolic
geodesics; that is, those which are unstable in a minimum of one direction in phase
space.
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FIGURE 3. A compact manifold M without boundary and unstable closed
geodesic y.

FIGURE 4. A compact manifold M with boundary and unstable closed
geodesic y.

The estimates in Theorem 2 are the same as those obtained in the case the classi-
cal flow is completely integrable. Thus we conclude the completely integrable case
is the “worst” in some sense.

Theorem 2 generalizes results of Colin de Verdiere-Parisse [18] for a surface of
revolution, which is of course completely integrable. In [18] they show in addition
that this estimate is sharp in this case. Theorem 2 also generalizes work of Burq-
Zworski [2] for real hyperbolic geodesics.

1.2. Damped Wave Equation. The estimates used to prove Theorem 2 have
an immediate application to the study of solutions to the damped wave equation
on compact manifolds. Let a(x) € €°°(M), a > 0, and consider the damped wave
equation

(0% —Ag+2a(x)0)u=0
u(x,0) =0, us(x,0) = f(x)
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supp(a

M

FIGURE 5. A compact manifold without boundary, unstable geodesic vy,
and a controls M geometrically outside a neighbourhood of y.

We define the energy E(¢) to be

E(®) = 10:ull 72 + 1Vl T -

Integrations by parts shows if a = 0, then
— 11 F12
E@) =11 £1172)
while if a > 0 somewhere,
E'(n)<o0.

We say a controls M geometrically if every geodesic meets the support of a
within some finite fixed time. We have the classical result of Rauch-Taylor [16]:
if a > 0 > 0 everywhere or we have geometric control, then

—t/IC 2

If y c U is a hyperbolic periodic geodesic, we may only have geometric control
outside of U (see Figure 5).

Theorem 3 (Theorem 5 [7]). If a controls M geometrically outside U, then for
any € > 0 there exists C > 0 such that

E(®) < Ce "l f 13-

Remark 2. This generalizes the work of Rauch-Taylor mentioned above in the
global control case, as well as Lebeau [10] for a surface of revolution with incom-
plete geometric control.
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; Y
FIGURE 7. R with two convex

FIGURE 6. A piece of the catenoid. .
bodies removed.

1.3. Schrodinger Equation. Now assume (M, g) is a non-compact, Riemannian
manifold with or without a compact boundary and M = R” (or finitely many copies)
outside a compact set.

Let r = distg(x, xp) be a “radial” variable, and denote by e!t8 1, the solution to
the initial value Schédinger problem:

(i0: +Ag)u(x, 1) =0
u(x,0) = up,

for uy in an appropriate Hilbert space. The operator e'*¢ is unitary from H*(M) —
H?*(M) for any fixed t, but if we also integrate in time we gain some regularity. More
precisely, in R (or more general non-trapping, asymptotically Euclidean geome-
tries), one proves the following “local smoothing estimate”:

T
fo ”<r>—1/z—g oithe uo‘

Next suppose y < M is a closed hyperbolic geodesic with only transversal re-
flections with M, and M is non-trapping otherwise (see Figures 6 and 7 for some
examples).

2
2
1 dE<Clluols,

Theorem 4 (Theorem 1 [5]). Supposethat M, g, r, andy satisfy the assumptions
above. Then for any € > 0 there exists C > 0 such that

g 12-¢ ithg ., ||?
f ”(r)_ el 8u0|
0

Hl/2-¢

dt < Clugl,.

Remark 3. Local smoothing has been studied by many authors. In [8], Doi
shows one has the sharp H'/? smoothing effect if and only if M is asymptotically
Euclidean and non-trapping.

In [1], Burq proves Theorem 4 in the case of R” with several convex bodies re-
moved with some assumptions.

There are many applications coming from local smoothing type estimates, in-
cluding Strichartz estimates and the study of nonlinear Schrodinger equations.
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Remark 4. Theorem 4 has recently been extended in [4] to the case of a thin
hyperbolic fractal trapped set using estimates of Nonnenmacher-Zworski in [15].

1.4. Wave Equation. We make the same assumptions here as in §1.3 with the
addition that we assume dimM = n > 3 is odd. We study solutions to the linear
wave equation:

(=DF = Ag)ulx, 1) =0, (x,1) € M x [0,00)
(1.2) u(x,0) = up € H (M),
D,u(x,0) = u; € L2(M).

For y € €.°(M), we define the local energy:
E(t):f youl? +|yVul® dx.
M

Theorem 5 (Theorem 2 [5]). For eachy € 6€°(M), € > 0, and each pair
u € EXM)nH(M), and
w € ERMNLAM),
there is a constant C > 0 such that

_ /2
E(1) < Ce™™ 1 (It gy + 12 e g )

Remark 5. We think of Theorem 5 as an analogue of the Sharp Huygen's Princi-
ple.

This generalizes similar results of Morawetz [13], Morawetz-Phillips [9], Mora-
wetz-Ralston-Strauss [14], and Vodev [19], among many others.

There are immediate applications to the study of solutions to nonlinear wave
equations (see, for example, [12, 11]).

Remark 6. Theorem 5 has now been generalized. In [3], we prove a weak poly-
nomial rate of decay in the case of a thin fractal hyperbolic trapped set as studied
in [15].

1.5. A Common Theme. All of the results discussed employ some common
ideas. That is, each problem can be reduced via some trick to proving a high-energy
resolvent estimate. In order to prove the high-energy resolvent estimates we need,
we use a semiclassical rescaling, microlocal analysis near the periodic orbit, and
microlocal “gluing” techniques to paste this together with known non-trapping es-
timates.
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For the non-concentration result we make a semiclassical rescaling, A = v/z/h,
and consider the equation

(-W*A-VDu=EMWu, Eh)=0h).

We prove a cutoff estimate:

V)
h
and a commutator argument finishes the proof.
In order to prove energy decay for the damped wave equation, formally we cut
off in time, take the Fourier transform in ¢, and consider the equation

suppy ~y = llyull < I —h*Ayul,

(—t*+i2ra(x)-ANi=f.
Rescaling 7 = v/z/ h yields:
h™2P(h) = h™%(~h*A + i2y/zha(x) - z),

and an application of the resolvent estimates gives Theorem 3.
For the local smoothing estimate, we again formally take the Fourier transform
in £:

P@Mi=(-1-A)i=uy,

and similarly for the local energy decay estimate. We then apply the resolvent esti-
mates plus interpolation to prove Theorems 4 and 5.

1.6. Acknowledgements. This note is an expanded version of a talk given at
the Courant-Colloquium "Go6ttingen trends in Mathematics", 12-14 October, 2007
at the Mathematisches Institut, Georg-August-Universitdt, Gottingen. The author
gratefully acknowledges their hospitality and invitation to speak.

2. Main Results

2.1. General Problem. We assume M is a compact manifold, P(h) (second-
order), self-adjoint semiclassical pseudodifferential operator acting on half-dens-
ities. In the examples considered above, P(h) is the semiclassical Laplace-Beltrami
operator. That is, we can write the leading part of P(h) in local coordinates as

1
P(h)= EZhDi“ithj +a;jhD;hD;+ lower order
ij
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We assume the principal symbol p of P(h) is real and independent of k. In our
example,

p(x,8) =) a;ijéic.
ij
We assume

p=0= dp+#0, and
€l >C = |pl = &*IC,

and
Y < {p = 0} is a closed hyperbolic orbit for exp rH,.
2.2. Main Result. Let ae €°(T*X), a >0, a=0neary, a =1 away from y, and
define a family of perturbations of P(h):
Q(z,h):=P(h)—z—iha(x,hD), z€[-06,0]+il—coh,cohl,

with §, ¢y > 0 fixed and independent of 4. Our main estimate is given in the follow-
ing Theorem.

Theorem 6 (Theorem 2 [7], Theorem 2 [6]). Let M, P(h), a, and Q(z, h) be as
above. Then there exist C >0, 6 >0, and hg > 0 such that

logl/h

@2.1) 1Q(z W M 2x)— 1200 < C , Z2€[=6/2,6/2]
uniformly in0 < h < hy.
Remark 7. The function a is added as an absorption term:

-ImQ > ¢ h away fromy,

so it suffices to prove (2.1) in a microlocal neighbourhood near y. This will follow
from the following estimate:

2.2) 1Q(z, ) ull 2 < Ch~Nlull 2, z€[-6,6]+il-coh, cohl

if u is concentrated") near y, and a semiclassical adaptation of the “three-line the-
orem” from complex analysis.
The rest of this note will be to present the main ideas from the proof of (2.2).

(MWe say u is concentrated near y if 3y € €°(T* X), supp x ~ 7, x(x, AD)u = u+ G(h*).
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~_nearby orbit

p~10)

FIGURE 8. Poincaré section N and Poincaré map

3. Sketch of the Proof of (2.2)

The first idea we use in the proof is to reduce the study of P(h) near y to the
study of a related operator on a lower dimensional space. The main advantage in
this approach is that a neighbourhood of y is not necessarily simply connected, so
one would at the very least have to study P(h) in a double-cover space - something
we would like to avoid, while the lower dimensional space will be simply connected.

3.1. Poincaré Map. Withy c {p = 0} we can define a Poincaré map and Poincaré
section for y. The Poincaré section N c {p = 0} is a codimension 1 submanifold
which is transversal to the flow (that is, if dimM = n, we have dimT*M = 2n,
dim{p =0} =2n -1, and dimN = 2n—2). We can define the Poincaré or first re-
turn map S: N — S(N) in the usual fashion (see Figure 8 for the basic picture in
n = 2). It is well-known that S is symplectic and has a fixed point where y inter-
sects N. We implicitly identify N with a neighbourhood of (0,0) € R?"~2, and write
5(0,0) = (0,0) for simplicity.

We will continue to sketch the proof and draw the figures in dimension 2 to fix
the ideas, although the proof extends to any dimension. The assumption that y is
hyperbolic means dS(0,0) is hyperbolic. That is, after a linear symplectic change of
variables,

0
ds(,0) = (0 1/'u),u>1

exp( A0 ), A>0.

(3.1) 0 -1
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FIGURE 9. The unstable/stable manifolds A+

We remark that in this example we have, for simplicity, assumed p > 1. The case
1 < —1 is also possible for a hyperbolic symplectic map, but presents nontrivial
technical issues (this, along with the case where some of the eigenvalues lie on the
unit circle, is handled in [6]).

With dS(0,0) satisfying (3.1), we conclude

(3.2) S=expHy, q=AxE+0((x,6)°).

We need also the notion of unstable/stable manifold. For S symplectic satisfying
(3.1) there are two invariant (with respect to the action of S) Lagrangian submani-
folds A of R?"~2 on which S is expanding/contracting respectively (see Figure 9).

It remains to understand the quantization of S, control the error in (3.2), and
relate estimates on P(h) to estimates on the quantization of S.

3.2. Quantization of S. We quantize S as a microlocally defined h-Fourier In-
tegral Operator M : L>(R"~!) — L?>(R""!). The conjugation of a pseudodifferential
operator A= Op (a) by M is

M 'AM =0p(S*a) + O(h?).

Since S varies with energy level z, so does M, and we write M = M(z). The following
Theorem relates P(h) — z in a microlocal neighbourhood of y ¢ T* M to M(z) in a
microlocal neighbourhood of (0,0) € T* R"1,

Theorem 7 (Theorem 3 [6]). With P(h) and M(z) as above, we have for u con-
centrated neary:

I(P(h) = 2 ull 2ag = C I~ M(2)) Rutl o gy,
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where Ru is the restriction of u to the projection of the Poincaré section. Further,
hllul 20 < ChllRull 2gn-1y + CIl(P(R) = 2)ull 12 -
Thus to prove (2.2), we need to show
(I - M(2))Rull > k|| Ru|l microlocally.

Since this is just a sketch of the proof, now we cheat and write
-1
M(z) = exp (WOp(q— z)) )

where g is defined in (3.2). This is close enough to being true to present the ideas
of the rest of the proof. For G real-valued, to be determined, we write

D D -1
e~ ChDAIh o GEohD) R =exp(—h e_G/hOp(q—z)eG/h).
Now

e “"0op (q)e“'" = Op (q) - ihOp (H,G) + error

where now erroris hard to estimate but controllable.
The rough idea now is a positive commutator argument: g is real-valued, but
conjugating Q = Op (g) with B = Op (b) invertible gives

BQB'=Q-[Q,B]B7\.

Q is self-adjoint, so exp(—i(Q — z)/h) is unitary. However if B is self-adjoint, the
commutator [Q, B] is skew-adjoint, so exp(—i[Q, B]/h) is not unitary. If we can ar-
range B in such a fashion that [Q, B] has a definite sign, then exp(—i[Q, B]/h) is
expanding or contracting and has spectrum away from 1. Hence we look at the
commutator [Q, B].

Our next guiding principle is that since S is hyperbolic, g roughly satisfies

Hy(dist?(, As)) ~ +dist?(-, Az).
It is a nontrivial fact that there is a symplectic choice of coordinates so that (see

Figure 10)

x2

dist®(, Az) = { e,

In these coordinates we would have

Hy(x* = &%) = x* +&,



Hans Christianson: Hyperbolic Orbits 43

FIGURE 10. A and the change of variables

which is the harmonic oscillator and hence is bounded below by & when quan-
tized. Of course this doesn’t quite work as we shall see. We also remark that it is
important that all our changes of variables are symplectic, since a local symplectic
transformation in phase space corresponds to a microlocally unitary k-FIO. Hence
symplectic transformations in phase space preserve the spectral properties of the
associated quantized operators.

After performing this change of variables, we show that in these coordinates, g
takes the special form

q(x,$) = Ax,$)xE.
That is, in any Taylor development of g near (0,0), each term has x¢ in it. Then
Hy(dist?(, A2) —dist? (-, A4)) ~ A(x, &) (x* + &) + error,

where now error can be controlled.
From the remarks above, we then want to take

G =dist?(-, A_) —dist?(-, Ay) = x> — &2,

so that HyG ~ x* + &2 is the harmonic oscillator. However, the growth of G means
we cannot take the exponential of G, so we try
G h 1 ( h+ x? )
=—log|——=|.
2 8\ hre

The growth of this G is acceptable, however it is in a bad calculus - that is, we lose
h~12 with each derivative.
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The next idea is to use a special calculus with two parameters. That is, we rescale
with an additional new parameter h>h

Nl—

h

X, E:_lé'!
2

Nl—

X=

Nl—

w|:~z

and quantize with respect to /. If we prove estimates which are uniform in both &
and h, then we can freeze /1 and conclude the estimates hold in & — 0. We define G
in these new coordinates:
G=log (1+—X2) .
1422

With this rescaling and choice of G,

XZ EZ
H,G~ hA +—],
9 (1+X2 1+Ez)

which satisfies the same lower bound as the harmonic oscillator.
In the £ calculus,

Op (HyG) > % h > 0 fixed,
and hence
~Ime %" 0p(q)e®” > g
Thus
le 6" MeC" | <eVC <1
= U-e " M) > %

Rescaling back to & calculus we lose something because the operators are only
h-tempered. However, this yields the desired estimate:

I(I = M(2)Rull > h" || Rul|

microlocally. Applying Theorem 7 gives (2.2).
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Abstract. We give a survey about two new applications of the Hardy-Littlewood circle method
from analytic number theory to arithmetic problems. These problems are finding a polynomial
bound for the smallest integer solution of a quadratic Diophantine equation, and showing that
the intersection of a system of rational cubic forms in sufficiently many variables admits a ratio-
nal linear space of zeros of given dimension.

1. Introduction

One of the basic questions in number theory concerns the solubility of Diophan-
tine equations: Let P(Xj,..., Xs) € Z[X},..., Xs] be a polynomial with integer coef-
ficients. Does the equation P(x) = 0 have a solution in Z*? In this generality, this
problem is hopelessly difficult. Indeed, answering Hilbert’s tenth problem, Mati-
jasevic ([10]) showed that there is no algorithm deciding this question for general
P. For special classes of Diophantine equations, however, there are effective meth-
ods for deciding solvability or even finding a solution if there is one, and we will
discuss two approaches in this direction. The first approach stems from the so-
called Hasse (Local-Global) principle: Obviously, if P(x) = 0 is soluble in integers,
then also in reals and also all congruences P(x) =0 (mod m) have an integer solu-
tion, which is equivalent to P(x) = 0 having solutions in all local rings Z,, of integral
p-adic numbers, for all rational primes p. If these obvious necessary conditions

2000 Mathematics Subject Classification. 11D25, 11D72, 11D88, 11E76.
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are also sufficient for P having an integer zero x € Z*, then one says that P satis-
fies the Hasse principle. For example, Minkowski showed the Hasse principle to
hold true for quadratic forms. Since for a homogeneous form there is always the
trivial zero, one has to modify the Hasse principle accordingly, either by removing
the trivial zero or by rephrasing the conditions so that projective zeros are required.
The Hasse principle for quadratic forms then is the following well known result: If
Q(Xy,...,Xy) € Z[Xy,..., X;] is a quadratic form, then there is a zero x € Z*\{0} of
Q(x) = 0 if and only if there is a zero x € R*\{0} and if there are zeros x € Z;,\{0} for
all p. Note that the real condition on Q just states that Q is not definite. Now for
many polynomials it is quite easy to check the real and the local conditions (for
example, by lifting solutions modulo p, where often only finitely many p have to
be considered), so the Hasse principle then in particular gives an effective method
for deciding if there is a solution or not. Unfortunately, the Hasse principle fails for
many polynomials. One of the first counterexamples is due to Selmer ([12]), who
has shown that the equation

3X3+4Y3+5Z3=0

has non-trivial real zeros, non-trivial p-adic zeros, but no non-trivial integer zero.
In fact, this equation describes an algebraic curve of genus one, which is called an
elliptic curve. Whereas the Hasse principle holds for conics (see above), which are
algebraic curves of genus zero, it generally fails for higher genus curves, in partic-
ular for elliptic curves. We now describe a second approach to effectivity for Dio-
phantine equations, which does not necessarily rely on the Hasse principle. Let H
(the ‘height’) be the maximum of the moduli of the coefficients of the polynomial P.
Then for a class of polynomials P in s variables with height H an effective function
As(H) is called a search bound, if the following holds true: If there is any integer
solution x € Z° of P(x) = 0, then there is one with

x| < As(H),

where | - | denotes the maximum norm. Clearly a search bound gives an algorithm
not only for deciding if there is an integer solution, but also for finding one. Siegel
([13]) established that for quadratic (not necessarily homogeneous) P in any num-
ber of variables there exists a search bound A¢(H). Making his argument effective,
one finds that one may take

As(H) = exp(CH) 1Y),
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where C) (s) is an effective constant. In the binary case s = 2, using Pell’s equation
one can show that this bound is essentially sharp and in particular cannot be re-
placed by a polynomial in H ([8]). For s = 5 and non-singular quadratic part of
Q, later Kornhauser ([7]) obtained polynomial bounds. The remaining cases s = 3
and s = 4 and also a considerable improvement of Kornhauser’s bounds have been
established by the author in [3], Theorem 1:

Theorem 1. Suppose that the quadratic part of Q is non-singular. Then one can
take
C, H2100 s=3
As(H)={ C3H®* s=4
Cu(s) HH100 555

for effective constants C,, C3 and C4(s).
So from a qualitative point of view the question about the order of magnitude of

search bounds for quadratic Diophantine equations has been settled: For s = 2 one
needs an exponential bound, whereas for s = 3 polynomial bounds are possible.

2. Idea of proof

Let us now give a short sketch of the proof of Theorem 1. For simplicity, let us
assume that there are no linear terms, so P is of the form

P(Xy,...,Xs) =0Q(Xy,...,Xs) —n,

where Q is a non-singular integral quadratic form and 7 is an integer. Only the case
of indefinite Q is interesting, since for definite Q it is easy to obtain good bounds
even for all real solutions of Q(x) = n.

Casel: s=5o0r s =4 and n # 0. In this case we can apply the Hardy-Littlewood
circle method from analytic number theory. This is an analytic method for counting
solutions of Diophantine equations in some expanding box. Let

r(N):=#{xeZ°: x| < Nand P(x) = 0},

where N is a parameter. Now

fle(am)da:{l m=0
0 0 m#Qo,
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where e(a) is the character e(a) = exp(2nia). Hence, introducing the exponential
sum

flw= ) e@PX),

xeZS:|x|<N

by interchanging the order of integration and summation we find that
r(N) = f 1f(a)da.
0

Now if a is ‘close’ to a rational point g with ‘small’ denominator ¢, then one has a
very good approximation to f (&) involving so-called Gauss sums, because for a = %
we just have to sort the x in residue classes modulo ¢, and for « close to such % by
partial summation still a good approximation by Gaussian sums holds true. Making
this observation precise is the essence of the circle method, of which we used a
recent modern version due to Heath-Brown ([6]). This way we get an asymptotic

formula
T(N) — 63N3—2 + Og(NS/2_5+£)

foranye>0and 6 = % for s =4 and n # 0 (here a so-called Kloosterman refinement
comes in) and 6 = 0 otherwise. Here G is the so-called singular series, a measure for
the density of p-adic solutions of the equation P(x) = 0, and J is the so-called sin-
gular integral, a measure for the density of real solutions of the equation P(x) = 0.
Since the asymptotic formula for (V) has a main term N*~? exceeding the error
term N*/279%¢ we obtain a quantitative form of the Local-Global principle: If
there are local (including real) solutions of P(x) = 0, then G > 0 and J > 0, so for
sufficiently large N we have r(N) > 0. Note that the asymptotic main term N2 is
of the order of magnitude to be expected: We have order of magnitude N* vectors
under consideration, and the probability of being a zero of the quadratic equation
P(x) = 0 is N~2. Since we want to establish a search bound, we may assume that
there is an integer zero x of P(x) = 0, hence there exist also real and p-adic zeros.
One then can establish lower bounds for & and J which are explicit in the height
H, and one can also give such explicit upper bounds for the implied O-constant.
Since all the occurring terms are polynomial in H, one finds a polynomial bound
on N in terms of H such that r(N) = 1 as soon as N exceeds this bound. This is
exactly what we want, a polynomial search bound!

The circle method approach described above is also useful for another prob-
lem on search bounds for positive definite integral quadratic forms Q: Suppose
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that for an integer n the congruences
Q(x1,...,xs)5n (mOd m)

are soluble for all positive integers m. Then according to the philosophy of the
Local-Global-principle, one should expect also an integer solution x € Z° of the
equation Q(x) = n to exist. For small n this may fail, but for ‘sufficiently large’ n and
s = 5 it is true. Making ‘sufficiently large’ explicit is known as ‘Tartakovski’s prob-
lem’. Improving earlier results, in a joint paper with T.D. Browning ([1], Theorem 4)
we could prove that for s = 5 the lower bound

2
n>, (IdetQIﬁ ||Q||s+£) e

is sufficient, where ||Q|| is the height of Q. So in principle one has a method for

finding all positive integers n which are represented integrally by Q: For large n,

one has to check the congruence conditions, which is a finite problem, and for the
remaining finitely many small n one could check by computer.

Case II: s € {3,4} and n = 0. In this case one deals with a homogeneous prob-
lem, for which lattice point methods from the geometry of numbers are available
(2Dn.

Case III: s =3 and n # 0. This is the most difficult case, since the circle method
breaks down here. By using reduction theory for quadratic forms, one can reduce
the original problem of finding search bounds for quadratic Diophantine equations
to the following more general and seemingly more difficult problem on finding
search bounds for integral equivalence of integral ternary quadratic forms ([3],
Theorem 4):

Theorem 2. Let A and B be integral symmetric non-singular 3 x3-matrices which
are integral equivalent, so there is an unimodular integral 3 x 3-matrix R with

1) B=RTAR.

Then there is such R with
IRI| < (| All +11BIN®.

Here the height || - || is defined as maximum norm in the naive way. So in
particular one has a means of deciding effectively if two integral ternary quadratic
forms are equivalent or not. Problems of this kind have recently also found interest
in cryptography ([5]).
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Let us now give a short sketch of the proof of Theorem 2. First, it is much eas-
ier to deal with this problem first over the rationals. So we get a ‘small’ rational
3 x 3-matrix S with

®) B=S"4s.
‘Small’ in the following means bounded by a polynomial in the heights of A and B,
which is sufficient for our purposes, and the height of a rational matrix is again de-

fined in the naive way as maximum norm for the nominators and the denominator,
after clearing fractions. Then comparing (1) and (2) one finds that for

U=RS™'
we have
UTAU = 4,
so U is a rational automorph of A. Fortunately, there is a parameterization of all

rational automorphs of a ternary quadratic form going back to Hermite. So U must
be of the form U = Uy, for a parameter z € Z4, where Uy is of the form
hi@ - 132
U,= —
z T(Z) . .
T(z) - To(2)

for suitable integral non-singular quadratic forms T, T,..., Ty € Z[X;,..., X4] de-
pending on A. The important thing now is that the T; and T are quaternary quadra-
tic forms with small height. Moreover, the denominator of U must be small because
of U = RS™! with integral R and small S. An easy application of Hilbert’s Nullstel-
lensatz shows that there cannot be too much cancellation in Uy, thus T'(z) must also
be small. So we can use the circle method from Case I to find a small z’ € Z4 with

TZ)=T(2)
and
Z =z (mod (T (z)-denominator S)).

Note that the additional congruence condition is a technicality making no serious
problems for the circle method. Now let

U :=Uy,.
Then clearly U’ is small because z' and the T; and T are. Moreover,

UTAU = A,
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because U’ comes from the parameterization of all automorphs. Furthermore,
R:=U'S

is integral, because R = US = U, S is and the congruence condition on z’ ensured

that all denominators get canceled, like for R. Finally,

RTAR =sTU'TAU'S = ST AS = B,

so R’ has the desired transformation property, is integral and clearly small since U’
and S are. This completes the proof of Theorem 2 and so also the proof of Theorem
1.

3. An application of the circle method to systems of cubic forms

We complete our exposition by describing another recent application of the cir-
cle method to a problem on higher degree forms. Let Cy,...,C; € Z[Xj,..., X] be
cubic forms. Since for odd degree forms in sufficiently many variables there are
always non-trivial real zeros, and since for systems of forms in sufficiently many
variables there are always non-trivial p-adic zeros, one should expect according
to the Local-Global-principle that any such system of r integral cubic forms has a
non-trivial rational zero, providing that s is sufficiently large in terms of r. The best
such bound currently known is due to Schmidt ([11]), using the circle method, who
showed that s = (10r)5 is sufficient. It is a natural question to seek a generalization
of this result to finding not only a common non-trivial rational zero to a system of
rational cubic forms, but even a rational linear space of given dimension on which
all those forms vanish. In this direction we could prove the following result ([4],
Theorem 2):

Theorem 3. Let r,m € N, and let Cy,...,C, € Z[ Xy, ..., X;] be cubic forms where
s> r4mb6 + rémb5. Then the system of equations C1 = ... = C, = 0 admits an m-

dimensional rational linear space of zeros.
For r'/9 < m < r%* this improves earlier results due to Lewis/Schulze-Pillot
([91) and Wooley ([14]). As mentioned above, the proof uses the circle method. Let

us now give a short outline of the main arguments. We start by writing
Xp
y =

Xm
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Now a simple Taylor-expansion argument shows that there are forms Cy,...,Cg €
Z[Xy,...,Xsm] with R of order of magnitude rm3 and the property that C; (y) =
0 (1 =i < R) if and only if Cy,...,C, vanish on the rational linear space spanned
by xi,...,X,. So we encoded the subspace property in a problem on finding ratio-
nal zeros to a new system of cubic forms, for which we apply the circle method. So
let
r(N):=#{yeZ":lyl< Nand C;(y)=0(1<i <R)}.

Like in the quadratic case where we stipulated non-singularity, we need some ge-
ometric condition on the system of cubic forms in order to be able to bound the
corresponding exponential sums occurring in the circle method approach. It turns
out that we have to stipulate a pencil condition to the effect that no form of the ra-
tional pencil of Cy,..., Cr vanishes on a rational linear space of too large dimension.
If this pencil condition is satisfied, then the circle method goes through, yielding

r(N) = 63N§m_3R + O(Nsm—SR),

where the singular integral Jj is positive, because there are non-trivial real zeros
since the degree is odd. Also the singular series G is positive, since the number of
variables is large enough and thus there are non-trivial p-adic zeros. In fact, using
information on p-adic linear spaces on the original system Cj, ..., C, rather than on
p-adic points on Cy,...,Cg, we can get a quite good lower bound for &. Note that
the main term N*"73R is of the order of magnitude to be expected heuristically.
So there are many integer zeros y of the system C; = ... = Cg = 0, and ‘almost all’
of them give rise to linearly independent x;,...,X;, since such linearly dependent
x; lie on a algebraic variety of small dimension and are much less than the points
counted by r(N). So if the pencil condition is satisfied, we are done. If the pencil
condition is not satisfied, a form in the rational pencil of Ci,...,Cg vanishes on a
rational linear space of large dimension. Then one can show that the same is true
for the original system of forms Cj, ..., C,. So without loss of generality C; vanishes
on a rational linear space of high dimension. By parameterizing this space and
substituting in the remaining forms Cy, ..., C,, we may proceed by induction on the
number r of forms and again are done.
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Abstract. This note is an informal report on the joint paper [4] of the author with Jeffrey Gian-
siracusa, which grew out of the attempt to understand the topology of the moduli stack of stable
curves. The main result is the construction of a map from the moduli stack to a certain infinite
loop space, which is surjective on homology in a certain range. This shows the existence of many
torsion classes in the homology of ﬁg‘ n- We give a geometric description of some of the new
torsion classes. Also, we give a new proof of an (old) theorem computing the second homology
of the moduli stack.

The moduli space ﬁg,n of stable n-pointed curves of genus g is a compacti-
fication of the moduli space Mg , of smooth n-pointed curves. One adds a
boundary 09t ,, which contains singular curves of a certain type, namely stable
ones. A singular curve C with n marked distinct smooth points p;,..., p, is called
stable if all singularities are ordinary double points and if there is only a finite
number of automorphisms of C which fix the p;. Strictly speaking, due to the
presence of automorphisms, one must study ﬁg, n as a stack and not as a space.
There is a coarse moduli space ﬁz,o: " , which is the topological space usually
referred to as the moduli space. There are two things to say about this coarse mod-

uli space. First of all, the rational homology H. (ﬁ?j rse;@) is isomorphic to the
——coarse

rational homology of the stack ﬁg, n (a concept explained below). Also, M, , it
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is a projective variety of complex dimension 3g —3 + n and its singularities are of
a very mild type (quotients of domains in a complex vector space by a finite group
action).

It follows that ﬁ;o: ree is a rational homology manifold, in other words, Poincaré
duality with rational coefficients holds. However, if one wants to study topological
invariants finer than rational homology, one is forced to consider the stack ﬁg,n.
For example, the integral homology of the coarse moduli space is not well-behaved
atall.

1. A few words on stacks

Let us say a few words about stacks and how they can be studied by methods of
algebraic topology. We will mainly consider stacks in the category of complex mani-
folds. As an excellent first introduction into the subject we recommend [8]; he only
treats differentiable stacks, but almost all ideas carry over without much change.
By definition, a stack is a very abstract object ("a lax sheaf of groupoids on the site
of complex manifolds"), so let us discuss a relatively simple example, which helps
to clarify the concept. We consider the stack Mg ,;, the moduli stack of smooth
n-pointed curves of genus g (alias Riemann surfaces). Let X be a complex mani-
fold. We have to say what the groupoid g ,(X) is. An object is a triple (E, 7, j),
where E is a complex manifold, 7 : E — X is a proper, surjective holomorphic sub-
mersion all of whose fibers are connected Riemann surfaces of genus g. The last
piece of data is a holomorphic embedding j: X x {1,...,n} — E such that wo j is the
projection onto X. If we forget about the complex structures, then Ehresmann’s fi-
bration theorem tells us that r is a differentiable fiber bundle with structure group
Diff(Fg, (p1,..., pn)). However, the complex structures on the fibers 771 (x) can vary
with x. Experience shows that this is the appropriate notion of a holomorphic fam-
ily of Riemann surfaces.

An isomorphism in the category M1 ,(X) is the obvious thing: a biholomorphic
map of the total spaces which commutes with the bundle maps and the embed-
dings.

For a holomorphic map f: Y—X, we obtain a functor f* : My ,(X) — Mg ,, (V).
For two composable morphisms fi, f>, we do not quite have an equality (f>0 f1)* =
15 o fi, but only up to "2-isomorphism". Finally, we can glue objects once we have
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a covering of a complex manifold and objects with suitably coherent isomorphisms
on intersections.

It is a standard remark that the stack g ;, is not representable, i.e. that there
does not exists a manifold M such that for any X, the groupoid M ,,(X) is equiv-
alent to the set of holomorphic maps X — M. However, in a certain precise sense,
My, is not too far from being representable. The statement is formal, but the proof
is not - it relies on Teichmidiller theory (or geometric invariant theory, for those who
like schemes). Let .7, , be the Teichmiiller space of n-pointed Riemann surfaces of
genus g; it is a complex 3g — 3 + n-dimensional complex manifold which is home-
omorphic to C3673*"_ Qver g ,, there is a universal family of Riemann surfaces,
which gives an object in DJTg,n(ﬂg,n) which is, by abstract nonsense, a morphism
of stacks p : Jg ,, — Mg . This is an "atlas". The meaning of this phrase is that,
whenever we have a complex manifold X and an object in My ,(X) (alias a map
f: X — Mg ), then we can find an open covering (Uj)e; of X, such that the re-
striction f|y, admits a lift to 7 ,,. This is not hard to show (if and only if one knows
Teichmiiller theory): 7%, is a classifying space for objects in 9, ;, with an addi-
tional piece of data: a homotopical trivialization of the underlying fiber bundle.
For a general family of Riemann surfaces, such trivializations locally exist (by Ehres-
mann’s theorem).

The atlas ¢ : T , — Mg, , has some additional properties which qualify the stack
My as a complex-analytic Deligne-Mumford stack or as a complex orbifold (which
means the same).

To define the stack ﬁg,n, we take not only holomorphic submersions as in the
definition of My, ,, but also suitably defined families of stable curves. This is also a
Deligne-Mumford stack, but the construction of the atlas is far more technical as in
the case of My, ,. The reader is advised to consult either [3] and [9] (for an algebraic
construction) or [14] for a differential-geometric perspective.

2. Homotopy theory of stacks

How do we extract homotopy theoretic information out of a stack? The fol-
lowing method makes sense in a more general situation, namely if we deal with
topological stacks. Such a topological stack is a lax sheaf of groupoids on the
site of topological spaces which admits an atlas (defined similarly as before). Let
Stacks°”’ be the category of complex-analytic stacks and Stacks‘°? be the category
of topological stacks. Given the very definition of a stack, one expects a functor
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Stacks’°? — Stacks’P!, but that does not happen. Let X be a topological stack.
Of course, we can restrict the sheaf defining X to the subcategory of complex
manifolds, but there is no reason why there should exist a complex-analytic atlas!
Instead, there is a functor ¢ : Stacks®P! — Stacks°? which extends the "underlying
topological space functor" from complex manifolds to spaces. This is defined using
an atlas, but it is a canonical construction whose result does not depend on that
choice. However, given an analytic stack X, it may be very hard to describe the
sheaf ¢(X) explicitly. There are also differentiable stacks and similar remarks apply
to this notion.

Given an atlas Xy — X of a topological stack, the pullback X; := X x X is again
a space and there are suitable maps which define a topological groupoid X with
object space Xp and morphism space X;. If X = X/G is a quotient stack, then we
obtain the translation groupoid of the group action G ~ X.
The following definition seems to be folklore.

Definition 2.1. Let X be a topological stack and let X be the groupoid arising
from an atlas of X. Then the homotopy type Ho(X) of the stack X is the homotopy
type of BX.

This definition has the obvious disadvantage that it is not clear that Ho(X) is
independent of the choice of the atlas. But in fact, it is.

Theorem 2.2. The homotopy type Ho(X) does not depend on the choice of the
atlas. Moreover, it extends to a functor from the category of topological stacks to the
homotopy category of spaces.

The proof can be found in [4] and it is built on ideas from [12]. The second
sentence is a quite strong statement, because it asserts that two different atlases do
not merely give homotopy equivalent classifying spaces but also that all homotopy
equivalences arising from different choices are mutually compatible.

If X = X/G is a global quotient stack, then the homotopy type is the Borel-con-
struction:

Ho(X/1G) = EG xg X.
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A special case is the moduli space Mg ,;, because the it is equivalent to the quo-

tient of the Teichmiiller space by the mapping class group” I'z. Because the g p
is contractible, we conclude that Ho(0, ) = BFg.
One can show that the homotopy type has the right (co)homology groups - there is
a natural definition of the cohomology of a stack in terms of homological algebra
and the result is that this homology is the same as the homology of the homotopy
type. However, this remark does not apply to any homotopy-invariant functor, for
example not to complex K-theory. Any good notion of complex K-theory should
satisfy K(X/G) = Kg(X) if G is a compact Lie group. But it is well-known that K¢ (X)
and K(EG x ¢ X) are usually not isomorphic, see [2].

3. Pontrjagin-Thom maps

Let f: M — N" be a proper smooth map of smooth manifolds, of codimension
d = n—m (which can be negative). The normal bundle is the stable vector bundle
v(f) := f*TN — TM of virtual dimension d on M. As a stable vector bundle, it
has a Thom spectrum M), The Pontrjagin-Thom construction yields a stable
homotopy class

PT;:I°N, — M*V.

These Pontrjagin-Thom maps can be used to define umkehr maps in cohomol-
ogy, once the normal bundle v(f) is oriented. One defines f as the composition

H*(M)=H* (Z°M,) = H*+d(MV(f)) - H*+d(z°°N+) = H*+d(m.

If we want to define umkehr maps also in the context of stacks, we need to
construct Pontrjagin-Thom maps in the category of stacks. The problem is that
the Whitney embedding theorem does not hold for stacks. But one can find a way
around it and we can define the Pontrjagin-Thom map if f : X — 2) is a repre-
sentable proper map between complex-analytic stacks and %) satisfies some mild
technical conditions (this condition is satisfied for all orbifolds).

(M This notation is traditional in the theory of mapping class groups. The group usually denoted by I gn
is closely related, but different.
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4. Homotopy theory of smooth moduli spaces

The Pontrjagin-Thom construction played a crucial role in the modern homo-
topy theory of the moduli space 9, ;, which was developed by Tillmann, Madsen
and Weiss [10], [11]. They studied the universal surface bundle® 7 : Mg ; — Mg o.
The stable normal bundle v(r) can be identified with the inverse of the vertical
tangent bundle T, x; the classifying map of T, 7 is a map Mg ; — BU(1). Thus the
Pontrjagin-Thom construction yields a map

a: Mg —Q@BUD) L.

The main theorem of [11] is that @ induces an isomorphism in integral homology
in degrees k < (g—2)/2. A crucial ingredient of the proof is Harer’s stability theorem
[7] which says that Hi(91,;2Z) does not depend on g if k < (g —2)/2. We will see
below (see 6.1) that the homology of ﬁg_n does not satisfy any kind of stability.

Therefore we cannot expect a result as elegant as the Madsen-Weiss theorem for
Mg n.

5. The surjectivity theorem

There are several natural morphisms between the moduli stacks of stable curves.
Namely, there are maps

1. fg,n :%g—l,rHZ: 9:ng,n .

2. Onk s Mpgerr X Mg—pp—kr1 = Mg,n,

3. m: img,nﬂ - mg,n

4. 0 :ﬁg,n — ﬁg,n;a €y,
given by: identifying two smooth points to a node (1 and 2), forgetting the last
point (3) or permuting the n marked points (4). These morphisms are repre-
sentable morphisms of complex-analytic stacks; ¢ and 0}, ;. are proper immersions
of codimension 1 and 7 can be interpreted as the universal family of stable curves
(it has codimension —1). We are particularly interested in the morphisms ¢ and 0y,
and study their Pontrjagin-Thom maps. The normal bundles of these morphisms
are easy to describe.
There are certain natural complex line bundles on ﬁg,n: if (C,p1,...,pn) is an
n-pointed stable curve, then p; is a smooth point and hence T}, C is defined; this

@) The case n > 0 can easily be reduced to n = 0 using Harer stability.
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gives line bundles L; — ﬁg,n, i=1,...,n.

The normal bundle of ¢ is L,+1 ® L;,12 and the normal bundle of 0y, 1. is Lg+1®Ly—k+1
(exterior tensor product). The morphism ¢ is X,-invariant and therefore induces
55 5):ng—l,n+2iZZ - S)ng,n-

Let now N(2) c U(2) be the normalizer of the standard maximal torus; there is
a homomorphism N(2) — U(1) which multiplies the nonzero matrix entries. This
induces a line bundle V — BN(2). The normal bundle of & admits a bundle map
and thus we obtain

PT; : HoMtg,n) — Q¥IBN(2)".

Similarly, the normal bundle of 6}y admits a bundle map to the universal line
bundle L — BU(1) and we obtain

PT9h,o :Ho(ﬁg,n) - QooZOOBU(I)L,

The main result of [4] is the following.

Theorem 5.1. The map PT; induces an epimorphism in homology with field co-
efficients in degrees k < (g —2)/4.
The map PTy, , induces an epimorphism in homology with field coefficients in de-
greesi < (g—2)/2(h+1).

The proof is based on the Harer-Ivanov stability theorem for the homology of
the mapping class groups, on the Barratt-Priddy-Quillen theorem relating symmet-
ric groups to infinite loop spaces and on the computation of the homology of the
infinite loop space of the suspension spectrum of a space X in terms of the homol-
ogy of X and the Dyer-Lashof algebra.

In section 6 below we will discuss the geometric meaning of some of the torsion
classes provided by this theorem.

There is an important family of subrings Z* (ﬁg,n) c H* (ﬁg,n;@), the tautolog-
ical rings, which is the smallest system of subalgebras which contain the classes
c1(L;) and which are closed under pullback and umkehr homomorphisms by the
natural maps. It is easy to see that the Pontrjagin-Thom maps above map rational
cohomology into the tautological ring. Therefore we can consider the cohomol-
ogy classes induced by the Pontrjagin-Thom maps as an integral refinement of the
tautological rings
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6. The low-dimensional homology groups of ﬁg

In this section, we present a short proof of the following theorem, which was first
proven by Arbarello and Cornalba [1].

Theorem 6.1. Ifg >4, then H, (ﬁg; Z) is a free Abelian group of rank 2 + (g /2].

Arbarello and Cornalba showed this using methods from algebraic geometry.

Their argument showed also the apparently sharper result that any complex line
bundle on ﬁg has a unique holomorphic structure. But the classical fact that
M (ﬁg) =0 and an easy Hodge-theoretic argument show that Theorem 6.1 implies
that as well.
The proof of 6.1 is based on the differential-topological notion of a Lefschetz fibra-
tion. In this framework, it is also easy to see that 7} (STTg) =0, using Dehn’s theorem
that Dehn twists generate the mapping class group. Consider the stack ﬁg as a dif-
ferentiable stack. It quite difficult to describe this differentiable stack explicitly as
a sheaf because a family of stable curves is not a bundle and when we pull back a
family with an arbitrary smooth map, the resulting space becomes highly singular.
But "up to concordance”, the differentiable stack ﬁg is not too hard to understand.
The notion of Lefschetz fibration is an old one in algebraic geometry, I learnt the
following formulation from [5].

Definition 6.2. A Lefschetz fibrationis a tuple (p, S, U, L, q), where p : E¥*> — B¥
is a smooth map, S c E is the subset of critical points of p and it is a submanifold
of real codimension 4. One requires that p|s is an immersion with normal cross-
ings. The normal bundle U of S in E is endowed with a complex structure and an
embedding j : U — E as a tubular neighborhood; L — S is a complex line bundle,
endowed with animmersion i : L — B. q: U — Lis anondegenerate quadratic form
and po j =ioq. Finally, the fibers of p are oriented, connected stable surfaces.

For all x € B, the nodes of the fiber p~!(x) are the points of SN p~1(x). Any
component of S has a fype i € {0,1,...[g/2]} (g is the genus of the fibers). Namely,
a node can either be nonseparating (i = 0) or it can separate the surface into two
parts of genus h and g — h (if h < g — h, the type is h).

One can show that for any smooth manifold B, the set of concordance classes of
Lefschetz fibrations is in bijection with the set of homotopy classes [B;Ho(ﬁg].
Details will appear elsewhere.

A Lefschetz fibration over a 1-manifold is nothing else than an oriented surface
bundle; Lefschetz fibrations over oriented surfaces are also not hard to describe.



Johannes Ebert: On the topology of the moduli stack of stable curves 65

If F is a surface of genus g and ¢ c F a simple closed curve of type i (this is de-
fined analogously to the type of a node), then there exists a Lefschetz fibration
p : E — D? such that S consists of a single point s, p(s) = 0 of type i and the
restriction E|g1 — S' is an oriented surface bundle whose monodromy is the Dehn
twist around the curve c. If E — B is a Lefschetz fibration over a surface, then it
is determined by the isomorphism class of the surface bundle E|p\,(s) and by the
monodromies around the points of p(S).

Now we are ready for the proof of Theorem 6.1. We use the oriented bordism
group Qp(My) of Lefschetz fibrations, which is isomorphic to Hy (Mg; Z). We will
establish an exact sequence

6.3) 0 ——> QM) —> 0, (M) — > 7l8/21+1 ——> 0,

The homomorphism ¢ is obtained by counting the singularities of a Lefschetz
fibration, according to their type and with a sign which stems from orientation is-
sues. This is invariant under oriented bordism.

To show that § is surjective, we need to construct a Lefschetz fibration on an ori-
ented surface with a single singularity of prescribed type. Take a Lefschetz fibration
E — D? with a singularity of type i. The surface bundle Elg is nullbordant in My,
because H)(Mg;Z) = 0 for g > 3; this is a classical theorem by Powell [13]. Now
take any nullbordism and glue in E. The result is a Lefschetz fibration with a single
singularity.

An old theorem of Harer [6] states that Q2 (9,;Z) = Z if g > 4; an isomorphism is
given by the following procedure: Take a € Q> (9Mg), which can be represented by
an oriented closed surface M and a surface bundle E — M. The signature of the ori-
ented 4-manifold E is divisible by 4 and the assignment [E — M] — %si gn(E) is an
isomorphism. It follows immediately that the map Q» (1) — Qo (ﬁg) induced by
the inclusion is injective: if a surface bundle E — B is nullbordant when considered
as a Lefschetz fibration, the manifold E is nullbordant and hence has signature 0.
This show exactness of the sequence 6.3 on the left.

Exactness in the middle is shown by a simple surgery argument. If E — M is a Lef-
schetz fibration with § (E — M) = 0, then the singular points of S of type i occur in
pairs with opposite sign. If 51, s» is such a pair, then we can cut out small discs in
M around p(s;) and p(sz). The restriction of E to the boundary of any of the two
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discs is a surface bundle and both are isomorphic (but the base has opposite ori-
entations). Thus they are concordant as bundles over a cylinder. This cylinder can
be glued in in and we obtain a new Lefschetz fibration, with the number of singu-
larities reduced by 2. It represents the same bordism class as the original Lefschetz
fibration. This finishes the proof of Theorem 6.1.

Remark 6.4. The components of§ give cohomology classes §; € H? (ﬁg ;Z2). They
are related to our Pontrjagin-Thom maps as follows. Set i = 0, the other cases are
similar. The Thom class of V is an element u € H>*(BN(2)V;2); it is suspended to
u' € H*(Q®X®BN(2)V;Z). The class PT:; u' is precisely 5.

7. Aninteresting class in H° (ﬁg; F»)

Theorem 5.1 states that the map E)TTg,n — Q%°3°BN(2)V induces a surjection in
homology with field coefficients. Equivalently, the map in cohomology with field
coefficients is injective. Here we describe one of the torsion classes in H> (ﬁg_ nF2)
geometrically. It is not hard to see that H*(BN(2);F,) = bF,[x1, xo, w]/(w® = 0),
where x; is the image of (mod 2 reduction of) the Chern class ¢; € H (BU(2);F,) un-
der the map induced from the inclusion N(2) c U(2). The class w € H LBN(2);F,)
comes from BN (2) — Bry(N(2)) = BZ/2. Furthermore, the Euler class of the vector
bundle V is x; + w?. The Thom isomorphism is an isomorphism th: H*(BN(2)) =
H**2(BN(2)V). Therefore, H*(BN(2)V;F,) = F, and th(w) is a generator.

There is an (injective) homomorphism (of graded vector spaces, not of rings)
o0:H*(BN2)V;F,) — H* (Q®°Z®°BN@2)Y;F,), the cohomology suspension, and we
want to describe PT;Z, o(th(w)) € H? (ﬁg,n; F2). By 5.1, this is nonzero (if g > 14. By
the universal coefficient theorem and by 6.1, H3 (ﬁg, n;F2) = Hom(Hs (ﬁg, 1 2);F2),
and the latter is isomorphic to Hom(Q3 (ﬁg, n);Fa).

Assume that B is a closed oriented 3-manifold and that p : E — B is a Lefschetz fi-
bration which represents an element in Q3 (ﬁg, n). Let S c E be the singular locus, a
1-dimensional submanifold and let Sy < S be the open and closed subspace of sin-
gular points which are of type 0. Clearly, Sy is a disjoint union of a finite number of
circles Cy,...Cy. On any circle C;, there is a twofold covering g; : C; — C;. Namely,
for any x € C;, there exists a neighborhood U < p~!(p(x)) such that U \ x has pre-
cisely two components. These components are the elements of the fiber ql.‘l (x).
Recall that there are exactly two equivalence classes of twofold coverings on a circle.
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Let a; = 1if g; is nontrivial and a; = 0 if it is trivial. Define

k
ME—B):=) a;€F,.
i=1

It is not hard to see that this is an additive bordism-invariant A : Qg (ﬁg,n) — [y
and hence a cohomology class A’ € H® (ﬁg,n;[Fg). More or less by unwinding the
definitions, one can show that

A= PT:§ o (th(w)).
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Abstract. In this survey, we describe three tropical enumerative problems and the correspond-
ing moduli spaces of tropical curves. They have the structure of weighted polyhedral complexes.
We observe similarities in the definitions of the weights, aiming at a better understanding of the
tropical structure of the moduli spaces.

1. Introduction

In tropical geometry, algebraic varieties are degenerated to certain piece-wise
linear objects called tropical varieties. This process loses a lot of information, but
many properties of the algebraic variety can be read off from the tropical variety,
and many theorems that hold on the algebraic side remarkably continue to hold on
the tropical side. Since tropical varieties are piece-wise linear, they are in princi-
ple easier to understand than algebraic varieties and combinatorial methods apply.
Thus there is hope that we can use tropical geometry to derive theorems in alge-
braic geometry.

One of the fields in which tropical geometry has had significant success recently
is enumerative geometry. Enumerative geometry deals with the counting of geo-
metric objects that are determined by certain incidence conditions. The conditions
have to be chosen in such a way that only finitely many objects satisfy them. We will

2000 Mathematics Subject Classification. 14N10, 14N35, 51M20.
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consider tropical analogues of the following three examples of enumerative num-
bers:

1. The numbers N(d, g) of nodal degree d genus g plane curves through 3d +g—1
points in general position.

2. The numbers E(d, j) of nodal degree d elliptic (that is, genus 1) plane curves
and with fixed j-invariant j through 3d — 1 points in general position.

3. The Hurwitz numbers H g (n,v) of genus g, degree d covers of P!, with specified
ramification profiles 17 and v over 2 fixed points in P! and at most simple ramifica-
tion over other points in P

Now we could instead count the corresponding tropical objects, defining num-
bers Niop(d, &), Ewop(d, j) and Hg‘tmp (n,v), and hope to end up with the same
numbers. Each tropical object has to be counted with a certain tropical multiplic-
ity that should reflect how many objects in the algebraic count degenerate to this
tropical object. For the numbers N(d, g), the Correspondence Theorem N(d, g) =
Niop(d, ) has been shown in the pioneering work of Grigory Mikhalkin ([12]). The
equality E(d, j) = Eqop(d, j) was proved in [10] and HS(n,v) = Hgvtmp (n,v) in [3].
The study of tropical enumerative numbers like the above requires an argument
why the tropical count remains invariant under a deformation of the conditions, for
instance, an argument why the numbers Nyop(d, g) do not depend on the position
of the 3d + g — 1 points (as long as they are in general position). The corresponding
independence statements in algebraic geometry are a consequence of the fact that
the enumerative numbers can be interpreted as intersection numbers of cycles on
suitable moduli spaces, and that intersection products are invariant under defor-
mation. In tropical geometry, we can construct analogues of the moduli spaces.
Also, tropical intersection theory has been studied recently ([13],[1]). However, at
this moment not all independence statements above can be deduced from general
principles of tropical intersection theory. In fact, we can only use tropical intersec-
tion theory to prove independence statements for numbers of rational curves, that
is, if the genus g is 0. For the numbers Niop(d, &), the independence was shown in
[12] by relating the tropical numbers to classical ones for which the invariance is
known. An alternative combinatorial proof determines the different possibilities of
how a tropical curve can change when the points are deformed ([7]). For the num-
bers Eiop(d, j) and Hg‘tmp(n,v) the independence was shown in [10] and [3], re-
spectively, using moduli space techniques. However, tedious case-by-case analyses
and computations were necessary. The same techniques can also be used to prove
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the independence for the numbers Nyop(d, g), and we outline this proof shortly in
this survey since it cannot be found in the literature.

A main reason why we cannot prove the independence with tropical intersec-
tion theory is that the tropical moduli spaces we want to work with do not have
a tropical structure yet. We can define them only as abstract weighted polyhedral
complexes. The only case in which the tropical structure of the moduli space is well
understood is for rational curves ([14], [5]). Since the corresponding moduli spaces
in algebraic geometry are stacks rather than varieties, we expect that we need a rig-
orous definition of a tropical stack, which does not yet exist, before we can succeed
in equipping the tropical moduli spaces with more structure. For genus 0, the no-
tion of a tropical stack is avoided by introducing extra labelings that will remove
automorphisms, see Section 7. Once we understand the tropical structure of the
moduli spaces, we expect that tropical intersection theory should provide natural
proofs of the independence statements, leading thus to a more rigorous set-up for
tropical enumerative geometry.

The purpose of this survey is to describe the tropical moduli spaces used in the
three enumerative problems mentioned above, and to observe similarities in their
local structure. We hope a better understanding of tropical moduli spaces might
eventually lead to a definition of a tropical structure for them.

We define three tropical moduli spaces that parametrize a larger set of objects
than the ones we want to count. For the first enumerative problem (the numbers
Nyop(d, 8)) the space .#g p trop (R?,A) parametrizes genus g, degree d plane trop-
ical curves with 3d + g — 1 marked points. The space //Z n,trop(le,A) we use for
the second problem (the numbers Eiop(d, j)) parametrizes degree d elliptic plane
tropical curves with 3d — 1 marked points. The space .# é,O,trop([Rl’A) for the third
problem (the numbers Hjtmp (n,v)) parametrizes degree d, genus g tropical maps
to P!. Then we define maps from these moduli spaces, for instance, the map that
evaluates the 3d + g — 1 marked points for the first problem. The inverse image un-
der this map of a point configuration consists of those degree d genus g tropical
curves that pass through the point configuration. Inverse image points have to be
counted with the suitable tropical multiplicity. The map for the second enumer-
ative problem evaluates 3d — 1 points and associates the tropical j-invariant. The
map for the third problem evaluates the position of the vertices of the tropical curve
that can be thought of as branch points.

We start in Section 2 with an example which should motivate our definition of
tropical curves. In Section 3, we define abstract tropical curves and parametrized
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tropical curves. The latter can be thought of as analogues of stable maps. We also
define spaces parametrizing tropical curves that can be thought of as analogues
of moduli spaces of stable maps. We equip those tropical moduli spaces with the
structure of a weighted polyhedral complex in Section 4. In Section 5, we define
maps from the tropical moduli spaces that are used to define the tropical enumer-
ative problems. We explain how our definition of Nyop(d, g) relates to Mikhalkin’s
original definition of Nip(d,g) ([12]). In Section 6, we give a short overview of
the independence proofs that have to be shown for each of the three enumerative
problems. We give only short outlines of proofs. For more details, or for more for-
mal definitions, see [10], [6] or [11].

The author would like to thank Paul Johnson, Eric Katz, Thomas Markwig and
Johannes Rau for helpful comments.

2. Amotivating example

There are several ways to define the degeneration process which produces a
tropical variety from an algebraic variety (see [12], [16], [4]). Here, we sketch justa
basic example that motivates our later combinatorial definition of tropical curves.
Let L be a projective line in P2, and apply the map

Log: (C*)? = R?, (s, 1) — (log|sl,log|t])

to the restriction of L to (C*)2. Let (x: ¥ : z) be the coordinates of P2, and identify
C? with the set {z # 0}. Then the map Log associates the point (loglfl,logl%l) € R?
to a point (x: y : z) € P2. The line L intersects the coordinate line {x = 0} in one
point. When we move along the line L towards the intersection with {x = 0}, the
first coordinate of the image point under Log tends to —co. Also, when we move
towards the intersection with the coordinate line {y = 0}, the second coordinate of
the image tends to —oo. When we move towards the intersection with {z = 0}, both
coordinates become big and their difference tends to a constant. Furthermore, the
image Log(L) c R? (called the amoeba of L) should be 2-dimensional, as the com-
plex line has two real dimensions. These observations suggest that the image looks
similar to the left of the following picture:
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A tropical line can be thought of as a limit of this amoeba after shrinking it to some-
thing one-dimensional, as on the right in the picture above. (For more details on
the limit process, see [12] or [4].) The only information kept are the three infinite
rays and their directions. Note that the primitive integer vectors pointing in these
three directions sum up to 0. This is called the balancing condition and is impor-
tant in our combinatorial definition. Now let C c P2 be a conic. It intersects {x = 0}
in two points, (0: po : 1) and (0: p; : 1). We can move along C near the first point
and the first coordinate of the image will tend to —oco, whereas the second tends to
log|pol. For the second point, the first coordinate will again tend to —oco, but the
second to log|p;|. Thus the amoeba of a conic has two “tentacles” in each of the
three directions (—1,0), (0,—1) and (1,1). We can not say precisely what happens
in the middle. When we shrink the amoeba to something 1-dimensional to get an
idea of how a tropical conic should look like, there are indeed several possibilities
of what can happen in the middle.

The picture shows three different types of a tropical conic.

In many places in the literature, an alternate degeneration process is given;
namely, take the image of the valuation map from an algebraic variety over the field
of Puiseux series K (or another field with a non-archimedean valuation). Since this
definition does not require taking a limit, it is more useful for computations ([2]).
We define plane tropical curves combinatorially (Definition 3.6). For plane curves,
it is true that any such combinatorial object (roughly, a graph satisfying the bal-
ancing condition) comes from an algebraic curve under the degeneration process

(7.

Remark 2.1. We can also apply the degeneration to higher-dimensional vari-
eties. In the case of constant coefficients (that is, if the ideal defining the variety
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is an ideal of C[x]  K[x]) the image under the valuation map is a polyhedral fan
that satisfies (a higher-dimensional version of) the balancing condition ([18], Sec-
tion 2.5). The role of the primitive integer vector pointing in the direction of an
edge is played by the lattice in a top-dimensional cone of the fan. Combinatorially,
higher-dimensional tropical varieties are defined roughly as polyhedral complexes
obtained by gluing fans that satisfy the balancing condition ([20], [5]). Not every
such polyhedral complex comes from an algebraic variety under the degeneration
process.

3. Tropical Mg ,(P', d)

We want to define a tropical analogue of Mg,n([P’r, d); that is, we want to define
maps from abstract tropical curves to R” such that the images look like the tropical
curves we have seen in Section 2 above (that is, like graphs satisfying the balancing
condition). The abstract tropical curves should be marked by n points. We have
seen above that the unbounded edges (or, ends) of a tropical curve can be thought
of as coming from the intersection with coordinate hyperplanes. In this sense, the
ends are special points of the tropical curve. Thus we define the tropical analogue
of marked points to be marked ends.

Let us first fix some notation we want to use for graphs. Let I' be a graph. Un-
bounded edges (also called ends) are allowed. We denote the set of vertices by I
and the set of edges I''. The subset of ends is called '}, and the subset of bounded
edges l“(l). We call a pair F = (V,e) where e is an edge of I' and V € de a flag of T
and think of it as a “directed edge”—an edge pointing away from its end vertex V.
The genus of a connected graph I' is the first Betti number of I, h; (I, Z), that is, the
number of independent cycles.

Definition 3.1. An abstract tropical curve is a connected graph I' whose vertices
have valence at least 3 and whose bounded edges e are equipped with a length
l(e) € [R>0.

The genus of an abstract tropical curve is the genus of T'.

An abstract n-marked tropical curveis a tuple (T, x1, ..., x,) where I is an abstract
tropical curve and x1,...,X; € l"(l,o are distinct ends of I'.

The set of all n-marked tropical curves with exactly n ends and of genus g is
called Mg, trop-

An abstract tropical curve with labeled vertices is an abstract tropical curve T
where each vertex is labeled with val(V) — 2 numbers such that the disjoint union
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of all vertex labelings equals {1, ..., s — 2 +2g}, where s is the number of ends and g
is the genus.

Forie{l,...,s—2+2g} we denote by V; the vertex which has the label i. Note
that for a curve with higher-valent vertices it is possible that V; = V; for i # j in this
notation.

The combinatorial type a of an abstract tropical curve is the information left
when dropping the lengths of the bounded edges.

Remark 3.2. We need vertex labelings only for the third enumerative problem,
since tropical branch points of a map to tropical P! are thought of as vertices of the
underlying abstract tropical curve. Therefore we have to define two types of moduli
spaces, one parametrizing curves with vertex labelings (but without marked ends)
and one with marked ends.

Example 3.3. The following picture shows a 2-marked rational abstract tropical
curve (without labeled vertices). Marked ends are drawn as dotted lines.

Remark 3.4. A connected graph of genus g has #I') = #T'L —3+3g- Yy (val V-3)
bounded edges. In particular, a 3-valent graph has #I' é = #T'}. -3 +3g bounded
edges. A 3-valent graph of genus g has #I'0 = #T'L_ —2 + 2g vertices. We need these
relations for dimension counts later on.

Remark 3.5. For rational curves, the space My, trop is known to be the space of
trees, or a quotient of the tropical Grassmanian ([19], [14], [5]). It is in fact equal
to the tropicalization of My ,, (where Mj , is realized as a quotient of the Grassma-
nian) ([8], proposition 5.8). Therefore it is a fan satisfying the balancing condition
as mentioned in remark 2.1.

Definition 3.6. A (parametrized) tropical curve in R" (with labeled vertices) is a
tuple (T, h) where I' is an abstract tropical curve (with labeled vertices) and
h:T — R’ is a continuous map satisfying:
1. h maps each edge e of length I(e) affinely to a line segment with rational slope
in R”, that is, if we identify the edge e with the interval [0, I(e)] (or [0, 00) for an end),
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h is of the form
h(t)y=a+t-v

for some a € R? and v € Z2. The integral vector v occurring in this equation if V € de
is identified with 0 will be denoted v(V, e) and called the direction of the flag (V, e).
For an end e, we call its direction v(e) = v(V, e) (where V is its only end vertex).

2. Atevery vertex V € I'Y, the balancing condition is fullfilled:

Y. v(V,e)=0.

e|Vede
Note that v(V,e) = —v(V',e) if {V, V'} = de.

Definition 3.7. An n-marked (parametrized) tropical curve in R" is a tuple
(r; hrxl)---)xn)

where (T, h) is a tropical curve in R", and x1,...,x, € 1"},0 are distinct ends of T" that
are mapped to a point in R? by £ (that is, v(x;) = 0).

Definition 3.8.

1. The genus of a tropical curve in R” is the genus of the underlying abstract trop-
ical curve.

2. The combinatorial type of a tropical curve in R” is given by the data of the com-
binatorial type of the underlying abstract tropical curve I' together with the direc-
tions of all its edges (bounded edges as well as ends).

3. The degree of a tropical curve in R" is the multiset A = {v(e); e € F}X)\{xl, Xt}

of directions of its ends. If this degree consists of the vectors —eg, —ey, ..., —e,, where
ep:=—e; —---—er, and where each vector appears d times, we say that these curves
have degree d.

Example 3.9. The following picture shows a rational tropical curve of degree 1
in R? with two marked points.

R2
h(xy)

1

h(xp)
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Remark 3.10. Note that the direction vector v(V,e) of a flag (V,e) (f it is
nonzero) can be uniquely written as a product of a positive integer (called the
weight of the edge e) and a primitive integer vector.

Remark 3.11. The map k of a tropical curve (T, h, x1, ..., X;) does not need to be
injective on the edges. It is allowed that v(V, e) = 0 for a flag (V, e), that is, the edge e
is contracted to a point in R?. The remaining flags around the vertex V then satisfy
the balancing condition. If V is a 3-valent vertex, this means that the two other flags
(V,e1) and (V, ez) around V have to satisfy v(V, e;) = —v(V, e»), that is, they point in
opposite directions. Hence, the image h(I') looks locally around £ (V) like a straight
line.

This holds in particular for the marked ends x;,..., x,, as they are required to be
mapped to a point. Therefore, they can be seen as tropical analogues of the marked
points of stable maps.

Note that the contracted bounded edges also lead to “hidden moduli parame-
ters”: if we vary the length of a contracted bounded edge, then we arrive at a family
of different parametrized tropical curves whose images in R? are all the same.

We are now ready to define the two types of moduli spaces mentioned in Re-
mark 3.2.

Definition 3.12. For all g, n > 0 and A, let Mg n,irop(R?,A) be the set of all n-
marked tropical curves (I, , X1, ..., x,;) in R? of degree A and genus g’ < g.

Forallg > 0and A, let M ;;,o,trop (R, A) be the set of all tropical curves with labeled
vertices (T, h) in R! of degree A and genus g’ < g.

We denote by Mg_nytrop(Rz,A) and M'® (R, A), respectively, the subsets of

g,0,trop
Mg n,trop (R%,A) and M é (R, A) of tropical curves of combinatorial type a.

,0,trop

We need to include curves of lower genus here, since they appear in the bound-
ary of types of genus g.

There are only finitely many combinatorial types in My, n,tmp([RZ, A) and in
My 6,1r0p ®', 1) ((6]).

Lemma 3.13. The subsets Mgn,tmp(Rz,A) and Mgo,trop (RY,A) are unbounded
and open convex polyhedra in real vector spaces of dimension 2 + #F(l) and 1+ #Fé,
respectively. They have, respectively, two or one coordinates h(V) for the position of

a root vertex V and coordinates l(e) for the lengths of all bounded edges e. They are



78 Mathematisches Institut, Courant-Colloquium Zzewede coe Yathematics, 2008

cut out by the inequalities that all lengths have to be positive and by the equations
for the loops. IfT is 3-valent, the expected dimensions are

2+#TS —2g=#A-1+g for M2, .o, ®%A),

g,n,trop
and

1+#Tg—g=#A=2+2g for My 0pR',A).

Proof. Given a curve of type a we can recover the map h from the data of the po-
sition of one root vertex. This is true because the directions are fixed by a and the
lengths are fixed by the abstract curve. Thus Mg , .., (R*,A) and M (R',A)
are parametrized by the position /#(V;) and the lengths of all bounded edges. The
length coordinates have to satisfy the conditions that the g loops close up in the im-
age in R? (resp. R). Each loop gives two (resp. one) conditions, but they do not have
to be linearly independent. The statement about the expected dimension follows

from Remark 3.4. O

A different choice of the root vertex or of the order of the bounded edges leads
to a linear isomorphism on Mg,n‘trop([R{z,A) (resp. M,,gc,lo,trop(Rl’A)) of determinant
+1. This is obvious for the order of the bounded edges. If we choose another root
vertex V', the difference h(V) — h(V') of the images of the two vertices is given by
Y (w.e L(€)-v(W, e), where the sum is taken over a chain of flags leading from V to V'.
This is obviously a linear combination of the lengths of the bounded edges. As these
length coordinates themselves remain unchanged it is clear that the determinant of
this change of coordinates is 1.

For any type «, the boundary of an open polyhedron M, g, n,trop(RZ, A) or
Mgo,trop (R, A) consists of curves where some length coordinates are shrunk to 0.
We can remove those edges and obtain a new tropical curve of a combinatorial
type a', possibly of lower genus. The following picture shows how this can look
like locally. The edges which tend to have length zero when we move towards the

boundary are drawn in bold.

P \(ﬁ ~

(R?,A) or Mg‘o’tmp(Rl, A) along their bound-

Thus we can glue the spaces Mg,nytmp

aries.
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4. The moduli spaces as weighted polyhedral complexes

Definition 4.1. Let X, ..., Xy be (possibly unbounded) open convex polyhedra
in real vector spaces. A polyhedral complex with cells Xj,..., X}y is a topological
space X together with continuous inclusion maps ir: Xy — X such that X is the
disjoint union of the sets i} (Xy) and the coordinate change maps i,;l o i; are affine
(where defined) for all k # . We usually drop the inclusion maps i in the notation
and say that the cells X are contained in X.

The dimension dim X of a polyhedral complex X is the maximum of the dimen-
sions of its cells. We say that X is of pure dimension dim X if every cell is contained
in the closure of a cell of dimension dim X. A point of X is said to be in general posi-
tion if it is contained in a cell of dimension dim X. For a point P in general position,
we denote the cell of dimension dim X in which it is contained by Xp.

A weighted polyhedral complex is a polyhedral complex such that there is a
weight w(X;) € Q associated to each cell X; of highest dimension.

We want to glue the polyhedra Mg , ., (R*,A) or Mg (R, A) to a weighted
polyhedral complex. However, we want the polyhedral complex to be of the ex-
pected dimension, so in each case, we have to throw away certain strata. Later on
we define maps from the moduli space to some other space that we use to impose
conditions. We count tropical curves in the inverse image of a point. The strata
whose dimension is too high are not mapped injectively and therefore do not con-
tribute to the count. Thus we can drop them.

Also, we have to define weights for the top-dimensional strata. For this, we need
the following definitions:

Definition 4.2. We call a type «a in Mg,n,trop([Rz,A) or M/g,o,trop (R, A) regular if
the underlying graph is 3-valent and of genus g, and the g loops impose indepen-
dent conditions.

Definition 4.3. Let a be a regular combinatorial type in Mg,n,tmp([Rz,A) (resp.
Mé,O,trop (R',A)). Pick g independent cycles of T, that is, generators of H(T,Z).
Each such generator is given as a chain of flags around the loop. Define a

2g x2+#03 =2g x n+#A—1+3g

(resp. g x 1 +#T é = g x #A — 2+ 3g) matrix A, with two (one) columns for the po-
sition of a root vertex h(V) and a column for each length coordinate, and with two
(resp. one) rows for each cycle containing the equation of the loop in R? (resp. R)
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(depending on the lengths of the bounded edges in the loop):

Y vW,e)-le),
(W,e)
where the sum now goes over the chosen chain of flags around the loop. Then
Ag: RMTHHA-I38 28 (resp. Ay : RPA72+38 . R8) is a linear map.
Denote by I, the index of the sublattice
Aa (Zn+#A—1+3g) c ZZg (resp. Aa (Z#A—2+3g) c Zg).

Note that M¢ (R, A) equals the intersection of R? x

g, n,trop (RZ;A) (resp. M«

g,0,trop
(Rs)To0 (resp. Rx (R=0)"T0) with the kernel of this map. This is true because we force
the images of the cycles in R? (resp. R) to close up by requiring that the equations
of the chains of flags are 0.

Note also that I, does not depend on the chosen generators of H) (I, Z): If we
choose another set of generators, these new generators are given as linear combi-
nations with coefficients in Z of the old generators, so the rowspace of the matrix is
not changed.

Example 4.4. The picture shows a regular curve C in .1 3 wrop (R?,A) (where A =
{(-2,-1),(0,2),(2,-1)}.

Choose the chain of flags (V1,e;),...,(V4,e4) around the cycle. The directions of
those four flags are (1,1), (1,1), (1,—1) and (=1,0). Thus the map A,: R® — R? is
given by the following matrix:

where the coordinates of R® are h(V1), I(e1),...,l(eg).

4.1. The moduli space .7, g, n,trop([ﬂiz, A) for the first enumerative problem, the
numbers Niqp(d, 8).
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Definition 4.5. Let C = (T, h, x3,...,%,) be a tropical curve. If C has no con-
tracted bounded edges (that is, no direction vector v(e) = 0 for e € 1"(1)), and if for
all V such that there are two adjacent flags of the same direction v(V, e1) = v(V, e2)
the directions of the flags adjacent to V span R?, then C is called relevant. (In par-
ticular, every such vertex is at least 4-valent.)

We define ./, g, n,trop([R%z, A) to be the subset of My, n,trop([Rﬁz, A) of relevant tropical
curves which satisfy in addition the following property: if they are of genus g’ < g,
then they appear in the boundary of a relevant type of genus g.

The weight w; («) of a top-dimensional cell (R2,A) is defined to be the
index I, from Definition 4.3.

a
Mg,n,trop

It follows from Proposition 4.1 in [11] that all types of top dimension in
M, g,n,tmp([Rz, A) are regular. Thus the weight is well-defined.
The following picture shows an element of //lo,s_tmp([Rz, 2):

:%A{‘ -

4.2. The moduli space /ZZT n,tmp(u@z,m for the second enumerative problem,
the numbers Eiop(d, j). Let @ be a combinatorial type in Ml,n,trop(Rer)- The
deficiency def(a) is defined to be

2 if g = 1 and the cycle is mapped to a point in R?,
def(a) = { 1if g = 1 and the cycle is mapped to a line in R?,

0 otherwise.

Since the loop imposes either two, one or no condition (depending on whether it
spans R?, is mapped to a line or to a point), we can determine the dimension of

Mffn'trop([RZ,A) exactlytobe #A+n+g—-1-Y y(valV —3) + def(a) ([10]).

Definition 4.6. Remove from M, n,trop([ﬂiz, A) the cells of dimension bigger than
#A + n and cells of rational curves which are not contained in the boundary of a cell
corresponding to a genus 1 curve. The remaining subset of Ml,n,trop([Rz, A) is called
//Z, n,trop([R%Z, A). We associate the following weights to the strata of dimension #A +
n:
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1. Assume def(a) = 0, and the curves of type a are of genus 1. Then we associate
the weight w»(a) = 1, - (%)r, where r denotes the number of vertices V such that
I'\ V has two connected components of the same combinatorial type (that is, for
which both the abstract graph and the directions coincide).

2. Assume def(a) = 1. By the dimension count there is a 4-valent vertex. Assume
first that the 4-valent vertex is adjacent to the cycle, that is, locally the curves look
like the following picture:

v

-

m-u

In the notations above, n-u, m- u and v denote the direction vectors of the corre-
sponding edges (n and m are chosen such that their greatest common divisor is 1).
If n# m, orif n=m =1 and the cycle is formed by three edges due to the presence
of a marked point, we associate the weight w» (@) = |det(u, v)|. If n=m =1 and no
point is on the flat cycle, then we associate w»(a) = %I det(u, v)|. (Due to the bal-
ancing condition this definition is not dependent of the choice of v.)
In case the 4-valent vertex is not adjacent to the cycle, we associate the weight 0.

3. Assume def(a) = 2. Assume first that the 5-valent vertex is adjacent to the cycle,
that is, locally the curves look like this:

where u and v denote the direction vectors of the corresponding edges. We asso-
ciate the weight w, (@) = %(I det(u, v)|-1). (Note that due to the balancing condition
this definition is independent of the choice of u and v.) In the case that there are
two 4-valent vertices or that the 5-valent vertex is not adjacent to the cycle, we as-
sociate the weight 0.

The factor of (%)r was left out in the original definition of /ZZ n,trop([rez, A) in [10].
The reason is that curves with vertices V such that I'\ V has two connected com-
ponents of the same type count with multiplicity 0 later, since they are not mapped
injectively.
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Remark 4.7. Note that we include types in //Z,n,trop([l%z, A) which are not rele-
vant and thus not included in .Z, n,trop([RZ, A). The reason is that the map we want
to use for the first enumerative problem only evaluates at different points, whereas
the map for the second enumerative problem takes the cycle length of the tropi-
cal curve into account (see Definition 5.5). A cell corresponding to a non-relevant
type like the one with def(a) = 1 above is not mapped injectively with just evalu-
ations, because we can change the length coordinates in the cycle without chang-
ing the position of any marked point. It is mapped injectively in the second prob-
lem though, because a change of length coordinates in the cycle changes the cycle
length. Therefore we have to consider it in the second problem, but not in the first
one.

The following picture shows an element of ./’Z;g,m)p(Rz, 3):

4.3. The moduli space .7

2,0,trop (R!, A) for the third enumerative problem, the

numbers Hg tmp(n, v). As mentioned in Remark 3.2, we need vertex labels here.

Definition 4.8. Let ./Z é,o,tmp (R, A) be the subset of M’g

Oytrop (R',A) containing
all combinatorial types a such that if Mgo,trop(Rl»A) is of dimension #A -2 +2g or
bigger then « is regular and if M/ "g ?0, trop([}qgl, A) is of dimension less than #A -2+ 2g
then it is contained in a cell corresponding to a regular type.

In particular, the top dimension of .# g,f,O,trop (RY,A)is#A—-2+2 g. We define the
weight ws(a) of a top-dimensional cell as the product of three types of factors:
— theindex I,;
- % for every vertex V such that I'\ V has two connected components of the same
combinatorial type;
- % for every cycle which consists of two edges which have the same direction.

The following picture shows an element of ///1’ (RY,2):

0,trop
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W V3

1% V4

It is easy to show now that the three moduli spaces are indeed weighted polyhe-
dral complexes.

Remark 4.9. Note that the weights in Definitions 4.5, 4.6 and 4.8 coincide. We
do not need factors of % in Definition 4.5 because a regular and relevant curve can-
not have a vertex V such that I'\ V has two connected components of the same
combinatorial type or a cycle consisting of two edges which have the same weight.
Also, we do not need the special cases (2) and (3) of 4.6 in either of the two other
definitions. They are not relevant. In the third enumerative problem, they are not
of top dimension.

The factors of % can be thought of as taking care of automorphisms (see also
Section 7).

5. The tropical enumerative problems

Definition 5.1. A morphism between a weighted polyhedral complex X and a
polyhedral complex Y is a continuous map f: X — Y such that for each cell X; c X
the image f(X;) is contained in only one cell of Y, and f|x; is a linear map (of
polyhedra).

Assume f: X — Y is a morphism of weighted polyhedral complexes of the same
pure dimension, and P € X is a point such that both P and f(P) are in general
position (in X and Y, respectively). Then locally around P the map f is a linear
map between vector spaces of the same dimension. We denote by Dp the absolute
value of the determinant of this linear map and define the multiplicity mults(P) =
Dp - w(Xp) of f at P to be Dp times the weight of the cell Xp, w(Xp). Note that
the multiplicity depends only on the cell Xp of X in which P lies. We call it the
multiplicity of f in this cell.

A point Q € Y is said to be in f-general position if Q is in general position in Y
and all points of f~!(Q) are in general position in X. Note that the set of points in
f-general position in Y is the complement of a subset of Y of dimension at most
dim Y —1; in particular it is a dense open subset. Now if Q € Y is a pointin f-general
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position we define the degree of f at Q to be

deg(Q):= Y. multy(P).
Pef Q)
Note that this sum is indeed finite: first of all there are only finitely many cells in X.
Moreover, in each cell (of maximal dimension) of X where f is not injective (that is,
where there might be infinitely many inverse image points of Q) the determinant
of f is zero and hence so is the multiplicity for all points in this cell.

Moreover, since X and Y are of the same pure dimension, the cells of X on
which f is not injective are mapped to a locus of codimension at least 1 in Y. Thus
the set of points in f-general position away from this locus is also a dense open
subset of Y, and for all points in this locus we have that not only the sum above but
indeed the fiber of Q is finite.

Note that the definition of multiplicity mult(P) in general depends on the co-
ordinates we choose for the cells. However, we will use this definition only for mor-
phisms for which Dp, the absolute value of the determinant, does not depend on
the chosen coordinates, if they are chosen in a natural way; in our case this means
we choose lattice bases of the spaces Mgn’tmp (R%,A) and Mgo,trop(Rl'A)' Choos-
ing a different lattice basis leads to a base change matrix of determinant +1 which
does not change the multiplicity. Since Dp depends only on the cell and for us cells
correspond to combinatorial types a, we will use the notation D.

As lattice bases are in general hard to compute, we use the following easier way
to determine mult;(C) for a morphism starting from one of our moduli spaces:

Construction 5.2. Let f: .# — Y be a morphism of weighted polyhedral com-
plexes of the same pure dimension, where .# is .#g nrop R?, D), A1, p,rop R?, A)

or ///ér,o,trop (R!,A). For a regular type a the cell M = Mg,n,trop(Rz’A) (resp. M =
M/a

o.mop ®',A)) is cut out of V = R2+#T0 (resp. V = R1*#10) by the inequalities that
lengths are positive and by d = 2g (resp. d = g) independent equations for the
loops. Pick a map fa: V — Y x R? such that faIM = flm x Aq, where A, is the
map containing the equations for the loops as in 4.3.

Lemma 5.3. For a map f, (defined for a regular type a) from Construction 5.2
we have |det(fo)| = Io - Do = mult;(C), where C is a curve of type a. In particular
|det(f,)| does not depend on the choice of fs.

This is basically a straightforward lattice index computation, which can be found
in [15], Lemma 1.6. The index of a square integer matrix is just the absolute value of
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its determinant, and the index of a product of two maps f x g is equal to the index
of fler ¢ times the index of g. Remember that fa = flpm x Ag and M (that is, the cell
of type a) is the kernel of the map A, (intersected with the conditions that lengths
have to be positive) by Definition 4.3.

Example 5.4. For the maps we will use, we can choose a possible f, just by
choosing chains of flags to the marked points, respectively to the vertices. For
the curve C in Example 4.4, choose V; to be the root vertex, and go from V; to x;
via (V1,e1). Go to x; from Vj via (V4,e;), (Va,e3) and (V3,e5) and to x3 via (V4, e;),
(Va,e2), (V3,e3) and (V4, eg). Thus fa isthe 2+ #1"(1) =8 times 2n + 2 = 8 matrix

cCo~o~o~o
S
-
)
|
o~ ocoocoocooco
cooconNvOo OO
o~NvMOoO o oo

1
0
1
0
1
0
0
0

0

where the coordinates of R® are h(V}), I(e1),..., l(es). Note that we could for exam-
ple also have gone to x3 via (Vj, e4) in which case the fifth and sixth row would be
replaced by

(1000010 2)
o 1 0 O o0 o0 o0 -1

This matrix differs from the other only by subtracting the seventh from the fifth and
the eighth from the sixth line—that is, we subtract the two equations for the loop
from one chain of flags to get to the other chain of flags. In particular choosing a
different chain of flags does not change the absolute value of the determinant. We
will see that the map f, we describe here equals ev|y; x A, when restricted to the
cell M = M{’f3’tmp (R%,A) (the map ev is defined in 5.5). Then by Lemma 5.3 we have
2 = |det(fy)| = multey (C).

Definition 5.5. Let
evit Mg ntrop(®R%,A) — R?, (T, I, X1,..., Xp) — h(x;)

denote the i-th evaluation map. By ev = ev; x... x ev;, we denote the combination
of all n evaluation maps.

The j-invariant of an elliptic curve tropicalizes to the cycle length ([9]). For a
tropical curve C = (T, h, x1,..., X,) of genus 1, we pick a generator of H; (I', Z) given
as a chain of flags. If we avoid passing any edge in two directions, it is unique up
to orientation. We define the cycle length to be the sum of the lengths of the edges
which are part of this cycle. This can also be expressed in terms of forgetful maps
([10]). We define amap j: /Z n,tmp([RZ, A) — R>q sending C to its cycle length. For
arational tropical curve, we say j(C) = 0. Define

Mi=evxj: //A/In,tmp(le,A) — R?" x R>o.
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We define the tropical branch map 6 as

81 My rop®',N) = RFAZ2E (T, 1) — (h(V1), ..., h(Vya-242¢)),

where V; is the vertex in I'? with label i as defined in 3.1.

All those maps are morphisms of weighted polyhedral complexes. For example,
the position h(x;) equals 2(V) +Y v(V,e) - l(e) where the sum goes over a chain of
flags leading from V to x;. This expression is linear in the coordinates k(V) and
l(e).

Now we define the tropical enumerative numbers.

Definition 5.6.

1. Let n = #A + g — 1. For a point configuration & € R*" in ev-general position,
define Nyop(A, g) = deg,, ().

2. Let n=#A - 1. For a point configuration & € R?" in n-general position, define
Etmp (A»j) = deg,,(gz)-

3. For a point configuration &2 € R*A~2*28 in §-general position, define
H op ) = degs ().

The question as posed in the introduction is now why those numbers do not
depend on the point &, that is, why the degrees of the three maps are constant. We
give an outline of these proofs in Section 6.

Note that Nyop(4, g) is defined differently in [12]: the tropical curves there are
counted with a multiplicity mult(C) which is not defined via the evaluation map.
We show that mult(C) for a relevant and regular curve C of type a coincides with
multey (C) ([11]).

Definition 5.7. The multiplicity of a 3-valent vertex V is defined to be the abso-
lute value of the determinant det(v;, v2), where v; and v, are two directions of flags
adjacent to V. The balancing condition tells us that it makes no difference which
two of the three flags adjacent to V we choose. The multiplicity mult(C) of a 3-
valent tropical curve is defined to be the product of the multiplicities of all vertices
([12].

Example 5.8. The multiplicity of the curve C from Example 4.4 equals mult(C) =
2. As we have seen in Example 5.4, multe, (C) = 2, too.
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A string in C is a subgraph of I homeomorphic either to R or to S! (that is, a
“path” starting and ending with an unbounded edge, or a path around a loop) that
does not intersect the closures X; of the marked points.

Definition 5.9. For a tropical curve C of regular type a, pick a chain of flags
for each marked point x; leading from the root vertex V to x;. Define a matrix
evy: R2+#T5 — R27 x R28 with two rows for each marked point containing the chain
of flags and two rows for each loop containing the equation of the loop (as in Defi-
nition 4.3).

Remark 5.10. Note that &V, = evxAq on Mg, . (R*,A), where Aq is defined
in 4.3 and Mg’ n,trop (R%,A) is the kernel of A, intersected with the conditions that
the lengths are positive. The map ev, depends on the choices, but |detev,| does
not since |detev,| = w(a) - D4 = multe,(C) by Lemma 5.3. By abuse of notation, we
still speak of the map ev,, even though its definition depends on the choices we

made, and keep in mind that | det(ev,)| is uniquely determined.
Note that 5.4 gives an example of such a map ev,.

Lemma5.11. Let C be a curve of degree A and relevant and regular type a, which
is marked by #A + g — 1 points. Then multey(c) is equal tomultC if C has no string.

Note that curves with a string are not mapped injectively by ev (see [6], Remark
3.6), therefore they do not contribute to the count deg,, (). Also, if we choose a
configuration of points in general position, no curve with a string meets the points.

Proof. We show that |det(evy)| equals mult C, which is enough by Remark 5.10. The
proof is by induction on the sum of the number of bounded edges and the genus.
The induction beginning is shown in [6], Example 3.3.

In the induction step, let us now assume C has k bounded edges, is a curve of
genus g and degree A, and k + g > 2. Cut one of the bounded edges. That is, in the
graph I', choose a bounded edge e and replace it by two ends, each being adjacent
to one end vertex of e. Two things can happen:

1. The graph can decompose into two connected components.

2. The graph can stay connected, but a loop is broken. We denote the new con-
nected graph of genus g —1 by I'1. In this case, the edge e should be chosen such
thatit is adjacent to a marked point x;. (Such a choice is possible as C has no string.)
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We have to prove the statement for each of the two cases separately, as the argu-
ments differ. The first case is shown in [6], Proposition 3.8. In the second case, I'y
has genus g — 1, #A + 2 ends that are not marked points, and

#A+g-1<#HA+2)+(g-1 -1

marked points, therefore it has a string. This can be seen by removing x; one by
one, thus producing several connected components. Since we do not have enough
marked points, we end up with less connected components than ends. We add
a marked point x adjacent to one of the new ends. There is only one possibility
to do this such that the new tropical curve has no string. The tropical curve C;
of type a; defined in this way has genus g — 1 and as many bounded edges as C.
Therefore we can assume by induction that its multiplicity is equal to |detevg, |. As
mult(C) = mult(C,), it remains to show that |detev,| = |detevy, |.

Choose coordinates to compare the two matrices of eV, and ev,, . Let V—the vertex
adjacent to the marked point x;—be the root vertex both for C and for C;. Choose
the same order of bounded edges, marked points and loops for the two curves. One
of theloops of C, say L, is broken after the cutting of e. This loop corresponds to the
last two lines of the matrix of ev,. For Cj, the last two lines are given by the marked
point x. As chain of flags leading from V to x in C;, we choose just the same chain
of flags as for the loop L. The following table represents both matrices. The two
matrices only differ by the i (V)-entries in the last two rows. In the table, each row
represents two or more rows as before. Each matrix contains the first three rows,
eV, contains the fourth, and evy, the fifth. E, denotes the two by two unit matrix.

h(V) | bounded edges
the marked point x; E> 0
other marked points E> *
other loops 0 *
for eV, the loop L 0 equation for L
forevy, thenewpointx | Ej equation for L

Note that both matrices are block matrices with a 2 x 2 block on the top left. There-
fore, both determinants are equal to the determinant of the lower right block. But
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this block coincides for both matrices, because it does not involve the two numbers
we changed from 0 to 1. O

6. The independence proof

To prove that deg f(ﬁ) does not depend on & where f is one of our maps above,
note first that the degree is locally constant on the subset of points in f-general
position. This is true since at any curve that contributes to deg f(ﬁ) the map f
is a local isomorphism. The points in f-general position are the complement of
a polyhedral complex of codimension 1, that is, they form a finite number of top-
dimensional regions separated by “walls” that are polyhedra of codimension 1. To
show that deg is constant it is therefore enough to consider a general point on
such a wall and show that deg; is locally constant at these points. Such a general
point on a wall is the image under f of a general tropical curve C of a combinatorial
type a such that the cell corresponding to a is of codimension 1. We have to classify
all those types. For the first enumerative problem, this is done in [11] and for the
second in [10]. (For the third, the wall-crossing statement is actually not necessary
since all types contribute to the sum degs, not depending on #?.) The following
shows local pictures of codimension 1 types.

The pictures represent the abstract graph and the direction vectors at the same
time: the double edge in the second and third picture from the right represents
two edges of the graph I' which are mapped to the same line segment of R? since
they are of the same direction. The loop in the picture on the right represents a loop
of direction 0 (leading to a type of deficiency 2 which is of codimension 1 because
of its 6-valent vertex).

For the first enumerative problem, the numbers Nop (d, g), we have to consider
the left two pictures and the case of a 3-valent curve of genus g — 1. The other ones
are not relevant. For the second enumerative problem, the numbers Eop(d, j),
we have to consider all the pictures above. The third picture from the left leads to
several subcases depending on where the marked points are relative to the cycle.

Here, we want to present only the case corresponding to the leftmost picture.
This is in fact the most important case, since it has to be considered in all enu-
merative problems. Also, it is the only case that has to be considered for rational
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curves. An analogous independence proof for rational curves appeared in [6]. We
outline the proof only for the first enumerative problem, the numbers Niop(d, g),
that is, we use the map ev: .#g n,rop (R%,A) — (R*)". For the other two maps, it is
completely analogous.

Lemma6.1. Let & € R?" be a configuration of points such that there is a curve C
with one 4-valent vertex satisfying ev(C) = &?. Then the number of preimages near
C underev of a point ' near & (counted with multiplicity) does not depend on the
choice of &'.

Proof. Let a be the type of C. The cell Mg,n'[rop(Rz,A) is in the boundary of three
top-dimensional cells, namely the ones where the 4-valent vertex is resolved.

€4
14 |4 e
€2
a ay ay as

We study the three matrices A;, A and Az of eV,,, €Vg, and ev,,. They differ
only in the column corresponding to the edge e. Denote the four edges adjacent to
the 4-valent vertex of C with ey, ..., e4, and their respective directions with v, ..., v4.
The root vertex is V as indicated in the picture. We assume that all choices of flags
for evaluation and loops are made consistently. Then the three matrices only differ
in the column which belongs to the new edge e. The following table represents all
three matrices: Each matrix A; contains the first block of columns (corresponding
to the image h(V) of the root vertex and the lengths /; of the edges e;) and the i-th
of the last three columns (corresponding to the length of the edge e).

h(V) I I» I3 Iy &2 192 193
e] E> U1 0 0 0 0 0 0
e E> 0 ) 0 0 0 Vo + U3 U2+ Uy
e3 E> 0 0 V3 0 | vu+vs U+ U3 0
ey E» 0 0 0 Vg | va+ U3 0 U+ Uy
ey, e 0 -1 V2 0 0 0 U2 + U3 V2 + Uy
el e3 0 - 0 U3 0 | v3+1yg Vo + U3 0
el e4 0 - 0 0 vy | V3+ 14 0 U2+ Uy
e, e3 0 0 ) U3 0 | v3+vy 0 —U2— U4
e, e4 0 0 ) 0 Vg | V3+Vyq | —V2—U3 0
e3, e4 0 0 0 —-v3 U4 0 —U2— U3 U+ Uy
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The columns corresponding to the other bounded edges are not shown; it is
enough to note here that they are the same for all three matrices. The size of the
matrices is 2n+2g times 2+#Iy, and 2+ #I) = 2+#A-3+3g=n=#A+g—-1+2g =
2n + 2g because of remark 3.4 and definition 5.6. The first four rows correspond
to the images of the marked points. The row labeled with e; stands for the evalu-
ations of marked points that can be reached from V via e;. The last six rows cor-
respond to the equations of the loops. The row labeled e;, e; stands for equations
of loops that involve the two edges e; and e;. We get four different types of rows
for the marked points depending on via which of the four edges e; a marked point
is reached from V. For the loops, we get six different types of rows depending on
which two of the four edges ey, ..., e are involved in a loop. Each row represents in
fact two or more rows of the matrix, two rows for the two coordinates of the image
of each marked point resp. two equations given by each loop. Loops that do not
involve any of the four edges are not added, they do not change the computations.
As det is linear in each column, det A; + det A, + det A3 is equal to the determinant
of the following matrix, where we added the three last columns:

h(V) I /) I3 Iy

el E> 1 0 0 0 0

e E> 0 1) 0 0 | 2vp+v3+1y
e3 E> 0 0 U3 0 | 2vz3+v2+14
ey E» 0 0 0 vy | 2v4+Uv3+ 12
e1 and ey 0 -1 v 0 0 | 2va+v3+1y
e1 and e3 0 -v1 0 U3 0 | 2vg+v2+ 14
e1 and ey 0 -v1 0 0 vy | 2ua+ 2+ 13
e» and e3 0 0 7] 0 v3— U9

ep and ey 0 0 -9 0 Uy Vg — U2

ez and ey 0 0 0 -v3 Uy vy — U3
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Now we subtract the four columns for /5, ..., l4 from the last column.

h(V) I I» I3 Iy
e1 E> 4] 0 0 0 -1
e E, 0 1) 0 0 Vo+ U3+ Uy
e3 E> 0 0 V3 0 v3+ U2+
e4 E» 0 0 0 V4 vy + U3+ U2
e1 and ey 0 -1 U9 0 0 | vp+v3+vg+1]
e1 and e3 0 - 0 v3 0 | v3+12+Uv4+1]
e1 and ey 0 - 0 0 vy | v4+v2+U3+ 1
e2 and e3 0 0 -2 U3 0 0
e> and ey 0 0 -2 0 vy 0
ez and ey 0 0 0 —-v3 U4 0

Due to the balancing condition v; + v2 + v3 + v4 = 0. We add v; times the h(V)-
columns to the last column and get a matrix with a zero column whose determinant
is 0. Therefore det A; + det A, + det A3 = 0.

Note that we assume here that the edges e; are in fact all bounded. If this is not
true, the argument needs to be changed slightly. If e; is unbounded, then there can
be no marked points that can be reached from V via e;. That is, we do not have the
corresponding rows.

For a given i € {1,2,3} let us now determine whether the combinatorial type a;
occurs in the inverse image under ev of a fixed point &' near &2. We may assume
without loss of generality that the multiplicity of «; is non-zero since other types
are irrelevant for the statement of the proposition. Then A; is an invertible matrix.
There is therefore at most one inverse image point. The root vertex and length coor-
dinates for a curve in the inverse image under ev of type a; are given as A;1 (£'0),
since eVy, = evx Aq; on Mg', . (R?,A) by Remark 5.10. In fact, this point exists in
Mg, vop®?,4) if and only if all coordinates of A7'-(#',0) corresponding to lengths
of bounded edges are positive. By continuity this is obvious for all edges except the
newly added edge !e, because in the boundary curve C all these edges had positive
length. We conclude that there is a curve of type a; mapping to &7’ if and only
if the last coordinate (corresponding to the length of the newly added edge e) of
Al.‘1 -(2',0) is positive. By Cramer’s rule this last coordinate is det ﬁi/ det A;, where
A; denotes the matrix A; with the last column replaced by (£2',0). But note that A;
does not depend on i since the last column was the only one where the matrices A;
differ. Hence whether there is a curve of type a; or not depends only on the sign of
det A;: either there are such inverse image points for exactly those i where det A; is
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positive, or exactly for those i where det A; is negative. But by the above the sum
of the absolute values of the determinants satisfying this condition is the same in
both cases. O

Remark 6.2. Note that we have to distinguish a case if we prove an analogous
statement for other enumerative problems. If I'\ V has two connected components
of the same combinatorial type, say the two components containing e; and e,, then
the type a; gets an extra factor of % The types a2 and a3 are identical, so the state-
ment is still true in this case. We do not have to consider this case for the numbers
Nirop(d, 8) or Eyopl(d, j), because A; would not be injective since we can change
length coordinates without changing the image.

7. Conclusion

We mentioned in the introduction that we believe that the moduli spaces we
consider here should be equipped with tropical structure, and that once this is
achieved the tedious case-by-case analysis (for each codimension 1 case) in the
independence proof from Section 6 can be replaced by an easy intersection the-
ory argument. This hope is in fact true in the case of rational curves: for rational
curves (that is, for the numbers Niop(d,0) for example) the moduli space is known
to be a fan satisfying a balancing condition as in Remark 2.1 ([5]) and thus a tropi-
cal variety. The tropical structure is derived from the tropical structure of My »,trop
mentioned in Remark 3.5. A trick has been used to avoid the notion of a tropical
stack here: the unmarked (that is, non-contracted) ends are labeled to make them
distinguishable even if they have the same direction. Then there is a subgroup G of
the symmetric group that acts on the moduli space with labeled ends by relabeling
the non-contracted ends. The enumerative numbers we get have to be divided by
|G| to reflect the fact that we count each curve several times with different labels for
the non-contracted ends ([5]). For a general type, there are |G| ways to relabel the
ends. For a type with vertices V such that I' \ V has two components of the same
type, there are only % -|G| ways to label the ends. This enlightens why we include
factors of % for the weights in such a case in Definitions 4.6 and 4.8.

It is also known that the evaluation map ev: ., trop (R?, A) — (R?)" is a mor-
phism of tropical varieties ([5]). Since the space and the map are equipped with
tropical structure we can use intersection theory arguments to deduce that deg,,, is
constant for the case of rational curves ([5]).
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The proof that the moduli space of rational tropical curves is a tropical variety,
that is, balanced ([14], [5]), involves an argument which is very similar to the proof
of Lemma 6.1 above. We need to consider a codimension 1 cell (that is, a cell cor-
responding to a curve with one 4-valent vertex) and consider the neighboring top-
dimensional cells just as above. That means that for rational curves, the work to
show an independence statement as above is hidden in the proof that the mod-
uli space is a tropical variety. We hope that a similar statement can be shown for
higher genus curves, too. We hope that the description of moduli spaces of tropical
curves of higher genus as weighted polyhedral complexes used in this survey can
contribute to the understanding of their tropical structure.
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Abstract. We give a leisurely account of the relationship between volume and L?-Betti numbers
on closed, aspherical manifolds based on the results in [4] — albeit with a different point of view.
This paper grew out of a talk presented at the first colloquium of the Courant Center in G6ttingen
in October 2007.

1. Review of L2-Betti numbers

The I2-Betti numbers of a closed Riemannian manifold, as introduced by M.
Atiyah, are analytical invariants of the long-time behavior of the heat kernel of the
Laplacians of forms on the universal cover. We give a very brief review of these
invariants; for extensive information the reader is referred to the standard refer-
ence [3].

Let X — X be the universal cover of a compact Riemannian manifold, and let
Z < X be a m;(X)-fundamental domain. Then Atiyah defines the i-th L?-Betti
number in terms of the heat kernel on X as

bgz)(X)z limf tre e i (x, x)dvol(x).
i~ )7

Subsequently, simplicial and homological definitions of L?-Betti numbers were de-
veloped by Dodziuk, Farber, and Liick. An important consequence of the equiva-
lence of these definitions is the homotopy invariance of L?-Betti numbers.

2000 Mathematics Subject Classification. 22D20,53C20,58]22.
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Liick’s definition is based on a dimension function dim ,, (M) for arbitrary mod-
ules M over a finite von Neumann algebra ¥ with trace tr: .«#' — C. For example,
one has dim (<7 p) = tr(p). Liick proceeds then to define bE.Z) (X) for an arbitrary
space X with I' = 1 (X) as

(LD b? (X) = dimy ) H; (L(T) ®7r C. (X)) € [0,00]

where L(I') is the group von Neumann algebra of I'. Some of the most fundamental
properties of L?-Betti numbers are:

~ m1(X) finite = b\ (X) = b; (X)/|m (X))

~ Yiso(-D'DP (X0 = x(X) = Lz (-1 bi (X).

— X — X d-sheeted cover = b§2) X)=d- b§2) (X).

— If X is aspherical and 7 (X) amenable then bi.Z) (X)=0.

— If X is a 2n-dimensional hyperbolic manifold then b§2) (X) > 0 if and only if
i=n.

2. Theorems relating volume and L?-Betti numbers

Assumption 2.1. Throughout this section, let M be an n-dimensional, closed, as-
pherical manifold.

The inequality of Theorem 2.2 is stated by Mikhail Gromov [2]*Section 5.33 on
p. 297 along with an idea'”) which he attributes to Alain Connes. We provide the first
complete proof of that inequality [4]*Corollary to Theorem A. The rigorous imple-
mentation of Gromov’s idea uses tools and ideas from Damien Gaboriau’s theory
of L?-Betti numbers of measured equivalence relations and spaces with groupoid
actions of such.

Theorem 2.2. If(M, g) has a lower Ricci curvature boundRicci(M, g) = —(n—-1)g,
then

b§.2) (M) < const, vol(M, g) foreveryi=0.

The minimal volume of a smooth manifold N is defined as the infimum of vol-
umes of complete metrics on N whose sectional curvature is pinched between —1
and 1. We obtain the following

(MWe refer to this idea as randomization.
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Corollary 2.3 (Minimal volume estimate).
bgz) (M) < const, minvol(M).

The following theorem [4]*Theorem B is a generalization of a well-known van-
ishing result of Jeff Cheeger and Mikhail Gromov. Its connection to volume be-
comes apparent through its corollary.

Theorem 2.4. If M is covered by open, amenable sets such that every point be-
longs to at most n sets, then

b§.2) (M) =0 foreveryi=0.

Here a subset U c M is called amenable if 71 (U) maps to an amenable subgroup
of 1 (M). There is also a version of this theorem for arbitrary spaces [4]*Theorem C.
The following corollary is a non-trivial implication of the theorem above and work
of Mikhail Gromov [1]*Section 3.4 where he constructs amenable coverings in the
presence of small volume.

Corollary 2.5. There is a constant €,, > 0 only depending on n such that
minvol(M) <&, = bEZ) (M) =0 foreveryi=0.

The results above are analogs of well-known theorems by Mikhael Gromov
where L?-Betti numbers are replaced by simplicial volume. Note however that
the assumption of asphericity is crucial here unlike in the case of the simplicial
volume.

3. Idea of proof of the main theorem

We describe some ideas involved in the proof of Theorems 2.2 and 2.4. In Sub-
section 3.1 we describe a general technique of bounding L?-Betti numbers by con-
structing suitable equivariant coverings on the universal cover. Since the assump-
tions of our theorems are too weak to garantuee the existence of such covers we
need substantially modify this technique; the new tool runs under the name ran-
domization, and it is explained in Subsection 3.2. A full proof based on randomiza-
tion is rather long and complicated; we explain instead an instructive toy example
in Subsection 3.4. A crucial property of L?-Betti numbers is described in Subsec-
tion 3.3. We conclude this sketch of proof in Subsection 3.5 with some remarks
about other ingredients.

Throughout the section, we refer to Assumption 2.1.
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3.1. How to bound L?-Betti numbers by equivariant coverings in general. Let
I' = m;(M). Suppose we construct, under a certain geometrical assumption, a I'-
equivariant open covering % of the universal cover M. Let us say that % = {U;}er
is indexed by a free I'-set set I, and we have yU; = Uy;. By a standard argument
(partition of unity) one obtains a I'-equivariant map f from M to the nerve of % .
The nerve is embedded in the full simplicial complex with index set I which we
denote by A(I). Let

Q =map(M,A(]))

be the space of continuous maps with the natural I'-action. We may view f as an
element in QF, the subspace of Q consisting of I'-equivariant maps. Next we argue
that both the i-th Betti number and the L?-Betti number are bounded from above
by the number of equivariant i-simplices hit by f(M).

Let .%; be a set of I'-representatives of the i-skeleton A(I)”. For any g € Q, let
Ci(g) € N be the number of i-simplices in .%; hit by f(M). We think of C; as a
function

Ci:Q—7Z.

Since M is contractible, M is a model of the classifying space BT, and the uni-
versal property of ET', the universal cover of BT, implies that there is an equivariant

homotopy retract /\

M——A).
M 7 (I

Using the fact that the i-th L?-Betti number is bounded by the number of equiv-
ariant i-simplices and the fact that the L?-Betti number is some sort of dimension
(with nice properties) of a certain homology module (see (1.1)), we easily obtain
that

b? (M) = Ci(f).

By going to I'-quotients we also obtain the same estimate for the usual Betti num-
bers. By Poincare duality it is actually enough to control C,(f), and we have

3.1) bi (M), b? (M) < const,, C(f)

for a constant const,, only depending on 7. This follows from [3]*Example 14.28 on
p- 498 since the fundamental class of M can be written as a sum of at most C,(f)
singular simplices.

So to get a good bound on ng) (M), we should find an equivariant cover % such
that for the resulting map f to the nerve the quantity C,(f) is rather small.
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3.2. Randomization. One directly sees the limitations of the above technique.
The trivial estimate C,(f) = 1 for any map f € Q prevents us from proving the van-
ishing of the L2-Betti numbers. In particular, we cannot hope to prove Theorems 2.2
and 2.4 using it.

Next we phrase an idea of Mikhail Gromov (attributed to Alain Connes) in prob-
abilistic terms that modifies the above technique.

By changing the point of view a bit, we regard a map f € Q! that we sought to
construct before as a I'-invariant point measure on the Borel space Q. Instead of
trying to find a point measure f with small C,(f), Gromov suggests to look for I'-
invariant probability measures p on Q such that the expected value

Euw(Cn) =f Cn(f)du(f) is sufficiently small.
Q

We refer to the problem of finding a suitable probability measure as the random-
ization problem. It turns out that in analogy to (3.1) one can actually show that

3.2) b (M) = const,, Eq ) (Cp) Vi =0,

and that one can actually use the assumptions of Theorems 2.2 and 2.4 to construct
a I'-invariant probability measure u s.t. Eq,(Cy) is smaller than const, vol(M)
in the case of Theorem 2.2 and arbitrarily small in the case of Theorem 2.4, thus
proving these theorems.

The construction of the latter will be explained in the toy case of M = S! in Sub-
section 3.4. A brief justification why (3.2) should hold follows next.

3.3. L?-Betti numbers and actions on probability spaces. One would have to
explain Damien Gaboriau’s language of #-simplicial complexes to give a proof of
the estimate bE.Z) (M) = Eq,u(C;). Instead, we want to at least point out that the
L2-Betti numbers of M can be computed by some sort of averaging over the prob-
ability space (Q, ). In Liick’s algebraic definition averaging is reflected by inter-
preting bﬁz) (M) as the dimension of a certain induction of the homology of M with
respect to a bigger von Neumann algebra, the so-called group measure construc-
tion of (Q, ) and T'.

The group measure space construction L®(Q, u) xT is defined as a completion of
the algebraic crossed product L*°(X) x I" with respect to the trace

w(Zh1) = | Awduo,

which is a sort of expected value. The group measure space construction contains
the group von Neumann algebra L(I') and L*°(Q, u) as subalgebras. The crucial
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property is that
(3.3) b (M) = dim o y53p Hi(L°(Q, )X T @21 C. (M)

For a proof of bg.Z) (M) < constlEq ) (C;) one would have to interpret the right hand
side of (3.3) in Gaboriau’s sense as L2-Betti numbers of the Z-simplicial complex
Qx M. For the better estimate (3.2) one needs a Poincare duality argument (see [5]).

3.4. The toy case M = S!. We want to outline the proof of Theorem 2.4, as pre-
sented in [4], for the example M = S'. Of course, M itself is an amenable set, and we
already know that its L?-Betti numbers vanish. But we want to illustrate the con-
struction of a Z-invariant probability measure p, on Q such that the expected value
Eq,p0) (C;) is smaller than a given & > 0.

Let I' = Z. For the index set I we take I = T" x {1,2}. The measure y on Q =
map(M, A(I)) will be obtained as the push-forward of the normalized Haar mea-
sure pg1 of S' under a certain I'-equivariant map

Qe st—aq.

Let m € N be larger than 2¢7 1. Let @ € [0,1] be irrational with 0 < 1/m—a < ﬁ
Equip S! = R/Z with the ergodic rotation given by addition of a. Next we define
an equivariant cover % = {A; x U;};es of S' x R such that A; c §' are Borel sets and
U; c R are intervals of length m or 1. By definition, the map ¢.(z) : R — A(]) is the
nerve map associated to the cover {U;; i € I,z € A;} forevery z € St

To describe %, consider the following picture® of S' x R, where we see the tile
[0,a] x[-2m+1,—-m+ 1] on top. Set A1) =[0,a] and U1y = [-2m+1,—-m+1].

0 R

—m

TN
\ / \

/ \
\ i \

\
\
\

\

'

'

i

1

'
|
1

I}

]
\ /
N

Next we consider the I'-orbit {A,1) x Ujy,1)} of the desribed tile in the following
pictures.

@1 am grateful to Clara Loh for programming the pictures in Metafont.
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We almost obtain a partition of the cylinder S' x R but because of ma < 1 the
translates do not quite close up after m steps. We have to introduce another tile
(black in the picture) [1—ma] x [-m, —m+ 1] whose I'-orbit {A(y,2) x U(y,2)} together
with the orbit of the other tile partitions S x R.
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Finally we make the tiles just a little bit longer in the R-direction to obtain the
desired cover. We leave it to reader to verify that

E@pe).ug)(C1) <l-ma+a<e.

3.5. Final remarks. In the actual proof of Theorems 2.2 and 2.4 one constructs
suitable equivariant covers on the product of a I'-probability space with M, and
then proceeds similarly as in Subsection 3.4 to obtain the desired probability mea-
sure on Q2. We want to mention the ingredients in the general case used to construct
such covers.

In the case of Theorem 2.2 one can construct covers on M by balls of radius
0 < r < 1 with multiplicity < const, r~" coming from maximal packings of concen-
tric balls with smaller radii. This follows from the Bishop-Gromov inequality which
provides packing inequalities in the presence of a lower Ricci curvature bound. In
general, there is no way to obtain equivariant such covers. However, a suitable
randomization in the sense of Subsection 3.2 of the problem of the existence of
equivariant covers with small multiplicity can be solved, which leads to a proof of
Theorem 2.2.

In the case of Theorem 2.4 one applies the generalized Rokhlin lemma from
ergodic theory to construct covers similar to the one in the toy example over ev-
ery of the amenable subsets and combines them to a cover on the product of a
I'-probablity space and M.
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Abstract. We give an overview over current results on the global structure of affine Deligne-
Lusztig varieties associated to a hyperspecial maximal compact subgroup. In particular, we dis-
cuss a formula for their dimensions and the set of connected components of the closed affine
Deligne-Lusztig varieties.

1. Classical Deligne-Lusztig varieties

Deligne-Lusztig varieties were defined by Deligne and Lusztig in [1] as certain
subvarieties of the flag manifold of a reductive group. They use finite coverings of
these varieties to study representations of the reductive group over a finite field. Let
us briefly recall their definition.

Let k be a finite field with ¢ = p” elements and let k be an algebraic closure.
We denote by o : x — x9 the Frobenius of k over k. Let G be a split connected
reductive group over k and let A be a split maximal torus. Let B be a Borel subgroup
containing A. Let W be the Weyl group of G. By the Bruhat decomposition its
elements are in bijection with B;:\ G/ By

For w € W, the associated Deligne-Lusztig variety is

Xw=1x€ Gg/Bg| x o (x) € BywBg).

2000 Mathematics Subject Classification. 20G25, 14G35, 14L05.
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It is a smooth algebraic variety and equidimensional of dimension /(w). The finite
group G(k) acts on X,, and hence also on its cohomology.

2. Affine Deligne-Lusztig varieties

For the definition of affine Deligne-Lusztig varieties one proceeds similarly, re-
placing the finite field k by a function field of characteristic p.

2.1. Definition and elementary properties. Let again k be a finite field with
g = p" elements and k an algebraic closure. Let F = k((¢)) and let L = k((1)). Let O
and O be the valuation rings. We denote by o : x — x9 the Frobenius of k over k
and also of L over F.

Let G be a split connected reductive group over ¢ and let A be a split max-
imal torus. Let B be a Borel subgroup containing A. Let K = G(&). In general
one can also define affine Deligne-Lusztig varieties associated to other parahoric
subgroups K of G(L), another interesting case is the case of an Iwahori subgroup.
Here we restrict our attention to K a hyperspecial maximal compact subgroup. In-
stead of subvarieties of the flag manifold, we consider now subschemes of the affine
Grassmannian X = G(L)/K. It is an ind-scheme over Spec(k). The Bruhat decom-
position used to define classical Deligne-Lusztig varieties is replaced by the Cartan
decomposition. Let X, (A) = Hom(G,;, A). An element i € X, (A) is called dominant
if (a, uy = 0 for all positive roots a of G. Then the Cartan decomposition takes the
form

G(L) = U Kt*K.
e X, (A) dominant

Example 1. We illustrate the above notions for the special case G = GL,,. For A
we choose the diagonal torus and for B the subgroup of upper triangular matrices.
Then X, (A) = Z", a tuple u = (u;) corresponds to the morphism mapping x € L* to
the diagonal matrix with entries x*/ on the diagonal. The element u is dominant
(with respect to our choice of B) if u; > p;4+ for all i < n. The n-tuple p can be visu-
alized as the graph of the continous piecewise linear function [0, n] — R mapping 0
to 0 and with slope y; on [i — 1, i]. It is called the polygon associated to p.

For b € G(L) and a dominant coweight u € X, (A) the affine Deligne-Lusztig vari-
ety X, E (b) = X,,(b) is the locally closed reduced k-subscheme of X defined by

X, (b)(k) = {g € G(L)/K | g " bo(g) € KIHK).
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FIGURE 1. The polygon associated to (2,1,0,—1)

For dominant elements g, ¢’ € X, (A) we say that u’ < pif u— ' is a non-negative
linear combination of positive coroots. The closed affine Deligne-Lusztig variety is
the closed reduced subscheme of X defined by

X<u(b) = | X (D).
W=p

Both X,(b) and X<, (b) are locally of finite type.

Example 1. (continued) Let G = GL,, and y, i’ € X, (A) dominant. Then u < y' if
the polygon of u lies below the polygon of y' and if they have the same endpoint.
In Figure 1, the set of u < (2,1,0,—1) consists of the three elements (2,0,0,0),
(1,1,1,-1),and (1,1,0,0).

Let
J={geG)|gobo=boogl

Then there is a canonical J-action on X,,(b) for each y. The group J is the group
of F-valued points of a reductive group over F which is an inner form of a Levi
subgroup of G (compare [5], [10] 1.12, [6]).

Example 2. Let us consider the case where b = t* is central in G. It is one of very
few cases where one can explicitly compute the affine Deligne-Lusztig variety. We
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obtain
Xub) = {geX|glo(@eKk)
= {glglo(@=1
= GWE)IGOp).

Here we used that every element of K can be written as k™o (k) for some element
k € K. For this b, the group J is equal to G(F), thus J acts transitively on X, (b). Note
that for general b the orbits of J on X,,(b) are still zero-dimensional, in particular
the action is not transitive.

By [x] we denote the o-conjugacy class of an element x € G(L). Left multiplica-
tion by g € G(L) induces an isomorphism between X, (b) and Xu(gbcr(g)‘l). Thus
the isomorphism class of the affine Deligne-Lusztig variety only depends on [b] and
not on the representative b itself. This also explains why the element b did not oc-
cur in the classical situation: Over a finite field, every element is o-conjugate to the
identity.

The o-conjugacy classes in G(L) are classified by Kottwitz in [5] and [6]. The
o-conjugacy class of some b is determined by two invariants. The first is its New-
ton vector, a dominant element of X, (A)g. The second is an element x(b) of
m1(G). Here m1(G) is the quotient of X, (A) by the coroot lattice of G. Let U be the
unipotent radical of B. Then «¢ is the locally constant map X — 71 (G) mapping
Ut*K to the class of x € X, (A) in 71 (G).

Example 1. (continued) For G = GL,, the Newton point v = (v;) € Q} of b has the
following elementary definition. We consider bo as a semilinear map L" — L.
There are m; e Nand h; e N\ {0} for i = 1,..., n and a basis (x;) of L" such that

(bo) " (x;) = t™ x;.

We may assume that ’Z—l’ > % for all i < n. Then v is given by v; = ’Z:—l’ For G =
GL,, we further have m;(G) = Z and xg(g) = v;(det g) where v; denotes the usual
valuation on L = k((?)).

Remark 3. Using the same definition as above one can also define X,,(b) as aset
of points for @, instead of the function field F = k((#)). In this situation a scheme
structure on X,,(b) is not known in general. However, if G = GL, or GSpz, and if
 is minuscule, then X, (b) can be identified with the set of Fp-valued points of a
moduli space of p-divisible groups defined by Rapoport and Zink in [10].
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2.2. Results on the global structure. In [4] Kottwitz and Rapoport give a crite-
rion for X,,(b) to be nonempty, compare also [2], Proposition 5.6.1. Then x(b) = u
and p —v is a positive linear combination of positive coroots with rational coeffi-
cients. From now on we only consider nonempty affine Deligne-Lusztig varieties.

The dimension of affine Deligne-Lusztig varieties is given by the following the-
orem. The formula has been conjectured by Rapoport in [11], Conjecture 5.10 in a
different form and has been reformulated by Kottwitz in [8].

Theorem 4. Let X,,(b) # @. Then
1
e))] dim X, =dim X<, = (o, u—v) - E(I'kF(G) —1kr(J))).

Here, p is the half-sum of the positive roots of G, and tkr denotes the rank of a maxi-
mal F-split torus of the corresponding group.

Example 1. (continued) For G = GLj, the nonemptyness of the affine Deligne-
Lusztig variety is equivalent to the condition that the polygon associated to u lies
above the one associated to v and that both have the same endpoint (&, v;(det(b))).
Then the right hand side of (1) is equal to the number of lattice points above v and
on or below p. Note that {p, u — v) is in this case equal to the area between the two
polygons.

Theorem 4 is proved by Gortz, Haines, Kottwitz, Reuman, and the author in the
two articles [2] and [13]. The proof consists of two main steps.

Step 1. The theorem holds for the case that b is superbasic, i. e. no o-conjugate
of b is contained in a proper Levi subgroup of G.
Step 2. If the theorem holds for superbasic b, then it also holds in general.

The two parts of this subdivision correspond to the two articles cited above: Step 2
is carried through in [2], Step 1 in [13]. The proofs of the two steps use completely
different methods. For Step 1 one can show (see [2], 5.9) that superbasic b essen-
tially only occur if G = GL,. Then one uses explicit o-linear algebra to prove the
theorem. The proof of Step 2 relates the dimension of affine Deligne-Lusztig va-
rieties to the dimensions of certain orbit intersections which are known thanks to
Mirkovic-Vilonen [9].

Rapoport also conjectures that the affine Deligne-Lusztig varieties are equidi-
mensional. This part of the conjecture is still an open question.
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For the closed affine Deligne-Lusztig varieties X<, (b), we also know the set of
connected components (see [12]). A first rough result is

Proposition 5. The group J acts transitively on the set of connected components
of X<u(b).

Again an important ingredient in the proof of this result is to consider the same
Steps 1 and 2 as in the proof of Theorem 4.

Using this one can explicitly compute 7o(X<,(b)). To obtain a simpler formula,
we first show that it is enough to consider data (G, i, b) of a special form, using the
Hodge-Newton decomposition. The Hodge-Newton decomposition is first shown
in Katz’s paper [3] for isocrystals with a 0%-linear endomorphism. Kottwitz (see [7])
generalizes this to a result about affine Deligne-Lusztig varieties associated to any
unramified reductive group (where Katz’s result corresponds to the case of GLj,).
His proof yields the following result.

Theorem 6. Let P = MN < G be a standard parabolic subgroup with P, < P. If
Ky (b) = p, then the morphism Xﬁ/’(b) — Xﬁ(b) is an isomorphism.

Here Py, is the standard parabolic subgroup of G whose Levi component is the
centralizer of v.

Example 1. (continued) We consider again the case G = GL,. Standard parabolic
subgroups P in GL, correspond to ordered partitions n = n; + np +--- + n; of
n. The subgroup P;, corresponds to the partition associated to the first coor-
dinates of the breakpoints of v. Thus the condition P, < P is equivalent to
ni,ny + ny,...,n; +---+ n;_1 corresponding to breakpoints of v. The condition
xpm(b) = p means that each of these breakpoints of the Newton polygon v also lies
on the Hodge polygon p. Thus in this case the conditions in Theorem 6 are the
same as Katz’s conditions.

We call a pair (i, b) indecomposable with respect to the Hodge-Newton decom-
position if for all standard parabolic subgroups P with P, € P = MN C G we have
kpm(b) # p. Given G, y, and b, we may always pass to a Levi subgroup M of G in
which (u, b) is indecomposable. For a description of the affine Deligne-Lusztig va-
rieties it is therefore sufficient to consider pairs (i, b) which are indecomposable
with respect to the Hodge-Newton decomposition.
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Let Goq be the adjoint group of G. We denote the images of b and p in G,q also by
b and u. Then the sets of connected components of Xgu(b) and Xg ;d (b) can easily
be computed from one another. The closed affine Deligne-Lusztig variety XSG Zd (b)
is the product of closed affine Deligne-Lusztig varieties corresponding to the simple
factors of G, Hence it is enough to describe the set of connected components in

the case that G is simple.

Theorem 7. Let G, u, and b be as above and indecomposable with respect to the
Hodge-Newton decomposition. Assume that G is simple.

1. Either x p(b) # i for all proper standard parabolic subgroups P of G with b €
M or [b] = [t*] with t* central.

2. Inthe first case, kg induces a bijection mo(X<, (b)) = 71(G).

3. In the second case, X,,(b) = X<, (b) = J/(JnK) = G(F)/G(OF) is discrete.

Note that (3) is the case considered in Example 2.

For the locally closed affine Deligne-Lusztig varieties X,,(b) the set of connected
components seems to be more difficult to compute. There are examples where J
does not act transitively on 7o (X, (b)), and also examples where it acts transitively,
but where an assertion analogous to Theorem 7 (2) still does not hold.
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Abstract. Unlike Lie algebras which one-to-one correspond to simply connected Lie groups,
Lie algebroids (integrable or not) one-to-one correspond to a sort of étale stacky groupoids
(W-groupoids). Following Sullivan’s spacial realization of a differential algebra, we construct
a canonical integrating Lie 2-groupoid for every Lie algebroid. Finally we discuss how to lift
Lie algebroid morphisms to W-groupoid morphisms (Lie II). Examples of Poisson manifolds
and symplectic stacky groupoids are provided. This paper contains essentially some ideas of
proofs and examples, for a complete treatment please refer to [29] which also proves some
connectedness result.

1. Introduction

Lie II theorem for Lie algebras studies how to lift morphisms of Lie algebras to
morphisms of Lie groups. A Lie algebroid is the infinitesimal data of a Lie groupoid,
as a Lie algebra for a Lie group. More precisely, for us, a Lie algebroid over a man-
ifold M is a vector bundle 7 : A — M with a real Lie bracket [, ] on its space of sec-
tions H°(M, A) and a bundle map p : A— TM such that the Leibniz rule

(X, fY1(x) = f(OIX, YT(X) + (p(X) )H(2) Y (x)

holds for all X,Y € H°(M, A), f € C®(M) and x € M. Hence when M is a point, a
Lie algebroid becomes a Lie algebra. Also a tangent bundle TM — M is certainly a
Lie algebroid with [, ] the Lie bracket of vector fields. The next example is a Poisson

2000 Mathematics Subject Classification. 58H99.
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manifold P with A= T*P — P and [df,dg] = d{f, g} determined by the Poisson
bracket {,} (see the book [21] for a friendly introduction).

Thus Lie II theorem for Lie algebroids studies how to lift an infinitesimal mor-
phism on the level of Lie algebroids to a global morphism. Its version having Lie
groupoids as the global objects of Lie algebroids is well-known [13] [16]. How-
ever, unlike (finite dimensional) Lie algebras which always have their associated
Lie groups, Lie algebroids do not always have their associated Lie groupoids [2] [1].
The complete integrability criteria is given in a remarkable work of Crainic and Fer-
nandes [6]. But we claim the situation is not totally unsavable: if we are willing to
enter the world of stacks, we do have the full one-to-one correspondence (Lie III)
parallel to the classical one of Lie algebras [24],

differentiation at identity

‘ Lie algebras ‘ integration Lie groups
: : differentiation at identity “étale stacky Lie

‘ Lie algebroids ‘ - - 'ky"

integration group01ds

Here an étale stacky Lie groupoid 4 = M (which we also call W-groupoid for its
existence is first conjectured by Weinstein [26] [4]) is a groupoid in the category of
differentiable stacks with ¢ an étale stack and M a manifold (see [29] for the exact
definition), and we call the procedure of passing from an infinitesimal object to a
global object “integration”. This problem is already very interesting, as shown by
Cattaneo and Felder [5], in the case of Poisson manifolds: the object integrating
A = T*P is the phase space of Poisson sigma model and it is further a symplectic
W-groupoid [23].

Therefore my effort in this paper is to study the functoriality of this slightly wild
W-groupoid, for example how to integrate a morphism A — B of Lie algebroids to
a global morphism from a universal stacky groupoid of A to any stacky groupoid of
B (Lie II). The results of the paper are positive. In case A is integrable", there is a
unique source-simply connected Lie groupoid integrating A, which generalizes the
corresponding theory of Lie algebras. However, in the general case, there are two
“universal” étale stacky groupoids ¢ (A) and .7 (A) associated with a Lie algebroid
A, (see Section 2.1 or [24]). As shown in [28],

(M Thatis A is the infinitesimal data of a Lie groupoid.
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Theorem 1.1. ¥ (A) and ¢ (A) are source-connected and simply connected and
9 (A) is furthermore source-2 connected, which means its source fibres have trivial
homotopy groups .

This tells us that ¢ (A) is more universal than Z(A) hence we should expect a
Lie IT theorem using ¢ (A). In fact A is integrable if and only if 57 (A) (not 4(A))
is representable. Using stacky groupoids, one should expect one further degree of
connectedness. A simple example is the algebroid of the Poisson (even symplectic)
manifold S?, A= T*S2. In this case, A is integrable and 7 (A) = S? x §?, but 4 (A) =
$? x §2/BZ. Here §? is the BZ gerbe on S? presented by the action groupoid S x
R = S with R acting via the projection R — S' and the usual Hopf S' action on S°.
Analogously to simply-connected coverings, S? is the 7,-trivial covering of S? (See
Example 4.1). Hence even with simple objects as S?> we could expect further more
interesting examples of ¢4 (A) to appear. Moreover the property of 7, = 0 might also
appeal to symplectic geometers.

For every Lie algebroid A, (notice that tangent bundles are Lie algebroids), we
associate A a simplicial set S(A) = [...S2(A4) = S1(A4) = Sp(A)] with,

1) Si(A) = hom,yg4(TA', A) := {Lie algebroid morphisms TA’ T

Here A’ is the i-dimensional standard simplex viewed as a smooth Riemannian
manifold with boundary, hence it is isomorphic to the i-dimensional closed ball.
Then the facial and degeneracy maps are induced by pullbacks of the tangent maps
of natural maps dy : A'”"! — A’ and s : A — A’~!, With this language, we also un-
derstand [5] and [6] in a fresh way: S;(A) and S»(A) are the space of fields and
Hamiltonian symmetries respectively in Poisson sigma model [5] in the case of
Poisson manifolds; or the space of A-paths P, A and of A-homotopies [6] respec-
tively in general (see Section 2).

The simplicial set S(A) is not entirely unknown to us: in the case of a Lie algebra
g, let Q1 (A", g) be the space of g-valued 1-form on A”, then we have®,

1
hom,gq(TA",g) =la € Q' (A", g)|da = Sl al

={flat connections on the trivial G-bundle G x A" — A"},

where G is a Lie group of g.
In fact for a differential algebra D, Sullivan [22] constructed a spatial realization
of D, which is defined as the space of differential graded maps homg ¢ 4. (D, Q" (A™)),

@ More precisely it is —a that is the connection.
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and the simplicial set S(A) is a parallel construction on the geometric side.
Sullivan’s construction also appears in the work of Severa [20] to integrate a
non-negatively graded super-manifold with a degree 1 vector field of square 0
(NQ-manifold), which was the original suggestion to our simplicial set S(4). In
fact a Lie algebroid can be viewed as a “degree 1” NQ-manifold, a “degree 2”
symplectic NQ-manifold is a Courant algebroid [12] [19] which is now widely used
in generalized complex geometry [9]. This construction also appears in the work of
Getzler [8] and Henriques [10] to integrate an Ly,-algebra L, where the simplicial
set is homy g 4 (C*(L), Q2" (A™)) with C* (L) the Chevalley-Eilenberg cochains on L.
This simplicial set is further proved to be a Kan simplicial manifold for nilpotent
Ly,-algebras in [8] and for all L,-algebras in general in [10].

However it is not obvious that S(A) is a simplicial manifold let alone a Kan sim-
plicial manifold. Hence its 2-truncation being a Lie 2-groupoid is not immediate
but proved in,

Theorem 1.2. Given a Lie algebroid A, the 2-truncation of the simplicial set S(A),
S2(A)1S3(A) = S1(A) = So(A),

is a Lie 2-groupoid that corresponds to the W-groupoid 4 (A) constructed in [24] un-
der the correspondence of Theorem 1.3 of [29].

In this theorem S (A)’s are infinite dimensional spaces. As a respond of a ques-
tion by Getzler and Roytenburg, it turns out that it is not necessary to take every-
thing in the infinite dimensional space and we treat in this manner elsewhere [28]:
the spirit is that this Lie 2-groupoid is Morita equivalent to a finite dimensional Lie
2-groupoid, arising in a fashion of local Lie groupoids of Pradines, E = P = M,
where dim P = dim A and dim E = 2dim A — dim M (See Remark 2.11).

Finally, after recognizing the existence of this more universal W-groupoid ¢ (A),
we have the expected

Theorem 1.3 (Lie II for Lie algebroids). Let ¢ be a morphism of Lie algebroids
A — B,¥ a W-groupoid whose algebroid is B. Then up to 2-morphisms, there exists a
unique morphism ® of W-groupoids 4 (A) — < such that ® induces the Lie algebroid
morphism ¢ : A— B.

We prove this Theorem here for stacky groupoid and leave the treatment using
Kanification of simplicial manifolds in [28].
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2. Lie 2-groupoids associated to Lie algebroids

In this section we construct a Lie 2-groupoid from a Lie algebroid A and prove
this Lie 2-groupoid corresponds to the universal W-groupoid ¢ (A) of A constructed
in [24].

2.1. Construction of the universal W-groupoids. We first recall [6] that an A-
path of a Lie algebroid A is a C! path a() : A' — A with base map y(¢) : A! — M
satisfying

2) pla(®) =y(),

where [1denotes the derivative of ¢. If it further satisfies boundary condition a(0) =
a(l) = a(0) = a(1) = 0, we call it an Ap-path as in [24]. This notation is useful for
technical reasons. We call P, A and Py A the space of A-paths and Ag-paths respec-
tively.

Remark 2.1. Asshown in [6] and [25] respectively, they are infinite dimensional
smooth manifolds, more precisely they process a structure of Banach manifolds,
which we refer to [11] for the definition and properties. There are certain subtle
differences comparing to the usual finite dimensional manifolds and we state here
what we will use in this paper. A morphism f : X — Y between Banach manifolds
is called a submersion if at every point x € X there exists a Banach chart (U, ¢) and
a Banach chart (V,y) at f(x) such that ¢ gives an isomorphism of U to a product
U; x V of open sets in some Banach spaces, and such that the map

yfp iU xV =V

is the projection to the second factor. If f: X — Z is a submersion, then for any
map Y — Z the fibre product X x z Y is a Banach manifold and the pull-back map
X x 7Y — Y is again a submersion. We refer the reader to [11, Chapter II.2] for the
proofs.

Moreover when we have a foliation .% on a Banach manifold X, we can also form
the monodromy groupoid of this foliation: The objects are points in the manifold,
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and arrows are paths within a leaf (up to homotopies) with fixed end points inside
the leaf. Then we have the following lemma:

Lemma 2.2. When a closed foliation % on a Banach manifold X has finite
constant codimension®®, the monodromy groupoid is a Banach groupoid over X,
namely a groupoid where the space of arrows (not necessarily Hausdorff¥)) and the
space of objects are Banach manifolds, all the structure maps are smooth morphisms
between Banach manifolds, and the source and target are surjective submersions.

Proof. By Frobenius Theorem for Banach manifolds [11, Chapter VI], we have also
foliation charts {(h;, U;)};er on X, namely charts with the property that, for each
(i, j), the change of coordinates hj o h;' : RF x F — R¥ x F has the form

(hjohiM)(x,y) = (p(x), ¥(x,)),

where k is the codimension of the foliation and F is a Banach chart of the leaves
of .%. Then the rest follows similarly as the proof of the finite dimensional case as
in [18]. A typical Banach chart for the space of arrows is R¥ x F x F. Under these
charts, the source and target maps are simply projections to R x F, hence they are
submersions®. O

There is an equivalence relation in P, A, called A-homotopy [6].

Definition 2.3. Let a(t, s) be a family of A-paths which is C? in s. Assume that
the base paths y (¢, s) := p o a(¢, s) have fixed end points. For a connection V on A,
consider the equation

3) 0:b—0s5a=Ty(a,b), b(0,s)=0.
Here Ty is the torsion of the connection defined by
Tv(a,ﬂ) = Vp(ﬁ)a - Vp(a)ﬁ + [a,ﬁ].

Two paths ay = a(0,-) and a; = a(l,-) are homotopic if the solution b(¢, s) satisfies
b(,s) =0.

) Here we only need the foliation to form a subbundle in the sense of [11, Chapter II]. Finite codimen-
sionness guarantees this.

@To simplify our notation, all the manifolds in this paper are Hausdorff unless specially mentioned as
here.

Ot is obvious that they are surjective.
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A-homotopies generate a closed foliation .# of finite constant codimension on
P,A. Now the idea is to consider the monodromy groupoid Mon(P,A) = P, A of
this foliation. One could think of Mon (P, A) as the space of A-homotopies. The two
maps from Mon(P,A) to P, A assign to each A-homotopy the two paths at the ends.
There are also two maps P, A = M which assign to each A-path its two end points
respectively. Very similar to this, PyA has also a foliation .%; by A-homotopies
and the monodromy groupoid Mon(PyA) according to this foliation. In fact %
is the restriction of .#|p, 4, that is if two Ag-paths are A-homotopic in P, A, then
they are A-homotopic in Py A. Moreover Mon(P,A) = P, A is Morita equivalent to
Mon(PyA) = PyA.

Sometimes to avoid dealing with infinite dimensional issues, we consider a vari-
ant I' = P of this groupoid obtained as follows (see for example [24] for details):
take an open cover of P, A, then P is the disjoint union of slices P; over this cover
that are transversal to the foliation .%. Then P is a smooth manifold, and the pull-
back groupoid by P — P, A, which we denote as I' = P, is a finite dimensional Lie
groupoid. What'’s even better is that it's an étale groupoid (i.e. the source and tar-
get are étale). The two groupoids Mon(P,A) = P,A and I' = P are in fact Morita
equivalent. Also, there are still two maps P = M.

The next step is clear: we take the quotient as stacks [Py A/ Mon(PyA)] and con-
struct a stacky groupoid ¥ (A) := [PyA/ Mon(PyA)] = M where the two maps are
endpoint maps. As in recent work [3], there is a 1-1 correspondence between Lie
groupoids up to Morita equivalence and differentiable stacks. The Lie groupoid
corresponds to a differentiable stack is called a groupoid presentation. Along these
lines, ¥ (A) has its groupoid presentation Mon(PyA) = Py A or Morita equivalently
I' > P. Hence it is an étale differentiable stack. From the technical viewpoint,
we take ¢4 (A) as an étale groupoid from now on, hence avoid infinite dimensional
analysis. Moreover, the two maps from PyA to M descend to the quotient, giv-
ing two maps s,t: ¥ (A) — M. There are other maps: we define a multiplication
m:¥ xs19 — ¢ by concatenation © of paths, namely,

2a(2t) whente€[0,1/2],
4) (aob)(t) =
2b2t—1) whente[1/2,1];

we define an inverse i : 4 — ¢, by reversing the orientation of a path; we define an
identity section e: M — ¢ by considering constant paths. These maps are defined
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in detail in [24]. There, we prove that this makes ¢4 = M into a W-groupoid. A sim-
ilar procedure using the holonomy groupoid Hol(PyA) = Py A produces another
natural W-groupoid 57 (A).

What is less obvious is to go back to a Lie algebroid from a W-groupoid ¢ = M.
For this, we first have the following technical lemma (proved in [29, Section 3]),

Lemma 2.4. For an immersion é: M — %4 from a manifold M to an étale stack
9, there is an étale chart Gy of ¢ such that é lifts to an embedding e : M — Gy. We
call such charts good charts and their corresponding groupoid presentations good
presentations.

Then given a W-groupoid ¢ = M, there is a neighborhood U < Gy of M such
that all the stacky groupoid structure maps descend to U and make U = M a local
Lie groupoid [24, Section 5], which resembles a Lie groupoid but multiplication
and inverse are defined only locally. The structure of the local groupoid does not
depend on the choice of U. We call it the local Lie groupoid of ¢ and denote it by
Gjoc- The Lie algebroid of Gy, is defined to be the Lie algebroid of W-groupoid % .

Remark 2.5. The étale chart P = Li; P; of 4 (A), made up by local transversals P;
of the foliation .% on P, A, is usually not a good étale chart directly.

We recall the construction of the local groupoid Gj,.(A) of A in [6]. Take a small
open neighborhood & of M in the A-path space P, A so that the foliation .% re-
stricted to & which we denote by .% | » has good transversal sections, namely leaves
in % |, intersect each transversal section only once. Then the quotient /(| )
is a local Lie groupoid over M, which is exactly the local Lie groupoid of ¢(A) as
above (proven in [24, Section 5]).

The openset &/ (% | ) =: V can be also visualized by gluing P; |, together via the
induced equivalence by .-# |4 on P;|». Although P is not necessarily a good chart
in the sense of Lemma 2.4, we join V to P, thatis P:= V u (u;P;). Then P becomes
good and the étale groupoid I' := P x4 P = P via P — ¢ is a good groupoid pre-
sentation. To avoid duplicated notation, from now on, I' = P is this good groupoid
presentation which contains V.

A W-groupoid morphism @ : (¢ = M) — (J = N), is made up by a map @, :
¢ — S between stacks and @y : M — N such that they preserve the W-groupoid

® Thanks to Lemma 2.4 we can construct the local groupoid at once and it is not necessary to divide M
into pieces as therein.
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structure maps up to 2-morphisms and these 2-morphisms satisfy again higher co-
herence conditions linking the 2-commutative diagrams of ¢ and # (also see [29,
Section 7]). Given such a morphism @, one can choose a good étale presentation
G1 = Gy (resp. H) = Hp) of 4 (resp. 7¢) namely the one such that M (resp. N)
embeds in Gy (resp. Hp). Under the correspondence of differentiable stacks and
Lie groupoids, morphisms of differentiable stacks are presented by H.S. (Hilsum-
Skandalis) bibundles [17] [15], which are manifolds that both groupoids acts from
left and right respectively with certain conditions (see for example [25, Section 3]).
We denote Eg as the H.S. bibundle presenting the morphism ®; : 4 — J#. The
restriction of Eg|ps presents the map M — & % whichis M 2 N % 7 (up
to a 2-morphism), therefore Eply = M X oy n,e,, Ho — M admits a global section.
Thus, extending this section on a local neighborhood U (M) c Gy of M, we arrive
at a section of Eg |y such that the composition @y, : U(M) — Ep — Hp extends
the map @y : M — N. We then choose U(M) close enough to M so that itself and
U(N) := ®;,.(U(M)) have a local Lie groupoid structure as above. By construction
we have a 2-commutative diagram,

UM) —— ¥
5) %j ®, j
U(N) A

Then @;,. preserves the local groupoid structures exactly because ® preserves the
W-groupoid structures. Hence @, is a local groupoid morphism and it induces
an algebroid morphism ¢ : A(¥) — A(J¢), where A(.) is the functor of taking the
algebroid of a W-groupoid. If there are two morphisms ® and @' differed by a 2-
morphism in a compatible fashion with structure 2-morphisms of ¢ and .77, then
Eg = Eg . Therefore U(N) £ U’(N) through this isomorphism and

qD’lac ! ~
Do = (UM) 3°U'(N)ZUN)).

Therefore the two W-groupoid morphisms induce the same algebroid morphism.

2.2. The construction of the Lie 2-groupoid. One uniform way to describe a
(resp. Lie) n-groupoid is via its nerve: by requiring it to be a simplicial (resp. man-
ifolds) sets [14] whose homotopy groups are trivial above 7,,. We leave the readers
to the introduction of [29] and the references therein for a general description for
this and only recall briefly the definitions we need here.
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A simplicial set (resp. manifold) X is made up by sets (resp. manifolds) X, and
structure maps

n

d!': X, — X, (facemaps) s} : X, — Xp41 (degeneracy maps), i€ {0,1,2,...,n}

that satisfy suitable coherence conditions. The first two examples are a simplicial
m-simplex A[m] and a horn A[m, j] with

Alm))p=1{f:(0,1,...,n) — (0,1,..., m)| f () < f(j), Vi< j},
(Alm, jDn ={f € AlMD RO, ..., j= 1, j+ 1,..., m}  {£(0),..., f(m)}}.
A simplicial set X is Kan if any map from the horn A[m, jlto X (m=1, j=1,.,m),
extends to a map of A[m]. In the language of groupoids, the Kan condition corre-

sponds to the possibility of composing various morphisms. In an n-groupoid, the
only well defined composition law is the one for n-morphisms. This motivates the

(6)

following definition.

Definition 2.6. A Lie n-groupoid X (n € NUoo) is a simplicial manifold that sat-
isfies Kan(m, j)Vm=1,0< j<mand Kan!(m, j)Vm>n,0< j < m.

Kan(m,j): The restriction map hom(A[m], X) — hom(A[m, j], X) is a surjec-
tive submersion.

Kan!(m, j): The restriction map hom(A[m], X) — hom(A[m, j], X) is a diffeo-
morphism.

Remark 2.7. A Lie n-groupoid X is determined by its first (n + 1)-layers
Xo, X1,..., X, and some structure maps. For example a Lie 1-groupoid is exactly
determined by a Lie groupoid structure on X; = Xj. In fact a Lie 1-groupoid is the
nerve of a Lie groupoid. A Lie 2-groupoid is exactly determined by X> = Xo = Xjp
with a sort of 3-multiplications and face and degeneracy maps satisfying certain
compatible condition. It is made precise in [29, Section 2]. Hence in this paper, we
often write only the first three layers of a Lie 2-groupoid.

Now to a Lie algebroid A over a manifold M, we associate the simplicial set S(A)
ofequation (1) in the introduction. The first three layers of S(A) are actually familiar
to us:

— itis easy to check that So = M;

- Sy is exactly the A-path space P, A since a map TA' — A can be written as
a(t)dt with base map y () : A' — M, it being a Lie algebroid map is equivalent to
pla() = %y( t) since the Lie bracket of TA! is trivial and the anchor of it is identity;
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- bigons in S, are exactly the A-homotopies in P, A since a bigon
T (Tsh(TA%) — A

can be written as a(t, s)dt+b(t, s)d s over the base map y(t, s) after a suitable choice
of parametrization” of the disk (d2)~!(s'(A%). Then we naturally have b(0,s) =
f(,s) (6%) =0and b(1,s) = f(1,9) (%) = 0. Moreover the morphism is a Lie algebroid
morphism if and only if a(¢, s) and b(t, s) satisfy equation (3) which defines the A-
homotopy.

We take the “2-truncation” of this simplicial set, that is we take X (A) to be
Xi(A)=S;(A),i=0,1, andX(A) =S52(A)/S3(4),

where the quotient S»(A)/S3(A) is formed by a ~ § if and only if they share the same
boundary in S; (A) and they bound an element in S3(A), i.e. they are homotopic in
the sense of [14].

Remark 2.8. We do not know whether S(A) is a simplicial manifold or further a
Kan simplicial manifold, namely a Lie co-groupoid as in Definition 2.6, though it
is so for a Lie algebra [10]. If we have known that S(A) is a Kan simplicial manifold
then we could simply take the Lie 2-groupoid as the 2-truncation of S(A), that is

--83(A)/S4(A) — 52(A)/ S3(A) — S1(A) — So(A).

However, unlike that S;(A) being a Banach manifold involves solving an ODE, it
is not clear how to solve directly the corresponding PDE for S,(A) to be a Banach
manifold. This is one of the open questions left at the end of [10].

Also, although S(A) has clear geometric meaning, it involves infinite dimen-
sional manifold, and although ¥(A) is an étale SLie groupoid, the 2-truncation
X (A) will not be 2-étale in the sense of [29]. To achieve the étale version we need to
use a sub-simplicial set based on the good étale covering P of ¢ (A) in Remark 2.5,
namely

) So(A) =M, S1(A) =P, S;(A) = S;(A)lp, fori>2,

where S;(A)|p is the subset of i-simplices in S;(A) whose 1-skeletons are made up
by elements in P. See also Remark 2.11.

Therefore we have to use an alternative method, that is to use the 1-1 corre-
spondence of Lie 2-groupoids of SLie groupoids. Recalling from [29], given an SLie

(MWe need the one that v(0,s) =xand y(1,s) = y forall s [0,1].
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groupoid ¥ = M with a groupoid presentation G of ¢, its associated Lie 2-groupoid
Y is constructed by

YOZM) YI:G0y YZZEWM

where E,, is the bibundle representing the multiplication m : ¥ x4 — ¢ of the
SLie groupoid.
Then Theorem 1.2 is equivalent to the following:

Theorem 2.9. X (A) is a Lie 2-groupoid and it corresponds to 4 (A) with the cor-
respondence in [29].

Proof. : Take the Banach chart P, A of 4(A). The Lie 2-groupoid Y (A) correspond-
ingto ¢ (A) has

(8) Yo(A)=So(A) =M, Y1(A)=81(A)=PsA, Yo(A)=Ep=35(4)/~,

where two A-homotopies a ~ b if and only if there is a path of A-homotopies a(e)
such that a(0) = a, a(1) = b, and paths a(e) € P, A all have the same end points
in A for € € [0,1]. By Remark 2.1 and Lemma 2.2, P,A is a (Hausdorff) Banach
manifold and Mon(P,A) is a Banach manifold (not necessarily Hausdorff). The
source and target of Mon(P,A) to P, A are surjective submersions. All these hold
for groupoid Mon(PyA) = PyA too, therefore the multiplication bibundle E(,)n =
(PoA x PyA) X0, pyat Mon(PyA) is a Banach manifold and the left moment map J; :
E?n — Py A xp; PgA is a surjective submersion. The Morita equivalence between
Mon(P,A) = P, Aand Mon(PyA) = Py A is provided by the map f; : P, A — Py A of
parametrization

9 a(t)— a' (1) :=1(a(r(1),
using a fixed a smooth cut-off function
(10) 7:[0,1] — [0,1], which satisfies 7'(0) = 7'(1) =0,7'(¢) > 0.

Then Ep, = (PgA x p PaA) X £, pyaxpya, g, Eny is @ Banach manifold.

The face and degeneracy maps of Y (A) and X(A) are obviously the same. How-
ever what we mod out to form Y>(A) is not exactly the elements in S3(A) because
it is not obvious that a path of A-homotopies can be connected to make a Lie al-
gebroid morphism TA% — A. Hence to show Y (A) = X»(A) thus to give X (A) a Lie
2-groupoid structure via the isomorphism to Y (A), we need Proposition 2.10. This
proposition is proven in [29]. O
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Proposition 2.10. If there is a smooth path of Lie algebroid morphisms ¢(t) :
TA% — A such that @(t)|gp2 stays the same when t varies in (0,11, then there is a
Lie algebroid morphism ¢ : TA3 — A such that @lg,a3 = @(i), fori=0,1. Hered; is
the i-th face map A3 — A2,

Remark 2.11. The Lie 2-groupoid X (A) is not 2-étale, that is
X>(A) — hom(A[2, j], X (A4)) is not étale for j =0, 1,2. To obtain the étale version we
shall use the simplicial set in (7). Then the replacement of X (A) is

Zo(A) =M, Zi(A=F 2Z(A4):=X2(A)lp,

where the restriction X (A)|p is the subset of equivalence classes of the 2-simplices
in S;(A) whose 2-skeletons are made up by elements in P. Then Z,(A) = Y2(A)|p =
E,, (') which is the H.S. bibundle representing the multiplication m of ¢ (A) for the
étale groupoid presentation I' = P of 4 (A). Since I' = P is étale, the left moment
map E,,(I') — I' xg pi I is étale. Since Z»(A) — hom(A[2, j], Z(A)) are surjective sub-
mersions for all j, they are furthermore étale by dimensional counting. Hence Z(A)
is a 2-étale Lie 2-groupoid.

3. Lie Il theorem
In this section we prove Theorem 1.3. We begin with

Lemma3.1. If ¢ is a Lie algebroid morphism A — B, then it induces a W-
groupoid morphism ® : 9(A) — ¥ (B) such that ® gives back the Lie algebroid
morphism ¢. The same is true for W-groupoid ¢ ().

Proof. We prove it for 4(-) and the proof for 77 () is similar. A Lie algebroid mor-
phism ¢ : A — B induces a morphism ¢. : S(A) — S(B). In particular, ¢; and ¢, give
a morphism P,A — P,B and a morphism on the level of A-homotopies respec-
tively. If we have two equivalent A-homotopies ¢y ~ ¢; of 4, in the sense of (8), then
their images ¢2(&1) ~ ¢2(&>2) are also equivalent. So ¢, induces a homomorphism
of groupoids (Mon(P,A) = P,A) — (Mon(P,B) = P;B), hence a morphism on the
level of stacks @ : 4(A) — ¢4 (B). This morphism gives a local groupoid morphism
Do : Groc(A) — Gy (B) which maps equivalence classes of A-paths in A to those
in B via ¢ since the local groupoids can be understood as equivalence classes of
A-paths. Therefore the corresponding Lie algebroid map is exactly ¢. O

Proof of Thm. 1.3. To build the map ®, by Lemma 3.1, we only have to treat the
situation when ¢ = id : A— A, that is, given a W-groupoid ¢ whose algebroid is A,
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there is a W-groupoid morphism ¥ : 4 (A) — ¢ lifting the id : A — A. Both¥/(A) and
¢ have an associated local groupoid whose Lie algebroid is A. They are isomorphic
in a small enough neighborhood of M and we might as well assume they are the
same and denote it by Gy,.

The basic idea is as following: given an A-path a(f), we cut it into 7 = 2% small
pieces,

t+i—-1
), forte[0,1],andl=1,...,n.

1
a;(t) = —al
n
The whole path a is a concatenation of these pieces, that is

-1
11 al)=a0a,0---0a,:=na;(nt-(1-1)), forte[—,

l
n ;]'
For a big enough n, we must have a; € & the neighborhood of M in P, A to define
Gjoc (see Remark 2.5). We denote g; as the equivalence class that a;(t) represents
in 1% | 5. Then we define ¥ ([a(?)]) := (... ((7w(g1) - w(g2)) - 7w(g3)) - ...) - w(gn), where
7 is the projection Gy — ¥.

More precisely, we take the presentation I' = P of ¥ (A) and a good presenta-
tion G of &. We take also G to be such a good presentation that the multiplication
bibundle E,Ei has a global section for the moment map E,Ei — Gg % 01 Gy, i.e. the mul-
tiplication is a strict map (otherwise we replace G by a finer cover). As we stated at
the beginning, we also assume that V c Gy (otherwise we can take a smaller open
set O as explained in Remark 2.5). We only have to build a groupoid morphism

T=>pP IR G. For a(t) € P, we take a subdivision as above and define

fola(®)):=(..((g1-82)-83)"-..) &n-

Since P = u;P;, we might as well assume that the division of a(¢) has the same
number of pieces on each P;, otherwise we replace P by a finer transversal. This
will not affect the local groupoid part V < P since fy = id on V. This makes fj
smooth on each piece P;, hence a smooth morphism on the disjoint union P.

To define f; : T — G, we take an A-homotopy a(t,s) between a(¢,0) € P; and
a(t,1) € P;. Suppose that a(z,0) is divided into n; = 2k pieces and af(t,1) into
nj = 2ki pieces. Then the A-homotopy a(t,s) gives rise to many small triangles
74 in the multiplication bimodule E,l;;c < Gioc * M Gioe 0f Gjoc, which is then in the
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multiplication bimodule ES, of G.
ay(t,0) ... an

i

i

12) al) ... an

Then the associativity of ES, tells us how to compose these small triangles into a
bigbigonne G, c E,(,;l and the pentagon condition of the associator tells us that the
result is independent of the order of composition. We define fl((a(t, s) =n. We
make a fixed subdivision (12) locally, then f; is smooth. If two A-homotopies are
linked by a path of A-homotopies, their subdivisions are also linked by a path of
subdivisions. Hence fl descendstoamap f1:T — G.

Uniqueness of @ follows from the next lemma. O

Lemma 3.2. If we have two morphisms of W-groupoids ®,®' : 4(A) — J cor-
responding to the same algebroid morphism ¢ : A — B, then they differ by a 2-
morphism.

Proof. Since ®,d’ : 4(A) — 7 correspond to the same algebroid morphism ¢ :
A — B, their corresponding morphisms of local groupoids are the same, i.e. ®;, =
dD’loc. By diagram (5) and the fact that ® and @' preserve the multiplication, we have
the following 2-commutative diagram,

G(A) T U, Goe(A) ™

@\L llb/ \L‘Dloc_d);oc
p

2
H<~— UnGlXonc

where G, (A) and Gy, are the local groupoids of ¢ (A) and JZ respectively, and p; :
L:=UnGioc(A)*" — 4(A) is defined by p1(g1, ..., gn) = (..((m(81) - 7(82)) - 7(g3)...) -
7(gn), where 7 : Gjoc(A) — P — % (A) with P the good étale chart of 4 (A). We define
p2 similarly. Here [J*” denotes a n-fold fibre-product over M.

Therefore ® o p; ~ ®y,.0 pa ~ Do py, where f ~ g means that the two (1-)morph-
isms f and g differ by some 2-morphism. Since 2-morphism a : ® — @' is simply a
natural transformation, which is a set of compatible arrows a(x) : ®(x) — @’ (x) for
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every object x in the stack ¥ (A). To show ® ~ @', one only has to show that p; is
essentially surjective, namely p; projects to every object and every morphism up to
isomorphisms. An essential surjection between stacks is an epimorphism. Thus we
only have to show that for any object y over U in ¢ (A), there is an open covering U;
of U such that there exists x; over U; in L (viewed as a category) and p; (x;) = y|y;,.
Take the good étale groupoid presentation I' = P of ¢4 (A). Then an object of ¥ (A)
over U is a groupoid principal bundle of I' = P over U. Take an open covering U; of
U so that y|y, is trivial. Then y is decided by a map U; — P and y|y, = U; xpI via
this map.

On the other hand, the map p; : L — ¥4 (A) is expressed as the composition of the
following maps on the level of groupoids

(13) L—— u,I'*" r
UpEpxn
L—— u,p*" p

where Ej;x» is the bimodule presenting the map mo (m x id)o...(mxid x...id) :
Y (A" — 4 (A). As recalled in Section 2.1, E,,(I') = P = M is a Lie 2-groupoid,
so by Kan(2,0) condition that it satisfies, the map E,,(I') — P x ¢ P is a surjec-
tive submersion. Composing this map with the projection pry : P x¢pc P — P, we
have J; : E,;;(I') — P is a surjective submersion (see [29, Section 4.2]). Hence the
right moment map of E,,;x» is also surjective submersion since the bibundle E,;;x»
is formed by composing bibundles with the form E,, (') x ,; T'**. For example

Eppe = (Em(T) xp I xpuyep EmTN/T > T,

and the right moment map of E, x> to P comes from a composed map of J, and
pull-backs of J;, namely E;;,(T') xp T % px,p Ep(I') = E;(I') — P, which is a surjec-
tive submersion. This implies the descending map E,,,«» — P is also a surjective
submersion.

Denote E the composed H.S. bibundle in (13) and it is simply U, Ej,x , Testricting
to L via the left moment map. Since L — U, P*" is an open embedding, E — P is
a submersion, and it is furthermore surjective because an A-path can always be
divided into small enough paths which lie in G;,.. Hence we have local sections
(P 2)V;j — E of this map. Then we take a pull-back covering U;; of U; as in the
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following 2-commutative diagram

Uy, v E L
| l | |
U; p 4 . p G(A)

Then we have the composed map U;; — Vj — E — L. Therefore yIUij =Ui;xgnP =
U,-j xpLxggP= U,-j x, E=p1 (Uij — L). Therefore p; is an epimorphism. O

4. Examples

Now we show an example of a stacky groupoid ¢ (A). In fact, for any manifold
M with 7,(M) nontrivial, 4 (T M) is not the traditional homotopy groupoid M x
M/ 71 (M) where M is the simply connected cover of M. 7, (M) will play a role too.

4.1. Z-gerbes are S' bundles. Z-gerbes and S'-bundles over a manifold M are
both characterized by H?(M, Z) via Cech cohomology and the Chern class respec-
tively. Given an S! bundle S over M, let {U;} be a covering of M such that S trivializes
locally as U; x S! with gluing function gij:Uij=UinU; — S!. As we know the map

ol «
HY(M, SY) 2225 H2(M, Z) gives us the Chern class ¢; (S) = [g.] with g_ =8 (logg ).

On the other hand, there is a stack ¢ presented by groupoid LIU; j x Z = LIU; with
the groupoid multiplication (x;;, n)-(x ko) = (Xijg, n+m+gi k) and the source and
target maps inherited from the groupoid LIU;; = LIU; which presents M. Here x;;
denotes a point in U;;. An A-gerbe corresponds to an A-groupoid central exten-
sion for an abelian group A [3]. It is clear that ¢ is a Z-gerbe (or equivalently a
BZ-principal bundle [27]) over M from the following diagram of groupoid central

extension:

1 ——=ZxulU; ——=uU;jx”Z uU;j 1
uU; uU; uU;

The gerbe ¢ is classified by the Cech class [g..] € H>(M,Z) which determines the
groupoid multiplication (see also [7, Appendix]). From this class it is easy to go
back to an S'-bundle. Hence this gives the 1-1 correspondence between Z-gerbes
and S'-bundles.
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Another equivalent way to obtain ¢ from S is to realize ¢ as a global quotient
[S/R] where R acts® (left) on S via the S! action and the projection pr : R — St
We simply verify it by a Morita bibundle LIU; x R between LiU;; x Z = 1U; and the
action groupoid S x R = S. Our convention is t(x, t) = x and s(x, f) = - x(=: x- t1).
The moment maps are

idx
Ji=pr:ulU; xR—uUj, ],:uUile —»pruU,-xSIiS,

where pr is the projection to the first component and 7 : LU; x S' — S is the chart
projection since S is locally U; x S'. The left and right actions are respectively

(xij,m) - (xj,a) = (x,n+a), (x,a) (x=J(x,a),A)=(x;,a+),

which are free and transitive.

Example 4.1. Corresponding to the Hopf fibration S® — S2, there is a Z gerbe
or BZ principal bundle denoted as S?. Apply the long exact sequence of homotopy
groups to the BZ-fibration 5§ — S2. Since 7,(BZ) = 0 except 1 (BZ) = Z, we have
m1(8?) = 12(5%) = 0 and 7>3(8?) = m>3(S?). Hence we can view §? as a 2-connected
“covering” of 2.

4.2. Symplectic structure. Recall [24] that a symplectic form on an étale dif-
ferentiable stack 2 is a G-invariant symplectic form on Gy, where G is an étale
presentation of 2. Appearing on a non-étale presentation H of 2", the symplec-
tic form could be an H-invariant pre-symplectic form w on Hp, but we must have
kerw = TO, where O is the orbit of H; action on Hj.

Example 4.2. §? has a pull-back 2-form 7*w with 7 : § — §? and o the sym-
plectic area form on S2. As above, take the action groupoid S® x R = S* presenting
52, where R acts on S° via the projection R — S'. Then this 2-form 7*w appears on
S3 as m*w where 7 : S — S2. Indeed its kernel ker7* w is only along the S orbit in
$3. Hence it is a symplectic form on §2. However, surprisingly, we will show that
the de-Rham class [7*w] = 0 € H?(S?,R).

(8)locally by A-(x;,[a]) = (x;,[a+ A)).
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First of all we use groupoid de-Rham double complex C”% = Q9(S3 x RP) to cal-
culate H* (52, R).
d d d

02 6 cl2 6 22 6
/| /| /|
(14) ql o1 g cll 0 21 6
/| /| /|
coo 90 c1o s c20 9
p

The two differentials are the de-Rham d = dP9 : CP"9 — CP:9*! and the groupoid
§P4 . CP9 — CPHL4 with §P9 = Zfzo(—l)”pé;‘ and §; : $® x RP — S x RP~! by

50(xrtl,-'-)tp) :(x'tl,IZy-'-vtp))
0i(x, b1,y bp) = (X, b1,y G+ Eiy1,.. 0, ) fOT 1 I p -1,

6p(x, tl,...,tp) =(x,t,..., tp_1).

Then H*(§%,R) is the total cohomology of (CP9,d, &), i.e. the cohomology of the
complex (& 4 4=, CP, D = (-1)PdP 9+ 6P1).

We use a spectral sequence (EP9,d, : EP'9 — Ef’”’q_Hl) to calculate the total
cohomology of this double complex. We let the 0-th page Eé? 1= cP9anddy=d.
Then the first page Ef "1 = H9(5%) which is 0 except for the Oth and the 3rd row being
R everywhere. Hence E;g =R and E;Z = E;ﬁ =0. Hence H2(S?,R) = R.

In the double complex CP9, [7*w] is represented by

0,0,7*w) € C*? & CM' & C?°.

However, (0,0, 7% w) is exact under the total differential D = +d + 8. In fact D(t,0) =
(0,0, *w) where t is the coordinate on R and 6 is the connection 1-form for the
Hopf fibration S — S2. This follows from the calculation d%'0 = n*w and §%'0 =
6,0 —670. Let X be the Reeb vector field on $3. X is invariant under the S'-action
and 0(X) = 1. Thus §6(X) = 0. Since span{X} o kerf = TS3, we only have to care
about % e TRc T(S® x R). Since T61% =0 and T50% = X, we have 60'19(%) =1.
Hence 610 = d"0¢. Finally, it is not hard to see that

G0t )=t~ (h+ )+ 1 =0.
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This implies that [7*w] = [(0,0,7*w)] = 0 € H*>(§%,R) =R.

4.3. Symplectic W-groupoids. Recall [23] that a W-groupoid ¥ = M is a sym-
plectic W-groupoid if there is a symplectic form w on ¢ satistying the following mul-
tiplicative condition:

(15) m*w=priw+pr,o,
on ¥ xg M9, where pr; is the projection onto the i-th factor.

Example 4.3 (4 (T* 52)). Take the symplectic manifold S2 with its area form w as
above. Then the tangent Lie algebroid T'S? is isomorphic to the Lie algebroid T* S?
of (8%, ) viewed as a Poisson manifold. The isomorphism is given by the contrac-
tion with , fw : TS?> — T*S?. To obtain the symplectic W-groupoid of (5%, w), we
can equally study ¥ (TS?).

The set of Lie algebroid morphisms TN — T M is equal to the set of smooth maps
Mor (N, M). We take the Lie 2-groupoid,

Xo=M, X;=Mor(A',M), X,=Mor(A% M)/MorA3 M).

Recall that the quotient is by w; ~ wy if they have the same boundary and they
bound an element in Mor (A3, M). So the stack ¢ (T M) is presented by the groupoid
G1 = Gy with G; = Mor(D?, M)/ Mor (D3, M) the space of bigons (the quotient is
similarly given by 1 ~ B, if they have the same boundary and bound an element
in Mor (D3, M)), and Gy = Mor (I, M). Here D¥’s are viewed as A¥ with many de-
generate faces. Then Gy is simply the space of A-paths P, TS and G; is the space
of A-homotopies modding out of higher homotopies. Take two points L and R on
D?, the target and source are the morphisms restricted on the lower and upper arc
from L to R respectively (see picture (17)).

G is Morita equivalent to the action groupoid S° x §3 x (RxR)/Z = S° x $® where
(RxR)/Z is a quotient group by the diagonal Z action (r1,12)-n = (r; + n,r, +n), and
the action of this quotient group is given by the projection

RxR)/Z—R/IZxR/Z=S"x S

and the product of the S! action on S®. Our convention of target and source maps
are t(p,q,[r,r21) = (p,q) and s(p, q,[r1,12]) = (p-[-11],q - [-r2]). The symplectic
structure is (7*w, —7*w) on S x 83 with 77 : §3 — §2.

To show this, we give the associated complex line bundle L — S? of the S'-
principal bundle $3 — S? a Hermitian metric and a compatible connection. We
denote ¢//y as the result of the parallel transportation of a vector ¢ € Ly along a
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path y in $? to Lyq). Since parallel transportation is isometric: Ly — Lyq), it pre-
serves the S! bundle S® c L and the angle ang(¢,,¢2) between ¢ and ¢,. Here the
angle ang(-,-) L® L — S' is point-wise the usual angular map (or argument map)
C — S!. It satisfies

ang(S1,¢2) +ang($z,¢3) = ang(é1,¢3) and  ang(S,¢2) = —ang(&z, ).
Therefore for two paths y; and y, sharing the same end points, we can define the
angle ang(y1,y2) between them to be
(16) ang(y1,y2) :=ang(lly1,&l1ys), forle TYI(O)SZ.

Since parallel transportation preserves the angle, this definition dose not depend
on the choice of ¢ as the following calculation shows,

ang(&1/1y1,6111y2) =ang(&1//y1,é2/1y1)+
ang($2/1y1,8211y2) + ang&ally2,8111y2)
=ang(§1,82) + ang($2/1y1,62/1y2) + ang(§z,&1)
=ang(&2/1y1,8211y2).

In fact ang(yy,y2) = wamea where 0D = —y1 + 72 and wg4re, is the standard sym-
plectic (area) form on S2.

a7

As shown in the above picture, because of 7,(S?), G; is not simply the paring
groupoid Gy x sz, g2 Go—the set of paths with matched ends. To justify this, we use
ang: Gy xg . Go — S' as in (16), then we have Gy = (Go X s252 Go) X gpg 51 pr R
where pr:R — S is the projection. For example (17) corresponds to (y1,y2,7) with
7] = 2. The pull-back groupoid of G; = Gy by the projection (a surjective submer-
sion) 83 x; g2 Go xg 52,5 S® — Go with s(y) =y(0), t(y) = y(1), and 7 : §* — §?, is

(s x g2 G X g2 §3xs3 x g2 Go X g2 $3) X ang,st,pr R= $3 x g2 Go X g2 $3.
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Now the pull-back groupoid of S3 x S3 x (R x R)/Z = S x §% by the projection
S3 x g2 G x g2 3 — 83 x 3 defined by (¢,7,&) — (&'11y,é1 1y 1) is
(18)
(83 x g2 Gox g2 83 x 83 % 2 G x 2 S¥) X (53, §3) (53 59 S X P X RXR)/Z = §3x 2 Gy x 2 S°.

They are the isomorphic as Lie groupoids with the morphism from the second to
the first by

7.8 =&Y,
on the base of the groupoid, where y’ is the path parallelly transported along the
direction of E®&//y (1) at® y(r) such that ang(y,y") = ang(&,&'/1y), with the notice
that $3 ® S® c T'S? is the sphere bundle. On the level of morphisms, we define

(19) €1, 71,6162, Y2, 80, [(r1, 1)) = (1,71, €1, €2, Y5, 65,72 = ).
We need to verify that this map does land on the correct manifold. By (18) we have
&/ 1yyh) - [=r2l = &2/ 175", thus
~[r2l = ang(§i/1y7" &21173")
= ang(&i/1y7Y &/ 1yT ) + ang(& /1y Y &2l 1y2 Y
=ang(&, &) +angyy'y; ),

hence ang(y1,y2) = [r2]+ang(&1,¢&,) and similarly ang(y;,y2) = —[r11-ang(&] ,6’2).
Therefore

[ro— ]l =2ang(y1,y2) — ang(&1,&2) + ang(&y,&y).

Since

ang(&1,&y/1y1) +ang(&y11y1,E11y1)+
ang(&y11y1,&511y2) + ang &yl 1y2,&2) = ang(&1,&2),
we have
—ang(&,&) +ang(&), &) = —ang(&1,&)/1y1) + ang(&2,&511y2) — ang(y1,y2).
Hence
[r2 — 1l = ang(y1,y2) + (—ang(&1,&1/1y1) + ang(&2,&511y2))
= ang(y1,y2) + ang(yy,y1) + ang(y2,y3)
= ang(y},vs)

O that is }'f’(t) =7y(2)//¢@(s) for some fixed s € R, where ¢(s) is the trajectory of { ® ¢//y(¢). Since y(0) =
¥(1) =0, ¥" and y have the same end points.
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Therefore (19) is well-defined. It is not hard to see that it is indeed a groupoid iso-
morphism.
Therefore G; = Gp and S x S3 x (RxR)/Z = §3 x S are Morita equivalent via this
third groupoid (18). Therefore ¢ (TS?) is presented by S x % x (RxR)/Z = 3 x S3.
The next is to keep track with the symplectic form. The symplectic form on Gy
comes from the restriction of the symplectic form the whole path space PTS? [5],

1
Q((6y1,6a1),(0y2,0a2)) =f0 w(0y1(8),0a2(1) —w(0y2(1),0a, (1) dt,

where (0y;(#),0a;(1)) € T(TS?) = TS? @ TS? after chosen a connection and
T(PTS?) = PT(TS?). Then the symplectic form on S° x $® is induced by first pulling
Qlg, back to the Morita bibundle S® x s> Gy x g2 S then pushing it to S x S3 since it
is G; invariant. In fact the symplectic form w; on S% x S® functions as

w1 (X1, 1), (Xz, Y2)) := Q((X1,671, Y1), (X2,672, Y2)),

where 67;(0) = 7. X; and 6y;(1) = m. Y;. Comparing to the direct quotient Go/G; =
$?x §? where Q|¢, descends to (w, —w) on §% x $?, we can see that w; = (1*w, —7*w).
We also see that w; is pre-symplectic and kerw; is exactly the characteristic folia-
tion of the groupoid B xS x(RxR)/Z= S%x 83 thatis the product of the St orbits
in 3. Hence it gives a symplectic structure on ¢ (TS?).

As we seen before in Example 4.1, 3 x R = S3 presents the stack S2. What we
prove above is that the stacky groupoid ¢ (T'S?) is not the usual one: S? x S, but
§? x §2/BZ, to ensure that it has 2-connected source-fibre, which is a general result
stated in Theorem 1.1. This resembles the construction of groupoid integrating
TM when M is a non-simply connected manifold. The source simply connected
groupoid of TM is M x M/x1(M). Here for & (TS?), the construction is comparable
to this, but on a higher level—the aim is to kill 77, of the source fibre. Further, using
long exact sequence of homotopy groups, we have 7, (5% x §?/BZ) = n,(BZ) = Z
since 7(8% x §2) = 0.

The symplectic structure on ¢ (TS?) = §? x §?/ BZ simply comes from the
(7*w,—7*w) as in Example 4.2 (notice that BZ is étale). Thus it is easy to see that it
is multiplicative as in (15) and it makes ¢ (T'S?) into a symplectic W-groupoid.
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