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Introduction: De Jong-Oort purity states that for a family of p-divisible
groups X → S over a noetherian scheme S the geometric fibres have all the
same Newton polygon if this is true outside a set of codimension bigger than
2. A more general result was first proved in [JO] and an alternative proof
is given in [V1]. We present here a short proof which is based on the fact
that a formal p-divisible group may be defined by a display. There are two
other ingredients of the proof which are known for a long time. One is the
boundedness principal for crystals over an algebraically closed field and the
other is the existence of a slope filtration for a p-divisible group over a non-
perfect field. The last fact was already mentioned in a letter of Grothendieck
to Barsotti. The boundedness property is also an important ingredient in
the proof given by Vasiu in [V1].

We discuss in detail some elementary consequences of the display struc-
ture. The other two ingredients can be found in the literature. Therefore we
discuss them only briefly.

Let R be a commutative ring. We fix a prime number p. The ring of
Witt vectors with respect to p is denoted by W (R). We write IR = V W (R)
for the Witt vectors whose first component is 0. The Witt polynomials are
denoted by wn : W (R) → R. The truncated Witt vectors of length n are
denoted by Wn(R). If pR = 0 the Frobenius endomorphism F of the ring
W (R) induces an endomorphism F : Wn(R) → Wn(R).

Definition 1 A Frobenius module over R is a pair (M, F ), where M is
a projective finitely generated W (R)-module of some fixed rank h and F :
M → M is a Frobenius-linear homomorphism, such that det F = pdε locally
for the Zariski topology on R, where ε : det M → det M is a Frobenius-linear
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isomorphism and d ≥ 0 is some integer. We call h the height of the Frobenius
module and d the dimension.

This definition implies that the decomposition det F = pdε exists even
globally. We will often consider the case where M is a free W (R)-module.
If we choose a basis of M we may view det F as an element of W (R). This
element is at least unique up to multiplication by a unit in W (R). In proofs
we take this point of view without metionning.

In this article a display over R is a 3n-display in the sense of [Z1]. The
displays of [Z1] are called nilpotent displays. If P = (P, Q, F, F1) is a display
over R then (P, F ) is a Frobenius module over R.

Let X be a p-divisible over R and assume that p is nilpotent in R. If we
evaluate the Grothendieck-Messing crystal of X at W (R) we obtain a finitely
generated locally free W (R)-module MX , which is endowed with a Frobenius
linear map F : MX → MX . If X is the formal p-divisible group associated
to a nilpotent display P then (MX , F ) = (P, F ) is a Frobenius module. The
pair (MY , F ) is also a Frobenius module, if Y is an extension of an étale
p-divisible group by X.

If we assume moreover that R is a complete local noetherian ring (MX , F )
is a Frobenius module for an arbitrary p-divisible group X over R. By these
remarks any (MX , F ) appearing in this work are Frobenius modules. Indeed
if the special fibre of X has no étale part, then (M, F )

We add that Lau [L] associated a display to any p-divisible group over a
ring R, where p is nilpotent and therefore also a Frobenius module.

The following lemma is mainly a motivation for the definitions we are
going to make:

Lemma 2 Let P and P ′ be displays over a ring R of the same height and
dimension. Let α : P → P ′ be a homomorphism.

Locally on Spec R the element det α ∈ W (R) satisfies an equation:

F det α = ε · det α,

where ε ∈ W (R)∗ is a unit.

Proof: We choose normal decompositions

P = L⊕ T, Q = L⊕ IRT
P ′ = L′ ⊕ T ′, Q′ = L′ ⊕ IRT ′.
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Without loss of generality we may assume that L, L′, T, T ′ are free W (R)-
modules. We choose identifications

L ' W (R)l ' L′, T ' W (R)t ' T ′.

Then operators F1 and F ′
1 are given by invertible block-matrices with coeffi-

cient in W (R):

F1

(
x

V y

)
=

(
X Y
Z W

) (
F x
y

)
F ′

1

(
x

V y

)
=

(
X ′ Y ′

Z ′ W ′

) (
F x
y

)
The block-matrices are invertible by the definition of a display. We also
represent α by a block matrix

α

(
x

V y

)
=

(
A B

V C D

) (
x

V y

)
Since α commutes with the operators F1 and F ′

1 we find(
X ′ Y ′

Z ′ W ′

) (
F A p F B
C F D

)
=

(
A B

V C D

) (
X Y
Z W

)
(1)

We see that
F

(
A B

V C D

)
=

(
F A F B
pC F D

)
has the same determinant as (

F A p F B
C F D

)
But then taking determinants in (1) gives the result. Q.E.D.

Proposition 3 Let R be a ring such that Spec R is connected. Let α : P →
P ′ be a homomorphism of displays of the same height h and the same dimen-
sion d.

If det α 6= 0 then there is a number u, such that locally on Spec R the
following equation holds:

det α = puε, where ε ∈ W (R)∗, u ∈ Z≥0.
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Proof: We set η = det α. By the last proposition we find:

F η = ζ · η for some ζ ∈ W (R)∗. (2)

We write η = V h
ξ, such that w0(ξ) 6= 0. We claim that (2) implies:

F ξ = F h

ζ · ξ. (3)

To verify this we may assume that h > 0. We obtain:

FV h

ξ = ζ V h

ξ = V h

( F h

ζξ)

We deduce that:
pξ = V ( F h

ζξ) (4)

Let y0 = w0(ξ) be the first component of the Witt vector ξ. By (4) we obtain
py0 = 0. But this implies pξ = V F ξ and therefore (3).

Let w0(ξ) = x and w0(
F h

ζ) = e ∈ R∗. We find

xp = ex. (5)

Since the product
x(xp−1 − e) = 0

has relatively prime factors, it follows that

D(x) ∪D(xp−1 − e) = Spec R
D(x) ∩D(xp−1 − e) = ∅.

Hence by connectedness either D(x) = Spec R or D(x) = ∅. In the first case
x is nilpotent. But then we find x = 0, by iterating the equation (5). This
is a contradiction to our choices. Therefore D(x) = Spec R and x is a unit.
Then ξ is a unit too. We find

F h

η = F hV h

ξ = phξ.

But by (2) F h
η may be expressed as the product of η by a unit. This proves

the result. Q.E.D.

Definition 4 A homomorphism as in the proposition is called an isogeny of
displays.
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Let α : P → P ′ be a homomorphism of nilpotent displays of the same
height and dimension. By the functor from the category of nilpotent displays
to the category of formal p-divisible groups we obtain from α a morphism
φ : X → X ′ of p-divisible groups. It follows from [Z1] that α is an isogeny,
iff φ is an isogeny of p-divisible groups.

Let R be a ring such that pR = 0. Then the Frobenius endomorphism
on W (R) induces a Frobenius endomorphism on the truncated Witt vectors
F : Wn(R) → Wn(R). Therefore we may consider truncated Frobenius
modules. We are going to prove a version of Proposition 3 for truncated
Frobenius modules.

Definition 5 Let R be a ring such that pR = 0. A truncated Frobenius
module of level n, dimension d, and height h over R is a finitely generated
projective Wn(R)-module M of rank h equipped with a Frobenius linear op-
erator F : M → M , such that locally on Spec R the determinant has the
form

det F = pdε, (6)

where ε : det M → det M is a Frobenius linear isomorphism.

A Frobenius module M over R induces a truncated Frobenius module, if we
tensor it by Wn(R).

Definition 6 Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h. A morphism of Frobenius modules
α : M → N is called an isogeny if there is a natural number u < n such that
the determinant of α has locally on Spec R the form:

F d

det α = puε, ε ∈ Wn(R)∗.

The number u is called the height of the isogeny.

Proposition 7 Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h over a ring R such that Spec R is
connected.

Let u > 0 be an integer, such that n > u + d. Let α : M → N be a
homomorphism of Frobenius modules such that

F d

det α /∈ V u+1Wn−u−1(R).

Then α becomes an isogeny if we truncate it to level n− d:

α[n− d] : M [n− d] → N [n− d].
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Proof: We may assume that M and N are free Wn(R)-modules. We choose
isomorphisms

det M ' Wn(R) ' det N

and view θ := det α as an element of W (R). Then we obtain a commutative
diagram

det M
θ−−−→ det N

pdτMF

y ypdτNF

det M
θ−−−→ det N,

where τM , τN ∈ Wn(R)∗ are units. We obtain

pdτN
F θ = θpdτM . (7)

Using pd = V dF d in W (R), we can divide (7) by V d. We then obtain an
equality in Wn−d(R):

F d+1

θ[n− d] = F d

θ[n− d]ρ. (8)

Here θ[n − d] denotes the image of θ by the natural restriction Wn(R) →
Wn−d(R) and ρ ∈ Wn−d(R)∗ is a unit.

On the other hand we may write by assumption:

F d

θ = V u1σ, (9)

where u1 ≤ u, and w0(σ) = s0 6= 0. Clearly we may assume u = u1. Since
n− d > u we obtain from equation (8)

sp
0 = s0e

for some unit e ∈ R∗. As in the proof of Proposition 3 (see: (5)) we conclude
that s0 is a unit. Then σ is a unit too. From (9) we obtain

F d+u

θ = puσ.

We truncate this equation to Wn−d(R) and use (8) to obtain

F d

θ[n− d] = puε

for some unit ε ∈ Wn−d(R)∗. Q.E.D.
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Let n > u be natural numbers. It is clear that a morphism of displays
α : P → P ′ is an isogeny of height u, iff the map of the truncated Frobenius
modules α[n] : (P [n], F ) → (P ′[n], F ) is an isogeny of height u.

For the proof of the purity theorem of de Jong and Oort for p-divisible
groups we need to recall a few facts on completely slope divisible p-divisible
groups (abbreviated: c.s.d. groups) from [Z2] and [OZ]. We will use truncated
Frobenius modules of p-divisible groups over any scheme U . These are locally
free Wn(OU)-modules.

Lemma 8 Let Y be a c.s.d. group over a normal noetherian scheme U over
F̄p. Let n be a natural number. Then there is a finite morphism U ′ → U ,
such that the truncated Frobenius module MY [n] of Y over U ′ is obtained by
base change from a truncated Frobnius module over F̄p, i.e. we can find a
Frobenius module N over F̄p such that there is an isomorphism of Frobenius
modules

Wn(OU ′)⊗Wn(OU ) MY [n] ' Wn(OU ′)⊗W (F̄p) N (10)

This is an immediate consequence of [OZ] Proposition 1.3, since it says that
this is true if we take for U ′ the perfect hull of the universal pro-étale cover of
U . Another proof is obtained by substituting in the proof of loc.cit. Frobenius
modules.

Proposition 9 Let T be a regular connected 1-dimensional scheme over Fp.
Then any p-divisible group X with constant Newton polygon over T is isoge-
nous to a c.s.d. group.

Proof: This follows from the main result of [OZ] Thm. 2.1. for any normal
noetherian scheme T . But under under the assumptions made the proof is
much easier (compare [Z2] proof of Thm. 7). Indeed let K = K(T ) be the
function field of T . Then we find by over K an isogeny to a c.s.d. group:

XK →
◦
Y (11)

Let
◦
G be the finite group scheme which is the kernel of (11) and let G ⊂ X

be its scheme theoretic closure. We set Y = X/G. Using the fact that X has
constant Newton polygon one proves that Y is c.s.d. Q.E.D.

The third ingredient is the boundedness principle, which seems to be
known for a long time [M]. But it importance was rediscovred by Vasiu only
recently. It is also an ingredient of Vasiu’s proof [V1] of the de Jong-Oort
purity.
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Proposition 10 Let k be an algebraic closed field. Let h be a natural num-
ber. Then there is a constant c ∈ N with the following property:

Let M1 and M2 be Frobenius modules of height ≤ h over k. Let n ∈ N
be arbitrary and let ᾱ : M1/p

nM1 → Ms/p
nM2 be a morphism of truncated

Frobenius modules which lifts to a morphism of truncated Frobenius modules
M1/p

n+cM1 → M2/p
n+cM2. Then ᾱ lifts to a morphism of Frobenius modules

α : M1 → M2.

A weaker version of this is contained in [O], where the existence of the con-
stant c is only asserted for given modules M1 and M2. But one can show that
for given modules N1 resp. N2 in the isogeny class of M1 resp. M2, there
are always isogenies N1 → M1 resp. N1 → M1 whose degrees are bounded
by a constant only depending on h. This is another well-known bounded-
ness principle. As an alternative to this proof the reader may use the much
stronger results of [V2].

Theorem 11 (de Jong-Oort) Let R be a noetherian local ring of Krull
dimension ≥ 2 with p ·R = 0. Let U = Spec R \ {m}, the complement of the
closed point. A p-divisible group X over SpecR, which has constant Newton
polygon over U has constant Newton polygon over Spec R.

Proof: It is not difficult to reduce to the case where R is complete, normal
of Krull dimension 2 with algebraically closed residue class field k = R/m.
Then U is a 1-dimensional regular scheme. We find by Proposition 9 a c.s.d.
group Y over U and an isogeny

α : Y → X|U , (12)

Let d be the dimension of X let u be the height of α and let c be the number
from Proposition 10. We choose a natural number n > c+u+d.. After a finite
extension of R we may assume by Lemma 8 that the truncated Frobenius
module of Y is constant

MY [n] ' Wn(OU)⊗W (F̄p) N (13)

where N is a Frobenius module over F̄p. In particular the Newton polygons
of N and Y must be the same by the boundedness principle applied to the
field K̄, where K is the field of fractions of R.
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Combining (12) and (13) we find an isogeny of height u of truncated
Frobenius modules

Wn(OU)⊗W (F̄p) N → Wn(OU)⊗R MX [n]. (14)

By the normality of R we find Γ(U,Wn(OU)) = Wn(R). Taking the global
section of (14) over U we obtain a morphism of truncated Frobenius modules

Wn(R)⊗W (F̄p) N → MX [n]. (15)

We know that (15) is an isogeny over K of height u. Therefore Proposition 3
is applicable to the morphism (15). We obtain therefore an isogeny of height
u of truncated Frobenius modules over R:

Wn−d(R)⊗W (F̄p) N → MX [n− d],

It is clear that the base change of an isogeny of truncated Frobenius modules
is again an isogeny. Making the base change R → k we obtain an isogeny:

Wn−d(k)⊗W (F̄p) N → Wn−d(k)⊗W (R) MX [n− d] = MXk
[n− d].

The boundedness principle shows that Xk and N habe the same Newton
polygon. Q.E.D.
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