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Introduction: De Jong-Oort purity states that for a family of p-divisible
groups X — S over a noetherian scheme S the geometric fibres have all the
same Newton polygon if this is true outside a set of codimension bigger than
2. A more general result was first proved in [JO] and an alternative proof
is given in [V1]. We present here a short proof which is based on the fact
that a formal p-divisible group may be defined by a display. There are two
other ingredients of the proof which are known for a long time. One is the
boundedness principal for crystals over an algebraically closed field and the
other is the existence of a slope filtration for a p-divisible group over a non-
perfect field. The last fact was already mentioned in a letter of Grothendieck
to Barsotti. The boundedness property is also an important ingredient in
the proof given by Vasiu in [V1].

We discuss in detail some elementary consequences of the display struc-
ture. The other two ingredients can be found in the literature. Therefore we
discuss them only briefly.

Let R be a commutative ring. We fix a prime number p. The ring of
Witt vectors with respect to p is denoted by W (R). We write Ir = VIV(R)
for the Witt vectors whose first component is 0. The Witt polynomials are
denoted by w, : W(R) — R. The truncated Witt vectors of length n are
denoted by W, (R). If pR = 0 the Frobenius endomorphism F' of the ring
W(R) induces an endomorphism F : W, (R) — W, (R).

Definition 1 A Frobenius module over R is a pair (M, F), where M is
a projective finitely generated W (R)-module of some fized rank h and F :
M — M is a Frobenius-linear homomorphism, such that det F' = pZe locally
for the Zariski topology on R, where € : det M — det M s a Frobenius-linear



1somorphism and d > 0 is some integer. We call h the height of the Frobenius
module and d the dimension.

This definition implies that the decomposition det ' = pZe exists even
globally. We will often consider the case where M is a free W (R)-module.
If we choose a basis of M we may view det F' as an element of W(R). This
element is at least unique up to multiplication by a unit in W (R). In proofs
we take this point of view without metionning.

In this article a display over R is a 3n-display in the sense of [Z1]. The
displays of [Z1] are called nilpotent displays. If P = (P, Q, F, F}) is a display
over R then (P, F') is a Frobenius module over R.

Let X be a p-divisible over R and assume that p is nilpotent in R. If we
evaluate the Grothendieck-Messing crystal of X at W (R) we obtain a finitely
generated locally free W (R)-module M, which is endowed with a Frobenius
linear map F' : Mx — Mx. If X is the formal p-divisible group associated
to a nilpotent display P then (M, F') = (P, F') is a Frobenius module. The
pair (My, F) is also a Frobenius module, if Y is an extension of an étale
p-divisible group by X.

If we assume moreover that R is a complete local noetherian ring (My, F)
is a Frobenius module for an arbitrary p-divisible group X over R. By these
remarks any (Mx, F') appearing in this work are Frobenius modules. Indeed
if the special fibre of X has no étale part, then (M, F')

We add that Lau [L] associated a display to any p-divisible group over a
ring R, where p is nilpotent and therefore also a Frobenius module.

The following lemma is mainly a motivation for the definitions we are
going to make:

Lemma 2 Let P and P’ be displays over a ring R of the same height and
dimension. Let a: P — P" be a homomorphism.
Locally on Spec R the element det a € W (R) satisfies an equation:

Fleta = ¢ - det a,
where ¢ € W(R)* is a unit.

Proof: We choose normal decompositions

P=L&T, Q=L&IgT
P=La&T, Q=LoIT.
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Without loss of generality we may assume that L, LT, 7" are free W(R)-
modules. We choose identifications

LeWR! ' ~L, T~W(R)! ~T.

Then operators F; and F] are given by invertible block-matrices with coeffi-

cient in W(R): N Y v Fy
F1< v;)_<Z W)( é)

()=o) ()

The block-matrices are invertible by the definition of a display. We also
represent a by a block matrix

()= (e n) ()

Since aw commutes with the operators F; and F] we find
XY FA p¥BY A B X Y (1)
z" W c D)\ YC D zZ W
We see that
F A B\ (FA B
Ve D )\ pC FD
has the same determinant as
FA p¥B
cC D

But then taking determinants in (1) gives the result. Q.E.D.

Proposition 3 Let R be a ring such that Spec R is connected. Let o : P —
P’ be a homomorphism of displays of the same height h and the same dimen-
sion d.

If det a # O then there is a number u, such that locally on Spec R the
following equation holds:

deta =p'e, where ¢ € W(R)*, u € Z>y.



Proof: We set n = det . By the last proposition we find:
Fp=(-n for some ¢ € W(R)*. (2)
We write n = V"¢, such that wo(€) # 0. We claim that (2) implies:

Fe= F'¢.e. (3)

To verify this we may assume that h > 0. We obtain:

Ve = ¢ Vie = V"(T¢e)

We deduce that: .
pé= V("¢ (4)
Let yo = wo(&) be the first component of the Witt vector £. By (4) we obtain

pyo = 0. But this implies p€ = YF'¢ and therefore (3).
Let wo(€) = x and wo( 7'¢) = e € R*. We find

aP = ex. (5)
Since the product
z(zPt —e) =0
has relatively prime factors, it follows that

D(z)UD(zP~t —e) = SpecR
D(z)NnD(aP~t—e) = 0.

Hence by connectedness either D(z) = Spec R or D(x) = (). In the first case
x is nilpotent. But then we find x = 0, by iterating the equation (5). This
is a contradiction to our choices. Therefore D(z) = Spec R and z is a unit.
Then ¢ is a unit too. We find
h hy/h
Py = PV i,
But by (2) ¥ hn may be expressed as the product of by a unit. This proves
the result. Q.E.D.

Definition 4 A homomorphism as in the proposition is called an isogeny of
displays.



Let o : P — P’ be a homomorphism of nilpotent displays of the same
height and dimension. By the functor from the category of nilpotent displays
to the category of formal p-divisible groups we obtain from a a morphism
¢ : X — X’ of p-divisible groups. It follows from [Z1] that « is an isogeny,
iff ¢ is an isogeny of p-divisible groups.

Let R be a ring such that pR = 0. Then the Frobenius endomorphism
on W(R) induces a Frobenius endomorphism on the truncated Witt vectors
F : W,(R) — W,(R). Therefore we may consider truncated Frobenius
modules. We are going to prove a version of Proposition 3 for truncated
Frobenius modules.

Definition 5 Let R be a ring such that pR = 0. A truncated Frobenius
module of level n, dimension d, and height h over R is a finitely generated
projective W,,(R)-module M of rank h equipped with a Frobenius linear op-
erator ' : M — M, such that locally on Spec R the determinant has the
form

det F' = pe, (6)

where € : det M — det M is a Frobenius linear isomorphism.

A Frobenius module M over R induces a truncated Frobenius module, if we
tensor it by W, (R).

Definition 6 Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h. A morphism of Frobenius modules
a: M — N s called an isogeny if there is a natural number uw < n such that
the determinant of o has locally on Spec R the form:

Fldeta =p'e, c¢€ WL(R)".
The number u s called the height of the isogeny.

Proposition 7 Let M and N be truncated Frobenius modules of level n and
of the same dimension d and height h over a ring R such that Spec R is
connected.

Let w > 0 be an integer, such that n > uw+d. Let o« : M — N be a
homomorphism of Frobenius modules such that

P detar ¢ VW, _u1(R).

Then « becomes an isogeny if we truncate it to level n — d:

an—d]: M[n—d] — N[n —d.



Proof: We may assume that M and N are free W,,(R)-modules. We choose
isomorphisms

det M ~ W, (R) ~ det N

and view 6 := det a as an element of W(R). Then we obtain a commutative
diagram
det M —"— det N

pdTMFl lpdTNF
det M —2— det N,

where 1), Ty € W, (R)* are units. We obtain
pdTN Fo = epdTM- (7>

Using p? = V4F? in W(R), we can divide (7) by V¢ We then obtain an
equality in W,,_4(R):

P00 — d) = ™0[n — d)p. (8)
Here O[n — d] denotes the image of § by the natural restriction W,(R) —

Wh—a(R) and p € W,,_q(R)* is a unit.
On the other hand we may write by assumption:

Flg Vg (9)

where u; < u, and wo(o) = s9 # 0. Clearly we may assume u = u;. Since
n — d > u we obtain from equation (8)

s§ = spe

for some unit e € R*. As in the proof of Proposition 3 (see: (5)) we conclude
that s is a unit. Then o is a unit too. From (9) we obtain

By = pho.
We truncate this equation to W,,_4(R) and use (8) to obtain
P9ln — d] = pUe

for some unit ¢ € W,,_4(R)*. Q.E.D.



Let n > u be natural numbers. It is clear that a morphism of displays
a P — P’ is an isogeny of height u, iff the map of the truncated Frobenius
modules a[n] : (P[n], F') — (P'[n], F') is an isogeny of height w.

For the proof of the purity theorem of de Jong and Oort for p-divisible
groups we need to recall a few facts on completely slope divisible p-divisible
groups (abbreviated: c.s.d. groups) from [Z2] and [OZ]. We will use truncated
Frobenius modules of p-divisible groups over any scheme U. These are locally
free W,,(Op)-modules.

Lemma 8 LetY be a c.s.d. group over a normal noetherian scheme U over
F,. Let n be a natural number. Then there is a finite morphism U — U,
such that the truncated Frobenius module My [n] of Y over U’ is obtained by
base change from a truncated Frobnius module over F,, i.e. we can find a
Frobenius module N over I_Fp such that there is an isomorphism of Frobenius
modules

Wi(Ov) ®w,00) My[n] ~ Wn(Ouvr) Qww,) N (10)

This is an immediate consequence of [OZ] Proposition 1.3, since it says that
this is true if we take for U’ the perfect hull of the universal pro-étale cover of
U. Another proof is obtained by substituting in the proof of loc.cit. Frobenius
modules.

Proposition 9 Let T be a reqular connected 1-dimensional scheme over IF,.
Then any p-divisible group X with constant Newton polygon over T is isoge-
nous to a c.s.d. group.

Proof: This follows from the main result of [OZ] Thm. 2.1. for any normal
noetherian scheme 7. But under under the assumptions made the proof is
much easier (compare [Z2]| proof of Thm. 7). Indeed let K = K(T') be the
function field of T'. Then we find by over K an isogeny to a c.s.d. group:

X =Y (11)

Let G be the finite group scheme which is the kernel of (11) and let G C X
be its scheme theoretic closure. We set Y = X/G. Using the fact that X has
constant Newton polygon one proves that Y is c.s.d. Q.E.D.

The third ingredient is the boundedness principle, which seems to be
known for a long time [M]. But it importance was rediscovred by Vasiu only
recently. It is also an ingredient of Vasiu’s proof [V1] of the de Jong-Oort
purity.



Proposition 10 Let k be an algebraic closed field. Let h be a natural num-
ber. Then there is a constant ¢ € N with the following property:

Let My and My be Frobenius modules of height < h over k. Letn € N
be arbitrary and let & : My /p" My — M/p"Ms be a morphism of truncated
Frobenius modules which lifts to a morphism of truncated Frobenius modules
My /p"TeMy — My /p"tcMs. Then & lifts to a morphism of Frobenius modules
o My — M.

A weaker version of this is contained in [O], where the existence of the con-
stant c is only asserted for given modules M; and Ms. But one can show that
for given modules Ny resp. N, in the isogeny class of M; resp. Ms, there
are always isogenies Ny — M resp. N7 — M, whose degrees are bounded
by a constant only depending on h. This is another well-known bounded-
ness principle. As an alternative to this proof the reader may use the much
stronger results of [V2].

Theorem 11 (de Jong-Oort) Let R be a noetherian local ring of Krull
dimension > 2 with p- R = 0. Let U = Spec R\ {m}, the complement of the
closed point. A p-divisible group X over SpecR, which has constant Newton
polygon over U has constant Newton polygon over Spec R.

Proof: It is not difficult to reduce to the case where R is complete, normal
of Krull dimension 2 with algebraically closed residue class field £ = R/m.
Then U is a 1-dimensional regular scheme. We find by Proposition 9 a c.s.d.
group Y over U and an isogeny

a:Y — Xy, (12)

Let d be the dimension of X let u be the height of o and let ¢ be the number
from Proposition 10. We choose a natural number n > c+u-+d.. After a finite
extension of R we may assume by Lemma 8 that the truncated Frobenius
module of Y is constant

My[n] =~ W, (Ov) @w,) N (13)

where N is a Frobenius module over F,. In particular the Newton polygons
of N and Y must be the same by the boundedness principle applied to the
field K, where K is the field of fractions of R.



Combining (12) and (13) we find an isogeny of height u of truncated
Frobenius modules

Wo(Ov) @ws,) N — Wa(Ov) @r Mx|n]. (14)

By the normality of R we find I'(U, W,,(Oy)) = W, (R). Taking the global
section of (14) over U we obtain a morphism of truncated Frobenius modules

Wo(R) @,y N — My[n]. (15)

We know that (15) is an isogeny over K of height . Therefore Proposition 3
is applicable to the morphism (15). We obtain therefore an isogeny of height
u of truncated Frobenius modules over R:

Wn_d(R) ®W(Fp) N — MX [n — d],

It is clear that the base change of an isogeny of truncated Frobenius modules
is again an isogeny. Making the base change R — k we obtain an isogeny:

Wn_d(k) ®W(]Fp) N — Wn—d(k:) ®W(R) MX [7’L - d] = ]\4)(,c [TL — d]

The boundedness principle shows that X; and N habe the same Newton

polygon. Q.E.D.
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