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In this paper we study principally polarized abelian varieties that admit an
automorphism of order 3. It turns out that certain natural conditions on the mul-
tiplicities of its action on the differentials of the first kind do guarantee that those
polarized varieties are not jacobians of curves. As an application, we get another
proof of the (already known) fact that intermediate jacobians of certain cubic three-
folds are not jacobians of curves.

1. Principally polarized abelian varieties that admit an
automorphism of order 3

Let ζ3 = −1+
√−3
2 be a primitive (complex) cubic root of unity. It generates the

multiplicative order 3 cyclic group µ3 of cubic roots of unity.
Let g > 1 be an integer and (X, λ) a principally polarized g-dimensional abelian

variety over the field C of complex numbers, δ an automorphism of (X, λ) that
satisfies the cyclotimic equation δ2 + δ + 1 = 0 in End(X). In other words, δ is a
periodic automorphism of order 3, whose set of fixed points is finite. This gives rise
to the embeddings

Z[ζ3] ↪→ End(X), 1 7→ 1X , ζ3 7→ δ,

Q(ζ3) ↪→ End0(X), 1 7→ 1X , ζ3 7→ δ.

By functoriality, Q(ζ3) acts on the g-dimensional complex vector space Ω1(X) of
differentials of the first kind on X. This provides Ω1(X) with the structure of
Q(ζ3)⊗Q C-module. Clearly,

Q(ζ3)⊗Q C = C⊕ C

where the summands correspond to the embeddings Q(ζ3) → C that send ζ3 to
ζ3 and ζ−1

3 respectively. So, Q(ζ3) acts on Ω1(X) with multiplicities a and b that
correspond to two embeddings of Q(ζ3) into C. Clearly, a and b are non-negative
integers with a + b = g.

Theorem 1.1. If g + 2 > 3 | a − b | then (X, λ) is not the jacobian of a smooth
projective irreducible genus g curve with canonical principal polarization.

Proof. Suppose that (X,λ) ∼= (J(C), Θ) where C is an irreducible smooth projective
genus g curve, J(C) its jacobian with canonical principal polarization Θ. It follows
from Torelli theorem in Weil’s form [10, 11] that there exists an automorphism φ :
C → C, which induces (by functoriality) either δ or −δ on J(C) = X. Replacing φ
by φ4 and taking into account that δ3 is the identity automorphism of X = J(C), we
may and will assume that φ does induces δ. Clearly, φ3 is the identity automorphism
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of C, because it induces the identity map on J(C) and g > 1. The action of φ on
C gives rise to the embedding

µ3 ↪→ Aut(C), ζ3 7→ φ.

Let P ∈ C be a fixed point of φ. Then φ induces the automorphism of the
corresponding (one-dimensional) tangent space TP (C), which is multiplication by
a complex number cP . Clearly, cP is a cubic root of unity.

Lemma 1.2. Every fixed point P of φ is nondegenerate, i.e., cP 6= 1.

Proof of Lemma 1.2. The result is pretty well-known. However, I failed to find a
proper reference.

So, suppose that cP = 1. Let OP be the local ring at P and mP its maximal ideal.
We write φ∗ for the automorphism of OP induced by φ. Clearly, φ3

∗ is the identity
map. Since φ is not the identity map, there are no φ∗-invariant local parameters at
P . Clearly, φ∗(mP ) = mP , φ∗(m2

P ) = m2
P . Since TP (C) is the dual of mP /m2

P and
cp = 1, we conclude that φ∗ induced the identity map on mP /m2

P . This implies
that if t ∈ mP is a local parameter at t (i.e., its image t̄ in mP /m2

P is not zero) then
t′ := t + φ∗(t) + φ2

∗(t) is φ∗-invariant and its image in mP /m2
P equals 3t̄ 6= 0. This

implies that t′ ia a φ∗-invariant local parameter at P . Contradiction.
¤

Corollary 1.3. D := C/µ3 is a smooth projective irreducible curve. The map
C → D has degree 3, its ramification points are exactly the images of fixed points
of φ and all the ramification indices are 3.

Lemma 1.4. D is biregularly isomorphic to the projective line.

Proof of Lemma 1.4. The map C → D induces, by Albanese functorialy, the sur-
jective homomorphism of the corresponding jacobians J(C) → J(D) that kills all
the divisors classes of the form (Q) − (φ(Q)) (Q ∈ C). This implies that it kills
(1 − δ)J(C). On the other hand, 1 − δ : J(C) → J(C) is, obviously, an isogeny.
This implies that the image of J(C) in J(D) is zero and the surjectiveness implies
that J(D) = 0. This means that the genus of D is 0. ¤

Corollary 1.5. The number h of fixed points of φ is g + 2.

Proof of Corollary 1.5. Applying Hurwitz formula to C → D, we get

2g − 2 = 3 · (−2) + 2 · h.

¤

Lemma 1.6. Let φ∗ : Ω1(C) → Ω1(C) be the automorphism of Ω1(C) induced by
φ and τ its trace. Then

τ = aζ3 + bζ−1
3 .

Proof of Lemma 1.6. Pick a φ-invariant point P0 and consider the regular map

α : C → J(C), Q 7→ cl((Q)− (P0)).

It is well-known that α induces an isomorphism of complex vector spaces

α∗ : Ω1(X) ∼= Ω1(C).

Clearly,
φ∗ = α∗δ∗α∗−1
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where δ∗ : Ω1(J(C)) = Ω1(J(C)) is the automorphism induced by δ. This implies
that the traces of α∗ and δ∗ do coincide. Now the very definition of a and b implies
that the trace of α∗ equals aζ3 + bζ−1

3 . ¤

End of proof of Theorem 1.1. Let B be the set of fixed points of φ. We
know that #(B) = g + 2. By holomorphic Lefschetz fixed point formula [2, Th. 2],
[6, Ch. 2, Sect. 4] (see also [9, Sect. 12.2 and 12.5]) applied to φ,

1− τ̄ =
∑

P∈B

1
1− cP

where τ̄ is the complex-conjugate of τ . Recall that every cP is a (primitive) cubic
root of unity and therefore

| 1− cP |=
√

3, | 1
1− cP

|= 1√
3

and
| 1− τ̄ |≤ g + 2√

3
.

Now

| 1− τ̄ |2= (a + b + 2)2 + 3(a− b)2

4
=

(g + 2)2 + 3(a− b)2

4
.

This implies that
(g + 2)2

3
≥ (g + 2)2 + 3(a− b)2

4
.

It follows that (g + 2)2 ≥ 9(a− b)2 and we are done. ¤

2. Cubic threefolds

Let S : F (x0, x1, x2, x3) = 0 ⊂ P3 be a smooth projective cubic surface over C
[7]. (In particular, F is an irreducible homogeneous cubic polynomial in x0, x1, x2, x3

with complex coefficients.) Then the equation

y3 = F (x0, x1, x2, x3)

defines a smooth projective threefold T ⊂ P4 provided with the natural action of
µ3 that arises from multiplication of y by cubic roots of unity [1] (see also [3, 8]).
We have the µ3-invariant Hodge decomposition

H3(T,C) = H3(T,Z)⊗C) = H1,2(T )⊕H2,1(T )

and the µ3-invariant non-degenerate alternating intersection pairing

(, ) : H3(T,C)×H3(T,C) → C.

In addition, both H1,2(T ) and H2,1(T ) are 5-dimensional isotropic subspaces and
µ3 acts on H2,1(T ) with multiplicities (4, 1), i.e. ζ3 ∈ µ3 acts as diagonalizable
linear operator in H2,1(T ) with eigenvalue ζ3 of multiplicity 4 and eigenvalue ζ−1

3

of multiplicity 1 ([3, Sect. 5], [1, Sect. 2.2 and Lemma 2.6]). (The proof is based
on [5, Th. 8.3 on p. 488]; see also [4, pp. 338–339].)

Since both H1,2(T ) and H2,1(T ) are isotropic and the intersection pairing is non-
degenerate, its restriction to H1,2(T ) × H2,1(T ) gives rise to the non-degenerate
µ3-invariant C-bilinear pairing

(, ) : H1,2(T )×H2,1(T ) → C. (1)
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It follows that µ3 acts on H1,2(T ) also with multiplicities (1, 4). (This assertion
also follows from the fact that H1,2(T ) is the complex-conjugate of H2,1(T ).) In
particular, the action of µ3 on H1,2(T ) extends to the embedding

Z[µ3] ↪→ EndC(H1,2(T )). (2)

3. Intermediate jacobians

Let (J(T ), θT ) be the intermediate jacobian of the cubic threefold T [4, Sect. 3]; it
is a principally polarized five-dimensional complex abelian variety. By functoriality,
µ3 acts on J(T ) and respects the principal polarization θT . As complex torus,

J(T ) = H1,2(T )/p(H3(T,Z)), (3)

where
p : H3(T,C) = H3(T,Z)⊗C = H1,2(T )⊕H2,1(T ) → H1,2(T )

is the projection map that kills H2,1(T ). The imaginary part of the Riemann form of
the polarization coincides with the intersection pairing on H3(T,Z) ∼= p(H3(T,Z)).

It follows from (2) that the action of µ3 on J(T ) extends to the embedding

Z[µ3] ↪→ End(J(T )).

Combining (1) and (3), we conclude that the µ3-modules Ω1(J(T )) = HomC(H1,2(T ),C)
and H2,1(T ) are canonically isomorphic. Now the assertions of Sect. 3 about mul-
tiplicities imply that Z[ζ3] acts on Ω1(J(T )) with multiplicities (4, 1).

Since 3× | 4 − 1 |> 5 + 2, it follows from Theorem 1.1 that (J(T ), θT ) is not
isomorphic to the canonically polarized jacobian of a curve. Of course, this assertion
was proven by completely different method in [4] for arbitrary smooth projective
cubic threefolds.
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