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In this paper we study principally polarized abelian varieties that admit an
automorphism of order 3. It turns out that certain natural conditions on the mul-
tiplicities of its action on the differentials of the first kind do guarantee that those
polarized varieties are not jacobians of curves. As an application, we get another
proof of the (already known) fact that intermediate jacobians of certain cubic three-
folds are not jacobians of curves.

1. PRINCIPALLY POLARIZED ABELIAN VARIETIES THAT ADMIT AN
AUTOMORPHISM OF ORDER 3

Let (3 = 71%‘/?‘3 be a primitive (complex) cubic root of unity. It generates the
multiplicative order 3 cyclic group ps of cubic roots of unity.

Let g > 1 be an integer and (X, \) a principally polarized g-dimensional abelian
variety over the field C of complex numbers, § an automorphism of (X, \) that
satisfies the cyclotimic equation 62 + 6 +1 = 0 in End(X). In other words, J is a
periodic automorphism of order 3, whose set of fixed points is finite. This gives rise
to the embeddings

ZK?J — End(X), 1— 1)(, Cd — 6,
Q(¢s) — End’(X),1— 1x, (3 — 6.

By functoriality, Q(¢3) acts on the g-dimensional complex vector space Q'(X) of
differentials of the first kind on X. This provides Q'(X) with the structure of
Q(¢3) ®q C-module. Clearly,

Q@) ®qeC=CaC

where the summands correspond to the embeddings Q(¢3) — C that send (5 to
3 and (3! respectively. So, Q((3) acts on Q'(X) with multiplicities a and b that
correspond to two embeddings of Q((3) into C. Clearly, a and b are non-negative
integers with a + b = g.

Theorem 1.1. If g+ 2 > 3 | a—b | then (X, \) is not the jacobian of a smooth
projective irreducible genus g curve with canonical principal polarization.

Proof. Suppose that (X, \) 2 (J(C), ©) where C is an irreducible smooth projective

genus g curve, J(C) its jacobian with canonical principal polarization ©. It follows

from Torelli theorem in Weil’s form [10, 11] that there exists an automorphism ¢ :

C — C, which induces (by functoriality) either § or —§ on J(C) = X. Replacing ¢

by ¢* and taking into account that §° is the identity automorphism of X = J(C), we

may and will assume that ¢ does induces §. Clearly, ¢ is the identity automorphism
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of C, because it induces the identity map on J(C) and g > 1. The action of ¢ on
C gives rise to the embedding

3 — AUt(C)a C3 = ¢
Let P € C be a fixed point of ¢. Then ¢ induces the automorphism of the

corresponding (one-dimensional) tangent space Tp(C'), which is multiplication by
a complex number cp. Clearly, cp is a cubic root of unity.

Lemma 1.2. Every fixed point P of ¢ is nondegenerate, i.e., cp # 1.

Proof of Lemma 1.2. The result is pretty well-known. However, I failed to find a
proper reference.

So, suppose that cp = 1. Let Op be the local ring at P and mp its maximal ideal.
We write ¢, for the automorphism of Op induced by ¢. Clearly, ¢2 is the identity
map. Since ¢ is not the identity map, there are no ¢,.-invariant local parameters at
P. Clearly, ¢.(mp) = mp, ¢p.(m%) = m%. Since Tp(C) is the dual of mp/m?% and
¢, = 1, we conclude that ¢, induced the identity map on mp/m%. This implies
that if t € mp is a local parameter at ¢ (i.e., its image £ in mp/m% is not zero) then
t =1t + ¢u(t) + ¢2(t) is ¢u-invariant and its image in mp/m% equals 3¢ # 0. This
implies that ¢’ ia a ¢,-invariant local parameter at P. Contradiction.

O

Corollary 1.3. D := C/us is a smooth projective irreducible curve. The map
C — D has degree 3, its ramification points are exactly the images of fized points
of ¢ and all the ramification indices are 3.

Lemma 1.4. D is biregularly isomorphic to the projective line.

Proof of Lemma 1.4. The map C' — D induces, by Albanese functorialy, the sur-
jective homomorphism of the corresponding jacobians J(C') — J(D) that kills all
the divisors classes of the form (Q) — (#(Q)) (Q € C). This implies that it kills
(1 —6)J(C). On the other hand, 1 — 4 : J(C) — J(C) is, obviously, an isogeny.
This implies that the image of J(C) in J(D) is zero and the surjectiveness implies
that J(D) = 0. This means that the genus of D is 0. O

Corollary 1.5. The number h of fixed points of ¢ is g + 2.
Proof of Corollary 1.5. Applying Hurwitz formula to C' — D, we get
2g—2=3-(-2)+2-h.
O

Lemma 1.6. Let ¢* : Q(C) — QY(C) be the automorphism of Q(C) induced by
¢ and T its trace. Then
7 =als3 + b3t

Proof of Lemma 1.6. Pick a ¢-invariant point Py and consider the regular map
0 C = J(C),Q — c((Q) — (R).
It is well-known that « induces an isomorphism of complex vector spaces
ot QNX) =2 QY0).

Clearly,
(b* — a*é*a*—l
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where §* : QY(J(C)) = Q}(J(C)) is the automorphism induced by §. This implies
that the traces of o* and 6* do coincide. Now the very definition of a¢ and b implies
that the trace of a* equals a3 + ngl. ([

End of proof of Theorem 1.1. Let B be the set of fixed points of ¢. We
know that #(B) = g+ 2. By holomorphic Lefschetz fixed point formula [2, Th. 2],
[6, Ch. 2, Sect. 4] (see also [9, Sect. 12.2 and 12.5]) applied to ¢,
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where 7 is the complex-conjugate of 7. Recall that every ¢p is a (primitive) cubic
root of unity and therefore

1 1
1— =3 -
-er = VA, | =0 =
and )
‘1_;&&.
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Now

1—7 = (a+b+2)2+3(a—0b)? _ (g+2)%+3(a—b)?
4 4 ’

This implies that
(9+2? _ (9+2?+3(a—b)
3 - 4 '
It follows that (g + 2)% > 9(a — b)? and we are done. O

2. CUBIC THREEFOLDS

Let S : F(xg,21,22,73) = 0 C P3 be a smooth projective cubic surface over C
[7]. (In particular, F is an irreducible homogeneous cubic polynomial in zg, z1, 22, 3
with complex coefficients.) Then the equation

y* = F(xo, 71,2, 73)

defines a smooth projective threefold 7' C P* provided with the natural action of
w3 that arises from multiplication of y by cubic roots of unity [1] (see also [3, §]).
We have the us-invariant Hodge decomposition

H*(T,C) = H*(T,Z) ® C) = H"*(T) @ H*X(T)
and the ps-invariant non-degenerate alternating intersection pairing
(,) : H¥(T,C) x H*(T,C) — C.

In addition, both H"?(T") and H*!(T) are 5-dimensional isotropic subspaces and
pz acts on H>Y(T) with multiplicities (4,1), i.e. (3 € ps acts as diagonalizable
linear operator in H>!(T') with eigenvalue (3 of multiplicity 4 and eigenvalue ('
of multiplicity 1 ([3, Sect. 5], [1, Sect. 2.2 and Lemma 2.6]). (The proof is based
on [5, Th. 8.3 on p. 488]; see also [4, pp. 338-339].)

Since both H2(T) and H?(T') are isotropic and the intersection pairing is non-

degenerate, its restriction to HV2(T) x H?!(T) gives rise to the non-degenerate
ps-invariant C-bilinear pairing

(,): HY*(T) x H*Y(T) — C. (1)
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It follows that pg acts on H“2(T) also with multiplicities (1,4). (This assertion
also follows from the fact that HY2(T) is the complex-conjugate of H>1(T).) In
particular, the action of uz on HY2(T) extends to the embedding

Z[p3) — Endc(HY*(T)). (2)
3. INTERMEDIATE JACOBIANS

Let (J(T'), 6r) be the intermediate jacobian of the cubic threefold T [4, Sect. 3]; it
is a principally polarized five-dimensional complex abelian variety. By functoriality,
w3 acts on J(T') and respects the principal polarization 7. As complex torus,

J(T) = H"*(T)/p(H*(T, Z)), 3)
where
p:H*(T,C)=H*T,Z) ® C = H"*(T) @ H*X(T) — H"“*(T)
is the projection map that kills H21(T'). The imaginary part of the Riemann form of
the polarization coincides with the intersection pairing on H3(T, Z) = p(H*(T, Z)).
It follows from (2) that the action of ug on J(T') extends to the embedding

Zljis] — End(J(T)).

Combining (1) and (3), we conclude that the pz-modules Q' (J(T)) = Homc(HY2(T), C)
and H>!(T) are canonically isomorphic. Now the assertions of Sect. 3 about mul-
tiplicities imply that Z[(3] acts on Q(J(T')) with multiplicities (4, 1).

Since 3x | 4 — 1 |> 5+ 2, it follows from Theorem 1.1 that (J(T),6fr) is not
isomorphic to the canonically polarized jacobian of a curve. Of course, this assertion
was proven by completely different method in [4] for arbitrary smooth projective
cubic threefolds.
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