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PREMIÈRE PARTIE. FORMULES

§ 1. Introduction

1.1. Cet article est une variation sur un thème de [Jacobi].

Soit
f(x) = anx

n + an−1x
n−1 + . . . + a0

un polynôme de degré n > 0 à coefficients dans un corps de base k de caractéristique 0. Rappelons que
la suite de Sturm de f ,

f = (f0, f1, f2, . . .) ,

est définie par récurrence : on pose f0(x) = f(x), f1(x) = f ′(x) et pour j ≥ 1 fj+1 est le reste de la
division euclidienne de fj−1 par fj, avec le signe opposé :

fj−1(x) = qj−1(x)fj(x) − fj+1(x), (1.1.1)

deg fj+1(x) < deg fj(x), cf. le célèbre mémoire [Sturm].

Dans cette note on propose des formules explicites pour les coefficients des polynômes fj en termes
des coefficients de f . Plus généralement, on donnera des formules analogues pour les membres de
l’algorithme d’Euclide correspondant à deux polynômes quelconques f1, f2 de degrés n− 1, n − 2.

Notre point de départ est une algèbre B, quotient de l’anneau de polynômes en variables b(i)j (i ≥
1, j ≥ 2i) par certains rélations quadratiques, cf. (1.7.1) ci-dessous. Nos formules sont des conséquences
des identités dans B, analogues des rélations de Plücker.

1.2. Pour énoncer le résultat, introduisons les quantités quadratiques

b(j)i = n
j−1
∑

p=0

(i− 2p)an−pan−i+p − j(n − i+ j)an−jan+j−i,

j ≥ 1, i ≥ 2j. Ici on pose ai = 0 pour i < 0. Par exemple,

b(1)i = nianan−i − (n− i+ 1)an−1an−i+1 .

1.3. Ensuite on introduit, pour m ≥ 2, les matrices (m− 1) × (m− 1) symétriques

C(m) =












b(1)2 b(1)3 b(1)4 b(1)5 . . . b(1)m
b(1)3 b(2)4 b(2)5 b(2)6 . . . b(2)m+1

b(1)4 b(2)5 b(3)6 b(3)7 . . . b(3)m+2

b(1)5 b(2)6 b(3)7 b(4)8 . . . b(4)m+3

. . . . . . . .
b(1)m b(2)m+1 b(3)m+2 b(4)m+3 . . . b(m− 1)2m−2












.

De plus, pour i ≥ 0 on définit une matrice ”décalée” C(m)i : elle est obtenue en remplaçant dans
C(m) la dernière ligne par

(

b(1)m+i b(2)m+i+1 b(3)m+i+2 b(4)m+i+3 . . . b(m− 1)2m+i−2

)

.
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Donc C(m)0 = C(m). On pose

c(m)i := detC(m)i, c(m) := c(m)0 .

En particulier,
c(2)i = b(1)i+2

Il est commode de poser

c(1)i :=
(n− i)an−i

nan
,

i ≥ 0, c(1) := c(1)0 = 1.

1.4. Puis on définit les nombres γj, j ≥ 1 par récurrence :

γ1 = nan, γ2 = −
1

n2an
, γj+1 = γj−1 ·

c(j − 1)2

c(j)2
,

j ≥ 2. Autrement dit,

γj = (−1)j+1ǫj ·
j−2
∏

i=1

c(j − i)2(−1)i

,

où ǫj = nan si j est impair et 1/(n2an) sinon.

Les nombres γ1, . . . , γj sont donc bien définis si tous les nombres c(2), c(3), . . . , c(j−1) sont différents
de zéro.

1.5. Théorème. Supposons que deg fj = n− j, donc deg fi = n− i pour i ≤ j.

Alors pour tous i ≤ j, on a c(i) 6= 0 et

fi(x) = γi ·
n−i∑

p=0

c(i)px
n−i−p .

En particulier, le coefficient dominant de fi(x) est égal à γic(i).

1.6. On vérifie aussitôt que

b(k)i − b(k − 1)i = c(1)k−1b(1)i−k+1 − c(1)i−kb(1)k (1.6.1)

pour tous k ≥ 2, i ≥ 2k − 2. Par exemple,

b(2)i − b(1)i = c(1)1b(1)i−1 − c(1)i−2b(1)2,

b(3)i − b(2)i = c(1)2b(1)i−2 − c(1)i−3b(1)3,

etc. Il s’en suit que tous les b(j)i, j ≥ 2, sont expressibles en termes de c(1)p et c(2)p = b(1)p+2, p ≥ 0.

1.7. Les formules (1.6.1) impliquent que les nombres b(i)j satisfont aux relations quadratiques
suivantes :

(b(k)i − b(k − 1)i) · b(1)j

= (b(j)i−k+j − b(j − 1)i−k+j) · b(1)k − (b(j)k+j−1 − b(j − 1)k+j−1) · b(1)i−k+1

(1.7.1)

On verra que la preuve de 1.5 ne dépend que des relations (1.7.1).
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On formalise la situation en introduisant une algèbre quadratique correspondante, cf. § 2 ci-dessous.

1.8. Maintenant soient
f1(x) = α0x

n−1 + α1x
n−2 + . . .

et
f2(x) = β0x

n−2 + β1x
n−3 + . . .

deux polynômes arbitraires de degrés n−1, n−2. On définit fj, j ≥ 3 à partir de f1, f2 par les formules
de l’algorithme d’Euclide (1.1.1).

Posons
c(1)i :=

αi

α0
, b(1)i+2 := βi, i ≥ 0 .

Définissons les nombres b(k)i, k ≥ 2 par récurrence sur k, à partir des formules (1.6.1).

Définissons les nombres c(m)i, m ≥ 2, par les formules 1.3.

Enfin, on pose :

γ̃1 = α0 , γ̃2 = 1 , γ̃j+1 = γ̃j−1
c(j − 1)2

c(j)2

Alors on a

1.9. Théorème. Supposons que deg fj = n− j, d’où deg fi = n− i pour i ≤ j.

Alors pour tous i ≤ j, on a c(i) 6= 0 et

fi(x) = γ̃i ·
n−i∑

p=0

c(i)px
n−i−p .

En particulier, le coefficient dominant de fi(x) est égal à γ̃ic(i).

Cf. [Jacobi], section 15.

1.10. Dans la Deuxième Partie on présente un exemple numérique. Là, les déterminants de Cauchy
apparaissent dans les asymptotiques des coefficients dominants de la suite de Sturm pour les polynômes
d’Euler.

§ 2. Algèbre B

2.1. On peut réécrire les relations (1.7.1) sous la forme suivante :

det

(

b(1)j b(1)k
b(j − 1)i+j−k b(k − 1)i

)

− det

(

b(1)j b(j − 1)j+k−1

b(1)i−k+1 b(k)i

)

+ det

(

b(1)k b(j)j+k−1

b(1)i−k+1 b(j)i+j−k

)

= ∆(k, j)i − ∆′(k, j)i + ∆′′(k, j)i = 0 .

(2.1.1)

2.2. On définit une algèbre quadratique B comme une k-algèbre commutative engendrée par les
lettres b(i)j , i, j ∈ Z, modulo les relations (2.1.1), où i, j, k ∈ Z.

(D’ailleurs, dans tout le paragraphe qui suit on peut remplacer le corps de base k par un anneau
commutatif quelconque.)
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2.3. Le but de ce paragraphe est d’écrire certaines relations entre les déterminants n × n dans B

qui généralisent (2.1.1).

On fixe un nombre entier n ≥ 2. Soient m1, . . . ,mn, i des entiers.

On définit 2n + 2 vecteurs vj, wj ∈ kn, j = 1, . . . , n+ 1 :

w1 = (b(1)m1 , b(1)m2 , . . . , b(1)mn
) ,

wj+1 = (b(1)m1 , . . . , b̂(1)mn+1−j
, . . . , b(1)mn

, b(1)i−mn+1),

1 ≤ j ≤ n (suivant l’usage, x̂ signifie que l’on omet la composante x).

Puis

v1 = (b(m1 − 1)i+m1−mn
, b(m2 − 1)i+m2−mn

, . . . , b(mn−1 − 1)i+mn−1−mn
, b(mn − 1)i) ,

v2 = (b(m1 − 1)m1+mn−1, b(m2 − 1)m2+mn−1, . . . , b(mn−1 − 1)mn−1+mn−1, b(mn)i) ,

v3 = (b(m1 − 1)m1+mn−1−1, b(m2 − 1)m2+mn−1−1, . . . , b(mn−2 − 1)mn−2+mn−1−1,

b(mn−1)mn−1+mn−1, b(mn−1)i+mn−1−mn
) ,

v4 = (b(m1 − 1)m1+mn−2−1, b(m2 − 1)m2+mn−2−1, . . . , b(mn−3 − 1)mn−3+mn−2−1,

b(mn−2)mn−2+mn−1−1, b(mn−2)mn−2+mn−1, b(mn−2)i+mn−2−mn
) ,

. . .

vn = (b(m1 − 1)m1+m2−1, b(m2)m2+m3−1, b(m2)m2+m4−1, . . . , b(m2)m2+mn−1, b(m2)i+m2−mn
)

vn+1 = (b(m1)m1+m2−1, b(m1)m1+m3−1, . . . , b(m1)m1+mn−1, b(m1)i+m1−mn
) .

2.4. Soit

M =






x11 . . . x1,n+1

. . . . .
xn−2,1 . . . xn−2,n+1






une matrice (n − 2) × (n + 1) sur B ; soit Mi, i = 1, . . . , n + 1, ses sous-matrices (n − 2) × n. Pour
écrire Mi, on enlève donc la i-ième colonne de M .

Maintenant on va définir n+ 1 matrices n× n

Dj = Dj(m1, . . . ,mn;Mn+2−j)i,

j = 1, . . . , n+ 1. On pose :

D1 =






w1

Mn+1

v1




 ,Dj =

(

wt
j M t

n+2−j vt
j

)

,

j = 2, . . . , n+ 1. Ici (.)t désigne la matrice transposée.

Enfin, on pose

∆j = ∆j(m1, . . . ,mn;Mn+2−j)i = detDj(m1, . . . ,mn;Mn+2−j)i,

j = 1, . . . , n+ 1.
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Considérons la somme alternée

R(n;m1, . . . ,mn;M)i =
n+1∑

j=1

(−1)j+1∆j(m1, . . . ,mn;Mn+2−j)i .

2.5. Exemple. n = 2. Dans ce cas il n’y a pas de matrice M ; trois nombres entiers sont donnés :
m1,m2 et i. On aura 6 vecteurs :

w1 = (b(1)m1 , b(1)m2), w2 = (b(1)m1 , b(1)i−m2+1), w3 = (b(1)m2 , b(1)i−m2+1)

et
v1 = (b(m1 − 1)i+m1−m2 , b(m2 − 1)i), v2 = (b(m1 − 1)m1+m2−1, b(m2)i),

v2 = (b(m1)m1+m2−1, b(m1)i+m1−m2) .

Il s’ensuit :

R(2;m1,m2)i = det

(

b(1)m1 b(1)m2

b(m1 − 1)i+m1−m2 b(m2 − 1)i

)

− det

(

b(1)m1 b(m1 − 1)m1+m2−1

b(1)i−m2+1 b(m2)i

)

+ det

(

b(1)m2 b(m1)m1+m2−1

b(1)i−m2+1 b(m2)i+m1−m2

)

On reconnâıt là la partie gauche de (2.1.1) pour (j, k) = (m1,m2). Il en découle que R(2;m1,m2)i = 0.

2.6. Exemple. n = 3. Dans ce cas la matrice M se réduit à 4 éléments :

M =
(

x1 x2 x3 x4

)

.

L’expression R(3;m1,m2,m3;M)i prend la forme

R(3;m1,m2,m3;M)i = det






b(1)m1 b(1)m2 b(1)m3

x1 x2 x3

b(m1 − 1)i+m1−m3 b(m2 − 1)i+m2−m3 b(m3 − 1)i






− det






b(1)m1 x1 b(m1 − 1)m1+m3−1

b(1)m2 x2 b(m2 − 1)m2+m3−1

b(1)i−m3+1 x4 b(m3)i




+ det






b(1)m1 x1 b(m1 − 1)m1+m2−1

b(1)m3 x3 b(m2)m2+m3−1

b(1)i−m3+1 x4 b(m2)i+m2−m3






− det






b(1)m2 x2 b(m1)m1+m2−1

b(1)m3 x3 b(m1)m1+m3−1

b(1)i−m3+1 x4 b(m1)i+m1−m3




 .

Calculons cette expression.

On développe le premier déterminant suivant la deuxième ligne et les autres suivant les deuxièmes
colonnes :

∆1(3;m1,m2,m3;M4)i = −x1∆1(2;m2,m3)i + x2∆1(2;m1,m3)i − x3∆1(2;m1,m2)i+m2−m3 ,

∆2(3;m1,m2,m3;M3)i = −x1∆2(2;m2,m3)i + x2∆2(2;m1,m3)i − x4∆1(2;m1,m3)m2+m3−1 .

Puis

∆3(3;m1,m2,m3;M2)i = −x1∆3(2;m2,m3)i + x3∆2(2;m1,m2)i+m2−m3 − x4∆2(2;m1,m3)m2+m3−1
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et

∆4(3;m1,m2,m3;M1)i = −x2∆3(2;m1,m3)i + x3∆3(2;m1,m2)i+m2−m3 − x4∆3(2;m1,m3)m2+m3−1 .

Pour abréger les notations on introduit des vecteurs entiers :

(i1, i2, i3, i4) := (i, i, i +m2 −m3,m2 +m3 − 1) ,

µ = (m1,m2,m3) ,

µ1 = (m2,m3), µ2 = (m1,m3), µ3 = (m1,m2) .

On peut réécire les formules ci-desssus sous une forme matricielle :








∆1(3;µ;M4)i
−∆2(3;µ;M3)i
∆3(3;µ;M2)i
−∆4(3;µ;M1)i








=








−∆1(2;µ1)i1 ∆1(2;µ2)i2 −∆1(2;µ3)i3 0
∆2(2;µ1)i1 −∆2(2;µ2)i2 0 ∆1(2;µ2)i4
−∆3(2;µ1)i1 0 ∆2(2;µ3)i3 −∆2(2;µ2)i4

0 ∆3(2;µ2)i2 −∆3(2;µ3)i3 ∆3(2;µ2)i4








·








x1

x2

x3

x4







.

En rajoutant :

R(3;m1,m2,m3;M)i = −x1 ·

{

∆1(2;µ1)i1 − ∆2(2;µ1)i1 + ∆3(2;µ1)i1

}

+x2 ·

{

∆1(2;µ2)i2 − ∆2(2;µ2)i2 + ∆3(2;µ2)i2

}

− x3 ·

{

∆1(2;µ3)i3 − ∆2(2;µ3)i3 + ∆3(2;µ3)i3

}

+x4 ·

{

∆1(2;µ2)i4 − ∆2(2;µ2)i4 + ∆3(2;µ2)i4

}

= 0 .

Le théorème ci-dessous généralise ces exemples.

2.7. Théorème. On a
R(n;m1, . . . ,mn;M)i = 0

pour tous n,m1, . . . ,mn,M et i.

Démonstration : elle se fait par récurrence sur n. Le cas n = 2 est l’exemple 2.5.

Le passage de n− 1 à n suit l’exemple 2.6.

Posons pour abréger
µ = (m1, . . . ,mn) .

À partir de cela, on introduit n+ 1 vecteurs µj ∈ Z
n−1 :

µj := (m1, . . . , m̂j , . . . ,mn),

j = 1, . . . , n, et
µn+1 := (m1, . . . , m̂n−1,mn) = µn−1 .

On définit le vecteur

(i1, i2, . . . , in+1) := (i, i, . . . , i
︸ ︷︷ ︸

n−1 fois

, i+mn−1 −mn,mn−1 +mn − 1) ∈ Z
n+1 .
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En développant les déterminants ∆j(n;µ,Mn+2−j)i, 2 ≤ j ≤ n + 1 suivant la deuxième colonne et le
déterminant ∆1(n;µ,Mn+1)i suivant la deuxième ligne, on obtient :

R(n;µ;M)i =
n+1∑

j=1

(−1)jxjR(n− 1;µj ;M1j)ij .

Ici M1j est la matrice obtenue en enlevant la première ligne et la j-ième colonne de la matrice M .

Notre assertion en découle immédiatement par récurrence sur n.

2.8. On aura besoin d’un cas particulier de ces relations. Prenons

µ = (m1,m2, . . . ,mn) = (2, 3, . . . , n+ 1) .

Pour la matrice M , prenons

M =








b(1)3 b(2)4 b(2)5 ... b(2)n+2 b(2)i+n+1

b(1)4 b(2)5 b(3)5 ... b(3)n+3 b(3)i+n+2

. . . . . .
b(1)n b(2)n+1 b(3)n+2 . . . b(n− 1)2n−1 b(n− 1)i+2n−2







.

Alors le premier déterminant
∆1(n;µ;Mn+1)i+2n = c(n+ 1)i .

On pose par définition :
c(n+ 1)′i := ∆2(n;µ;Mn)i+2n ,

c(n + 1)′′i := ∆3(n;µ;Mn−1)i+2n .

Par contre, si j ≥ 4 on voit que dans le déterminant ∆j(n;µ;Mn+2−j)i+2n la dernière colonne est égale
à la (n− j + 3)-ième colonne, d’où

∆4(n;µ;Mn−2)i+2n = ∆5(n;µ;Mn−3)i+2n = . . . = ∆n+1(n;µ;M1)i+2n = 0 .

Donc 2.7 entrâıne

2.9. Corollaire. Pour tous n ≥ 3

c(n)i − c(n)′i + c(n)′′i = 0 .

§ 3. Début de la démonstration du théorème 1.5

3.1. On a
f(x) = anx

n + an−1x
n−1 + . . .+ a0 .

La dérivée :

f1(x) = f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + . . . + a1 = nan

{

xn−1 + (n−1)an−1

nan
xn−2 + . . .+ a1

nan

}

= γ1(c(1)0x
n−1 + c(1)1x

n−2 + . . .+ c(1)n−1) .
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3.2. Le quotient de la division euclidienne de deux polynômes f(x) et g(x) = a′n−1x
n−1+a′n−2x

n−2+
. . . est égal à

an

a′

n−1
x+

a′

n−1an−1−a′

n−2an

(a′

n−1)2 .

On fait la division euclidienne :

f − (x/n+ an−1/n
2an)f ′ =

2nanan−2−(n−1)a2
n−1

n2an
xn−2 + 3nanan−3−(n−2)an−1an−2

n2an
xn−3 + . . .

= 1
n2an

· (b(1)2x
n−2 + b(1)3x

n−3 + . . .+ b(1)n) = −γ2 · (c(2)0x
n−2 + c(2)1x

n−3 + . . . c(2)n−2) .

Donc

f2(x) = γ2 ·
n−2∑

i=0

c(2)ix
n−2−i .

Cela démontre l’assertion 1.5 pour j = 1, 2, et l’on procède par récurrence par j.

3.3. On suppose que l’on a déjà trouvé :

fj−1(x) = γj−1 · [c(j − 1)xn−j+1 + c(j − 1)1x
n−j + . . .+ c(j − 1)ix

n−j+1−i + . . .]

et
fj(x) = γj · [c(j)x

n−j + c(j)1x
n−j−1 + . . . + c(j)ix

n−j−i + . . .] .

On fait la division euclidienne :

fj−1(x) −
(γj−1c(j − 1)

γjc(j)
x+ γj−1

[

c(j − 1)1 −
c(j − 1)

c(j)
· c(j)1

]

·
1

γjc(j)

)

fj(x) =

=
n−j+1
∑

i=2

γj−1

{

c(j − 1)i −
c(j − 1)

c(j)
· c(j)i −

[

c(j − 1)1 −
c(j − 1)

c(j)
· c(j)1

]

·
c(j)i−1

c(j)

}

· xn−j+1−i =

=
γj−1

c(j)2

n−j+1
∑

i=2

{

c(j−1)ic(j)
2−c(j−1)c(j)c(j)i −c(j−1)1c(j)i−1c(j)+c(j−1)c(j)1c(j)i−1

}

·xn−j+1−i .

On pose :

Q(j)i := c(j − 1)ic(j)
2 − c(j − 1)c(j)c(j)i − c(j − 1)1c(j)i−1c(j) + c(j − 1)c(j)1c(j)i−1 (3.3.1)

Alors on a :

fj+1(x) = −
γj−1

c(j)2

n−j+1
∑

i=2

Q(j)ix
n−j+1−i

Il faut montrer que

fj+1(x) = γj+1

n−j−1
∑

i=0

c(j + 1)ix
n−j−1−i = γj+1

n−j+1
∑

i=0

c(j + 1)i−2x
n−j+1−i

où

γj+1 = γj−1 ·
c(j − 1)2

c(j)2
.

Donc notre théorème est équivalent à l’identité suivante :

Q(j)i = −c(j)2c(j + 1)i . (3.3.2)
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§ 4. Formule (A)

4.1. Revenons à notre algèbre B.

On considère la matrice n× n

C(n+ 1)i−2 =










b(1)2 b(1)3 . . . b(1)n b(1)n+1

b(1)3 b(2)4 . . . b(2)n+1 b(2)n+2

. . . . . . .
b(1)n b(2)n+1 . . . b(n− 1)2n−2 b(n− 1)2n−1

b(1)n+i−1 b(2)n+i . . . b(n− 1)2n+i−3 b(n)2n+i−2










.

Donc c(n+ 1)i−2 = detC(n+ 1)i−2.

Si l’on désigne par C(n+ 1)i−2;p̂,q̂ la matrice C(n+ 1)i−2 avec la p-ième ligne et la q-ième colonne
enlevée, on aura :

c(n) = detC(n+ 1)i−2;n̂,n̂ ,

c(n)i−1 = detC(n+ 1)i−2; ˆn−1,n̂ .

En plus, on a :
c(n)′′i = detC(n+ 1)i−2; ˆn−2,n̂

où c(n)′′i a été introduit dans 2.9.

4.2. Théorème. Pour tous n, i ∈ Z, n ≥ 3, on a la relation suivante dans B

c(n− 1)ic(n)2 − c(n − 1)c(n)c(n)i − c(n− 1)1c(n)i−1c(n) + c(n − 1)c(n)1c(n)i−1

= −c(n− 1)2c(n + 1)i−2 (F )

On a vu que notre théorème principal 1.5 est une conséquence de (F ) : en effet (F ) cöıncide avec
la formule (3.3.2) (avec j remplacé par n).

À son tour, (F ) est une conséquence immédiate de deux formules :

c(n − 1)ic(n) − c(n − 1)1c(n)i−1 = −c(n− 1)c(n)′′i (A)

ou bien
c(n − 1)ic(n) − c(n − 1)1c(n)i−1 + c(n− 1)c(n)′′i = 0 (A′)

et
{c(n)i + c(n)′′i } · c(n) − c(n)1c(n)i−1 = c(n − 1)c(n + 1)i−2 . (B)

La démonstration de (B) utilise les relations quadratiques entre les lettres b(i)j . Par contre, (A)
est ”élémentaire”, en ce sens que cette identité n’utilise pas de relations entre les lettres b(i)j .

Pour démontrer (A), on applique le lemme suivant (une variante des relations de Plücker) :

4.3. Lemme. (An) Considérons n vecteurs de dimension n−1, wi = (wi1, . . . , wi,n−1), i = 1, . . . , n.
À partir d’eux, on définit n vecteurs de dimension n− 2 : vi = (wi1, . . . , wi,n−2). On pose :

Wi = det(w1, . . . , ŵi, . . . , wn)t ,

Vij := det(v1, . . . , v̂i, . . . , v̂j , . . . , vn)t .

Alors
Vn−2,n−1 ·Wn − Vn−2,n ·Wn−1 + Vn−1,n ·Wn−2 = 0 .
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(Bn) Considérons n vecteurs de dimension n − 2, vi = (vi1, . . . , vi,n−2), i = 1, . . . , n. Considérons
les mineurs

Vij := det(v1, . . . , v̂i, . . . , v̂j , . . . , vn)t .

Alors pour chaque i < n− 2,

Vn−2,n−1 · Vi,n − Vn−2,n · Vi,n−1 + Vn−1,n · Vi,n−2 = 0 .

En effet, en développant Wi par rapport à la dernière colonne, on obtient : (Bn) ⇒ (An).

Par contre, pour vérifier (Bn), considérons la matrice (n − 1) × (n − 2), W∼ = Vi. Alors on
aura Vij = W∼

j , j = n, n − 1, n − 2. D’un autre côté, en développant les mineurs dans (Bn) :
Vpq, n− 2 ≤ p < q ≤ n par rapport à la i-ième ligne, on obtient les mineurs V ∼

pq , où V ∼ est obtenue de
W∼ en enlevant la dernière colonne. On vérifie que (Bn) se réduit à (An−1) correspondant à W∼.

Il s’ensuit que (An−1) ⇒ (Bn) et on conclut par récurrence.

4.4. Le lemme étant vérifié, l’assertion 4.2 (A) est 4.3 (An) pour la matrice W égale à c(n+ 1)i−2

avec la dernière colonne enlevée.

§ 5. Formule (B)

5.1. Maintenant on s’occupe de la formule

P := {c(n)i + c(n)′′i } · c(n) − c(n)1c(n)i−1 = c(n− 1)c(n + 1)i−2 . (B)

On introduit n vecteurs de dimension n − 1, w1, . . . , wn qui sont les lignes de la matrice c(n + 1)i−2

sans la dernière colonne :

W =












b(1)2 b(1)3 . . . b(1)n−1 b(1)n
b(1)3 b(2)4 . . . b(2)n b(2)n+1

. . . . . . .
b(1)n−1 b(2)n . . . b(n − 2)2n−4 b(n− 2)2n−3

b(1)n b(2)n+1 . . . b(n − 2)2n−3 b(n− 1)2n−2

b(1)n+i−1 b(2)n+i . . . b(n− 2)2n+i−4 b(n− 1)2n+i−3












et n mineurs
Wi = det(w1, . . . , ŵi, . . . , wn)t, i = 1, . . . , n .

Par exemple, Wn = c(n), Wn−1 = c(n)i−1, Wn−2 = c(n)′′i . Donc,

c(n+ 1)i−2 = b(n)2n+i−2Wn − b(n− 1)2n−1Wn−1

+b(n− 2)2n−2Wn−2 − . . . + (−1)n−1b(1)n+1W1

= b(n)2n+i−2Wn − b(n− 1)2n−1Wn−1 +R

(5.1.1)

où
R = b(n − 2)2n−2Wn−2 − b(n− 3)2n−3Wn−3 + . . .+ (−1)n−1b(1)n+1W1 . (5.1.2)

5.2. On a n − 1 relations linéaires entre les Wi : la i-ième est obtenue en ajoutant à W sa i-ième
colonne et en développant le déterminant = 0 par rapport à la dernière colonne.
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Explicitement :

b(n− 1)2n+i−3Wn − b(n− 1)2n−2Wn−1 + b(n− 2)2n−3Wn−2 − . . .+ (−1)n−1b(1)nW1 = 0 ,

b(n− 2)2n+i−4Wn − b(n− 2)2n−3Wn−1 + b(n− 2)2n−4Wn−2 − . . . + (−1)n−1b(1)n−1W1 = 0 ,

. . .

b(2)n+iWn − b(2)n+1Wn−1 + b(2)nWn−2 − . . .+ (−1)n−2b(2)4W2 + (−1)n−1b(1)3W1 = 0 ,

b(1)n+i−1Wn − b(1)nWn−1 + b(1)n−1Wn−2 − . . . + (−1)n−2b(1)3W2 + (−1)n−1b(1)2W1 = 0 .

5.3. D’autre part, rappelons la matrice c(n)1 :

c(n)1 = det










b(1)2 b(1)3 . . . b(1)n−1 b(1)n
b(1)3 b(2)4 . . . b(2)n b(2)n+1

. . . . . . .
b(1)n−1 b(2)n . . . b(n− 2)2n−4 b(n− 2)2n−3

b(1)n+1 b(2)n+2 . . . b(n− 2)2n−2 b(n− 1)2n−1










.

On développe cette quantité par rapport à la dernière colonne :

c(n)1 = b(n− 1)2n−1c(n− 1) − b(n− 2)2n−3Mn−2 + . . .+ (−1)n−1b(2)n+1M2 + (−1)nb(1)nM1 .

Après la multiplication par −c(n)i−1 = −Wn−1 on obtient :

−c(n)1c(n)i−1 = −b(n− 1)2n−1c(n− 1)Wn−1 (∗) +R′

où
R′ = b(n− 2)2n−3Wn−1Mn−2 − b(n− 3)2n−4Wn−1Mn−3 + . . .

+(−1)nb(2)n+1Wn−1M2 + (−1)n−1b(1)nWn−1M1 .

5.4. Maintenant remplaçons dans R′ les termes (−1)ib(n − i)2n−i−1Wn−1 en utilisant les relations
5.2 :

b(n− 2)2n−3Wn−1 = b(n− 2)2n+i−4Wn + b(n − 2)2n−4Wn−2 − . . .+ (−1)n−1b(1)n−1W1 ,

. . .

b(2)n+1Wn−1 = b(2)n+iWn + b(2)nWn−2 − . . .+ (−1)n−2b(2)4W2 + (−1)n−1b(1)3W1 ,

b(1)nWn−1 = b(1)n+i−1Wn + b(1)n−1Wn−2 − . . .+ (−1)n−2b(1)3W2 + (−1)n−1b(1)2W1 .

Alors on obtient :
−c(n)1c(n)i−1 = −b(n− 1)2n−1c(n− 1)Wn−1 (∗)

+{b(n− 2)2n+i−4Mn−2 − . . .+ (−1)nb(2)n+iM2 + (−1)n+1b(1)n+i−1M1} · c(n) +R′′,

où :

R′′ =

{

b(n− 2)2n−4Wn−2 − . . . + (−1)n−1b(1)n−1W1

}

·Mn−2 − . . .

+(−1)n ·

{

b(2)nWn−2 − . . .+ (−1)n−2b(2)4W2 + (−1)n−1b(1)3W1

}

·M2

+(−1)n−1 ·

{

b(1)n−1Wn−2 − . . . + (−1)n−2b(1)3W2 + (−1)n−1b(1)2W1

}

·M1 .
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5.5. Lemme. R′′ = c(n − 1)R.

Démonstration. On introduit les vecteurs de dimension n− 2 :

W = ((−1)n+1W1, (−1)n+2W2, . . . ,Wn−2) ,

M = ((−1)n+1M1, (−1)n+2M2, . . . ,Mn−2)

et
b = (b(1)n+1, b(1)n+2, . . . , b(1)2n−2) .

Alors la définition de R′′ se récrit :

R′′ = M· C(n− 1) · Wt (5.5.1)

(où c(n− 1) = detC(n− 1), la matrice C(n− 2) étant symétrique) ; de plus,

R = b · Wt .

Maintenant développons les quantités Mi par rapport à la dernière ligne :

Mi = b(1)2n−2Mi,n−2 − b(1)2n−3Mi,n−3 + . . .+ (−1)n+2b(1)n+2Mi2 + (−1)n+1b(1)n+1Mi1

=
n−2∑

j=1

(−1)n+jb(1)n+jMij , i = 1, . . . , n − 2 .

On remarque que les quantités Mij sont les mineurs de la matrice (n− 2)× (n− 2) C(n− 1). Il vient :

M = b · Ĉ(n− 1)

où
Ĉ(n− 1) = ((−1)i+jMij),

donc Ĉ(n− 1) · C(n− 1) = c(n− 1). En substituant dans (5.5.1) :

R′′ = b · Ĉ(n− 1) · C(n− 1) · Wt = c(n− 1) · b · Wt = c(n − 1)R,

cqfd.

5.6. Il s’ensuit que pour vérifier l’identité (B) il reste à démontrer que

c(n)i + c(n)′′i + b(n− 2)2n+i−4Mn−2 − . . .

+(−1)nb(2)n+iM2 + (−1)n+1b(1)n+i−1M1 = b(n)2n+i−2c(n− 1) .
(5.6.1)

Par contre, la quantité

b(n)2n+i−2c(n− 1) − b(n− 2)2n+i−4Mn−2 + . . .+ (−1)n+1b(2)n+iM2 + (−1)nb(1)n+i−1M1

n’est autre que le développement de c(n)′i suivant la dernière colonne, donc (5.6.1) est équivalent à

c(n)i + c(n)′′i = c(n)′i (5.6.2)

qui a été déjà prouvée, cf. Corollaire 2.9.

Ceci achève la démonstration du théorème 4.2, et donc du 1.5.

5.7. Démonstration du théorème 1.9. En fait, nous l’avons déjà montré : la démonstration de la
récurrence principale (3.3.2) n’utilise que les relations dans l’algèbre B.

Ces relations sont vérifiées si l’on définit les variables b(i)j à partir de coefficients de polynômes
f1(x) et f2(x) comme dans 1.8, d’où l’assertion.
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DEUXIÈME PARTIE.

POLYNÔMES D’EULER ET DÉTERMINANT DE CAUCHY

§ 1. Nombres β(j)i

1.1. Rappelons que pour un polynôme

f(x) = anx
n + an−1x

n−1 + . . . + a0

les nombres b(j)i sont définis par

b(j)i = n
j−1
∑

p=0

(i− 2p)an−pan−i+p − j(n − i+ j)an−jan+j−i .

On introduit les quantités :

qi :=
ai−1

ai
,

ri :=
qi−1

qi
=
aiai−2

a2
i−1

,

puis

β(j)i :=
b(j)i

(n− i+ j)an−jan+j−i
=

j−1
∑

p=0

n(i− 2p)

n− i+ j
·
an−pan+p−i

an−jan+j−i
− j .

1.2. Par exemple :

β(1)2 =
2n

n− 1
·
anan−2

a2
n−1

− 1 =
2n

n− 1
· rn − 1 ,

β(1)i =
ni

n− i+ 1
·

anan−i

an−1an−i+1
− 1 .

On remarque que
anan−i

an−1an−i+1
=
qn−i+1

qn
= rn−i+2rn−i+1 . . . rn .

On définit les quantités

ψ(i, j) :=
j
∏

p=i

rp

(donc ψ(i, j) = 1 si i > j). Il s’ensuit :

β(1)i =
ni

n− i+ 1
· ψ(n − i+ 2, n) − 1 .

1.3. De même :

anan−i

an−2an−i+2
=

anan−i

an−1an−i+1
·
an−1an−i+1

an−2an−i+2
= ψ(n− i+ 2, n)ψ(n − i+ 3, n − 1) .

Par exemple :
anan−4

a2
n−2

= ψ(n − 2, n)ψ(n − 1, n− 1) = rn−2r
2
n−1rn .
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Il en découle :

β(2)4 =
4n

n− 2

anan−4

a2
n−2

+
2n

n− 2

an−1an−3

a2
n−2

− 2 =
4n

n− 2
rn−2r

2
n−1rn +

2n

n− 2
rn−1 − 2 ,

β(2)i =
ni

n− i+ 2

anan−i

an−2an−i+2
+

n(i− 2)

n− i+ 2

an−1an−i+1

an−2an−i+2
− 2

=
ni

n− i+ 2
ψ(n− i+ 2, n)ψ(n − i+ 3, n − 1) +

n(i− 2)

n− i+ 2
ψ(n − i+ 3, n − 1) − 2 .

1.4. Un autre exemple :

anan−6

a2
n−3

= ψ(n − 4, n)ψ(n − 3, n− 1)ψ(n − 2, n− 2) = rn−4r
2
n−3r

3
n−2r

2
n−1rn .

1.5. En général on pose :

φ(n, j, i) :=
anan−i

an−jan−i+j
=

j−1
∏

q=0

ψ(n − i+ j + q, n− q)

et l’on aura :

β(j)i =
j−1
∑

p=0

n(i− 2p)

n− i+ j
· φ(n− p, j − p, i− p) − j .

1.6. Passons maintenant aux déterminants c(n). On commence par un exemple :

c(4) = det






b(1)2 b(1)3 b(1)4
b(1)3 b(2)4 b(2)5
b(1)4 b(2)5 b(3)6






= det






(n− 1)a2
n−1β(1)2 (n− 2)an−1an−2β(1)3 (n− 3)an−1an−3β(1)4

(n− 2)an−1an−2β(1)3 (n− 2)a2
n−2β(2)4 (n− 3)an−2an−3β(2)5

(n− 3)an−1an−3β(1)4 (n− 3)an−2an−3β(2)5 (n− 3)a2
n−3β(3)6






= (an−1an−2an−3)
2 · det






(n− 1)β(1)2 (n− 2)β(1)3 (n− 3)β(1)4
(n− 2)β(1)3 (n− 2)β(2)4 (n− 3)β(2)5
(n− 3)β(1)4 (n− 3)β(2)5 (n− 3)β(3)6




 .

1.7. En général

c(m+ 1) =

( m∏

i=1

an−i

)2

×

× det








(n− 1)β(1)2 (n − 2)β(1)3 . . . (n−m)β(1)m+1

(n− 2)β(1)3 (n − 2)β(2)4 . . . (n−m)β(2)m+2

. . . . . .
(n−m)β(1)m+1 (n−m)β(2)m+2 . . . (n−m)β(m)2m







.
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§ 2. Polynômes d’Euler et fonction hypergéométrique

2.1. Suivant [Euler], on définit les polynômes

En(x) =
1

2
{(1 + ix/2n)2n + (1 − ix/2n)2n} . (2.1.1)

Donc, En(x) est un polynôme de degré 2n, avec le terme constant 1, ne contenant que des puissances
paires de x. Plus précisément,

En(x) =
n∑

k=0

(−1)k
(

2n
2k

)

x2k

(2n)2k
. (2.1.2)

Par exemple :

E1(x) = 1 −
1

4
x2 ,

E2(x) = 1 −
3

8
x2 +

1

256
x4 ,

E3(x) = 1 −
5

12
x2 +

5

432
x4 −

1

46656
x6 ,

E4(x) = 1 −
7

16
x2 +

35

2048
x4 −

7

65536
x6 +

1

16777216
x8 .

2.2. Rappelons que la fonction hypergéométrique de Gauss est définie par

F (α, β, γ, x) = 1 +
αβ

1 · γ
x+

α(α + 1)β(β + 1)

1 · 2 · γ(γ + 1)
x2 +

α(α+ 1)(α + 2)β(β + 1)(β + 2)

1 · 2 · 3 · γ(γ + 1)(γ + 2)
x3 + . . .

=
∞∑

i=0

ci(α, β, γ)x
i,

où

ci(α, β, γ) =
α(α + 1) . . . (α+ i− 1) · β(β + 1) . . . (β + i− 1)

i! · γ(γ + 1) . . . (γ + i− 1)
,

cf. [Gauss]. Il s’ensuit :
ci(−n/2,−n/2 + 1/2, 1/2)

=
(−n/2)(−n/2 + 1) . . . (−n/2 + i− 1) · (−n/2 + 1/2)(−n/2 + 3/2) . . . (−n/2 + i− 1/2)

i! · (1/2)(1/2 + 1) . . . (1/2 + i− 1)

=
(−1)i2−in(n− 2) . . . (n− 2i+ 2) · (−1)i2−i(n− 1)(n − 3) . . . (n− 2i+ 1)

i! · 2−i · 1 · 3 · 5 . . . (2i− 1)

=
2−i · n(n− 1)(n − 2) . . . (n− 2i+ 1)

2−i · 2 · 4 . . . 2i · 1 · 3 · 5 . . . (2i− 1)
=

(

n
2i

)

.

Donc

F (−n/2,−n/2 + 1/2, 1/2, x2) =

[n/2]
∑

i=0

(

n
2i

)

x2i =
1

2
{(1 + x)n + (1 − x)n} . (2.2.1)

Il en découle :

tnF (−n/2,−n/2 + 1/2, 1/2, u2/t2) =
1

2
{(t+ u)n + (t− u)n}, (2.2.2)
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cf. [Gauss], no. 5, formula II.

2.3. La formule (2.2.1) implique :

En(x) = F (−n,−n+ 1/2, 1/2,−x2/4n2) . (2.3.1)

2.4. Si l’on écrit

En(x) =
n∑

k=0

enkt
2k, enk := (−1)k

(

2n
2k

)

1

(2n)2k

alors

enk = (−1)k
2n(2n − 1) . . . (2n− 2k + 1)

(2k)!(2n)2k
=

(−1)k

(2k)!
· 1 ·

(

1 −
1

2n

)(

1 −
2

2n

)

. . .

(

1 −
2k − 1

2n

)

,

d’où

lim
n→∞

enk =
(−1)k

(2k)!
,

i.e.

lim
n→∞

En(x) =
∞∑

k=0

(−1)k

(2k)!
x2k = cos x,

comme il faut. En d’autres termes,

lim
n→∞

F (−n,−n+ 1/2, 1/2,−x2/4n2) = cos x,

ou, comme aurait pu écrire Gauss,

F (−k, k + 1/2, 1/2,−x2/4k2) = cos x,

k étant ”un nombre infiniment grand” (denotante k numerum infinite magnum). En fait, Gauss écrivit

F (k, k′, 1/2,−x2/4kk′) = cos x,

denotante k, k′ numeros infinite magnos, cf. [Gauss], no. 5, formula XII.

§ 3. Asymptotiques

3.1. On pose :

fn(x) =
n∑

k=0

(−1)k
(

2n
2k

)

xk

(2n)2k
=

n∑

k=0

a
(n)
k xk . (3.1.1)

Donc
En(x) = fn(x2) .

On désigne les quantités b(j)i, ri, etc. qui correspondent au polynôme fn en ajoutant l’indice (n) en

haut : b(j)
(n)
i , r

(n)
i , etc.

Donc on aura :

c(m+ 1)(n) =

( m∏

i=1

a
(n)
n−i

)2

×
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× det









(n− 1)β(1)
(n)
2 (n− 2)β(1)

(n)
3 . . . (n−m)β(1)

(n)
m+1

(n− 2)β(1)
(n)
3 (n− 2)β(2)

(n)
4 . . . (n−m)β(2)

(n)
m+2

. . . . . .

(n−m)β(1)
(n)
m+1 (n−m)β(2)

(n)
m+2 . . . (n−m)β(m)

(n)
2m









.

3.2. On a :

a
(n)
i = (−1)i

(

2n
2i

)

,

d’où

r
(n)
i =

a
(n)
i

a
(n)
i−2

a
(n)2
i−1

= [(2i−2)!]2[(2n−2i+2)!]2

(2i)!(2n−2i)!(2i−4)!(2n−2i+4)!

= (2i−2)(2i−3)
2i(2i−1) · (2n−2i+1)(2n−2i+2)

(2n−2i+3)(2n−2i+4) .

En remplaçant i par n− i,

r
(n)
n−i =

(2i+ 1)(2i + 2)

(2i+ 3)(2i + 4)
·
(2n − 2i− 2)(2n − 2i− 3)

(2n− 2i)(2n − 2i− 1)
.

On s’interesse aux valeurs limites :

r
(∞)
∞−i := lim

n→∞
r
(n)
n−i =

(2i+ 1)(2i + 2)

(2i+ 3)(2i + 4)
.

Il s’ensuit :

ψ(∞− i+ 2,∞) := lim
n→∞

ψ(n− i+ 2, n) =
1 · 2

(2i− 1)2i
,

ψ(∞− i+ 3,∞− 1) =
3 · 4

(2i− 2)(2i − 3)
,

ψ(∞− i+ 4,∞− 2) =
5 · 6

(2i− 4)(2i − 5)
,

etc.

3.3. Maintenant on veut calculer

β(j)
(∞)
i := lim

n→∞
β(j)

(n)
i .

Il est commode de poser :

B(j)∞i := β(j)
(∞)
i + j .

On a :

B(1)
(∞)
i = i · ψ(∞− i+ 2,∞) =

1

2i− 1

d’où

β(1)
(∞)
i = −

2(i− 1)

2i− 1
.

Ensuite,

B(2)
(∞)
i = i · ψ(∞− i+ 2,∞)ψ(∞− i+ 3,∞− 1) + (i− 2) · ψ(∞− i+ 3,∞− 1)

= ψ(∞− i+ 3,∞− 1) ·

{

B(1)
(∞)
i + i− 2

}

=
3 · 4

(2i− 2)(2i − 3)
·

{
1

2i− 1
+ i− 2

}

=
3 · 2

2i− 1
,
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d’où

β(2)
(∞)
i = −

4(i− 2)

2i− 1
.

De même,

B(3)
(∞)
i = ψ(∞− i+ 4,∞− 2) ·

{

B(2)
(∞)
i + i− 4

}

=
5 · 6

(2i− 4)(2i − 5)
·

{
3 · 2

2i− 1
+ i− 4

}

=
5 · 3

2i− 1
,

d’où

β(3)
(∞)
i = −

6(i− 3)

2i− 1
.

3.4. En général, la récurrence évidente fournit

B(j)
(∞)
i =

(2j − 1) · j

2i− 1

et

β(j)
(∞)
i = −

2j(i− j)

2i− 1
.

3.5. On définit les nombres

c(m+ 1)∞ := det











β(1)
(∞)
2 β(1)

(∞)
3 . . . β(1)

(∞)
m+1

β(1)
(∞)
3 β(2)

(∞)
4 . . . β(2)

(∞)
m+2

. . . . . .

β(1)
(∞)
m+1 β(2)

(∞)
m+2 . . . β(m)

(∞)
2m











.

Donc on aura :
( m∏

i=1

a
(n)
n−i

)−2

· c(m+ 1)(n) = c(m+ 1)∞ · nm +O(nm−1) .

Les calculs précédents fournissent par exemple :

c(4)∞ = det







−2
3 −4

5 −6
7

−4
5 −8

7 −12
9

−6
7 −12

9 −18
11







= (−1)3 · 2 · 4 · 6 · det







1
3

2
5

3
7

1
5

2
7

3
9

1
7

2
9

3
11







= (−1)3 · 23 · (3!)2 · det







1
3

1
5

1
7

1
5

1
7

1
9

1
7

1
9

1
11






.

En général on obtient

c(m+ 1)∞ = (−1)m · 2m · (m!)2 · det











1
3

1
5 . . . 1

2m+1

1
5

1
7 . . . 1

2m+3

. . . . . .

1
2m+1

1
2m+3 . . . 1

4m−1











.

On remarque que la dernière matrice (une variante de la matrice de Hilbert) est du type Hankel.
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3.6. Le déterminant

C(m+ 1) := det











1
3

1
5 . . . 1

2m+1

1
5

1
7 . . . 1

2m+3

. . . . . .

1
2m+1

1
2m+3 . . . 1

4m−1











est un cas particulier du déterminant calculé par Cauchy (d’où le caractère C), cf. son Mémoire sur les

fonctions alternées et sur les sommes alternées, pp. 173 - 182 dans [Cauchy].

Rappelons que, étant données deux suites x1, . . . , xm et y1, . . . , ym, le théorème de Cauchy dit que

det((xi + yj)
−1)mi,j=1 =

∏

1≤i<j≤m (xj − xi)(yj − yi)
∏m

i,j=1 (xi + xj)

d’où, en posant xi = 2i− 2, yi = 2i+ 1,

C(m+ 1) =

∏

1≤i<j≤m (2j − 2i)2
∏m

i,j=1 (2i+ 2j − 1)
.
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