CPT-P09-2006

UNE INTERSECTION DE QUADRIQUES LIEE A LA SUITE DE STURM

Oleg Ogievetsky!, Vadim Schechtman?

A Yuri Ivanovich Manin, a l'occasion de son 70-eme anniversaire

TABLE DES MATIERES

Premiere Partie. Formules

§ 1. Introduction

§ 2. Algebre B

§ 3. Début de la démonstration du théoreme 1.5

§ 4. Formule (A) 10
§ 5. Formule (B) 11

Deuxieme Partie. Polynomes d’Euler et déterminant de Cauchy

§ 1. Nombres 3(j); 14
§ 2. Polynomes d’Euler et fonction hypergéométrique 16
§ 3. Asymptotiques 17
Bibliographie 20

!Centre de Physique Théorique, Luminy, 13288 Marseille, France (Unité Mixte de Recherche 6207 du CNRS et des
Universités Aix—Marseille I, Aix-Marseille II et du Sud Toulon — Var; laboratoire affilié & la FRUMAM, FR 2291) et
Institut de Physique P.N. Lebedev, Département Théorique, Leninsky prospekt 53, 119991 Moscou, Russie;
email: oleg@cpt.univ-mrs.fr

2Laboratoire Emile Picard, UFR MIG, Université Paul Sabatier, 31062 Toulouse, France;
email: schechtman@math.ups-tlse.fr



PREMIERE PARTIE. FORMULES

§ 1. Introduction

1.1. Cet article est une variation sur un theme de [Jacobi].
Soit
f(x) = apa™ + an12" N+ . +a

un polynome de degré n > 0 a coefficients dans un corps de base ¢ de caractéristique 0. Rappelons que
la suite de Sturm de f,

f:(f07f1)f2)"'))

est définie par récurrence : on pose fo(z) = f(x), fi(xz) = f'(z) et pour j > 1 fj1; est le reste de la
division euclidienne de f;_1 par f;, avec le signe opposé :

fi1(x) = gj1(x) fi(x) = fira(2), (1.L.1)

deg fj+1(x) < deg fj(x), cf. le célebre mémoire [Sturm].

Dans cette note on propose des formules explicites pour les coefficients des polynémes f; en termes
des coefficients de f. Plus généralement, on donnera des formules analogues pour les membres de
I'algorithme d’Euclide correspondant a deux polynoémes quelconques f1, fo de degrés n — 1,n — 2.

Notre point de départ est une algebre B, quotient de I’anneau de polynomes en variables b(i); (i >
1, j > 21) par certains rélations quadratiques, cf. (1.7.1) ci-dessous. Nos formules sont des conséquences
des identités dans 9, analogues des rélations de Pliicker.

1.2. Pour énoncer le résultat, introduisons les quantités quadratiques
j—1
b(j)i =n Z (i = 2p)an—pan—itp — j(n — i+ jlan—jantj—i,
p=0

7 >1,1>2j. Ici on pose a; = 0 pour ¢ < 0. Par exemple,

b(l)l = NlApln—; — (n -1+ 1)an_1an_i+1 .

1.3. Ensuite on introduit, pour m > 2, les matrices (m — 1) x (m — 1) symétriques

b(1)2  b(1)s  b(1)a  b(1)5 ... b(1)m
b(1)s  b(2)s  b(2)5  b(2)e b(2)m+1
Cmy=| OMa b2 b@B)s  bE)7 b(3)m+2
b(1)s b2  bB)7  b(4)s b(4)m+3
b b @Dmsr bB)mrs b@)mis .. b(m —1)m s

De plus, pour ¢ > 0 on définit une matrice ”décalée” C(m); : elle est obtenue en remplagant dans
C(m) la derniere ligne par

(b@msi b@mrisr b@mrirz bmsivs - bom—Damiicz ) -



Donc C'(m)y = C(m). On pose
c¢(m); == det C(m);, c¢(m) :=c(m)o .

En particulier,
6(2)1 = b(].)z_;,_g

Il est commode de poser

i>0,c(l):=c(l)=1.

1.4. Puis on définit les nombres 7;, j > 1 par récurrence :

i oG — 1)
= na s g —— - = . B — 5
gt n, V2 n2a, Vi+1 = Vj-1 G)?
j > 2. Autrement dit,
Jj=2 _
;= (_1)]+1€j . H o(j — i)2(_1) 7
i=1
oll €; = nay, si j est impair et 1/(n%a,) sinon.
Les nombres 71, . .., ; sont donc bien définis si tous les nombres ¢(2), ¢(3), ..., c(j—1) sont différents

de zéro.

1.5. Théoréme. Supposons que deg f; = n — j, donc deg f; = n — ¢ pour i < j.
Alors pour tous i < j, on a (i) # 0 et

En particulier, le coefficient dominant de f;(z) est égal a 7;c(i).
1.6. On vérifie aussitot que
b(k)i —b(k —1); = c(1)k—1b(1)i—g41 — e(1)i—£b(1) (1.6.1)
pour tous k > 2, 1 > 2k — 2. Par exemple,
b(2); —b(1); = c(1)1b(1);—1 — ¢(1);—2b(1)2,

b(3)i = b(2)i = ¢(1)2b(1)i—2 — c(1)i-3b(1)3,

etc. Il s’en suit que tous les b(j);, j > 2, sont expressibles en termes de ¢(1), et ¢(2), = b(1)p42, p > 0.

1.7. Les formules (1.6.1) impliquent que les nombres b(i); satisfont aux relations quadratiques
suivantes :

(b(k)i —b(k —1);)-b(1);
= (b())i—k+5 = b(J = Dickrs) - bV — (0()ktj—1 — b(J = Diejm1) - b(1)imkt1

On verra que la preuve de 1.5 ne dépend que des relations (1.7.1).

(1.7.1)



On formalise la situation en introduisant une algebre quadratique correspondante, cf. § 2 ci-dessous.

1.8. Maintenant soient
fi(x) = apz™ ' Faz"? ..
et
fg(x) = ﬂoxn_Q + BlfL’n_S 4+ ...

deux polynomes arbitraires de degrés n—1,n—2. On définit f;, j > 3 a partir de f1, fo par les formules
de l'algorithme d’Euclide (1.1.1).

Posons
c(1)i = 2L b(1)e =B, i > 0.
Qg
Définissons les nombres b(k);, k > 2 par récurrence sur k, a partir des formules (1.6.1).
Définissons les nombres ¢(m);, m > 2, par les formules 1.3.

Enfin, on pose :
g
’71—a0,72—1,7j+1—’7j—1W

Alors on a

1.9. Théoréme. Supposons que deg f; =n — j, d’olt deg f; = n — i pour ¢ < j.
Alors pour tous ¢ < j, on a ¢(i) # 0 et

En particulier, le coefficient dominant de f;(z) est égal a ;¢(i).
Cf. [Jacobi], section 15.

1.10. Dans la Deuxiéme Partie on présente un exemple numérique. La, les déterminants de Cauchy
apparaissent dans les asymptotiques des coefficients dominants de la suite de Sturm pour les polynémes
d’Euler.

§ 2. Algebre B

2.1. On peut réécrire les relations (1.7.1) sous la forme suivante :

b b b1); B~ Dk
det(b(j—1>f+j_k b(k—l»)‘det(b(l»_iﬂ bk )

b(l)k b(j)j k—1 _ N AY -\ 7 S\
+det< DD s b(j);j_k ) = A(k,j)i — Ak, j)i + A"(k,5)i = 0.

(2.1.1)

2.2. On définit une algebre quadratique B comme une t-algebre commutative engendrée par les
lettres b(i);, 4,j € Z, modulo les relations (2.1.1), ou ¢, 5,k € Z.

(D’ailleurs, dans tout le paragraphe qui suit on peut remplacer le corps de base ¢ par un anneau
commutatif quelconque.)



2.3. Le but de ce paragraphe est d’écrire certaines relations entre les déterminants n x n dans B
qui généralisent (2.1.1).
On fixe un nombre entier n > 2. Soient myq, ..., m,,¢ des entiers.

On définit 2n + 2 vecteurs vj,w; € ¢*, j=1,...,n+1:
wy = (b(l)ml’b(l)m27 s 7b(1)mn) )

Wji41 = (b(l)m17 ) B(l)mn+1—j’ ey Oy, 0(D)i—my 1),

1 < j < n (suivant 'usage, & signifie que 'on omet la composante z).

Puis
V1 = (b(ml - ]-)i—l—ml—mny b(m2 - 1)i+m2—mn7 o 7b(mn—1 - 1)i+mn_1—mn7 b(mn - 1)7,) 5
V2 = (b(ml - 1)m1+mn—17 b(mQ - 1)m2+mn—17 o 7b(mn—1 - ]-)mn_l—i-mn—la b(mn)z) 5
U3 = (b(ml - 1)m1+mn71—17 b(m2 - 1)m2+mn71—17 ) b(mn—2 - 1)mn72+mn71_1’
b(Mn—1)mp—1+mm—150(Mn—1)itm, 1 —mn) 5
Vg = (b(ml - 1)m1+mn72—17 b(m2 - 1)m2+mn72—17 SRR b(mn—3 - 1)mn73+mn72_1’
b(Mn—2)mp_atmn—1—15 0(Mn—2)m,, s tmm—1500Mn—2)itm,_s—mn)
vn = (b(m1 — )iy +ma—1, 00m2) mytms—1, 0(M2)mytma—1, - -+ 00M2)mytmp —15 00M2)itmy—my,)
Unt1 = (b(M1) g +ma—1, 0(M1 ) my+mg—15 - -+ s O(M)my +mp—1, 0(M1 )ity —m,, ) -
2.4. Soit
R A |
M =
Tn—-21 -+ Tpn-2n+l
une matrice (n —2) x (n+ 1) sur B ; soit M;, i = 1,...,n + 1, ses sous-matrices (n — 2) x n. Pour

écrire M;, on enleve donc la i-ieme colonne de M.

Maintenant on va définir n + 1 matrices n X n
Dj = Dj(ml, ey M, Mn+2—j)i,

j=1,...,n+1. On pose :

w1
Dl = MTH—I 7D] = ( 'U); M1Z+2—j 'U;- ) )
U1
j=2,...,n+1. Ici (.)! désigne la matrice transposée.

Enfin, on pose

Aj = Aj(ml, ey My Mn+2—j)i = det Dj(ml, ey Mg Mn+2—j)i,



Considérons la somme alternée

n+1
R(’I’L; miy...,Mp; M)z = Z (—1)]+1Aj(m1, ey Mg Mn+2—j)i .
j=1

2.5. Exemple. n = 2. Dans ce cas il n’y a pas de matrice M ; trois nombres entiers sont donnés :
mi,mo et . On aura 6 vecteurs :

w1 = (b(V)my s b(Dm, ) wa = (6(L)mys b(D)ima+1), ws = (b(1)ms, b(1)i-ms+1)

et
v1 = (b(m1 — 1)itm; —my, 0(m2 — 1);), va = (b(m1 — 1)my4my—1,b(m2)i),

Vg = (b(ml)m1+mz—1’b(ml)i+m1—m2) :

R(2;m1,mg); = det < b(1)my b(1)m, )

Il s’ensuit :
b(ml - 1)i+m1—m2 b(m2 - 1)i

b(l)m b(ml - 1)m +mo—1 b(l)m b(ml)m +ma—1
—det ! Sl + det 2 1+ma
< b(L)imma+1 b(my); b(L)immat1 b(1m2)itm;—mo

On reconnait la la partie gauche de (2.1.1) pour (j, k) = (m1,m2). Il en découle que R(2;mq,ms); = 0.

2.6. Exzemple. n = 3. Dans ce cas la matrice M se réduit a 4 éléments :
M:(ZL‘l o I3 :L‘4) .
L’expression R(3;m1, ma, ms; M); prend la forme

b(1)m, b(1)m, b(1)ms
R(3;m1, mo, mg; M); = det 1 To T3
b(ml - 1)i+m1—m3 b(m2 - 1)i+m2—m3 b(TTlg - 1)i

b(1)m, 1 b(m1 — Dmy+ms—1 b(1)my w1 b(m1 — Dmytma—1
—det b(1)m, x2 b(ma — D)mytms—1 | + det b(1) x3  b(M2)matms—1
b(1)i—mg+1 T4 b(ms); b(1)i—ms+1 s b(M2)itmy—ms
b(l)mz T2 b(ml)ml+m2—l
—det b(1)my z3 b(M1)my+ms—1
b(1i—mz+1 T4 b(MA)itmy—mg

Calculons cette expression.

On développe le premier déterminant suivant la deuxieme ligne et les autres suivant les deuxiémes
colonnes :

A1(3;my,ma, m3; My)i = —21A1(2;ma, mg); + x2A1(2;m1,m3); — 23A1(2;m1, M2)itmo—ms
Ao(3;my, ma, m3; M3); = —2102(2; ma, m3); + x2A2(2;m1,m3); — x4A1(2;m1, M3)motms—1 -
Puis
A3(3;my,ma, m3; Ma); = —21A3(2;ma, m3); + £382(2; M1, M2)itma—ms — £482(2; M1, M3)mo4ms—1



et
Ay(3:ma, ma, ma; Mr); = —22A3(23m1,m3); + 2383(25m1,M2)itms—mg — TaA3(25M1,M3)my+mg—1 -
Pour abréger les notations on introduit des vecteurs entiers :

(il,ig,ig,i4) = (i,i,i + mg — mg, Mg + M3 — 1) ,

H = (m17m27m3) )
u1 = (m27m3)7 U2 = (m17m3)7 Hn3 = (mhm?) .

On peut réécire les formules ci-desssus sous une forme matricielle :

A1 (3; 5 My); —A1(25 1) A1(2p)i,  —A1(2513)i 0 T
—Do(B s Ms)i | _ | Do) —D2(25p2)i 0 Av(2Zp2)iy || 22
A3(3; p; Ma); —A3(2; p1)iy 0 Ao(2p3)is  —A2(25p2)iy 3
—A4(35 5 My); 0 As(2;p2)i,  —A3(2503)i;  A3(2542), x4

En rajoutant :
R(3;m1,mg,m3; M); = —x1 - {Al(fz;m)z‘l — Do(25 p1)iy + A3(2;M1)z‘1}
+g - {A1(2§N2)i2 — Ao(2; p2)i, + A3(2;M2)m} —x3- {A1(23N3)i3 — Ao(2; p3)iy + A3(2;H3)i3}

x4 - {A1(2;u2)¢4 — Ao(2; p2)iy + As(Q;Mz)u} =0.

Le théoreme ci-dessous généralise ces exemples.

2.7. Théoréme. On a
R(nyma,...,mu; M); =0
pour tous n,my,...,my, M et i.
Démonstration : elle se fait par récurrence sur n. Le cas n = 2 est 'exemple 2.5.
Le passage de n — 1 a n suit ’exemple 2.6.
Posons pour abréger
w=(my,...,my) .

A partir de cela, on introduit n + 1 vecteurs u; € zn1 .

My = (ml,...,mj,...,mn),
7=1,...,n,et
Hn+1 = (m17 cee 7mn—17mn) = MUn—-1 -
On définit le vecteur
. . g .o nt1
(11,92, -« yint1) == (4,0, ... iyi+Mp_1 — Mp,Mp_1 +my, — 1) €EZ .
——
n—1 fois



En développant les déterminants Aj;(n; u, My42—j)i, 2 < j < n+ 1 suivant la deuxieme colonne et le
déterminant Aj(n; p, My4+1); suivant la deuxieme ligne, on obtient :

3
T
=

R(n;ps M); =Y (=1)zjR(n — 1; pj; Myj)i, -
1

<.
I

Ici My; est la matrice obtenue en enlevant la premiere ligne et la j-ieme colonne de la matrice M.

Notre assertion en découle immédiatement par récurrence sur n.
2.8. On aura besoin d’un cas particulier de ces relations. Prenons
w=(my,mg,...,my)=(2,3,...,n+1).

Pour la matrice M, prenons

b1 b2 b2s o a2 b2t
P €0 TR 70 M 1) M C) M 1C
b(l)n b(2)'n+1 b(3)‘n+2 . . b(n - i)gn_l b(n - 1')1'_,_2“_2

Alors le premier déterminant
Ar(n; s Myy1)ivon = c(n+1); .

On pose par définition :
c(n+1); = Da(n; p; My)ivan

c(n+1)7 = Ag(n; s My—1)iv2n -

Par contre, si j > 4 on voit que dans le déterminant A;(n; p; Mp12—j)iton la derniere colonne est égale
ala (n — j + 3)-ieme colonne, d’ott

Ay(n; s My—2)ivon = As(n; s Mp_3)iyon = ... = Apq1(n; p; My)iyo, =0 .
Donc 2.7 entraine
2.9. Corollaire. Pour tous n > 3

c(n); —e(n); +c(n)] =0.

§ 3. Début de la démonstration du théoréeme 1.5

3.1. On a
f(z) = anz™ + an_12" P+ ... +ag .

La dérivée :
filz) = f'(z) =naa™t + (n—Day_12" 2 +...+a; = nan{m"_l 4 (=banoy pn-2 a—l}

nan nan

=y1(c(1)oz™ t + ()12 2+ ...+ c(1)n1) .



3.2. Le quotient de la division euclidienne de deux polynémes f(z) et g(z) = al, ;2" 1 +al,_oa" 2+
. est égal a
an G _1On—1—0y, _50n

S O

n—1

a,

On fait la division euclidienne :
n—2 + 3nanan—3—(n—2)an_1an_2 Zn—3 + .

2
2nanan—2—(n—1)a; _, "

F— (x/n+ an_1/n%an)f = e Lo
= - (b(1)22" 2 + b(1)32" % + ...+ b(1)5) = =72 - (e(2)02" 2 + e(2)12" P + .. e(2)n—2) -
Donc -
fo(@) =2 - Z o(2);" 7

Cela démontre ’assertion 1.5 pour j = 1,2, et 'on procede par récurrence par j.

3.3. On suppose que 'on a déja trouvé :

N

fj—l(x) =Yj-1" [C(] — 1)x”_j+1 + C(] — 1)1(1)n_j + ...+ C(j — 1)i{13n_j+l_i +.

et .
+oe(g)ix™ T

Fi(@) = - le(d)a" T + e(f)ra" I+

On fait la division euclidienne :

fimate) = (B2 et = 11 = L el ) o) =

n—j+1 . . .
_ P '—C(]_l)-c"— (i — _C(]—l)'c, 'C(])z’—l g _
> el = i = S el (o= 1= T el S e

n-jtl . .
el 1ieg)? = e = 1eli)etd)s == Dieliioreli)+ oG~ Deihrein pa 71

_ -1
- c(h)? 2

i=2
On pose :
Q(j)i = c(j — 1)ic(j)* — c(j — 1)e()e(d)i — c(j — Dic(f)i—1c(5) + (i — De(i)1e(d)i- (3.3.1)
Alors on a :
yil1 n—j+1 ' '
fim(@) = === > Q(j)z" T
(i) =
Il faut montrer que
TL—j—l ) TL—]+1
Fr1) =g 3 G DI gt 3 el + Dyga I
i=0 i=0
ou
R Vs Vi
Yi+1 = Vi-1 c(j)2 .
Donc notre théoreme est équivalent a l'identité suivante :
(3.3.2)

Q)i = —c(j)*ej + 1) -



§ 4. Formule (A)

4.1. Revenons a notre algebre 9.

On considere la matrice n x n

b(1)2 b(l)s ... b(1), b(1)p41
b(1)s b(2)y ... b(2)n+1 b(2) 42
Cln+1)j_2 = . . . .
b(l)n b(2)n+1 PN b(n — 1)2n—2 b(n — 1)2n—1
b(Lnti—1 b(2)nts .. b(n—1)opsi—z  b(n)2nti—2

Donc ¢(n+1);—o = det C(n+ 1);—2.

Si l'on désigne par C(n + 1);_2.5 4 la matrice C'(n + 1);_o avec la p-ieme ligne et la g-ieme colonne
enlevée, on aura :
c(n) =detC(n+1);—2p.5 ,

C(’I’L)Z'_l = det C(’I’L + 1)i_2;nll7ﬁ .
En plus, on a :
c(n)i =detC(n+1), 5,25,

11—

ou c¢(n)! a été introduit dans 2.9.
4.2. Théoréme. Pour tous n,? € Z, n > 3, on a la relation suivante dans B
c(n —1)ic(n)? — e(n — De(n)e(n); — e(n — 1)ie(n)i—ie(n) + c(n — De(n)e(n)i—y
= —c(n— 1)2c(n +1);—2 (F)

On a vu que notre théoreme principal 1.5 est une conséquence de (F') : en effet (F') coincide avec
la formule (3.3.2) (avec j remplacé par n).

A son tour, (F') est une conséquence immédiate de deux formules :

c(n —1)c(n) —c(n —1)1¢(n)i—1 = —c(n — 1)c(n)? (A)
ou bien
c(n —1);c(n) —c(n — 1)1¢(n)i—1 + c(n — 1)e(n)! =0 (A)
et
{c(n)i + c(n)i'} - c(n) — c(n)ic(n)i-1 = c(n — L)e(n + 1)i—2 . (B)

La démonstration de (B) utilise les relations quadratiques entre les lettres b(i);. Par contre, (A)
est ”élémentaire”, en ce sens que cette identité n’utilise pas de relations entre les lettres b(7);.

Pour démontrer (A), on applique le lemme suivant (une variante des relations de Pliicker) :
4.3. Lemme. (A;) Considérons n vecteurs de dimension n —1, w; = (wj1,...,Win-1), i1 =1,...,n.
A partir d’eux, on définit n vecteurs de dimension n — 2 : v; = (wj1, ..., w;p—2). On pose :
W; = det(wy, ..., 0, ..., wy)",

o N . t
Vij :i=det(v1,...,0i,...,05,...,00)" .

Alors
Vn—2,n—l ' Wn - Vn—2,n : Wn—l + Vn—l,n : Wn—2 =0.

10



(By,) Considérons n vecteurs de dimension n — 2, v; = (vi1,...,Vin—2), @ = 1,...,n. Considérons

les mineurs

. N N t
Vij i=det(vi, ..., 04, ..., 05,...,00)" .

Alors pour chaque i < n — 2,

Vn—2,n—l ' V;L,n - Vn—2,n : ‘/i,n—l + Vn—l,n ' V;L,n—2 =0.

En effet, en développant W; par rapport a la derniere colonne, on obtient : (B,,) = (4,).

Par contre, pour vérifier (B, ), considérons la matrice (n — 1) x (n —2), W~ = V;. Alors on
aura Vi; = W7, j = n,n—1,n— 2. D'un autre coté, en développant les mineurs dans (B,,) :

Vg, n—2 < p < q < n par rapport a la i-itme ligne, on obtient les mineurs V;, ou V"™ est obtenue de

W™ en enlevant la derniere colonne. On vérifie que (B),) se réduit a (A,_1) correspondant a W,

Il s’ensuit que (A,_1) = (By) et on conclut par récurrence.

4.4. Le lemme étant vérifié, I'assertion 4.2 (A) est 4.3 (A,) pour la matrice W égale & c(n+1),_2
avec la derniere colonne enlevée.

§ 5. Formule (B)

5.1. Maintenant on s’occupe de la formule
P :={c(n); +c(n)!} - c(n) —c(n)ic(n)i—1 = c(n — e(n +1);_o . (B)

On introduit n vecteurs de dimension n — 1, wy,...,w, qui sont les lignes de la matrice ¢(n + 1);_9
sans la derniere colonne :

b(1)2 b(1)s ... b(1)n—1 b(1)n
b1 B2 ... b2 B(2)nis
V=1 by b@n o b= 2oma b — o
b(l)n b(2)n+1 N b(’I’L — 2)2n—3 b(’I’L — 1)2n—2
b(V)ntim1 b(2)ngs .. b(n—2)2p4i—a b(n—1)2pyi3

et n mineurs
~ t -
Wizdet(wl,...,wi,...,wn) 5 ZZl,...,TL.

Par exemple, W,, = ¢(n), Wy—1 = ¢(n)i—1, Wp—2 = ¢(n)7. Donc,
cn+1);—2 =b(n)antri—2aWpn —b(n — 1)op_1Wp_1
+b(n — 2)2n_oWy_o — ...+ (=1)""1b(1), 1 W1 (5.1.1)
=b(n)onti—oWn —b(n — 1)opn_1Wy_1+ R

ou
R=bn—2)2p2Wy_o9—bn—3)an3Wy_3+...+ (=1)""1b(1) 1 W7 . (5.1.2)

5.2. On a n — 1 relations linéaires entre les W; : la i-ieme est obtenue en ajoutant a W sa i-ieéme
colonne et en développant le déterminant = 0 par rapport a la derniere colonne.
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Explicitement :
b(n — 1)2n+i—3Wn — b(n — 1)2n_2Wn_1 + b(n - 2)2n—3Wn—2 — ...+ (—1)n_lb(1)nW1 =0,

b(n - 2)2n+i—4Wn - b(n - 2)2n_3Wn_1 + b(n — 2)2n—4Wn—2 — ...+ (—1)n_1b(1)n_1W1 =0,

b(2)nt i Wi — b(2) i1 Wit + b(2) s Who — ... + (=1)"720(2)4 Wy + (—1)"1b(1)sW; =0,
b(1)pgici Wi — b(1) Wit + b(D) g1 Wi — ... + (=1)"2b(1)3 Wy 4+ (—=1)"1b(1)s W1 =0 .

5.3. D’autre part, rappelons la matrice ¢(n); :

b1 bz o (s b(1)a
b(1)s b4 ... b2 b(2)nt1
c(n); = det . . e . .
b(l)n_l b(Z)n PN b(n — 2)2n—4 b(n — 2)2n—3
b(l)n—i-l b(2)n+2 e b(n — 2)2n—2 b(n — 1)2n—1

On développe cette quantité par rapport a la derniere colonne :
c(n)1 = b(n — )ap_1c(n — 1) = b(n — 2)an—3Mp—2 + ...+ (=1)" 7 'b(2)n41Ms + (—1)"b(1), M; .
Apres la multiplication par —c(n);—; = —W,,_1 on obtient :
—c(n)ie(n)i—1 = =b(n — 1)ap—1c(n — 1)W1 () + R’

ol
R, = b(n - 2)2n—3Wn—1Mn—2 - b(n - 3)2n—4Wn—an—3 +...

—I—(—l)nb(2)n+1Wn_1M2 + (—1)n_lb(1)an_1M1 .
5.4. Maintenant remplacons dans R’ les termes (—1)’b(n — i)2,_;_1W,_1 en utilisant les relations

5.2 :

b(n - 2)2n—3Wn—l = b(n — 2)2n+i—4Wn + b(n - 2)2n—4Wn—2 — ...+ (—1)n_1b(1)n_1W1 ,

b(2)ns1 W1 = b(2)nsiWn + b(2)nWiyg — ... + (=1)"2b(2)4Wo + (=1)" " 1b(1)3W ,
b(1)y W1 = b(Dnpici Wi + b(D) g1 Who — ... + (=1)"2b(1)3Wo 4+ (—=1)" (1) W .

Alors on obtient :
—c(n)ie(n)i—1 = —=b(n — 1)ap_1c(n — 1)W1 (%)

+{b(n — 2)2n+i—4Mn—2 — ...+ (—1)nb(2)n+ZM2 + (—1)n+1b(1)n+i_1M1} . c(n) + R”,
' R = {b(n — 2)2n_4Wn_2 — ...+ (—1)n_1b(1)n_1W1} M9 — ...
(1) {b(?)an_z o (—1)"2h(2)4 W + (—1)”‘1b(1)3W1} M,

+(=1)" - {b(l)n—lwn—2 — (D) 2H(1)s Wy + (—1)"‘1b(1)2W1} M

12



5.5. Lemme. R" = c¢(n — 1)R.
Démonstration. On introduit les vecteurs de dimension n — 2 :
W= ((=1)" Wy, (=1)" P2 Wy, , Wioa) ,
M= ((=1)"" My, (=) My, ..., M,_5)
et
b= (b(1)n+1,b()n+2,---,b(1)2n-2) -
Alors la définition de R” se récrit :
R'=M-C(n—1)-W (5.5.1)
(ot ¢(n — 1) = det C'(n — 1), la matrice C'(n — 2) étant symétrique) ; de plus,
R=b-W".
Maintenant développons les quantités M; par rapport a la derniere ligne :

M; = b(1)an—oM;in—2 —b(1)on-3M; 3+ ... + (=1)""2b(1) 12 Mz + (=1)" (1) 541 Mi

n—2
= (=1)"Ib(1)pyj My, i=1,...,n—2.
j=1

On remarque que les quantités M;; sont les mineurs de la matrice (n —2) x (n —2) C'(n—1). Il vient :
M=b-C(n—1)
ol X o
C(n—1) = ((=1)""7 My),
donc C(n—1)-C(n—1) =c¢(n —1). En substituant dans (5.5.1) :
R'=b-Cn—1)-Cn—1)- W =¢c(n—1)-b- W' =¢(n - 1)R,
cqfd.

5.6. Il s’ensuit que pour vérifier I'identité (B) il reste & démontrer que

c(n)l + c(n);’ + b(n — 2)2n+i—4Mn—2 — ... (5 6 1)
(= 1)B(2)ni Mo + (1) (1) syt My = b(n)omsioc(n —1) . -

Par contre, la quantité
b(n)anyi—ac(n — 1) = b(n — )oni—aMp_o + ...+ (=1)"7'0(2)pi Mo + (—1)"b(1)pti—1 My
n’est autre que le développement de ¢(n); suivant la derniére colonne, donc (5.6.1) est équivalent &
c(n)i + c(n)i = c(n); (5.6.2)
qui a été déja prouvée, cf. Corollaire 2.9.

Ceci acheve la démonstration du théoreme 4.2, et donc du 1.5.

5.7. Démonstration du théoréme 1.9. En fait, nous 'avons déja montré : la démonstration de la
récurrence principale (3.3.2) n’utilise que les relations dans 1’algebre B.

Ces relations sont vérifiées si 'on définit les variables b(i); a partir de coefficients de polynomes
fi(x) et fao(x) comme dans 1.8, d’ou I'assertion.
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DEUXIEME PARTIE.
POLYNOMES D’EULER ET DETERMINANT DE CAUCHY

§ 1. Nombres 5(j);

1.1. Rappelons que pour un polynome

f(x) =apa™ + an12" N+ . +a

les nombres b(j); sont définis par

j—1
b(j)i =n Y (i = 2p)an—ptn—irp = J(n =i+ J)an—jan+j—i -
p=0
On introduit les quantités :
a;—1
qi ‘= - )
a;
qi—1 a;Q;—2
T = ) )
4 i1
puis
. i—1 .
. b(j)i I8 n(i —2p)  an_plnyp_i
PP

; - ; - J -
(n—i+ J)an—jan+j—z‘ p=0 "1 +7 n—jOnyj—i

1.2. Par exemple :

2N apQp—2 2n
1)y = —1= -1
L)z n—1 a2 n—1'" ’
(1), = ni Anln—i 1

n—i+1 ap1an_i11
On remarque que

anQpn—i  qn—i+1

Gp—10n—i+1 dn

=Tn—i+2"n—i+1---Tn .

On définit les quantités

1.3. De méme :

AnQn—; o AnQn—; An—10n—i+1

=¢Y(n—i+2,n)p(n—i+3,n—1).

Gp—20n—i+2 Op—10n—i+1 An—20n—i4+2
Par exemple :
ApQp—4 2
2 =Yn—2n)Yn—1,n—1)=r,_or;_ir, .
n—2

14



Il en découle :

N apGn_4a 2n  ap_1Qp_3 4n 2n

2)4 = _9— B - 9
ﬁ( )4 n—29 (1721_2 +’I’L—2 a%_2 n—an 2T _1Tn + T'n—1 5
B2y = — " Ontnzi | n(=2) dnoilainn

n—i+2ap-2an—iy2 N —1+2an20n—it2
. .y
= n_7?+2¢(n—i—|—2,n)w(n—Z'+3,n—1)+:(_27i+)2¢(n_2'+37n_1) —9.

1.4. Un autre exemple :

Ay Ay —6
272:3 =p(n—4,n)p(n —3,n—1)Pn —2,n—2) = rp_ur’ ord o1 r, .

1.5. En général on pose :

7j—1
. A O —i o
¢(n,j,i) = ———— =[] v(n—i+j+qn—q)
Un—jOn—itj .20
et 'on aura : -
j— .
N n(i — 2p) ) . .
BG)i=Y_ - pn—p,j—pi—p) —j.

p=0
1.6. Passons maintenant aux déterminants ¢(n). On commence par un exemple :

b(1)2 b(1)s b(1)s
c(4) =det | b(l)z b(2)s b(2)s
b(1)s b(2)5 b(3)s

(n—1)a2_,3(1)y (n —2)ap—1an—20(1)s (n —3)an—1an-36(1)4
=det [ (n—2)ap—1a,—20(1)3 (n —2)a2_,B(2)4 (n — 3)ap—2a,-306(2)5
(n—3)ap—1an—36(1)s (n—3)ap—2a,-306(2)s (n —3)a2_35(3)6
(n—1)81)2 (n—2)B(1)s (n—3)B(1)4
— (anrGn2ans)? et | (1= 2)8(1)s (n— 2521 (n—3)5(2)
(- 381 (n—3)82)s (n—3)8

1.7. En général

=1
(n—181)2  (n—2)8(1)s (n— m)B(Dmss
wdet| =281 (n—2)B(2 (n = m)B(2)m+2
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§ 2. Polynomes d’Euler et fonction hypergéométrique
2.1. Suivant [Euler], on définit les polynomes
1
En(w) = S{(1+ ix/2n)*" 4+ (1 — iz /2n)?"} . (2.1.1)

Donc, E,(z) est un polynéme de degré 2n, avec le terme constant 1, ne contenant que des puissances
paires de z. Plus précisément,

n ka
Eu(x) =Y (~1)F (;Z) ey (2.1.2)

k=0

Par exemple :

1
Ei(z)=1- sz ,
3 1
E —1_ 22, L 4
5 5 1
Eyw) =1 - 150 + @“A - 46656356 )
7 35 7 1
E _1_ L, 4 6 8
4(2) 167 T 203" " 65536° 16777216

2.2. Rappelons que la fonction hypergéométrique de Gauss est définie par

of L aletDBB+) 5 alatDie+2)B(E+1D(E+2) 3

F ~1

= Zci(a,ﬂ,’}’)l’i,

=0

ot a(a+1)..(a+i-1)-8B+1)...(B+i—1)

ily(y+1)...(y+i—-1)

CZ'(OZ,B,'Y) =

9

cf. [Gauss|. Il s’ensuit :
ci(—n/2,—n/2+1/2,1/2)

_ (/) (=n/2+1) . (=n/2+i—1)- (=n/2+1/2)(=n/2 +3/2) ... (-n/2+i - 1/2)
it (1/2)(1/2+1)...(1/2+i—1)
()27 —-2)...(n—2i+2) - (=1)27(n—1)(n—3)...(n — 2i + 1)
i1-271.1-3-5...(2i — 1)

2 nm—1)(n—2) ... (n—2i+1) _ <n> .

270.2-4...2i-1-3-5...(2i—1) 29
Donc
, [n/2] n\ o 1
F(—n/2,—n/24+1/2,1/2,2%) = ; (21> ¥ = 5{(1 +a2)"+(1—-2)"}. (2.2.1)
Il en découle : )
t"F(—n/2,—n/2+1/2,1/2,u?/t?) = 5{(15 +u)" + (t —u)"}, (2.2.2)

16



cf. [Gauss|, no. 5, formula II.
2.3. La formule (2.2.1) implique :

En(z) = F(—n,—n+1/2,1/2, —2? /4n?) . (2.3.1)

2.4. Sil'on écrit

- 2n 1
E,(z)= E enkt%, enk 1= (—1)k < )
= 2k | (2n)2k

alors

e = (— 1) 2n(2n _(12)/{;),(2(3)121: 2k +1) _ ((;lg:f 1. (1 — %) <1 — %) (1 — 22; 1),

d’ou

. —1)F
A ep = (21@;1 ’
h lim E,(x) = i (_1)km2k = cosx
n—00 = (2k)!

comme il faut. En d’autres termes,

lim F(—n,—n+1/2,1/2, -2 /4n?) = cos z,

n—oo

ou, comme aurait pu écrire Gauss,
F(—k,k+1/2,1/2, —2? /4k?) = cos z,
k étant ”un nombre infiniment grand” (denotante k numerum infinite magnum). En fait, Gauss écrivit
F(k,k',1/2, —2? /4kK') = cos z,

denotante k, k' numeros infinite magnos, cf. [Gauss|, no. 5, formula XII.

8§ 3. Asymptotiques

3.1. On pose :
n k n
fulz) =" (—1)F (32) (J:IW =3 oVt (3.1.1)
Donc
Ey(x) = fa(z?) .

On désigne les quantités b(j);,r;, etc. qui correspondent au polynéme f, en ajoutant 'indice (n) en
haut : b(j)gn),rgn), etc.

Donc on aura :

m 2
c(m+1)™ = < agfl) X
i=1



- 2 3 .« ..
et | 2B =282 . (n-m)B@5,
(n—m)BLWL, (n—m)BER), (n —m)B(m)5e
3.2. On a:
(n) _ [ i 2n
al - ( ]') <2Z> 9
d’ou
() _ a™Md™, @ic2)[(2n—2i+2)2
ri = A7 T 2012202 D@0 2it-)!

(
_ (2i-2)(2i-3)  (2n—2i+1)(2n—2i+2)
= T 2@i-1)  (2n—2i+3)(2n—2i14) °

En remplagant ¢ par n — ¢,
(n) _ (20 +1)(20 +2) (2n—2i—2)(2n —2i —3)

T @i )i+ ) 2n-20)@2n 20 1)

On s’interesse aux valeurs limites :

— lim "r’(n) B (20 4+ 1)(2i + 2)

r(oo) ;= .
n—oo "7 (204 3)(2i + 4)

co—1

Il s’ensuit :

(oo — i+ 2,00) ::T}Lrgo¢(n—i+2,n):ﬁ,
. 3-4
(oo —i+3,00—1) = (20 —2)(20 —3)
. 5-6
(oo —i+4,00—-2) = (2i —4)(2i — 5)
etc.

3.3. Maintenant on veut calculer

Il est commode de poser :

On a: .
() _ _ —
B(1);/ =i-9Y(co—i+2,00) 57— 1
d’ou 20— 1)
(0) _ 20—
Ensuite,
B(2)™) =i 4p(co — i+ 2,00)h(00 — i + 3,00 — 1) + (i — 2) - 1h(00 — i + 3,00 — 1)
_ . 1. (00) | . _ 3-4 { 1 . }_ 3-2
=100 —i+ 3,00 — 1) {B(l)i +1 2}_(22,_2)(%_3) 2@'—1—H 2 =51
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d’ou

(o) _  A(i—2)
\\e) —
De méme,
(00) _ : (c0) | - - 5-6 {3-2 , }_ 5.3
B(3)!™ = —i+4,00-2)-4B(2) 4l = : gl= 22
()i = (oo —itd00-2) { @)+ } @ -H2i-5 \2i-1 " 2i—1'
d’ou 6 —3)
(0) _ U —
3.4. En général, la récurrence évidente fournit
(c0) (27 —1)-7
et 2 0(1 .)
. (oo) _ _ J(t—]
3.5. On définit les nombres
BT BS B
e(m+ 1) :=det | B BT B2)s
BN BERS,  Bm)EY)

Donc on aura :

m -2
(H “7(1"-)1‘) ce(m 4 1™ = c(m+ 1) - 0™ + O™ ) .
=1

Les calculs précédents fournissent par exemple :

2 _4 _6 12 3
3 5 7 3 5 7
c(4)®=det| -4 -8 -2 |=(-1°-2-4-6-det| t+ 2 3
_6 _12 18 1 2 3
7 9 1 7 90 11
1 1 1
3 5 7
=(-1*-2°- 3% det | £ % 1%
11 1
7 9 11
En général on obtient
1 1 1
3 5 2m+1
1 1 1
5 7 2m+3
¢(m+1)®° = (=1)™-2" . (m!)? - det "
1 1 1
2m+1  2m+3 7 4dm—1

On remarque que la derniére matrice (une variante de la matrice de Hilbert) est du type Hankel.
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3.6. Le déterminant

1 1 _1
3 5 2m+1
1 1 _1
5 7 2 3
¢(m + 1) := det m
1 1 1
2m—+1 2m+3 0 4dm—1

est un cas particulier du déterminant calculé par Cauchy (d’ou le caractere €), cf. son Mémoire sur les
fonctions alternées et sur les sommes alternées, pp. 173 - 182 dans [Cauchy].

Rappelons que, étant données deux suites x1,..., Ty €t y1,...,Ym, le théoreme de Cauchy dit que

—1\m H1<i< i<m (ZEj - xl)(y] - yl)
det((2; +y;) )iy = ——2
! J=1 [T (i + )

d’ol1, en posant x; = 2i — 2, y; = 2i + 1,

em + 1) = Hizicizm (21 =207
17, (2i+25—1)
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