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1. INTRODUCTION

The simplest example of an ind-grassmannian is the infinite projective space P*>°. The Barth-
Van de Ven-Tyurin (BVT) Theorem, proved more than 30 years ago [BV], [T], [Sal] (see also
a recent proof by A. Coanda and G. Trautmann, [CT]), claims that any vector bundle of
finite rank on P> is isomorphic to a direct sum of line bundles. In the last decade natural
examples of infinite flag varieties (or flag ind-varieties) have arisen as homogeneous spaces of
locally linear ind-groups, [DPW], [DiP]. In the present paper we concentrate our attention
to the special case of ind-grassmannians, i.e. to inductive limits of grassmannians of growing

dimension. If V' is a countable dimensional vector space, where U V™ =V, then the ind-variety
n>k

G(k; V) = im G(k; V") (or simply G(k;00)) of k-dimensional subspaces of V' is of course an

ind-grassmannian: this is the simplest example beyond P> = G(1;00). A significant difference

between G(k; V') and a general ind-grassmannian X = lim G(k;; V™) defined via a sequence of

closed immersions

?

is that in general the morphisms ¢,, can have arbitrary degrees. We say that the ind-
grassmannian X is twisted if degp,, > 1 for infinitely many m, and that X is linear if
deg ,, = 1 for almost all m.

Conjecture 1.1. Let the ground field be C and E be a vector bundle of rank r € Z~y on an
ind-grasmannian X = lim G(k,,; V"), i.e. E = lim E,,, where {E,,} is an inverse system of

vector bundles of (ﬁxed)_)mnk r on G(ky; V™). Then

(i) E is semisimple: it is isomorphic to a direct sum of simple vector bundles on X, i.e.
vector bundles on X with no non-trivial subbundles;

(ii) for m > 0 the restriction of each simple bundle E to G(ky,, V") is a homogeneous
vector bundle;

(iii) each simple bundle E' has rank 1 unless X is isomorphic G(k;o00) for some k: in the
latter case B, twisted by a suitable line bundle, is isomorphic to a simple subbundle of
the tensor algebra T"(S), S being the tautological bundle of rank k on G(k;oc0);

(iv) each simple bundle E (and thus each vector bundle of finite rank on X) is trivial when-
ever X 15 a twisted ind-grassmannian.

The BVT Theorem and Sato’s theorem about finite rank bundles on G(k;00), [Sal], [Sa2],
as well as the results in [DP], are particular cases of the above conjecture. The purpose of the
present note is to prove Conjecture 1.1 for vector bundles of rank 2, and also for vector bundles
of arbitrary rank r on linear ind-grassmannians X.

In the 70’s and 80’s Yuri Ivanovich Manin taught us mathematics in (and beyond) his seminar,
and the theory of vector bundles was a reoccuring topic (among many others). In 1980, he asked
one of us (I.P.) to report on A. Tyurin’s paper [T], and most importantly to try to understand
this paper. The present note is a very preliminary progress report.
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2. NOTATION AND CONVENTIONS

The ground field is C. Our notation is mostly standard: if X is an algebraic variety, (over
C), Ox denotes its structure sheaf, Q% (respectively Tx) denotes the cotangent (resp. tangent)
sheaf on X under the assumption that X is smooth etc. If F'is a sheaf on X, its cohomologies
are denoted by H'(F), h'(F) := dim H'(F), and x(F) stands for the Euler characteristic of
F. The Chern classes of F' are denoted by ¢;(F). If f: X — Y is a morphism, f* and f.
denote respectively the inverse and direct image functors of @-modules. All vector bundles are
assumed to have finite rank. The dual of a sheaf of Ox-modules F' (as well as the the dual
of a vector space) we denote by the superscript ¥. Under an embedding of smooth varieties
1 : X — Y we always understand a closed immersion. Furthermore, in what follows for any
ind-grassmannian X defined by (1), no embedding ¢; is an isomorphism.

We fix a finite dimensional space V' and denote by X the grassmannian G(k; V) for k < dim V.
In the sequel we write sometimes G(k;n) indicating simply the dimension of V. Below we will
often consider (parts of) the following diagram of flag varieties:

(2)
Z:=Fllk—1,kk+1V)
/ \
Y =Fl(k—-1,k+1V) X =Gk V),
/ K
Yi=Gk-1;V) Y2:=Gk+1;V)

under the assumption that £ + 1 < dim V. Moreover we reserve the letters X,Y, Z for the
varieties in the above diagram. By Sy, Sik_1, Sk+1 we denote the tautological bundles on XY
and Z, whenever they are defined (S}, is defined on X and Z, Sy_; is defined on Y!, Y and
Z, etc.). By Ox(i), i € Z, we denote the isomorphism class (in the Picard group Pic X) of
the line bundle (A*(S)Y))®* where A* stands for the k' exterior power (in this case maximal
exterior power as rkS) = k). The Picard group of Y is isomorphic to the direct product of
the Picard groups of Y and Y2, and by Oy (4, j) we denote the isomorphism class of the line
bundle pj (A 1(Sy_,))* @0, ph(AF1(SY,,)*.

fo: X =GKkV)— X =Gk V') is an embedding, then ¢*Ox/(1) ~ Ox(d) for some
d € Z>: by definition d is the degree degp of . We say that ¢ is linear if degyp = 1. By a
projective subspace (in particular a line, i.e. a 1-dimensional projective subspace) of X we mean
a linearly embedded projective space into X. It is well known that all such are Schubert varieties
of the form {V*¥ € X|V*¥=1 c V¥ c V'} or {V € X|V' C V¥ C V*1}, where V* is a variable
k-dimensional subspace of V, and V*=1, VA1 V! Vi are fixed subspaces of V' of respective
dimensions k — 1, k+ 1, ¢, i. (In what follows we will automatically assume that a given finite
dimensional space written as V' has dimension ¢). In other words, all projective subspaces of
X are of the form G(1; Vt/V*1) or G(k — i, VFT /V?). Note also that Y = Fl(k — 1,k +1;V)
is the variety of lines in X = G(k; V).

3. THE LINEAR CASE

We consider the cases of linear and twisted ind-grassmannians separately. In the case of a
linear ind-grassmannian, we show that Conjecture 1.1 is a straightforward corollary of existing
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results combined with the following proposition. We recall, [DP], that a standard extension of
grassmannians is an embedding of the form

(3) Gk;V) = Glk+a;VaW), {VFcC}l—{VieWw cVaeW},
where W is a fixed a-dimensional subspace of a finite dimensional vector space W.

Proposition 3.1. Let ¢ : X = G(k; V) — X' := G(K'; V') be an embedding of degree 1. Then
@ 1s a standard extension, or ¢ factors through a standard extension P™ — G(k'; V') for some
r.

Proof. We assume that £k < n —k, k <n' — K, where n = dimV and n’ = dim V', and use
induction on k. For k = 1 the statement is obvious as the image of ¢ is a projective subspace
of G(K'; V') and hence ¢ is a standard extension. Assume that the statement is true for k — 1.
Since deg ¢ = 1, ¢ induces an embedding ¢y : Y — Y’ where Y = Fl(k — 1,k + 1;V) is the
variety of lines in X and Y = FI(K' — 1,k + 1, V") is the variety of lines in X’. Moreover,
clearly we have a commutative diagram of natural projections and embeddings

/\ /\
\></

where Z := Fl(k — 1,k,k+ 1;V) and Z' := FI(k' — 1,k’,k’—|—1;V’).

We claim that there is an isomorphism
(4) 0y Oy (1,1) ~ Oy (1,1).

Indeed, ¢3 Oy (1,1) is determined up to isomorphism by its restriction to the fibers of p; and
pa (see diagram (2)), and therefore it is enough to check that

(5) @;Oy/(l, 1)|p1—1(vk,1) ~ Opl_l(kal)<1)’

(6) 2y Oyr (L, Dy = Op ey (1)

for some fixed subspaces V*=1 C V, V¥ C V. Note that the restriction of ¢ to the projec-
tive subspace G(1;V/V*1) C X is simply an isomorphism of G(1;V/V*~1) with a projective
subspace of X', hence the map induced by ¢ on the variety G(2; V/V*~1) of projective lines in
G(1;V/V%1) is an isomorphism with a grassmannian of 2-dimensional subspaces of an appro-
priate quotient space of V’. Note furthermore that p;*(V*71) is nothing but the variety of lines
G(2;V/VF 1) in G(1;V/V* 1) and that the image of G(2;V/V*7!) under ¢ is nothing but
oy (pyH(V*71)). This shows that the restriction of %Oy (1,1) to G(2;V/V*~1) is isomorphic
to the restriction of Oy (1,1) to G(2; V/V* 1) and we obtain (5). The isomorphism (6) follows
from a very similar argument.
The isomorphism (4) leaves us with two alternatives:

(7) @;Oyl(l, O) ~ Oy or (,D*YOy/(O, 1) ~ Oy,
or
(8) QO*YOY’(L 0) = OY(L 0) or QO*YOY’(L 0) = OY(O7 1)

Let (7) hold, more precisely let ¢} Oy (1,0) ~ Oy. Then py maps each fiber of p, into a single
point in Y’ (depending on the image in Y2 of this fiber), say ((V/)* ' c (V))* 1), and moreover
the space (V')* ! is constant. Thus ¢ maps X into the projective subspace G(1; V' /(V/)* ™)
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of X' If 3 Oy/(0,1) >~ Oy, then ¢ maps X into the projective subspace G(1; (V’)klﬂ) of X'.
Therefore, the Proposition is proved in the case (7) holds.

We assume now that (8) holds. It is easy to see that (8) implies that ¢ induces a linear
embedding py1 of Y := G(k — 1;V) into G(K' — 1; V') or G(K' + 1;V’). Assume that oy :
Y — (Y)' := G(K — 1; V") (the other case is completely similar). Then, by the induction
assumption, oy is a standard extension or factors through a standard extension P" — (Y”)'.

If ¢y is a standard extension corresponding to a fixed subspace W C W, then @31 Sk 1
Si—1 @ (W ®c Oy1) and we have a vector bundle monomorphism

(9) 0 — T P1py1Sk—1 — Ty " Spr.

By restricting (9) to the fibers of 71 we see that the quotient line bundle 75¢* Sy /77 P31 Sk—1
is isomorphic to Si/Sk_1 @ 7ipiL, where L is a line bundle on Y. Applying m, we obtain

(10) 0— W ®c Ox — mou(m50"Spr) = ©"Spr — m2x((Sk/Sk—1) @ mpi L) — 0.

Since rkg*Sy = k' and dimW = k' — k, rkma.((Sk/Sk-1) @ mipiL) = k, which implies im-
mediately that £ is trivial. Hence (10) reduces to 0 — W ®¢c Ox — ¢*Sp — Sk — 0, and
thus

(11) ©* Sp =~ S & (W @c Ox)

as there are no non-trivial extensions of Si by a trivial bundle. Now (11) implies that ¢ is a
standard extension.

It remains to consider the case when py1 maps Y'! into a projective subspace P of (Y’ )1. Then
Ps is of the form G(1; V’/(V’)k/_Z) for some (V’)k/_2 C V', or of the form G(k' — 1, (V’)k/) for
some (V' )k/ C V'. The second case is clearly impossible because it would imply that ¢ maps X
into the single point (V')". Hence P* = G(1;V'/(V')" ) and ¢ maps X into the grassmannian
G(2; V’/(V’)k/_Z) in G(k';V'). Let S4 be the rank 2 tautological bundle on G(2; V’/(V’)k/_2).
Then its restriction S” := ¢*S) to any line [ in X is isomorphic to O; @ O;(—1), and we claim
that this implies one of the two alternatives:

(12) S// ~ OX @D Ox(—l)
or
(13) S"~Syand k=2, or " ~ (V®cOx)/Sy and k =n—k = 2.

Let k£ > 2. The evaluation map njm,7m5S” — 735" is a monomorphism of the line bundle
T L= mimmyS” into 735" (here £ := m,m55”). Restricting this monomorphism to the fibers
of my we see immediately that 7] L is trivial when restricted to those fibers and is hence trivial.
Therefore £ is trivial, i.e. 7L = Oz. Push-down to X yields

(14) 0—0x — 5" — Ox(—1) — 0,

and hence (14) splits as Ext'(Ox(—1),Ox) = 0. Therefore (12) holds. For k = 2, there is an
additional possibility for the above monomorphisms to be of the form 770y (—1,0) — 73S (or
of the form 77Oy (0,—1) — 73S if n — k = 2) which yields the option (13).

If (12) holds, ¢ maps X into an appropriate projective subspace of G(2;V'/(V’ )kLQ) which
is then a projective subspace of X', and if (13) holds, ¢ is a standard extension corresponding
to a zero dimensional space W. The proof is now complete. 0

We are ready now to prove the following theorem.

Theorem 3.2. Conjecture 1.1 holds for any linear ind-grassmannian X.
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Proof. Assume that deg ,, = 1 for all m, and apply Proposition 3.1. If infinitely many ,,’s
factor through respective projective subspaces, then X is isomorphic to P> and the BVT
Theorem implies Conjecture 1.1. Otherwise, all ¢,,’s are standard extensions of the form (3).
There are two alternatives: lim k,, = lim n,, — k,, = 00, or one of the limits lim k,, or

m—0o0 m—0o0

lim n,, — k,, equals [ for some [ € N. In the first case the claim of Conjecture 1.1 is proved in

m—00

[DP]: Theorem 4.2. In the second case X is isomorphic to G(l;00), and therefore Conjecture
1.1 is proved in this case by E. Sato in [Sa2]. O

4. AUXILARY RESULTS

In order to prove Conjecture 1.1 for rank 2 bundles E on a twisted ind-grassmannian X =
lim G(k,,; V™), we need to prove that the vector bundle E = lim F,,, of rank 2 on X is trivial,

i.e. that E,, is a trivial bundle on G(k,,; V™) for each m. From this point on we assume
that none of the grassmannians G(k,,; V") is a projective space, as for a twisted projective
ind-space Conjecture 1.1 is proved in [DP] for bundles of arbitrary rank r.

The following known proposition gives a useful triviality criterion for vector bundles of arbi-
trary rank on grassmannians.

Proposition 4.1. A vector bundle E on X = G(k;n) is trivial iff its restriction Ej is trivial
for every line l in G(k;n), l €Y = Fl(k—1,k+ 1;n).

Proof. We recall the proof given in [P]. It uses the well known fact that the Proposition holds
for any projective space, [OSS, Theorem 3.2.1]. Let first & = 2, n = 4, i.e. X = G(2;4).
Since E is linearly trivial, 73 E' is trivial along the fibers of m; (we refer here to diagram (2)).
Moreover, 7,75 E is trivial along the images of the fibers of o in Y. These images are of the
form P} x P}, where P; (respectivelly P}) are lines in Y! := G(1;4) and Y? := G(3;4). The
fiber of p; is filled by lines of the form P}, and thus 7, w5 E is linearly trivial, and hence trivial
along the fibers of 7r;. Finally the lines of the form P} fill Y, hence p;, 7.7 E is also a trivial
bundle. This implies that E = mo,mip] (pram1.m3 E) is also trivial.

The next case is the case when £ = 2 and n is arbitrary, n > 5. Then the above argument
goes through by induction on n since the fiber of p; is isomorphic to G(2;n — 1). The proof
is completed by induction on k for k > 3: the base of p; is G(k — 1;n) and the fiber of p; is
G(2;n—1). O

If C C N is a smooth rational curve in an algebraic variety N and E is a vector bundle
on N, then by a classical theorem of Grothendieck, Ej¢ is isomorphic to @, Oc(d;) for some
di > dy > -+ > dyp. We call the ordered rkE-tuple (di,...,dwg) the splitting type of Ejc
and denote it by dg(C). If N = X = G(k;n), then the lines on N are parametrized by points
[ €Y, and we obtain a map

Y — Z™F e dg(D).

By semicontinuity (cf. [OSS, Ch.l, Lemma 3.2.2]), there is a dense open set Ug C Y of lines
with minimal splitting type with respect to the lexicographical ordering on Z™¥. Denote this
minimal splitting type by dg. By definition, Uy = {l € Y| dg(l) = dg} is the set of non-
gumping lines of F, and its complement Y \ Ug is the proper closed set of jumping lines.

A coherent sheaf F' over a smooth irreducible variety N is called normal if for every open
set U C N and every closed algebraic subset A C U of codimension at least 2 the restriction
map F(U) — F(U \ A) is surjective. It is well known that a rank-1 normal torsion-free sheaf
F is reflexive, i.e. FYY = F. Therefore, by [OSS, Ch.II, Theorem 2.1.4] F is necessarily a line
bundle (see [OSS, Ch.II, 1.1.12 and 1.1.15])).

Theorem 4.2. Let E be a rank r vector bundle of splitting type dg = (di, ..., d,), dy > ... > d,,
on X = G(k;n). If ds — dsy1 > 2 for some s < r, then there is a normal subsheaf F C E
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of rank s with the following properties: over the open set mo(my*(Ug)) C X the sheaf F is a
subbundle of E, and for any | € Ug

F‘u ~ @Ol(dz)
=1

Proof. 1t is similar to the proof of Theorem 2.1.4 of [OSS, Ch.II|. Consider the vector bundle
E' = EQ Ox(—ds) and the evaluation map ¢ : nim,m3E’ — 7w3E’. The definition of Ug
implies that <I>|7r1_1(UE) is a morphism of constant rank s and that its image Im® C 7w} F’ is a

subbundle of rank s over 7, }(Ug). Let M := 73 E'/im®, let T(M) be the torsion subsheaf of
M, and F' :=ker(njE' — M':= M/T(M)). Consider the singular set Sing F’ of the sheaf F’
and set A := Z \ Sing F'. By the above, A is an open subset of Z containing 7, *(Ug) and
[ =24 A— B:=my(A) is a submersion with connected fibers.

Next, take any point [ € Y and put L := 7 *(I). By definition, L ~ P', and we have

(15) TZ/X|L ~ OL(—l)@(nim,

where T/ x is the relative tangent bundle of Z over X. The construction of the sheaves F" and M
implies that for any [ € Ug: F’l\j: = ®_,0L(—d;+ds), M'\, =®}_, ,0L(d;—d,). This, together
with (15) and the condition dy — dsy1 > 2, immediately implies that H°(Q} z ® F"' @ M/,) =
0. Hence H(Q),p @ F"" @ M 17,
Hom(Ta/5, Hom(F', M|,)) = HO(Qh/B QF"Y® M/,) = 0. Now we apply the Descent Lemma

o1

(see [OSS, Ch.IL, Lemma 2.1.3]) to the data (f|-1,, : ™ (Ug) — VE, Fllﬂfl(UE) C E\,wfl(UE))'
Then F := (m2.F") ® Ox(—ds) is the desired sheaf.

= 0, and thus, since 7;*(Ug) is dense open in Z,

5. THE CASE RKE = 2

In what follows, when considering a twisted ind-grassmannian X = lim G(k,,; V"™) we set

—

G(kp; V™) = X,,. Theorem 4.2 yields now the following corollary.

Corollary 5.1. Let E = lim E,, be a rank 2 vector bundle on a twisted ind-grassmannian
X =lim X,,. Then there exists my > 1 such that dg, = (0,0) for any m > my.

Proof. Note first that the fact that X is twisted implies
(16) c1(Ep) =0, m>1

Indeed, ¢;(F,,) is nothing but the integer corresponding to the line bundle A?(E,,) in the identi-
fication of Pic X, with Z. As X is twisted, ¢, (F,,) = deg ¢, deg @myi - - - deg omikci (Emik+1)
for any £ > 1, in other words ¢ (FE,,) is divisible by larger and larger integers and hence
c1(Ey) = 0 (cf. [DP, Lemma 3.2]). Suppose that for any my > 1 there exists m > mg such
that dg,, = (am, —a,,) with a,, > 0. Then Theorem 4.2 applies to E,, with s = 1, and hence
E,, has a normal rank-1 subsheaf F,, such that

(17) Foi ~ Oi(am)

for a certain line [ in X,,. Since F}, is a torsion-free normal subsheaf of the vector bundle F,
the sheaf F}, is a line bundle, i.e. F,,, ~ Ox, (a,,). Therefore we have a monomorphism:

(18) 0— Ox,,(am) = Ep, ap > 1.

This is clearly impossible. In fact, this monomorphism implies in view of (16) that any rational
curve C' C X, of degree 6, := deg ¢y - ... - deg v,,,—1 has splitting type dg, (C) = (a!,, —al,),
where al, > a0, > d,,. Hence, by semiconinuity, any line [ € X has splitting type dg, (1) =

(b,—b), b > 6,,. Since d,, — 00 as my — 00, this is a contradiction. O
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We now recall some standard facts about the Chow rings of X,,, = G(k,,; V"™™), (see, e.g., [F,
14.7)):

(i) AN (X)) = Pic(X,n) = Z[V,,], A%(X,n) = Z[Wy ) ® Z|W3,), where V,,, Wy ,,,, W, are
the following Schubert varieties: V,, := {V*~ € X,,| dim(VF» QVJm"") > 1 for a
fixed subspace V'™ *m =t of VmYy W, o= {VF» € X,,| dim(VF» A VPl > 1 for
a fixed subspace V' Fm=1in Vml Wy, = {VF € X,,| dim(VF» 0 VmEmtly > 9
for a fixed subspace Vgm—Fmtl of rml,

(1) [VonJ? = (W] + (W] in A%(X,0):

(ili) Ao(Xy) = Z[P},,|®Z[P3,,], where the projective planes P} (called a-planes) and P35,
(called B-planes) are respectively the Schubert varieties IPim = {Vkn ¢ X,| Vit c
VEm C Vi +? for a fixed flag Vi C VP in vV}, PR, = {VEn € X, | VP C
Vhm c VEnt for a fixed flag Vi =2 € Vit in Ve

(iv) the bases [W;,,] and [P%, ] are dual in the standard sense that [W; ] - [P7,,] = d; ;.

Lemma 5.2. There exists my € Z~qo such that for any m > my one of the following holds:
(1) c2(Empz, ) >0, ca(Emppy, ) <0,
(2) c2(Empz, ) >0, c2a(Empz ) <0,
(3) CQ(Em“pim) = 0, CQ(EmW;m) =0.

Proof. According to (i), for any m > 1 there exist Aj,, Aoy € Z such that

(19) CQ(Em) = Alm[Wl,m] + >\2m [Wg?m].
Moreover, (iv) implies
(20) >\_]m = CQ(Em“P?,m), ] = 1, 2

Next, (i) yields:
(21)
O Wi mi1] = a1 (m)[Wi ] + a2 (m)[Wa ], 95, [Wam ] = a12(m)[Wo ] + aza(m)[Wo ],

where a;;(m) € Z. Consider the 2 x 2-matrix A(m) = (a;;(m)) and the column vector A,, =
(Am, A2m)t. Then, in view of (iv), the relation (21) gives: A,, = A(m)A,,11. Iterating this
equation and denoting by A(m, ) the 2 x 2-matrix A(m) - A(m+1)-...- A(m+1), i > 1, we
obtain

(22) Am = A(m,i)Am_i_,H_l.

The twisting condition ¢*,[V,,11] = deg@m[Vin] together with (ii) implies: ¢} ([Wy 1] +
(Waomi1]) = (degpm)?([Wyim] + [Wa,m]). Substituting (21) into the last equality, we have:
a1 (m) + apn(m) = asi(m) + ax(m) = (degp,)?,  m > 1. This means that the column vector
v = (1,1)" is the eigenvector of the matrix A(m) with the eigenvalue (deg,,)?. Hence, it is
the eigenvector of A(m,i) with the eigenvalue d,,; = (deg ¢,,)?(deg @my1)?...(deg ©mii)? :

(23) A(m,i)v = dy, 0.

Notice that the entries of A(m), m > 1, are nonnegative integers (in fact, from the definition of
Schubert varieties W ,,, 1 it follows quickly that ¢ [W, ,,41] is an effective cycle on X,,, so that
(21) and (iv) give 0 < @} [Wjmqa1] - [IP5,,] = ai;(m)); hence also the entries of A(m, i), m,i > 1,
are nonnegative integers). Besides, clearly d,,; — 0o as i — oo for any m > 1. This, together
with (22) and (23), implies that, for m > 1, Ay, and Mg, cannot both be nonzero and have
the same sign. This together with (20) is equivalent to the statement of the Lemma. UJ

In what follows we denote the a-planes and the S-planes on X = G(2;4) respectively by P?
and P2,
B
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Proposition 5.3. There ezists no rank 2 vector bundle E on the grassmannian X = G(2;4)
such that:

(a) c2(E) = a[P3], a>0,
(b) EIIP% is trivial for a generic B-plane IP% on X.

Proof. Now assume that there exists a vector bundle F on X satisfying the conditions (a) and
(b) of the Proposition. Fix a -plane P C X such that

(24) Ep~ 0%,

As X is the grassmannian of lines in P3, the plane P is the dual plane of a certain plane
P in P?. Next, fix a point 2y € P? < P and denote by S the variety of lines in P? which
contain zo. Consider the variety Q = {(x,1) € P> x X | z € I N P} with natural projections
p:Q — S :(zx,]) — Span(x,x0) and 0 : Q — X : (z,l) — [. Clearly, o is the blowing up
of X at the plane P, and the exceptional divisor Dp = ¢~ (P) is isomorphic to the incidence
subvariety of P x P. Moreover, one easily checks that Q ~ P(Og(1) @ Ts(—1)), so that the
projection p : @ — S coincides with the structure morphism P(Og(1) @ Ts(—1)) — S. Let
Oq(1) be the Grothendieck line bundle on @) such that p,Og(1) = Os(1) & Ts(—1). Using the
Euler exact triple on @)

(25) 0— Qg5 — P (Os(1) ® Ts(—1)) ® Og(—1) — Oq — 0,
we find the p-relative dualizing sheaf wq,s := det(Qy)q):
(26) wq/s >~ OQ(—B) ®p*05(2)

Set £ := ¢*E. By construction, for each y € S the fiber S, = p~!(y) is a plane such that
l, = S, N Dy is a line, and, by (24),

(27) &y, = OF2.

Furthermore, o(S,) is an a-plane in X, hence by condition (a) of the Proposition we obtain
that &g, is a stable vector bundle for a > 1, and that &g, fits into an exact triple 0 — Og, —
&s, — I.5, — 0 for a certain point z € S, for a = 1. In both cases it is well known (and
immediately verified) that (27) implies

(28) W (s, (~1) = h (€5, (~2) —a, K(Es, @ Q) —2a+2,

hi(Es,(—1)) = hi(Es,(=2)) = hi(Es, ® QL) =0, i #1
(see [OSS, p.285]). Consider the sheaves of Og-modules
(29) E_y := R'p.(E®04(-2)0p*0s(2)), Eo:= R'p.(E0Q4q,s), Ei:= R'p.(E@04(-1)).
The equalities (28) together with semicontinuity imply that £_;, E; and Ej are locally free
Og-modules, and rk(E_;) = rk(E)) = a, and rk(Ey) = 2a + 2. Moreover,
(30) R'p.(€ @ 0q(=2)) = R'p.(€ @ Qg 5) = R'p(€ ® Og(—1)) =0

for i # 1. Note that &Y ~ £ as ¢1(£) = 0 and rk€ = 2. Furthermore, (26) implies that the
nondegenerate pairing (p-relative Serre duality) R'p.(E®0g(—1))@R'p.(E¥Y@04(1)®@wgq/s) —
R2p*wQ /s = Og can be rewritten as £} ® E_; — Og, thus giving an isomorphism

(31) E_,~E/.
Similarly, since £ ~ & and Qég /s = Tg/s®@wqys, p-relative Serre duality yields a nondegenerate

pairing Ey®Ey = R'p. (@0 5) OR'p:(E@Qg ) = R'pu(E0Qg,5) @R p.(EY@Tg/s®wqs) —
R?p.wgqs = Og. Therefore Ej is self-dual, i.e. Ey ~ Ey, and in particular ¢;(Ep) = 0.
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Now, let J denote the fiber product @ xg Q with projections Q = J %3 @ such that
popry =popry. Put Fy X Fy = priFy ® pryFy for sheaves I} and F, on (), and consider the
standard O j-resolution of the structure sheaf Ox of the diagonal A — J:

(32) 0— 0g(—1)®@p"0s(2) K Og(—2) — QlQ/S(l) X Og(—1) — O; — Oa — 0.

Twist this sequence by the sheaf (€ ® Og(—1)) K Og(1) and apply the functor R'pra. to the
resulting sequence. In view of (29) and (30) we obtain the following monad for &:

(33) 0—p"E_1 ®Og(—1) A Ey S p B ® Op(1) — 0,  ker(p)/im(\) = €.

Put R := p*h, where h is the class of a line in S. Furthermore, set H := o*Hx, [P,] := o*[P2],
[Pg] := o*[P3], where Hy is the class of a hyperplane section of X (via the Pliicker embedding),
and respectively, [P2] and [P3] are the classes of an a- and 3-plane. Note that, clearly, Oq(H) ~
O¢(1). Thus, taking into account the duality (31), we rewrite the monad (33) as:

(34) 0—p'EY @ Og(—H) AP Ey S pE @ Og(H) — 0, ker(p)/im(\) =~ &.

As a next step, we are going to express all Chern classes of the sheaves in the monad (34)
in terms of a. We start by writing down the Chern polynomials of the bundles p*E; @ Og(H)
and p*EY ® Og(—H) in the form:

(35) By @ Og(H)) = [[(1+ 6+ H)t), a(p"EY © Og(—H)) = [ [(1 - (6 + H)t),
i=1 i=1
where ¢; are the Chern roots of the bundle p*E;. Thus

(36) cR* = Xa:(sf, dR = Xa:ai.
=1 =1

for some ¢, d € Z. Next we invoke the following easily verified relations in A (Q):

(37) H'= RH®=2]pt], R’H’= R?’[P,] = RH[P,] = H*[P,] = RH[Ps] = H*[P5] = [pt],
[Po][Ps] = R*[Ps] = R* = R°’H =0,

where [pt] is the class of a point. This, together with (36), gives:

(38)
o= Y (0764600 H =0, Y 60,H = %(dz—c)[p | (640, H? = 2(a—1)d[pt].
1<i<j<a 1<i<j<a 1<i<j<a 1<i<a
Note that, since ¢, (Ep) = 0,
(39) ci(p*Ep) = 1+ bR*t?
for some b € Z. Furthermore,
(40) ci(€) = 1+ a[P,)t?

by the condition of the Proposition. Substituting (39) and (40) into the polynomial f(¢
ci(E)en(p Er @ Oq(H))ey(p EY © Oq(—H)), we have f(t) = (1+ a[Pa]t?) [ [y (1 — (d; + H)
Expanding f(¢) in the variable ¢ and using (36)-(38), we obtain:

g :

t;

(41) ft) =1+ (a[Py] — cR*> — 2dRH — aH*)t* + e[pt]t*,

where

(42) e=—3c—a(2d+a)+ (a—1)(a+4d) + 2d°.

Next, the monad (34) implies f(t) = ¢:(p*Ep). A comparison of (41) with (39) yields
(43) (&) = a[Py] = (b+ ¢)R* + 2dRH + aH?,

(44) € = c4(p*E0) =0.
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The relation (44) is the crutial relation which enables us to express the Chern classes of all
sheaves in the monad (34) just in terms of a. More precisely, (43) and (37) give 0 = ¢2(E)[Pg] =
2d+a, hence a = —2d. Substituting these latter equalities into (42) we get e = —a(a—2)/2—3c.
Hence ¢ = —a(a —2)/6 by (44). Since a = —2d, (36) and the equality ¢ = —a(a — 2)/6 give
ci(Ey) = —a/2, c(Fy) = (d* — ¢)/2 = a(ba — 4)/24. Substituting this into the standard
formulas ey := c,(p* By ® Og(H)) = 37y (1) R H*c;(Ey), 1<k <4, we obtain

(45) e1 = —aR/2+aH, ey = (5a®/24 —a/6)R*+ (a* — a)(—RH + H?)/2,
e3 = (5a®/24 — 7a* /12 + a/3)R*H + (—a* /4 + 3a®/4 — a/2)RH? + (a® /6 — a®/2 + a/3) H?,
ey = (—7a" /144 + 43a® /144 — 41a® /72 + a/3)[pt].

It remains to write down explicitely co(p*Ep): (37), (43) and the relations a = —2d, ¢ =
—a(a —2)/6 give a = c2(E)[P,] = b+ ¢, hence

(46) co(E) = b= (a® + 4a)/6

by (39).

Our next and final step will be to obtain a contradiction by computing the Euler characteristic
of the sheaf £ and two different ways. We first compute the Todd class td(T¢) of the bundle T,.
From the exact triple dual to (25) we find ¢;(Tyys) = 14 (—2R+3H)t+ (2R* —4RH + 3H?)t*.
Next, c(Q) = (T s)ce(p*Tq). Hence ¢i(Tg) = R+3H, ¢3(Ty) = —R*+5RH+3H?, ¢3(Tp) =
—3R?*H + 9H?R, c¢4(Ty) = 9[pt]. Substituting into the formula for the Todd class of Ty,
td(Tg) = 1+ 361 + 35(cF 4 ¢2) + 570100 — =35 (¢! — 4cies — 33 — i3 + ¢4), where ¢; == ¢;(Tg)
(see, e.g., [H, p.432]), we get:

1 3 11 1 3 3
47 td(Tp) =1+ R+ -H+ —-RH+H*+ —HR*+ “H’°R+ -H* t|.
(47) (To) =14 gl Gl o R I I+ IR + Gl [p]
Next, by the condition of Proposition ¢1(€) = 0, c2(€) = a[P,], ¢3(€) = c4(€) = 0. Substituting
this into the general formula for the Chern character of a vector bundle F',
ch(F) = 1tk(F) 4+ ¢; + (¢} —2¢2)/2 + (¢} — 3c1ca — 3¢3) /6 + (¢] — 4cjca + deies + 2¢5 — dey) /24,

¢ = ¢;(F) (see, e.g., [H, p.432]), and using (47), we obtain by the Riemann-Roch Theorem for
F=¢&
(48) X(€)=—=a"— —a+2.

In a similar way, using (45), we obtain:

5, 20, 1., 113

TR T AV T

Next, in view of (46) and the equality ¢1(Ep) = 0 the Riemann-Roch Theorem for Ej easily
gives

(49)  X(p"Ev1 ® Oq(H)) + x(p"Ey ® Og(—H))

(50) X0 Bo) = X(Bo) = —ga* + 3+ 2
Together with (48) and (49) this yields
®(a) := x(p*FEo)— (x(E)+x(p* Ex@0¢(H))+x(p*EY 0o (—H))) = _%a(a_z)(a_g)@_g)_

The monad (34) implies now ®(a) = 0. The only positive integer roots of the polynomial
®(a) are a = 2 and a = 3. However, (48) implies x(£) = —3 for a = 2, and (50) implies
X(p*Ep) = 2 for a = 3. This is a contradiction as the values of x(£) and x(p*Ep) are integers
by definition. O
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We need a last piece of notation. Consider the flag variety Fl(k,, — 2, k,, +2; V). Any point
u= (Vkn=2 Vhnt2) ¢ Pl(k,, — 2, k,, +2; V) determines a standard extension

(51) iy X =G(2;4) — X,

(52) W2 VEn=2 g W2 C V2 = e =2 g W,

where W2 € X = G(2; W*) and an isomorphism V*»=2 @ W* ~ V/*n*2 ig fixed (clearly 4, does
not depend on the choice of this isomorphism). We clearly have isomorphisms of Chow groups

(53) it AN(X) S ANX), e Ao(X) D Ay(Xon),

where the flag variety Y;,, := Fl(k,, — 1, kp, + 1; V™) (respectively, Y := FI(1,3;4)) is the set
of lines in X, (respectively, in X).

Theorem 5.4. Let X = lim X,, be a twisted ind-grassmannian. Then any vector bundle
E =1lim E,, on X of rank 2 is trivial, and hence Conjgecture 1.1(iv) holds for vector bundles of
rank 2.

Proof. Fix m > max{mg, m1}, where mg and m, are as in Corollary 5.1 and Lemma 5.2. For
j=1,2, let EU) denote the restriction of E,, to a projective plane of type ]P’?m, TV ~ Fl(k,, —
J» km+3—7, V") be the variety of planes of the form P, in X,,, and Il := {P%, € T| Bz, |
is properly unstable (i.e. not semistable)}. As semistability is an open condition, Il is a closed
subset of TV,

(i) Assume that co(EM) > 0. Then, since m > my, Lemma 5.2 implies cy(E?) < 0.

(i.1) Suppose that co(E®) = 0. If IT* # T, then for any P}, € T? \ II? the corresponding
bundle £ is semistable, hence E®? is trivial as c;(E®) = 0, see [DL, Prop. 2.3,(4)]. Thus,
for a generic point u € Fl(k,, — 2, ky, + 2; V™), the bundle E =i E,, on X = G(2;4) satisfies
the conditions of Proposition 5.3, which is a contradiction.

We therefore assume II? = T2. Then for any P, € T? the corresponding bundle E® has

a maximal destabilizing subsheaf 0 — Opz (a) — E(2) . Moreover a > 0. In fact, otherwise
the condition ¢;(E®) = 0 would imply that a = 0 and E®/Op; = Opz , i.e. E® would be
trivial, in particular semistable. Hence

(54) dpe) = (a,—a).

Since any line in X, is contained in a plane P35, € 7%, (54) implies dg,,
for m > my, contrary to Corollary 5.1.
(i.2) Assume cy(E?) < 0. Since E® is not stable for any P € T?, its maximal destabilizing

subsheaf 0 — Opz (a) — E@ clearly satisfies the condition a > 0,i.e. E® is properly unstable,

= (a,—a) with a > 0

hence 112 = T2, Then we again obtain a contradiction as above

(ii) Now we assume that cy(E®) > 0. Then, replacing E® by EM and vice versa, we arrive
to a contradiction by the same argument as in case (i).

(iii) We must therefore assume CQ(E(I)) = cy(E®) = 0. Set D(E,,) := {l € Yy,| dg, (I) #
(0,0)} and D(E) := {l € Y| dg(l) # (0,0)}. By Corollary 5.1, dg,, = (0,0), respectively,
dg(l) = (0,0) for a generic line I € Y. Then by deformation theory [B], D(E,,) (respectively,
D(E)) is an effective divisor on Y;, (respectively, on Y). Hence, Oy (D(E)) = p;iOyi(a) ®
p3Oy2(b) for some a,b > 0, where py, ps are as in diagram (2). Note that each fiber of p; (resp.,
of py) is a plane ]f’% dual to some a-plane P2 (respectively, a plane I@’% dual to some (-plane

P%). Thus, setting D(Eppz) = {l € P2| dg(1) # (0,0)}, D(E“P%) = {l € IP%| dg(l) # (0,0)},
we obtain Oz (D(Eez)) = Oy (D(E)) gz = O3 (b),  Ops (D(Eppz)) = Oy (D(E)) gz = Oz ().
Now if Ejp2 is semistable, a theorem of Barth [OSS, Ch. II, Theorem 2.2.3] implies that D(Ejpz )
is a divisor of degree cs(Epz) = a on P2. Hence a = ¢o(EW) = 0 for a semistable Ejpz. If
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Ejp2 is not semistable, it is unstable and the equality dg(l) = (0,0) yields dEm% = (0,0). Then
the maximal destabilizing subsheaf of Ejp: is isomorphic to Opz and, since CQ(E‘IP% ) =0, we
obtain an exact triple 0 — Opz — Epz — Opz — 0, such that Epz ~ (9];‘?22 is semistable,
a contradiction. This shows that a = 0 whenever cy(EW) = ¢(E?) = 0. Saimilarly, b= 0.

Therefore D(E,,) = ), and Proposition 4.1 implies that E,, is trivial. Therefore E is trivial as
well. O

In [DP] Conjecture 1.1 (iv) was proved not oly when X is a twisted projective ind-space,
but also for finite rank bundles on special twisted ind-grassmannians defined through certain
homogeneous embeddings ¢,,. These include embeddings of the form

G(k;n) — G(kw;na)
VECV = VoW cVaew,
where W is a fixed a-dimensional subspace, or of the form
k(k+1
G(k;n) — G (%;Tﬁ)
VECcV = SV cveV

More precisely, Conjecture 1.1 (iv) was proved in [DP] for twisted ind-grassmannians whose
defining embeddings are homogeneous embeddings satisfying some specific numerical conditions
relating the degrees deg p,, with the pairs of integers (k,,, n,,). There are many twisted ind-
grassmannians for which those conditions are not satisfied. For instance, this applies to the
ind-grassmannians defined by iterating each of the following embeddings:

k(k+1) Mn+D>

2 7
VEC Ve S2(VE) c S3(V),

G%m%ee<mz”””_m

VECV = A2(VE) C AX(V).

Therefore the resulting ind-grassmannians G(k, n, S?) and X(k,n, A?) are examples of twisted
ind-grassmannians for which Theorem 5.4 is new.

Gwmyea(
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