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1. Introduction

The simplest example of an ind-grassmannian is the infinite projective space P∞. The Barth-
Van de Ven-Tyurin (BVT) Theorem, proved more than 30 years ago [BV], [T], [Sa1] (see also
a recent proof by A. Coanda and G. Trautmann, [CT]), claims that any vector bundle of
finite rank on P∞ is isomorphic to a direct sum of line bundles. In the last decade natural
examples of infinite flag varieties (or flag ind-varieties) have arisen as homogeneous spaces of
locally linear ind-groups, [DPW], [DiP]. In the present paper we concentrate our attention
to the special case of ind-grassmannians, i.e. to inductive limits of grassmannians of growing

dimension. If V is a countable dimensional vector space, where
⋃
n>k

V n = V , then the ind-variety

G(k; V ) = lim
→

G(k; V n) (or simply G(k;∞)) of k-dimensional subspaces of V is of course an

ind-grassmannian: this is the simplest example beyond P∞ = G(1;∞). A significant difference
between G(k; V ) and a general ind-grassmannian X = lim

→
G(ki; V

ni) defined via a sequence of

closed immersions

(1) G(k1; V
n1)

ϕ1−→ G(k2; V
n2)

ϕ2−→ · · · ϕm−1−→ G(km; V nm)
ϕm−→ . . . ,

is that in general the morphisms ϕm can have arbitrary degrees. We say that the ind-
grassmannian X is twisted if deg ϕm > 1 for infinitely many m, and that X is linear if
deg ϕm = 1 for almost all m.

Conjecture 1.1. Let the ground field be C and E be a vector bundle of rank r ∈ Z>0 on an
ind-grasmannian X = lim

→
G(km; V nm), i.e. E = lim

←
Em, where {Em} is an inverse system of

vector bundles of (fixed) rank r on G(km; V nm). Then

(i) E is semisimple: it is isomorphic to a direct sum of simple vector bundles on X, i.e.
vector bundles on X with no non-trivial subbundles;

(ii) for m � 0 the restriction of each simple bundle E to G(km, V nm) is a homogeneous
vector bundle;

(iii) each simple bundle E′ has rank 1 unless X is isomorphic G(k;∞) for some k: in the
latter case E′, twisted by a suitable line bundle, is isomorphic to a simple subbundle of
the tensor algebra T ·(S), S being the tautological bundle of rank k on G(k;∞);

(iv) each simple bundle E (and thus each vector bundle of finite rank on X) is trivial when-
ever X is a twisted ind-grassmannian.

The BVT Theorem and Sato’s theorem about finite rank bundles on G(k;∞), [Sa1], [Sa2],
as well as the results in [DP], are particular cases of the above conjecture. The purpose of the
present note is to prove Conjecture 1.1 for vector bundles of rank 2, and also for vector bundles
of arbitrary rank r on linear ind-grassmannians X.

In the 70’s and 80’s Yuri Ivanovich Manin taught us mathematics in (and beyond) his seminar,
and the theory of vector bundles was a reoccuring topic (among many others). In 1980, he asked
one of us (I.P.) to report on A. Tyurin’s paper [T], and most importantly to try to understand
this paper. The present note is a very preliminary progress report.
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2. Notation and Conventions

The ground field is C. Our notation is mostly standard: if X is an algebraic variety, (over
C), OX denotes its structure sheaf, Ω1

X (respectively TX) denotes the cotangent (resp. tangent)
sheaf on X under the assumption that X is smooth etc. If F is a sheaf on X, its cohomologies
are denoted by H i(F ), hi(F ) := dim H i(F ), and χ(F ) stands for the Euler characteristic of
F . The Chern classes of F are denoted by ci(F ). If f : X → Y is a morphism, f ∗ and f∗
denote respectively the inverse and direct image functors of O-modules. All vector bundles are
assumed to have finite rank. The dual of a sheaf of OX-modules F (as well as the the dual
of a vector space) we denote by the superscript ∨. Under an embedding of smooth varieties
i : X → Y we always understand a closed immersion. Furthermore, in what follows for any
ind-grassmannian X defined by (1), no embedding ϕi is an isomorphism.

We fix a finite dimensional space V and denote by X the grassmannian G(k; V ) for k < dim V .
In the sequel we write sometimes G(k; n) indicating simply the dimension of V . Below we will
often consider (parts of) the following diagram of flag varieties:
(2)

Z := Fl(k − 1, k, k + 1; V )
π1

sshhhhhhhhhhhhhhhhhhh
π2

**UUUUUUUUUUUUUUUU

Y := Fl(k − 1, k + 1; V )
p1

ttiiiiiiiiiiiiiiiii
p2

++VVVVVVVVVVVVVVVVVVV
X := G(k; V ),

Y 1 := G(k − 1; V ) Y 2 := G(k + 1; V )

under the assumption that k + 1 < dim V . Moreover we reserve the letters X,Y, Z for the
varieties in the above diagram. By Sk, Sk−1, Sk+1 we denote the tautological bundles on X,Y
and Z, whenever they are defined (Sk is defined on X and Z, Sk−1 is defined on Y 1, Y and
Z, etc.). By OX(i), i ∈ Z, we denote the isomorphism class (in the Picard group Pic X) of
the line bundle (Λk(S∨k ))⊗i, where Λk stands for the kth exterior power (in this case maximal
exterior power as rkS∨k = k). The Picard group of Y is isomorphic to the direct product of
the Picard groups of Y 1 and Y 2, and by OY (i, j) we denote the isomorphism class of the line
bundle p∗1(Λ

k−1(S∨k−1))
⊗i ⊗OY

p∗2(Λ
k+1(S∨k+1))

⊗j.
If ϕ : X = G(k; V ) → X ′ := G(k; V ′) is an embedding, then ϕ∗OX′(1) ' OX(d) for some

d ∈ Z≥0: by definition d is the degree deg ϕ of ϕ. We say that ϕ is linear if deg ϕ = 1. By a
projective subspace (in particular a line, i.e. a 1-dimensional projective subspace) of X we mean
a linearly embedded projective space into X. It is well known that all such are Schubert varieties
of the form {V k ∈ X|V k−1 ⊂ V k ⊂ V t} or {V ∈ X|V i ⊂ V k ⊂ V k+1}, where V k is a variable
k-dimensional subspace of V , and V k−1, V k+1, V t, V i are fixed subspaces of V of respective
dimensions k − 1, k + 1, t, i. (In what follows we will automatically assume that a given finite
dimensional space written as V t has dimension t). In other words, all projective subspaces of
X are of the form G(1; V t/V k−1) or G(k− i, V k+1/V i). Note also that Y = Fl(k− 1, k + 1; V )
is the variety of lines in X = G(k; V ).

3. The linear case

We consider the cases of linear and twisted ind-grassmannians separately. In the case of a
linear ind-grassmannian, we show that Conjecture 1.1 is a straightforward corollary of existing
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results combined with the following proposition. We recall, [DP], that a standard extension of
grassmannians is an embedding of the form

(3) G(k; V )→ G(k + a; V ⊕ Ŵ ), {V k ⊂ Cn} 7→ {V k ⊕W ⊂ V ⊕ Ŵ},

where W is a fixed a-dimensional subspace of a finite dimensional vector space Ŵ .

Proposition 3.1. Let ϕ : X = G(k; V )→ X ′ := G(k′; V ′) be an embedding of degree 1. Then
ϕ is a standard extension, or ϕ factors through a standard extension Pr → G(k′; V ′) for some
r.

Proof. We assume that k ≤ n − k, k ≤ n′ − k′, where n = dim V and n′ = dim V ′, and use
induction on k. For k = 1 the statement is obvious as the image of ϕ is a projective subspace
of G(k′; V ′) and hence ϕ is a standard extension. Assume that the statement is true for k − 1.
Since deg ϕ = 1, ϕ induces an embedding ϕY : Y → Y ′, where Y = Fl(k − 1, k + 1; V ) is the
variety of lines in X and Y = Fl(k′ − 1, k′ + 1; V ′) is the variety of lines in X ′. Moreover,
clearly we have a commutative diagram of natural projections and embeddings

Z
ϕZ //

π1

����
��

��
�� π2

��?
??

??
??

? Z ′
π′
1

~~~~
~~

~~
~~ π′

2

!!B
BB

BB
BB

B

Y

  B
BB

BB
BB

B X

!!C
CC

CC
CC

CC
Y ′ X ′,

ϕY

//

=={{{{{{{{
ϕ

//

<<yyyyyyyy

where Z := Fl(k − 1, k, k + 1; V ) and Z ′ := Fl(k′ − 1, k′, k′ + 1; V ′).
We claim that there is an isomorphism

(4) ϕ∗YOY ′(1, 1) ' OY (1, 1).

Indeed, ϕ∗YOY ′(1, 1) is determined up to isomorphism by its restriction to the fibers of p1 and
p2 (see diagram (2)), and therefore it is enough to check that

(5) ϕ∗YOY ′(1, 1)|p−1
1 (V k−1) ' Op−1

1 (V k−1)(1),

(6) ϕ∗YOY ′(1, 1)|p−1
2 (V k+1) ' Op−1

2 (V k+1)(1)

for some fixed subspaces V k−1 ⊂ V , V k+1 ⊂ V . Note that the restriction of ϕ to the projec-
tive subspace G(1; V/V k−1) ⊂ X is simply an isomorphism of G(1; V/V k−1) with a projective
subspace of X ′, hence the map induced by ϕ on the variety G(2; V/V k−1) of projective lines in
G(1; V/V k−1) is an isomorphism with a grassmannian of 2-dimensional subspaces of an appro-
priate quotient space of V ′. Note furthermore that p−1

1 (V k−1) is nothing but the variety of lines
G(2; V/V k−1) in G(1; V/V k−1), and that the image of G(2; V/V k−1) under ϕ is nothing but
ϕY (p−1

1 (V k−1)). This shows that the restriction of ϕ∗YOY ′(1, 1) to G(2; V/V k−1) is isomorphic
to the restriction of OY (1, 1) to G(2; V/V k−1), and we obtain (5). The isomorphism (6) follows
from a very similar argument.

The isomorphism (4) leaves us with two alternatives:

(7) ϕ∗YOY ′(1, 0) ' OY or ϕ∗YOY ′(0, 1) ' OY ,

or

(8) ϕ∗YOY ′(1, 0) ' OY (1, 0) or ϕ∗YOY ′(1, 0) ' OY (0, 1).

Let (7) hold, more precisely let ϕ∗YOY ′(1, 0) ' OY . Then ϕY maps each fiber of p2 into a single

point in Y ′ (depending on the image in Y 2 of this fiber), say ((V ′)k′−1 ⊂ (V ′)k′+1), and moreover

the space (V ′)k′−1 is constant. Thus ϕ maps X into the projective subspace G(1; V ′/(V ′)k′−1)
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of X ′. If ϕ∗YOY ′(0, 1) ' OY , then ϕ maps X into the projective subspace G(1; (V ′)k′+1) of X ′.
Therefore, the Proposition is proved in the case (7) holds.

We assume now that (8) holds. It is easy to see that (8) implies that ϕ induces a linear
embedding ϕY 1 of Y 1 := G(k − 1; V ) into G(k′ − 1; V ′) or G(k′ + 1; V ′). Assume that ϕY 1 :
Y 1 → (Y ′)1 := G(k′ − 1; V ′) (the other case is completely similar). Then, by the induction
assumption, ϕY 1 is a standard extension or factors through a standard extension Pr → (Y ′)1.

If ϕY 1 is a standard extension corresponding to a fixed subspace W ⊂ Ŵ , then ϕ∗Y 1Sk′−1 '
Sk−1 ⊕ (W ⊗C OY 1) and we have a vector bundle monomorphism

(9) 0→ π∗1p
∗
1ϕ
∗
Y 1Sk′−1 → π∗2ϕ

∗Sk′ .

By restricting (9) to the fibers of π1 we see that the quotient line bundle π∗2ϕ
∗Sk′/π

∗
1p
∗
1ϕ
∗
Y 1Sk′−1

is isomorphic to Sk/Sk−1 ⊗ π∗1p
∗
1L, where L is a line bundle on Y 1. Applying π2∗ we obtain

(10) 0→ W ⊗C OX → π2∗(π
∗
2ϕ
∗Sk′) = ϕ∗Sk′ → π2∗((Sk/Sk−1)⊗ π∗1p

∗
1L)→ 0.

Since rkϕ∗Sk′ = k′ and dim W = k′ − k, rkπ2∗((Sk/Sk−1) ⊗ π∗1p
∗
1L) = k, which implies im-

mediately that L is trivial. Hence (10) reduces to 0 → W ⊗C OX → ϕ∗Sk′ → Sk → 0, and
thus

(11) ϕ∗Sk′ ' Sk ⊕ (W ⊗C OX)

as there are no non-trivial extensions of Sk by a trivial bundle. Now (11) implies that ϕ is a
standard extension.

It remains to consider the case when ϕY 1 maps Y 1 into a projective subspace Ps of (Y ′)1. Then

Ps is of the form G(1; V ′/(V ′)k′−2) for some (V ′)k′−2 ⊂ V ′, or of the form G(k′ − 1; (V ′)k′) for

some (V ′)k′ ⊂ V ′. The second case is clearly impossible because it would imply that ϕ maps X

into the single point (V ′)k′ . Hence Ps = G(1; V ′/(V ′)k′−2) and ϕ maps X into the grassmannian

G(2; V ′/(V ′)k′−2) in G(k′; V ′). Let S ′2 be the rank 2 tautological bundle on G(2; V ′/(V ′)k′−2).
Then its restriction S ′′ := ϕ∗S ′2 to any line l in X is isomorphic to Ol ⊕Ol(−1), and we claim
that this implies one of the two alternatives:

(12) S ′′ ' OX ⊕OX(−1)

or

(13) S ′′ ' S2 and k = 2, or S ′′ ' (V ⊗C OX)/S2 and k = n− k = 2.

Let k ≥ 2. The evaluation map π∗1π1∗π
∗
2S
′′ → π∗2S

′′ is a monomorphism of the line bundle
π∗1L := π∗1π1∗π

∗
2S
′′ into π∗2S

′′ (here L := π1∗π
∗
2S
′′). Restricting this monomorphism to the fibers

of π2 we see immediately that π∗1L is trivial when restricted to those fibers and is hence trivial.
Therefore L is trivial, i.e. π∗1L = OZ . Push-down to X yields

(14) 0→ OX → S ′′ → OX(−1)→ 0,

and hence (14) splits as Ext1(OX(−1),OX) = 0. Therefore (12) holds. For k = 2, there is an
additional possibility for the above monomorphisms to be of the form π∗1OY (−1, 0)→ π∗2S (or
of the form π∗1OY (0,−1)→ π∗2S if n− k = 2) which yields the option (13).

If (12) holds, ϕ maps X into an appropriate projective subspace of G(2; V ′/(V ′)k′−2) which
is then a projective subspace of X ′, and if (13) holds, ϕ is a standard extension corresponding
to a zero dimensional space W . The proof is now complete. �

We are ready now to prove the following theorem.

Theorem 3.2. Conjecture 1.1 holds for any linear ind-grassmannian X.
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Proof. Assume that deg ϕm = 1 for all m, and apply Proposition 3.1. If infinitely many ϕm’s
factor through respective projective subspaces, then X is isomorphic to P∞ and the BVT
Theorem implies Conjecture 1.1. Otherwise, all ϕm’s are standard extensions of the form (3).
There are two alternatives: lim

m→∞
km = lim

m→∞
nm − km = ∞, or one of the limits lim

m→∞
km or

lim
m→∞

nm− km equals l for some l ∈ N. In the first case the claim of Conjecture 1.1 is proved in

[DP]: Theorem 4.2. In the second case X is isomorphic to G(l;∞), and therefore Conjecture
1.1 is proved in this case by E. Sato in [Sa2]. �

4. Auxilary results

In order to prove Conjecture 1.1 for rank 2 bundles E on a twisted ind-grassmannian X =
lim
→

G(km; V nm), we need to prove that the vector bundle E = lim
←

Em of rank 2 on X is trivial,

i.e. that Em is a trivial bundle on G(km; V nm) for each m. From this point on we assume
that none of the grassmannians G(km; V nm) is a projective space, as for a twisted projective
ind-space Conjecture 1.1 is proved in [DP] for bundles of arbitrary rank r.

The following known proposition gives a useful triviality criterion for vector bundles of arbi-
trary rank on grassmannians.

Proposition 4.1. A vector bundle E on X = G(k; n) is trivial iff its restriction E|l is trivial
for every line l in G(k; n), l ∈ Y = Fl(k − 1, k + 1; n).

Proof. We recall the proof given in [P]. It uses the well known fact that the Proposition holds
for any projective space, [OSS, Theorem 3.2.1]. Let first k = 2, n = 4, i.e. X = G(2; 4).
Since E is linearly trivial, π∗2E is trivial along the fibers of π1 (we refer here to diagram (2)).
Moreover, π1∗π

∗
2E is trivial along the images of the fibers of π2 in Y . These images are of the

form P1
1 × P1

2, where P1
1 (respectivelly P1

2) are lines in Y 1 := G(1; 4) and Y 2 := G(3; 4). The
fiber of p1 is filled by lines of the form P1

2, and thus π1∗π
∗
2E is linearly trivial, and hence trivial

along the fibers of π1. Finally the lines of the form P1
1 fill Y 1, hence p1∗π1∗π

∗
2E is also a trivial

bundle. This implies that E = π2∗π
∗
1p
∗
1(p1∗π1∗π

∗
2E) is also trivial.

The next case is the case when k = 2 and n is arbitrary, n ≥ 5. Then the above argument
goes through by induction on n since the fiber of p1 is isomorphic to G(2; n − 1). The proof
is completed by induction on k for k ≥ 3: the base of p1 is G(k − 1; n) and the fiber of p1 is
G(2; n− 1). �

If C ⊂ N is a smooth rational curve in an algebraic variety N and E is a vector bundle
on N , then by a classical theorem of Grothendieck, E|C is isomorphic to

⊕
iOC(di) for some

d1 ≥ d2 ≥ · · · ≥ drkE. We call the ordered rkE-tuple (d1, . . . , drkE) the splitting type of E|C
and denote it by dE(C). If N = X = G(k; n), then the lines on N are parametrized by points
l ∈ Y , and we obtain a map

Y → ZrkE : l 7→ dE(l).

By semicontinuity (cf. [OSS, Ch.I, Lemma 3.2.2]), there is a dense open set UE ⊂ Y of lines
with minimal splitting type with respect to the lexicographical ordering on ZrkE. Denote this
minimal splitting type by dE. By definition, UE = {l ∈ Y | dE(l) = dE} is the set of non-
jumping lines of E, and its complement Y \ UE is the proper closed set of jumping lines.

A coherent sheaf F over a smooth irreducible variety N is called normal if for every open
set U ⊂ N and every closed algebraic subset A ⊂ U of codimension at least 2 the restriction
map F (U)→ F (U r A) is surjective. It is well known that a rank-1 normal torsion-free sheaf
F is reflexive, i.e. F∨∨ = F . Therefore, by [OSS, Ch.II, Theorem 2.1.4] F is necessarily a line
bundle (see [OSS, Ch.II, 1.1.12 and 1.1.15]).

Theorem 4.2. Let E be a rank r vector bundle of splitting type dE = (d1, ..., dr), d1 ≥ ... ≥ dr,
on X = G(k; n). If ds − ds+1 ≥ 2 for some s < r, then there is a normal subsheaf F ⊂ E
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of rank s with the following properties: over the open set π2(π
−1
1 (UE)) ⊂ X the sheaf F is a

subbundle of E, and for any l ∈ UE

F|l '
s⊕

i=1

Ol(di).

Proof. It is similar to the proof of Theorem 2.1.4 of [OSS, Ch.II]. Consider the vector bundle
E ′ = E

⊗
OX(−ds) and the evaluation map Φ : π∗1π1∗π

∗
2E
′ → π∗2E

′. The definition of UE

implies that Φ|π−1
1 (UE) is a morphism of constant rank s and that its image ImΦ ⊂ π∗2E

′ is a

subbundle of rank s over π−1
1 (UE). Let M := π∗2E

′/imΦ, let T (M) be the torsion subsheaf of
M , and F ′ := ker(π∗2E

′ → M ′ := M/T (M)). Consider the singular set Sing F ′ of the sheaf F ′

and set A := Z r Sing F ′. By the above, A is an open subset of Z containing π−1
1 (UE) and

f = π2|A : A→ B := π2(A) is a submersion with connected fibers.

Next, take any point l ∈ Y and put L := π−1
1 (l). By definition, L ' P1, and we have

(15) TZ/X |L ' OL(−1)⊕(n−2),

where TZ/X is the relative tangent bundle of Z over X. The construction of the sheaves F ′ and M
implies that for any l ∈ UE: F ′∨|L = ⊕s

i=1OL(−di+ds), M ′
|L = ⊕r

i=s+1OL(di−ds). This, together

with (15) and the condition ds − ds+1 ≥ 2, immediately implies that H0(Ω1
A/B ⊗ F ′∨ ⊗M ′

|L) =

0. Hence H0(Ω1
A/B ⊗ F ′∨ ⊗ M ′

|π−1
1 (UE)

) = 0, and thus, since π−1
1 (UE) is dense open in Z,

Hom(TA/B,Hom(F ′, M ′
|A)) = H0(Ω1

A/B ⊗ F ′∨ ⊗M ′
|A) = 0. Now we apply the Descent Lemma

(see [OSS, Ch.II, Lemma 2.1.3]) to the data (f|π−1
1 (UE) : π−1

1 (UE)→ VE, F ′|π−1
1 (UE)

⊂ E ′|π−1
1 (UE)

).

Then F := (π2∗F
′)⊗OX(−ds) is the desired sheaf. �

5. The case rkE = 2

In what follows, when considering a twisted ind-grassmannian X = lim
→

G(km; V nm) we set

G(km; V nm) = Xm. Theorem 4.2 yields now the following corollary.

Corollary 5.1. Let E = lim
←

Em be a rank 2 vector bundle on a twisted ind-grassmannian

X = lim
→

Xm. Then there exists m0 ≥ 1 such that dEm = (0, 0) for any m ≥ m0.

Proof. Note first that the fact that X is twisted implies

(16) c1(Em) = 0, m ≥ 1.

Indeed, c1(Em) is nothing but the integer corresponding to the line bundle Λ2(Em) in the identi-
fication of Pic Xm with Z. As X is twisted, c1(Em) = deg ϕm deg ϕm+1 . . . deg ϕm+kc1(Em+k+1)
for any k ≥ 1, in other words c1(Em) is divisible by larger and larger integers and hence
c1(Em) = 0 (cf. [DP, Lemma 3.2]). Suppose that for any m0 ≥ 1 there exists m ≥ m0 such
that dEm = (am,−am) with am > 0. Then Theorem 4.2 applies to Em with s = 1, and hence
Em has a normal rank-1 subsheaf Fm such that

(17) Fm|l ' Ol(am)

for a certain line l in Xm. Since Fm is a torsion-free normal subsheaf of the vector bundle E,
the sheaf Fm is a line bundle, i.e. Fm ' OXm(am). Therefore we have a monomorphism:

(18) 0→ OXm(am)→ Em, am ≥ 1.

This is clearly impossible. In fact, this monomorphism implies in view of (16) that any rational
curve C ⊂ Xm of degree δm := deg ϕ1 · ... · deg ϕm−1 has splitting type dEm(C) = (a′m,−a′m),
where a′m ≥ amδm ≥ δm. Hence, by semiconinuity, any line l ∈ X1 has splitting type dE1(l) =
(b,−b), b ≥ δm. Since δm →∞ as m0 →∞, this is a contradiction. �
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We now recall some standard facts about the Chow rings of Xm = G(km; V nm), (see, e.g., [F,
14.7]):

(i) A1(Xm) = Pic(Xm) = Z[Vm], A2(Xm) = Z[W1,m]⊕Z[W2,m], where Vm, W1,m, W2,m are

the following Schubert varieties: Vm := {V km ∈ Xm| dim(V km ∩ V nm−km
0 ) ≥ 1 for a

fixed subspace V nm−km−1
0 of V nm}, W1,m := {V km ∈ Xm| dim(V km ∩ V nm−km−1

0 ) ≥ 1 for

a fixed subspace V nm−km−1
0 in V nm}, W2,m := {V km ∈ Xm| dim(V km ∩ V nm−km+1

0 ) ≥ 2

for a fixed subspace V nm−km+1
0 of V nm};

(ii) [Vm]2 = [W1,m] + [W2,m] in A2(Xm);
(iii) A2(Xm) = Z[P2

1,m]⊕Z[P2
2,m], where the projective planes P2

1,m (called α-planes) and P2
2,m

(called β-planes) are respectively the Schubert varieties P2
1,m := {V km ∈ Xm| V km−1

0 ⊂
V km ⊂ V km+2

0 for a fixed flag V km−1
0 ⊂ V km+2

0 in V nm}, P2
2,m := {V km ∈ Xm| V km−2

0 ⊂
V km ⊂ V km+1

0 for a fixed flag V km−2
0 ⊂ V km+1

0 in V nm};
(iv) the bases [Wi,m] and [P2

j,m] are dual in the standard sense that [Wi,m] · [P2
j,m] = δi,j.

Lemma 5.2. There exists m1 ∈ Z>0 such that for any m ≥ m1 one of the following holds:

(1) c2(Em|P2
1,m

) > 0, c2(Em|P2
2,m

) ≤ 0,

(2) c2(Em|P2
2,m

) > 0, c2(Em|P2
1,m

) ≤ 0,

(3) c2(Em|P2
1,m

) = 0, c2(Em|P2
2,m

) = 0.

Proof. According to (i), for any m ≥ 1 there exist λ1m, λ2m ∈ Z such that

(19) c2(Em) = λ1m[W1,m] + λ2m[W2,m].

Moreover, (iv) implies

(20) λjm = c2(Em|P2
j,m

), j = 1, 2.

Next, (i) yields:
(21)

ϕ∗m[W1,m+1] = a11(m)[W1,m] + a21(m)[W2,m], ϕ∗m[W2,m+1] = a12(m)[W1,m] + a22(m)[W2,m],

where aij(m) ∈ Z. Consider the 2 × 2-matrix A(m) = (aij(m)) and the column vector Λm =
(λ1m, λ2m)t. Then, in view of (iv), the relation (21) gives: Λm = A(m)Λm+1. Iterating this
equation and denoting by A(m, i) the 2× 2-matrix A(m) · A(m + 1) · ... · A(m + i), i ≥ 1, we
obtain

(22) Λm = A(m, i)Λm+i+1.

The twisting condition ϕ∗m[Vm+1] = deg ϕm[Vm] together with (ii) implies: ϕ∗m([W1,m+1] +
[W2,m+1]) = (deg ϕm)2([W1,m] + [W2,m]). Substituting (21) into the last equality, we have:
a11(m) + a12(m) = a21(m) + a22(m) = (deg ϕm)2, m ≥ 1. This means that the column vector
v = (1, 1)t is the eigenvector of the matrix A(m) with the eigenvalue (deg ϕm)2. Hence, it is
the eigenvector of A(m, i) with the eigenvalue dm,i = (deg ϕm)2(deg ϕm+1)

2...(deg ϕm+i)
2 :

(23) A(m, i)v = dm,iv.

Notice that the entries of A(m), m ≥ 1, are nonnegative integers (in fact, from the definition of
Schubert varieties Wj,m+1 it follows quickly that ϕ∗m[Wj,m+1] is an effective cycle on Xm, so that
(21) and (iv) give 0 ≤ ϕ∗m[Wi,m+1] · [P2

j,m] = aij(m)); hence also the entries of A(m, i), m, i ≥ 1,
are nonnegative integers). Besides, clearly dm,i →∞ as i→∞ for any m ≥ 1. This, together
with (22) and (23), implies that, for m � 1, λ1m and λ2m cannot both be nonzero and have
the same sign. This together with (20) is equivalent to the statement of the Lemma. �

In what follows we denote the α-planes and the β-planes on X = G(2; 4) respectively by P2
α

and P2
β.
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Proposition 5.3. There exists no rank 2 vector bundle E on the grassmannian X = G(2; 4)
such that:

(a) c2(E) = a[P2
α], a > 0,

(b) E|P2
β

is trivial for a generic β-plane P2
β on X.

Proof. Now assume that there exists a vector bundle E on X satisfying the conditions (a) and
(b) of the Proposition. Fix a β-plane P ⊂ X such that

(24) E|P ' O⊕2
P .

As X is the grassmannian of lines in P3, the plane P is the dual plane of a certain plane
P̃ in P3. Next, fix a point x0 ∈ P3 r P̃ and denote by S the variety of lines in P3 which
contain x0. Consider the variety Q = {(x, l) ∈ P3 × X | x ∈ l ∩ P̃} with natural projections
p : Q → S : (x, l) 7→ Span(x, x0) and σ : Q → X : (x, l) 7→ l. Clearly, σ is the blowing up
of X at the plane P , and the exceptional divisor DP = σ−1(P ) is isomorphic to the incidence
subvariety of P × P̃ . Moreover, one easily checks that Q ' P(OS(1) ⊕ TS(−1)), so that the
projection p : Q → S coincides with the structure morphism P(OS(1) ⊕ TS(−1)) → S. Let
OQ(1) be the Grothendieck line bundle on Q such that p∗OQ(1) = OS(1)⊕ TS(−1). Using the
Euler exact triple on Q

(25) 0→ Ω1
Q/S → p∗(OS(1)⊕ TS(−1))⊗OQ(−1)→ OQ → 0,

we find the p-relative dualizing sheaf ωQ/S := det(Ω1
Q/S):

(26) ωQ/S ' OQ(−3)⊗ p∗OS(2).

Set E := σ∗E. By construction, for each y ∈ S the fiber Sy = p−1(y) is a plane such that
ly = Sy ∩DY is a line, and, by (24),

(27) E|ly ' O⊕2
ly

.

Furthermore, σ(Sy) is an α-plane in X, hence by condition (a) of the Proposition we obtain
that E|Sy is a stable vector bundle for a > 1, and that E|Sy fits into an exact triple 0→ OSy →
E|Sy → Iz,Sy → 0 for a certain point z ∈ Sy for a = 1. In both cases it is well known (and
immediately verified) that (27) implies

(28) h1(E|Sy(−1)) = h1(E|Sy(−2)) = a, h1(E|Sy ⊗ Ω1
Sy

) = 2a + 2,

hi(E|Sy(−1)) = hi(E|Sy(−2)) = hi(E|Sy ⊗ Ω1
Sy

) = 0, i 6= 1

(see [OSS, p.285]). Consider the sheaves of OS-modules

(29) E−1 := R1p∗(E⊗OQ(−2)⊗p∗OS(2)), E0 := R1p∗(E⊗Ω1
Q/S), E1 := R1p∗(E⊗OQ(−1)).

The equalities (28) together with semicontinuity imply that E−1, E1 and E0 are locally free
OS-modules, and rk(E−1) = rk(E1) = a, and rk(E0) = 2a + 2. Moreover,

(30) Rip∗(E ⊗ OQ(−2)) = Rip∗(E ⊗ Ω1
Q/S) = Rip∗(E ⊗ OQ(−1)) = 0

for i 6= 1. Note that E∨ ' E as c1(E) = 0 and rkE = 2. Furthermore, (26) implies that the
nondegenerate pairing (p-relative Serre duality) R1p∗(E⊗OQ(−1))⊗R1p∗(E∨⊗OQ(1)⊗ωQ/S)→
R2p∗ωQ/S = OS can be rewritten as E1 ⊗ E−1 → OS, thus giving an isomorphism

(31) E−1 ' E∨1 .

Similarly, since E∨ ' E and Ω1
Q/S ' TQ/S⊗ωQ/S, p-relative Serre duality yields a nondegenerate

pairing E0⊗E0 = R1p∗(E⊗Ω1
Q/S)⊗R1p∗(E⊗Ω1

Q/S) = R1p∗(E⊗Ω1
Q/S)⊗R1p∗(E∨⊗TQ/S⊗ωQ/S)→

R2p∗ωQ/S = OS. Therefore E0 is self-dual, i.e. E0 ' E∨0 , and in particular c1(E0) = 0.
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Now, let J denote the fiber product Q ×S Q with projections Q
pr1← J

pr2→ Q such that
p ◦ pr1 = p ◦ pr2. Put F1 � F2 := pr∗1F1 ⊗ pr∗2F2 for sheaves F1 and F2 on Q, and consider the
standard OJ -resolution of the structure sheaf O∆ of the diagonal ∆ ↪→ J :

(32) 0→ OQ(−1)⊗ p∗OS(2) �OQ(−2)→ Ω1
Q/S(1) �OQ(−1)→ OJ → O∆ → 0.

Twist this sequence by the sheaf (E ⊗ OQ(−1)) � OQ(1) and apply the functor Ripr2∗ to the
resulting sequence. In view of (29) and (30) we obtain the following monad for E :

(33) 0→ p∗E−1 ⊗OQ(−1)
λ→ p∗E0

µ→ p∗E1 ⊗OQ(1)→ 0, ker(µ)/im(λ) = E .
Put R := p∗h, where h is the class of a line in S. Furthermore, set H := σ∗HX , [Pα] := σ∗[P2

α],
[Pβ] := σ∗[P2

β], where HX is the class of a hyperplane section of X (via the Plücker embedding),

and respectively, [P2
α] and [P2

β] are the classes of an α- and β-plane. Note that, clearly, OQ(H) '
OQ(1). Thus, taking into account the duality (31), we rewrite the monad (33) as:

(34) 0→ p∗E∨1 ⊗OQ(−H)
λ→ p∗E0

µ→ p∗E1 ⊗OQ(H)→ 0, ker(µ)/im(λ) ' E .
As a next step, we are going to express all Chern classes of the sheaves in the monad (34)

in terms of a. We start by writing down the Chern polynomials of the bundles p∗E1 ⊗OQ(H)
and p∗E∨1 ⊗OQ(−H) in the form:

(35) ct(p
∗E1 ⊗OQ(H)) =

a∏
i=1

(1 + (δi + H)t), ct(p
∗E∨1 ⊗OQ(−H)) =

a∏
i=1

(1− (δi + H)t),

where δi are the Chern roots of the bundle p∗E1. Thus

(36) cR2 =
a∑

i=1

δ2
i , dR =

a∑
i=1

δi.

for some c, d ∈ Z. Next we invoke the following easily verified relations in A·(Q):

(37) H4 = RH3 = 2[pt], R2H2 = R2[Pα] = RH[Pα] = H2[Pα] = RH[Pβ] = H2[Pβ] = [pt],

[Pα][Pβ] = R2[Pβ] = R4 = R3H = 0,

where [pt] is the class of a point. This, together with (36), gives:
(38)∑
1≤i<j≤a

δ2
i δ

2
j =

∑
1≤i<j≤a

(δ2
i δj+δiδ

2
j )H = 0,

∑
1≤i<j≤a

δiδjH
2 =

1

2
(d2−c)[pt],

∑
1≤i≤a

(δi+δj)H
3 = 2(a−1)d[pt].

Note that, since c1(E0) = 0,

(39) ct(p
∗E0) = 1 + bR2t2

for some b ∈ Z. Furthermore,

(40) ct(E) = 1 + a[Pα]t2

by the condition of the Proposition. Substituting (39) and (40) into the polynomial f(t) :=
ct(E)ct(p

∗E1⊗OQ(H))ct(p
∗E∨1 ⊗OQ(−H)), we have f(t) = (1+ a[Pα]t2)

∏a
i=1(1− (δi +H)2t2).

Expanding f(t) in the variable t and using (36)-(38), we obtain:

(41) f(t) = 1 + (a[Pα]− cR2 − 2dRH − aH2)t2 + e[pt]t4,

where

(42) e = −3c− a(2d + a) + (a− 1)(a + 4d) + 2d2.

Next, the monad (34) implies f(t) = ct(p
∗E0). A comparison of (41) with (39) yields

(43) c2(E) = a[Pα] = (b + c)R2 + 2dRH + aH2,

(44) e = c4(p
∗E0) = 0.
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The relation (44) is the crutial relation which enables us to express the Chern classes of all
sheaves in the monad (34) just in terms of a. More precisely, (43) and (37) give 0 = c2(E)[Pβ] =
2d+a, hence a = −2d. Substituting these latter equalities into (42) we get e = −a(a−2)/2−3c.
Hence c = −a(a − 2)/6 by (44). Since a = −2d, (36) and the equality c = −a(a − 2)/6 give
c1(E1) = −a/2, c2(E1) = (d2 − c)/2 = a(5a − 4)/24. Substituting this into the standard
formulas ek := ck(p

∗E1 ⊗OQ(H)) =
∑2

i=0

(
a−i
k−i

)
RiHk−ici(E1), 1 ≤ k ≤ 4, we obtain

(45) e1 = −aR/2 + aH, e2 = (5a2/24− a/6)R2 + (a2 − a)(−RH + H2)/2,

e3 = (5a3/24− 7a2/12 + a/3)R2H + (−a3/4 + 3a2/4− a/2)RH2 + (a3/6− a2/2 + a/3)H3,

e4 = (−7a4/144 + 43a3/144− 41a2/72 + a/3)[pt].

It remains to write down explicitely c2(p
∗E0): (37), (43) and the relations a = −2d, c =

−a(a− 2)/6 give a = c2(E)[Pα] = b + c, hence

(46) c2(E0) = b = (a2 + 4a)/6

by (39).
Our next and final step will be to obtain a contradiction by computing the Euler characteristic

of the sheaf E and two different ways. We first compute the Todd class td(TQ) of the bundle TQ.
From the exact triple dual to (25) we find ct(TQ/S) = 1+(−2R+3H)t+(2R2−4RH +3H2)t2.
Next, ct(Q) = ct(TQ/S)ct(p

∗TQ). Hence c1(TQ) = R+3H, c2(TQ) = −R2+5RH+3H2, c3(TQ) =
−3R2H + 9H2R, c4(TQ) = 9[pt]. Substituting into the formula for the Todd class of TQ,
td(TQ) = 1 + 1

2
c1 + 1

12
(c2

1 + c2) + 1
24

c1c2 − 1
720

(c4
1 − 4c2

1c2 − 3c2
2 − c1c3 + c4), where ci := ci(TQ)

(see, e.g., [H, p.432]), we get:

(47) td(TQ) = 1 +
1

2
R +

3

2
H +

11

12
RH + H2 +

1

12
HR2 +

3

4
H2R +

3

8
H3 + [pt].

Next, by the condition of Proposition c1(E) = 0, c2(E) = a[Pα], c3(E) = c4(E) = 0. Substituting
this into the general formula for the Chern character of a vector bundle F ,

ch(F ) = rk(F ) + c1 + (c2
1− 2c2)/2 + (c3

1− 3c1c2− 3c3)/6 + (c4
1− 4c2

1c2 + 4c1c3 + 2c2
2− 4c4)/24,

ci := ci(F ) (see, e.g., [H, p.432]), and using (47), we obtain by the Riemann-Roch Theorem for
F = E

(48) χ(E) =
1

12
a2 − 23

12
a + 2.

In a similar way, using (45), we obtain:

(49) χ(p∗E1 ⊗OQ(H)) + χ(p∗E∨1 ⊗OQ(−H)) =
5

216
a4 − 29

216
a3 − 1

54
a2 +

113

36
a.

Next, in view of (46) and the equality c1(E0) = 0 the Riemann-Roch Theorem for E0 easily
gives

(50) χ(p∗E0) = χ(E0) = −1

6
a2 +

4

3
a + 2.

Together with (48) and (49) this yields

Φ(a) := χ(p∗E0)−(χ(E)+χ(p∗E1⊗OQ(H))+χ(p∗E∨1 ⊗OQ(−H))) = − 5

216
a(a−2)(a−3)(a−4

5
).

The monad (34) implies now Φ(a) = 0. The only positive integer roots of the polynomial
Φ(a) are a = 2 and a = 3. However, (48) implies χ(E) = −3

2
for a = 2, and (50) implies

χ(p∗E0) = 9
2

for a = 3. This is a contradiction as the values of χ(E) and χ(p∗E0) are integers
by definition. �
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We need a last piece of notation. Consider the flag variety Fl(km− 2, km + 2; V ). Any point
u = (V km−2, V km+2) ∈ Fl(km − 2, km + 2; V ) determines a standard extension

(51) iu : X = G(2; 4) ↪→ Xm,

(52) W 2 7→ V km−2 ⊕W 2 ⊂ V km+2 = V km−2 ⊕W 4,

where W 2 ∈ X = G(2; W 4) and an isomorphism V km−2⊕W 4 ' V km+2 is fixed (clearly iu does
not depend on the choice of this isomorphism). We clearly have isomorphisms of Chow groups

(53) i∗u : A2(Xm)
∼→ A2(X), iu∗ : A2(X)

∼→ A2(Xm),

where the flag variety Ym := Fl(km − 1, km + 1; V nm) (respectively, Y := Fl(1, 3; 4)) is the set
of lines in Xm (respectively, in X).

Theorem 5.4. Let X = lim
→

Xm be a twisted ind-grassmannian. Then any vector bundle

E = lim
←

Em on X of rank 2 is trivial, and hence Conjecture 1.1(iv) holds for vector bundles of

rank 2.

Proof. Fix m ≥ max{m0, m1}, where m0 and m1 are as in Corollary 5.1 and Lemma 5.2. For
j = 1, 2, let E(j) denote the restriction of Em to a projective plane of type P2

j,m, T j ' Fl(km −
j, km+3−j, V nm) be the variety of planes of the form P2

j,m in Xm, and Πj := {P2
j,m ∈ T j| Em|P2

j,m

is properly unstable (i.e. not semistable)}. As semistability is an open condition, Πj is a closed
subset of T j.

(i) Assume that c2(E
(1)) > 0. Then, since m ≥ m1, Lemma 5.2 implies c2(E

(2)) ≤ 0.
(i.1) Suppose that c2(E

(2)) = 0. If Π2 6= T 2, then for any P2
2,m ∈ T 2 r Π2 the corresponding

bundle E(2) is semistable, hence E(2) is trivial as c2(E
(2)) = 0, see [DL, Prop. 2.3,(4)]. Thus,

for a generic point u ∈ Fl(km − 2, km + 2; V nm), the bundle E = i∗uEm on X = G(2; 4) satisfies
the conditions of Proposition 5.3, which is a contradiction.

We therefore assume Π2 = T 2. Then for any P2
2,m ∈ T 2 the corresponding bundle E(2) has

a maximal destabilizing subsheaf 0 → OP2
2,m

(a) → E(2). Moreover a > 0. In fact, otherwise

the condition c2(E
(2)) = 0 would imply that a = 0 and E(2)/OP2

2,m
= OP2

2,m
, i.e. E(2) would be

trivial, in particular semistable. Hence

(54) dE(2) = (a,−a).

Since any line in Xm is contained in a plane P2
2,m ∈ T 2, (54) implies dEm = (a,−a) with a > 0

for m > m0, contrary to Corollary 5.1.
(i.2) Assume c2(E

(2)) < 0. Since E(2) is not stable for any P2
2,m ∈ T 2, its maximal destabilizing

subsheaf 0→ OP2
2,m

(a)→ E(2) clearly satisfies the condition a > 0, i.e. E(2) is properly unstable,

hence Π2 = T 2. Then we again obtain a contradiction as above.
(ii) Now we assume that c2(E

(2)) > 0. Then, replacing E(2) by E(1) and vice versa, we arrive
to a contradiction by the same argument as in case (i).

(iii) We must therefore assume c2(E
(1)) = c2(E

(2)) = 0. Set D(Em) := {l ∈ Ym| dEm(l) 6=
(0, 0)} and D(E) := {l ∈ Y | dE(l) 6= (0, 0)}. By Corollary 5.1, dEm = (0, 0), respectively,
dE(l) = (0, 0) for a generic line l ∈ Y . Then by deformation theory [B], D(Em) (respectively,
D(E)) is an effective divisor on Ym (respectively, on Y ). Hence, OY (D(E)) = p∗1OY 1(a) ⊗
p∗2OY 2(b) for some a, b ≥ 0, where p1, p2 are as in diagram (2). Note that each fiber of p1 (resp.,

of p2) is a plane P̃2
α dual to some α-plane P2

α (respectively, a plane P̃2
β dual to some β-plane

P2
β). Thus, setting D(E|P2

α
) := {l ∈ P̃2

α| dE(l) 6= (0, 0)}, D(E|P2
β
) := {l ∈ P̃2

β| dE(l) 6= (0, 0)},
we obtain OP̃2

α
(D(E|P2

α
)) = OY (D(E))|P̃2

α
= OP̃2

α
(b), OP̃2

β
(D(E|P2

β
)) = OY (D(E))|P̃2

β
= OP̃2

β
(a).

Now if E|P2
α

is semistable, a theorem of Barth [OSS, Ch. II, Theorem 2.2.3] implies that D(E|P2
α
)

is a divisor of degree c2(E|P2
α
) = a on P2

α. Hence a = c2(E
(1)) = 0 for a semistable E|P2

α
. If
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E|P2
α

is not semistable, it is unstable and the equality dE(l) = (0, 0) yields dE|P2
α

= (0, 0). Then

the maximal destabilizing subsheaf of E|P2
α

is isomorphic to OP2
α

and, since c2(E|P2
α
) = 0, we

obtain an exact triple 0 → OP2
α
→ E|P2

α
→ OP2

α
→ 0, such that E|P2

α
' O⊕2

P2
α

is semistable,

a contradiction. This shows that a = 0 whenever c2(E
(1)) = c2(E

(2)) = 0. Similarly, b = 0.
Therefore D(Em) = ∅, and Proposition 4.1 implies that Em is trivial. Therefore E is trivial as
well. �

In [DP] Conjecture 1.1 (iv) was proved not oly when X is a twisted projective ind-space,
but also for finite rank bundles on special twisted ind-grassmannians defined through certain
homogeneous embeddings ϕm. These include embeddings of the form

G(k; n)→ G(kw; na)

V k ⊂ V 7→ V k ⊗W ⊂ V ⊗W,

where W is a fixed a-dimensional subspace, or of the form

G(k; n)→ G

(
k(k + 1)

2
; n2

)
V k ⊂ V 7→ S2(V k) ⊂ V ⊗ V.

More precisely, Conjecture 1.1 (iv) was proved in [DP] for twisted ind-grassmannians whose
defining embeddings are homogeneous embeddings satisfying some specific numerical conditions
relating the degrees deg ϕm with the pairs of integers (km, nm). There are many twisted ind-
grassmannians for which those conditions are not satisfied. For instance, this applies to the
ind-grassmannians defined by iterating each of the following embeddings:

G(k; n)→ G

(
k(k + 1)

2
;
n(n + 1)

2

)
V k ⊂ V 7→ S2(V k) ⊂ S2(V ),

G(k; n)→ G

(
k(k − 1)

2
;
n(n− 1)

2

)
V k ⊂ V 7→ Λ2(V k) ⊂ Λ2(V ).

Therefore the resulting ind-grassmannians G(k, n, S2) and X(k, n, Λ2) are examples of twisted
ind-grassmannians for which Theorem 5.4 is new.
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