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Abstract

We develop explicit formulas for Hecke operators of higher genus in terms of
spherical coordinates. Applications are given to summation of various generating series
with coe�cients in local Hecke algebra and in a tensor product of such algebras. In
particular, we formulate and prove Rankin's lemma in genus two. An application to a
holomorphic lifting from GSp2 ×GSp2 to GSp4 is given using Ikeda-Miyawaki
constructions.
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1 Introduction: generating series for the Hecke

operators

Let p be a prime. The Satake isomorphism [Sa63] relates p-local Hecke algebras of reductive
groups over Q to certain polynomial rings. Then one can use a computer in order to �nd
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interesting identities between Hecke operators, between their eigenvalues, and relations to
Fourier coe�cients of modular forms of higher degree.
The purpose of the present paper is to extend Rankin's Lemma to the summation of Hecke
series of higher genus using symbolic computations. We refer to [Ma-Pa77], where Rankin's
Lemma was used in the elliptic modular case for multiplicative and additive convolutions of
Dirichlet series. That work was further developped in [Pa87], [Pa02], see also [Ma-Pa05].

Recall that a classical method to produce L-functions for an algebraic group G over Q uses
the generating series

∞∑
n=1

λf (n)n−s =
∏

p primes

∞∑
δ=0

λf (pδ)p−δs,

of the eigenvalues of Hecke operators on an automorphic form f on G. We study the
generating series of Hecke operators T(n) for the symplectic group Spg, and
λf (n) = λf (T(n)).
Let Γ = Spg(Z) ⊂ SL2g(Z) be the Siegel modular group of genus g, and
[p]g = pI2g = T(p, · · · , p︸ ︷︷ ︸

2g

) be the scalar Hecke operator for Spg. According to Hecke and

Shimura,

Dp(X) =
∞∑

δ=0

T(pδ)Xδ

=



1
1−T(p)X + p[p]1X2

, if g = 1

(see [Hecke], and [Shi71], Theorem 3.21),

1− p2[p]2X2

1−T(p)X + {pT1(p2) + p(p2 + 1)[p]2}X2 − p3[p]2T(p)X3 + p6[p]22X4

if g = 2 (see [Shi63], Theorem 2),

where T(p), Ti(p2) (i = 1, · · · , g) are the g + 1 generators of the corresponding Hecke ring
over Z for the symplectic group Spg, in particular, Tg(p2) = [p]g.
In the present paper we study explicit formulas for Hecke operators in higher genus in
terms of spherical coordinates. Applications are given to summation of various generating
series with coe�cients in local Hecke algebras. The question of computing such series
explicitly was raised by Prof. S.Friedberg during �rst author's talk at the conference "Zeta
Functions" (The Independent Moscow University, September 18-22, 2006).
In particular, we formulate and prove Rankin's lemma in genus two for generating series
with coe�cients in a tensor product of local Hecke algebras.

We prove in Theorem 3.1 that for g = 2,
∞∑

δ=0

T(pδ)⊗T(pδ) Xδ =
(1− p6[p]⊗ [p]X2) ·R(X)

S(X)
, for certain two polynomials

R(X) = 1 + r1X + · · ·+ r11X
11 + r12X

12 with r1 = r11 = 0,

S(X) = 1 + s1X + · · ·+ s16X
16

with coe�cients explicitly expressed through Hecke operators in Appendix. A motivic
interpretation of the polynomial S is given in terms of the tensor product of motives.
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2 Results

2.1 Preparation: a formula for the total Hecke operator T(pδ) of
genus 2

We establish �rst the following useful formula (in spherical variables x0, x1, x2):

Ω(2)
x (T(pδ)) = p−1 x δ

0 (p x (3+δ)
1 x2 − p x (2+δ)

1 − p x (3+δ)
1 x (2+δ)

2 + p x (2+δ)
1 x (3+δ)

2 (1)

− p x1 x (3+δ)
2 + p x (2+δ)

2 + p x1 − p x2 − x (2+δ)
1 x 2

2 + x (1+δ)
1 x2

+ x (2+δ)
1 x (1+δ)

2 − x (1+δ)
1 x (2+δ)

2 + x 2
1 x (2+δ)

2 − x1 x (1+δ)
2 − x 2

1 x2 + x1 x 2
2 )/

((1− x1) (1− x2) (1− x1 x2) (x1 − x2))

=− p−1 x δ
0 ((1− x1 x2) (p x1 − x2) x (δ+1)

1 + (1− x1 x2) (x1 − p x2) x (δ+1)
2

− (1− p x1 x2) (x1 − x2) (x1 x2)(δ+1) − (p− x1 x2)(x1 − x2))/
((1− x1) (1− x2) (1− x1 x2) (x1 − x2)).

Andrianov's generating series

The expression (1) comes from the following Andrianov's generating series

∞∑
δ=0

Ω(2)
x (T(pδ))Xδ =

1− x2
0 x1 x2

p X2

(1− x0 X) (1− x0 x1 X) (1− x0 x2 X) (1− x0 x1 x2 X)

after developing and a simpli�cation using change of summation.
Note that the formula (1) makes it possible to treat higher generating series of the following
type

Dp,m(X) =
∞∑

δ=0

Ω(2)
x (T(pmδ))Xδ (m = 2, 3, · · · )

(in spherical variables x0, x1, x2).

2.2 Rankin's generating series in genus 2

Let us use the spherical variables x0, x1, x2 and y0, y1, y2 for the Hecke operators.
Note that there are two types of convolutions: the �rst one is de�ned through the Fourier
coe�cients (it was used by [An-Ka] for the analytic continuation of the standard L-
function), and the second one is de�ned through the eigenvalues of Hecke operators, and it
is more suitable in order to treat the L-functions attached to tensor products of
representations of the Langlands group. However, a link between the two types is known
only for g = 1.
In order to state a multiplicative analogue of Rankin's lemma in genus two we need to write
the corrseponding formula for Hecke operator T(pδ) (in spherical variables y0, y1, y2).

Ω(2)
y (T(pδ)) = p−1 yδ

0 (p y(3+δ)
1 y2 − p y(2+δ)

1 − p y(3+δ)
1 y(2+δ)

2 + p y(2+δ)
1 y(3+δ)

2

− p y1 y(3+δ)
2 + p y(2+δ)

2 + p y1 − p y2 − y(2+δ)
1 y2

2 + y(1+δ)
1 y2

+ y(2+δ)
1 y(1+δ)

2 − y(1+δ)
1 y(2+δ)

2 + y2
1 y(2+δ)

2 − y1 y(1+δ)
2 − y2

1 y2 + y1 y2
2 )/

((1− y1) (1− y2) (1− y1 y2) (y1 − y2))
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Then we have that the product of the above polynomials is given by

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ)) =

p−2 x δ
0 yδ

0 (p x (3+δ)
1 x2 − p x (2+δ)

1 − p x (3+δ)
1 x (2+δ)

2 + p x (2+δ)
1 x (3+δ)

2

− p x1 x (3+δ)
2 + p x (2+δ)

2 + p x1 − p x2 − x (2+δ)
1 x 2

2 + x (1+δ)
1 x2

+ x (2+δ)
1 x (1+δ)

2 − x (1+δ)
1 x (2+δ)

2 + x 2
1 x (2+δ)

2 − x1 x (1+δ)
2 − x 2

1 x2 + x1 x 2
2 )

· (p y(3+δ)
1 y2 − p y(2+δ)

1 − p y(3+δ)
1 y(2+δ)

2 + p y(2+δ)
1 y(3+δ)

2

− p y1 y(3+δ)
2 + p y(2+δ)

2 + p y1 − p y2 − y(2+δ)
1 y2

2 + y(1+δ)
1 y2

+ y(2+δ)
1 y(1+δ)

2 − y(1+δ)
1 y(2+δ)

2 + y2
1 y(2+δ)

2 − y1 y(1+δ)
2 − y2

1 y2 + y1 y2
2 )/

((1− x1) (1− x2) (1− x1 x2) (x1 − x2)(1− y1) (1− y2) (1− y1 y2) (y1 − y2))

We wish to compute the generating series

∞∑
δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ ∈ Q[x0, x1, x2, y0, y1, y2][[X]].

The answer is given by the following multiplicative analogue of Rankin's lemma in genus
two:

Theorem 2.1 The following equality holds

∞∑
δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ = (2)

− (p x1 − x2) (1− p y1 y2) x1 y1 y2

p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 x1 y0 y1 y2 X)

+
x2 y1 (x1 − p x2) (p y1 − y2)

p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (y1 − y2) (1− x0 x2 y0 y1 X)

+
x2 y2 (x1 − p x2)(y1 − p y2)

p2 (1− x1) (1− x2) (x1 − x1) (1− y1) (1− y2) (y1 − y2) (1− x0 y0 x2 y2 X)

− x2 y1 y2 (x1 − p x2) (1− p y1 y2)
p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 x2 y0 y1 y2 X)

− x1 (p x1 − x2) (p− y1 y2)
p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 x1 y0 X)

− x1 x2 y1(1− p x1 x2) (p y1 − y2)
p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (y1 − y2) (1− x0 x1 x2 y0 y1 X)

− x1 x2 y2 (1− p x1 x2) (y1 − p y2)
p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (y1 − y2) (1− x0 x1 x2 y0 y2 X)

+
y1 y2 (p− x1 x2) (1− p y1 y2)

p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 y0 y1 y2 X)

+
x1 x2 (1− p x1 x2) (p− y1 y2)

p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 x1 x2 y0 X)
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− x1 y1 (p x1 − x2) (p y1 − y2)
p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (y1 − y2) (1− x0 x1 y0 y1 X)

+
x1 y2 (p x1 − x2) (y1 − p y2)

p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (y1 − y2) (1− x0 x1 y0 y2 X)

− x2 (x1 − p x2) (p− y1 y2)
p2 (1− x1) (1− x2) (x1 − x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 x2 y0 X)

+
x1 x2 y1 y2 (1− p x1 x2) (1− p y1 y2)

p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 x1 x2 y0 y1 y2 X)

+
(p− x1 x2) (p− y1 y2)

p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (1− y1 y2) (1− x0 y0 X)

− y1 (p− x1 x2) (p y1 − y2)
p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (y1 − y2) (1− x0 y0 y1 X)

− y2 (p− x1 x2) (y1 − p y2)
p2 (1− x1) (1− x2) (1− x1 x2) (1− y1) (1− y2) (y1 − y2) (1− x0 y0 y2 X)

Remark 2.2 (On the denominator of (2)) One �nds using a computer that the
polynomials not depending on X in the denominators of (2) cancel after the simpli�cation
in the ring Q[x0, x1, x2, y0, y1, y2][[X]], so that the common denominator becomes

(1− x0 y0X) (1− x0 y0 x1 X) (1− x0 y0 y1 X) (1− x0 y0 x2 X) (1− x0 y0 y2 X)
(1− x0 y0 x1 y1 X) (1− x0 y0 x1 x2 X) (1− x0 y0 x1 y2 X) (1− x0 y0 y1 x2 X)
(1− x0 y0 y1 y2 X) (1− x0 y0 x2 y2 X) (1− x0 y0 x1 y1 x2 X) (1− x0 y0 x1 y1 y2 X)
(1− x0 y0 x1 x2 y2 X) (1− x0 y0 y1 x2 y2 X) (1− x0 y0 x1 y1 x2 y2 X).

Remark 2.3 (Comparison with g = 1) It turns out by direct computation that the
numerator of the rational fraction (2) is a product of the factor 1− x 2

0 y2
0 x1y1x2y2X

2 by a
polynomial of degree 12 in X with coe�cients in Q[x0, x1, x2, y0, y1, y2] with the constant
term equal to 1 and the leading term

x12
0 y12

0 x6
1x

6
2y

6
1y6

2

p2
X12.

Moreover, the factor of degree 12 does not contain terms of degree 1 and 11 in X. The
factor of degree 2 in X is very similar to one in the case g = 1 (this series was studied and
used in [Ma-Pa77] ):

∞∑
δ=0

Ω(1)
x (T(pδ)) · Ω(1)

y (T(pδ))Xδ =
∞∑

δ=0

x δ
0 (1− x (1+δ)

1 )
1− x1

· yδ
0 (1− y(1+δ)

1 )
1− y1

Xδ

=
1

(1− x1) (1− y1) (1− x0 y0 X)
− y1

(1− x1) (1− y1) (1− x0 y0 y1 X)

− x1

(1− x1) (1− y1) (1− x0 y0 x1 X)
+

x1 y1

(1− x1) (1− y1) (1− x0 y0 x1 y1 X)

=
1− x 2

0 y2
0 x1 y1 X2

(1− x0 y0 x1 y1 X) (1− x0 y0 x1 X) (1− x0 y0 y1 X) (1− x0 y0 X)

2.3 Symmetric square generating series in genus 2

Using the same method, one can evaluate the symmetric square generating series and the
cubic generating series of higher genus. Note that this series, written here in spherical
variables x0, x1, x2 is di�erent from one studied by Andrianov-Kalinin, and has the form:
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∞∑
δ=0

Ω(2)
x (T(p2δ))Xδ =

(1 + x 2
0 x1 X + x 2

0 x2 X + 2x 2
0 x1 x2 X + x 2

0 x1 x 2
2 X + x 2

0 x 2
1 x2 X + x 4

0 x 2
1 x 2

2 X2)(1− x2
0 x1x2

p X)

(1− x 2
0 x 2

1 x 2
2 X)(1− x 2

0 x 2
1 X)(1− x 2

0 x 2
2 X)(1− x 2

0 X)

2.4 Cubic generating series in genus 2

The cubic generating series of higher genus, written here in spherical variables x0, x1, x2 has
the form:

∞∑
δ=0

Ω(2)
x (T(p3 δ))Xδ = p−1(−p + x 6

0 x 4
1 x 2

2 X2 + x 6
0 x 2

1 x 4
2 X2 + 2 x 6

0 x 2
1 x 3

2 X2

− p x 6
0 x 4

1 x 4
2 X2 − p x 6

0 x 2
1 x 4

2 X2 − 2 p x 3
0 x 2

1 x2 X + x 6
0 x1 x 3

2 X2

+ x 6
0 x 3

1 x2 X2 + x 6
0 x 3

1 x 5
2 X2 + x 6

0 x 5
1 x 3

2 X2 + 3 x 6
0 x 3

1 x 3
2 X2

+ x 6
0 x 2

1 x 2
2 X2 + 2 x 6

0 x 3
1 x 2

2 X2 − p x 3
0 x 2

1 X − p x 3
0 x 2

2 X − p x 6
0 x 4

1 x 2
2 X2

− 2 p x 3
0 x1 x 2

2 X − p x 6
0 x 2

1 x 2
2 X2 + x 3

0 x 2
1 x 2

2 X + x 3
0 x1 x2 X

− p x 6
0 x 2

1 x 3
2 X2 − p x 6

0 x 3
1 x 2

2 X2 − p x 3
0 x 2

1 x 3
2 X − p x 3

0 x 3
1 x 2

2 X

− 2 p x 3
0 x 2

1 x 2
2 X − p x 3

0 x 3
1 x2 X + x 3

0 x 2
1 x2 X + x 9

0 x 4
1 x 4

2 X3

− 2 p x 6
0 x 3

1 x 3
2 X2 − 2 p x 3

0 x1 x2 X + x 9
0 x 4

1 x 5
2 X3 + x 9

0 x 5
1 x 4

2 X3

− p x 6
0 x 3

1 x 4
2 X2 + x 3

0 x1 x 2
2 X + x 9

0 x 5
1 x 5

2 X3 + x 6
0 x 4

1 x 4
2 X2

− p x 6
0 x 4

1 x 3
2 X2 − p x 3

0 x1 x 3
2 X − p x 3

0 x2 X − p x 3
0 x1 X + 2 x 6

0 x 4
1 x 3

2 X2

+ 2 x 6
0 x 3

1 x 4
2 X2)/((1− x 3

0 X)(1− x 3
0 x 3

1 X)(1− x 3
0 x 3

2 X)(1− x 3
0 x 3

1 x 3
2 X))

3 Proofs: formulas for the Hecke operators of Spg

3.1 Satake's spherical map Ω

Our result is based on the use of the Satake spherical map Ω, by applying the spherical
map Ω to elements T(pδ) ∈ LZ of Hecke ring LZ = Z[T(p),T1(p2), · · · ,Tn(p2)] for the
symplectic group, see [An87] chapter 3.

• Case T1(p2) In genus 2 (in spherical variables x0, x1, x2), we obtain using Andrianov's
formulas:

Ω(T1(p2)) =
x 2
0 ((x 2

1 x2 + x1 x 2
2 ) p2 + x1 x2 p2 − x1 x2 + (x1 + x2) p2)

p3

• Cases T2(p2) = [p]2 and T(p)

Ω(T2(p2)) =
x 2
0 x1 x2

p3
, Ω(T(p)) = x0(1 + x1)(1 + x2)
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3.2 Use of Andrianov's generating series in genus 2

We refer to [An87], p.164, (3.3.75) for the following celebrated summation formula:

∞∑
δ=0

Ω(2)(T(pδ))Xδ =
1− x2

0 x1 x2
p X2

(1− x0 X) (1− x0 x1 X)(1− x0 x2 X) (1− x0 x1 x2 X)
(3)

gives after development and simpli�cation the following formula

Ω(2)(T(pδ)) := p−1 x δ
0 (p x (3+δ)

1 x2 − p x (2+δ)
1 − p x (3+δ)

1 x (2+δ)
2 + p x (2+δ)

1 x (3+δ)
2

− p x1 x (3+δ)
2 + p x (2+δ)

2 + p x1 − p x2 − x (2+δ)
1 x 2

2 + x (1+δ)
1 x2

+ x (2+δ)
1 x (1+δ)

2 − x (1+δ)
1 x (2+δ)

2 + x 2
1 x (2+δ)

2 − x1 x (1+δ)
2 − x 2

1 x2 + x1 x 2
2 )/

((1− x1) (1− x2) (1− x1 x2) (x1 − x2))

Then we use two groups of variables: x0, . . . , xn and y0, . . . , yn in two copies Ωx, Ωy of the
sperical map, in order to treat the tensor product of two local Hecke algebras.
Next, in order to carry out the summation of the series

∞∑
δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ

on a computer, we used a subdivision of each summand (over δ) into smaller parts. These
parts correspond to symbolic monomials in xδ

1, y
δ
1, x

δ
2, y

δ
2, (x1x2)δ, (y1y2)δ.

3.3 Rankin's Lemma of genus 2 (compare with [Jia96])

Let us compute the series

D(1,1)
p (X) =

∞∑
δ=0

T(pδ)⊗T(pδ)Xδ ∈ L2,Z ⊗ L2,Z[[X]]

in terms of the generators of Hecke's algebra L2,Z ⊗ L2,Z given by the following operators:

T(p)⊗ 1,T1(p2)⊗ 1, [p]⊗ 1, 1⊗T(p), 1⊗T1(p2), 1⊗ [p] ∈ L2,Z ⊗ L2,Z[[X]].

Theorem 3.1 (October 2006) For g = 2, we have the following explicit representation

D(1,1)
p (X) =

∞∑
δ=0

T(pδ)⊗T(pδ) Xδ =
(1− p6[p]⊗ [p]X2) ·R(X)

S(X)
, where

R(X), S(X) ∈ L2,Z ⊗ L2,Z[X]

are given by the equalities (4) and (5):

R(X) = 1 + r2X
2 + · · ·+ r10X

10 + r12X
12 ∈ L2,Z ⊗ L2,Z[X] with r1 = r11 = 0, (4)

S(X) = 1 + s1X + · · ·+ s16X
16 (5)

= 1− (T(p)⊗T(p))X + · · ·+ (p6[p]⊗ [p])8X16 ∈ L2,Z ⊗ L2,Z[X],

with ri and si given in Appendix. Moreover, there is an easy functional equation (similar to
[An87], p.164, (3.3.79)):

s16−i = (p6[p]⊗ [p])8−isi (i = 0, · · · , 8).
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Remark 3.2 (Comparison with the case g = 1 (in terms of Hecke operators))
The corresponding result in the case g = 1 written in terms of Hecke operators, looks as
follows (see 2.3):

∞∑
δ=0

T(pδ)⊗T(pδ)Xδ = (1− p2[p]⊗ [p]X2)/

(1−T(p)⊗T(p)X +
(
p(T(p)2 ⊗ [p] + [p]⊗T(p)2)− 2p2[p]⊗ [p]

)
X2

− p2T(p)[p]⊗T(p)[p]X3 + p4[p]2 ⊗ [p]2X4).

Indeed this follows directly from Remark 2.3

4 Applications to L-functions and motives for Spn

The Fourier expansion of a Siegel modular form.

Let f =
∑

T∈Bn

a(T)qT ∈ Mn
k be a Siegel modular form of weight k and of genus n on the

Siegel upper-half plane Hn = {z ∈ Mn(C) | Im(z) > 0}.

The formal Fourier expansion of f uses the symbol

qT = exp(2πitr(Tz)) =
n∏

i=1

qTii
ii

∏
i<j

q
2Tij

ij

∈ C[[q11, . . . , qnn]][qij , q−1
ij ]i,j=1,··· ,m, where qij = exp(2π(

√
−1zi,j)), and T is in the

semi-group Bn = {T = tT ≥ 0|T half-integral}.

Satake parameters of an eigenfunction of Hecke operators

Suppose that f ∈ Mn
k an eigenfunction of all Hecke operators f 7−→ f |T , T ∈ Ln,p for all

primes p, hence f |T = λf (T )f .
Then all the numbers λf (T ) ∈ C de�ne a homomorphism λf : Ln,p −→ C given by a
(n + 1)-tuple of complex numbers (α0, α1, · · · , αn) = (C×)n+1 (the Satake parameters of f).
One has α2

0α1 · · ·αn = pkn−n(n+1)/2.
For another Siegel modular form, eigenfunction of Hecke operators g ∈ Mn

l consider the
corresponding homomorphism λg : Ln,p −→ C given by its Satake parameters
(β0, β1, · · · , βn) of g, and let λf ⊗ λg : Ln,p ⊗ Ln,p −→ C

L-functions, functional equation and motives for Spn (see [Pa94], [Yosh01])

One de�nes

• Qf,p(X) = (1− α0X)
n∏

r=1

∏
1≤i1<···<ir≤n

(1− α0αi1 · · ·αirX),

• Rf,p(X) = (1−X)
n∏

i=1

(1− α−1
i X)(1− αiX) ∈ Q[α±1

0 , · · · , α±1
n ][X].

Then the spinor L-function L(Sp(f), s) and the standard L-function L(St(f), s, χ) of f (for
s ∈ C, and for all Dirichlet characters) χ are de�ned as the Euler products
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• L(Sp(f), s, χ) =
∏
p

Qf,p(χ(p)p−s)−1

• L(St(f), s, χ) =
∏
p

Rf,p(χ(p)p−s)−1

Motivic L-functions

Following [Pa94] and [Yosh01], these functions are conjectured to be motivic for all k > n:

L(Sp(f), s, χ) = L(M(Sp(f))(χ), s), L(St(f), s) = L(M(St(f))(χ), s), where

and the motives M(Sp(f) and M(St(f) are pure if f is a genuine cusp form (not coming
from a lifting of a smaller genus):

• M(Sp(f)) is a motive over Q with coe�cients in Q(λf (n))n∈N of rank 2n, of weight
w = kn− n(n + 1)/2, and of Hodge type ⊕p,qH

p,q, with

p = (k − i1) + (k − i2) + · · ·+ (k − ir), (6)

q = (k − j1) + (k − j2) + · · ·+ (k − is), where r + s = n,

1 ≤ i1 < i2 < · · · < ir ≤ n, 1 ≤ j1 < j2 < · · · < js ≤ n,

{i1, · · · , ir} ∪ {j1, · · · , is} = {1, 2, · · · , n};

• M(St(f) is a motive over Q with coe�cients in Q(λf (n))n∈N of rank 2n + 1, of weight
w = 0, and of Hodge type H0,0 ⊕n

i=1 (H−k+i,k−i ⊕Hk−i,−k+i).

A functional equation

Following general Deligne's conjecture [De79] on the motivic L-functions, the L-function
satisfy a functional equation determined by the Hodge structure of a motive:

Λ(Sp(f), kn− n(n + 1)/2 + 1− s) = ε(f)Λ(Sp(f), s), where

Λ(Sp(f), s) = Γn,k(s)L(Sp(f), s), ε(f) = (−1)k2n−2
,

Γ1,k(s) = ΓC(s) = 2(2π)−sΓ(s), Γ2,k(s) = ΓC(s)ΓC(s− k + 2), and
Γn,k(s) =

∏
p<q ΓC(s− p)Γa+

R (s− (w/2))ΓR(s + 1− (w/2))a− for some non-negative integers

a+ and a−, with a+ + a− = w/2, and ΓR(s) = π−s/2Γ(s/2)

Motive of the Rankin product of genus g = 2

Let f and g be two Siegel cusp eigenforms of weights k and l, k > l, and let M(Sp(f)) and
M(Sp(g)) be the spinor motives of f and g. Then M(Sp(f)) is a motive over Q with
coe�cients in Q(λf (n))n∈N of rank 4, of weight w = 2k − 3, and of Hodge type
H0,2k−3 ⊕Hk−2,k−1 ⊕Hk−1,k−2 ⊕H2k−3,0, and M(Sp(g)) is a motive over Q with
coe�cients in Q(λg(n))n∈N of rank 4, of weight w = 2l − 3, and of Hodge type
H0,2l−3 ⊕H l−2,l−1 ⊕H l−1,l−2 ⊕H2l−3,0.
The tensor product M(Sp(f))⊗M(Sp(g)) is a motive over Q with coe�cients in
Q(λf (n), λg(n)n∈N of rank 16, of weight w = 2k + 2l − 6, and of Hodge type
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H0,2k+2l−6 ⊕H l−2,2k+l−4 ⊕H l−1,2k+l−5 ⊕H2l−3,2k−3

Hk−2,k+2l−4 ⊕Hk+l−4,k+l−2 ⊕Hk+l−3,k+l−3
+ ⊕Hk+2l−5,k−1

Hk−1,k+2l−5 ⊕Hk+l−3,k+l−3
− ⊕Hk+l−2,k+l−4 ⊕Hk+2l−4,k−2

H2k−3,2l−3 ⊕H2k+l−5,l−1 ⊕H2k+l−4,l−2 ⊕H2k+2l−6,0.

Motivic L-functions: analytic properties

Following Deligne's conjecture [De79] on motivic L-functions, applied for a Siegel cusp
eigenform F for the Siegel modular group Sp4(Z) of genus n = 4 and of weight k > 5, one
has Λ(Sp(F ), s) = Λ(Sp(F ), 4k − 9− s), where

Λ(Sp(F ), s) = ΓC(s)ΓC(s− k + 4)ΓC(s− k + 3)ΓC(s− k + 2)ΓC(s− k + 1)
× ΓC(s− 2k + 7)ΓC(s− 2k + 6)ΓC(s− 2k + 5)L(Sp(F ), s),

(compare this functional equation with that given in [An74], p.115).

On the other hand, for n = 2 and for two cusp eigenforms f and g for Sp2(Z) of weights k, l,
k > l + 1, Λ(Sp(f)⊗Sp(g), s) = ε(f, g)Λ(Sp(f)⊗Sp(g), 2k + 2l− 5− s), |ε(f, g)| = 1, where

Λ(Sp(f)⊗ Sp(g), s) = ΓC(s)ΓC(s− l + 2)ΓC(s− l + 1)ΓC(s− k + 2)
× ΓC(s− k + 1)ΓC(s− 2l + 3)ΓC(s− k − l + 2)ΓC(s− k − l + 3)
× L(Sp(f)⊗ Sp(g), s).

We used here the Gauss duplication formula ΓC(s) = ΓR(s)ΓR(s + 1). Notice that
a+ = a− = 1 in this case, and the conjectural motive M(Sp(f))⊗M(Sp(g)) does not admit
critical values.

5 A holomorphic lifting from GSp2 ×GSp2 to GSp4: a

conjecture

(compare with constructions in [BFG06], [BFG92], [Jia96] for generic automorphic forms).
Our computation makes it possible to compare the spinor Hecke series of genus 4 computed
in [VaSp4] (in variables u0, u1, u2, u3, u4) with the Rankin product of two Hecke series of
genus 2 (in variables x0, x1, x2, y0, y1, y2). It follows from our computation that if we make
the substitution u0 = x0y0, u1 = x1, u2 = x2, u3 = y1, u4 = y2 then the denominator of the
series

∞∑
δ=0

Ω(4)
u (T(pδ))Xδ

coincides with the denominator of the Rankin product

∞∑
δ=0

Ω(2)
x (T(pδ)) · Ω(2)

y (T(pδ))Xδ ∈ Q[x0, x1, x2, y0, y1, y2][[X]].

On the basis of this equality we would like to push forward the following
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Conjecture 5.1 (on a lifting from GSp2 ×GSp2 to GSp4 (of genus four)) Let f
and g be two Siegel modular forms of genus 2 and of weights k > 4 and l = k − 2. Then
there exists a Siegel modular form F of genus 4 and of weight k with the Satake parameters

γ0 = α0β0, γ1 = α1, γ2 = α2, γ3 = β1, γ4 = β2,

for a suitable choice of Satake's parameters α0, α1, α2 and β0, β1, β2 of f and g.

Remark 5.2 An evidence for the conjecture comes from Ikeda-Miyawaki constructions
([Ike01], [Mur02], [Ike06]): let k be an even positive integer, h ∈ S2k(Γ1) a normalized
Hecke eigenform of weight 2k, F2(h) ∈ Sk+1(Γ2) = Maass(h) the Maass lift of h, and
F2n ∈ Sk+n(Γ2n) the Ikeda lift of h (we assume k ≡ n mod 2, n ∈ N).
Next let f ∈ Sk+n+r(Γr) be an arbitrary Siegel cusp eigenform of genus r and weight
k + n + r, with n, r ≥ 1. Then according to Ikeda-Miyawaki (see [Ike06]) there exists a
Siegel eigenform Fh,f ∈ Sk+n+r(Γ2n+r) such that

L(s,Fh,f , St) = L(s, f, St)
2n∏

j=1

L(s + k + n− j, h) (7)

(under a non-vanishing condition, see Theorem 2.3 at p.63 in [Mur02]). The form Fh,f is
given by the integral

Fh,f (Z) = 〈F2n+2r(diag(Z,Z ′), f(Z ′)〉Z′

If we take n = 1, r = 2, k := k + 1 then an example of the validity of the conjecture is given
by g = F2(h),

(f, g) = (f, F2(h)) 7→ Ff,h ∈ Sk+3(Γ4), (f, g) = (f, F2(h)) ∈ Sk+3(Γ2)× Sk+1(Γ2).

Remark 5.3 Notice that the Satake parameters of the Ikeda lift F = F2m(h) of h can be
taken in the form β0, β1, · · · , β2m, where

β0 = pmk−m(m+1)/2, βi = αpi−1/2, βm+i = α−1pi−1/2, (i = 1, · · · ,m)

and

(1− αpk−1/2X)(1− α−1pk−1/2X) = 1− a(p)X + p2k−1X2, h =
∞∑

n=1

a(n)qn

see [Mur02].

The L-function of degree 16 in Conjecture 5.1 is related to the tensor product L-function in
[Jia96]. In the example of Remark 5.2 it coincides with the product of two shifted
L-functions of degree 8 of Boecherer-Heim [BoeH06].

Conjecture 5.4 (on a lifting from GSp2m ×GSp2m to GSp4m) Here is a version of
Conjectire 5.1 for any even genus r = 2m. Let f and g be two Siegel modular forms of
genus 2m and of weights k > 2m and l = k − 2m. Then there exists a Siegel modular form
F of genus 4m and of weight k with the Satake parameters
γ0 = α0β0, γ1 = α1, γ2 = α2, · · · , γ2m = α2m, γ2m+1 = β1, · · · , γ4m = β2m for suitable
choices α0, α1, · · · , α2m and β0, β1, · · · , β2m of Satake's parameters of f and g.
One readily checks that the Hodge types of M(Sp(f))⊗M(Sp(g)) and M(Sp(F )) are again
the same (of rank 24m) (it follows from the above description (6), and from Künneth's-type
formulas).
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An evidence for this version of the conjecture comes again from Ikeda-Miyawaki
constructions ([Ike01], [Mur02], [Ike06]): let k be an even positive integer, h ∈ S2k(Γ1) a
normalized Hecke eigenform of weight 2k, F2n ∈ Sk+n(Γ2n) the Ikeda lift of h of genus 2n
(we assume k ≡ n mod 2, n ∈ N).
Next let f ∈ Sk+n+r(Γr) be an arbitrary Siegel cusp eigenform of genus r and weight
k + n + r, with n, r ≥ 1. If we take in (7) n = m, r = 2m, k := k + m, k + n + r := k + 3m,
then an example of the validity of this version of the conjecture is given by

(f, g) = (f, F2m(h)) 7→ Fh,f ∈ Sk+3m(Γ4m), (f, g) = (f, F2m) ∈ Sk+3m(Γ2m)× Sk+m(Γ2m).

Another evidence comes from Siegel-Eiseinstein series

f = E2m
k and g = E2m

k−2m

of even genus 2m and weights k and k − 2m: we have then

α0 = 1, α1 = pk−2m, · · · , α2m = pk−1,

β0 = 1, β1 = pk−4m, · · · , β2m = pk−2m−1,

then we have that
γ0 = 1, γ1 = pk−4m, · · · , γ2m = pk−1,

are the Satake parameters of the Siegel-Eisenstein series F = E4m
k .

A Appendix: Coe�cients of the polynomials R(X) and
S(X)

We give here explicit expressions for the coe�cients of the polynomials R(X) and S(X)
from Theorem 3.1. From these formulas one can observe some nice divisibility properties
(by certain powers of p and the elements [p]⊗ [p] ∈ L2,Z ⊗ L2,Z):

R(X) = 1 + r2X
2 + · · ·+ r10X

10 + r12X
12 ∈ L2,Z ⊗ L2,Z[X] with r1 = r11 = 0,

S(X) = 1 + s1X + · · ·+ s16X
16

= 1− (T(p)⊗T(p))X + · · ·+ (p6[p]⊗ [p])8X16 ∈ L2,Z ⊗ L2,Z[X],

with ri and si given as follows

r2 = p2((2p− 1)(p2 + 1)[p]⊗ [p]− (p2 − p + 1)(T1(p2)⊗ [p] + [p]⊗T1(p2))

− (T1(p2)⊗T1(p2) + T(p)2 ⊗ [p] + [p]⊗T(p)2),

r3 = p3(p + 1)(2[p]⊗ [p] + T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)⊗T(p) ,

r4 = −p5((p7 + 2p6 − 2p5 + 6p4 + p3 + 6p2 + p + 2)[p]2 ⊗ [p]2

− (p2 + 1)(p3 − 3p2 − p− 3)(T1(p2)⊗ [p] + [p]⊗T1(p2))[p]⊗ [p]

+ (p + 4)(p2 + 1)T1(p2)[p]⊗T1(p2)[p]− (p3 − p2 − 1)(T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)

+ (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)⊗T1(p2)− p(p3 + 2p2 − p + 2)(T(p)2 ⊗ [p]

+ [p]⊗T(p)2)[p]⊗ [p]− 2p(T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]⊗ [p]

+ p2(T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2)) + (p + 2)T(p)2[p]⊗T(p)2[p]) ,

r5 = −p7(2(p + 1)(2p4 − p3 + p2 − 1)[p]⊗ [p] + (p + 1)(p− 2)(T1(p2)⊗ [p] + [p]⊗T1(p2))

− 2T1(p2)⊗T1(p2)− p(p + 1)(T(p)2 ⊗ [p] + [p]⊗T(p)2))T(p)[p]⊗T(p)[p] ,
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r6 = −p10 (p (p2 + 1)(p5 − 2p3 − 8p2 − p− 4)[p]3 ⊗ [p]3

− p (p5 + 4p4 + 2p3 + 12p2 + p + 6)(T1(p2)⊗ [p] + [p]⊗T1(p2))[p]2 ⊗ [p]2

+ p (p− 4)(p2 + 1)T1(p2)[p]2 ⊗T1(p2)[p]2

− p (p + 4)(p2 + 1)(T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)[p]⊗ [p]

− p (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)[p]⊗T1(p2)[p]

− p (T1(p2)3 ⊗ [p]3 + [p]3 ⊗T1(p2)3)

− (p5 − 4p2 − p− 2)(T(p)2 ⊗ [p] + [p]⊗T(p)2)[p]2 ⊗ [p]2

+ (p2 + 3)(T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]2 ⊗ [p]2

+ (T(p)2[p]⊗T1(p2)2 + T1(p2)2 ⊗T(p)2[p])[p]⊗ [p]

+ (p3 + 3p2 + p + 1)(T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))[p]⊗ [p]

+ (T(p)2 ⊗ [p] + [p]⊗T(p)2)T1(p2)[p]⊗T1(p2)[p]

+ (p2 + 1)T(p)2[p]2 ⊗T(p)2[p]2) ,

r7 = −p13 (2(p + 1)(p3 + p− 1)[p]⊗ [p]− (p + 1)(p2 − 2p + 2)(T1(p2)⊗ [p] + [p]⊗T1(p2))

− 2T1(p2)⊗T1(p2)− (p + 1)(T(p)2 ⊗ [p] + [p]⊗T(p)2))T(p)[p]2 ⊗T(p)[p]2 ,

r8 = −p16(p (2p6 + 3p5 + 6p4 − p3 + 6p2 − p + 2)[p]2 ⊗ [p]2

+ p (p2 + 1)(p3 + 3p2 − p + 3)(T1(p2)⊗ [p] + [p]⊗T1(p2))[p]⊗ [p]

+ p (p + 4)(p2 + 1)T1(p2)[p]⊗T1(p2)[p]

+ p (p2 − p + 1)(T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)

+ p (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)⊗T1(p2)

− p (2p3 + p2 + 2p− 1)(T(p)2 ⊗ [p] + [p]⊗T(p)2)[p]⊗ [p]

− 2p2(T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]⊗ [p]

+ p (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))

+ (2p + 1)T(p)2[p]⊗T(p)2[p])[p]2 ⊗ [p]2 ,

r9 = p20(p + 1)(2[p]⊗ [p] + T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)[p]3 ⊗T(p)[p]3

r10 = p24((p2 + 1)(p4 + 2p3 − p2 − 1)[p]⊗ [p] + (p3 − p2 − 1)(T1(p2)⊗ [p] + [p]⊗T1(p2))

−T1(p2)⊗T1(p2)− p2(T(p)2 ⊗ [p] + [p]⊗T(p)2))[p]4 ⊗ [p]4

r11 = 0,

r12 = p34[p]6 ⊗ [p]6,

As for the coe�cients of S(X), one has

S(X) = 1− (T(p)⊗T(p))X + · · ·+ (p6[p]⊗ [p])8X16 ∈ L2,Z ⊗ L2,Z[X],
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where

s1 = −T(p)⊗T(p)

s2 = −p(2 p (p2 + 1)2 [p]⊗ [p] + 2 p (p2 + 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))

+ 2 pT1(p2)⊗T1(p2)− (p2 + 1) (T(p)2 ⊗ [p] + [p]⊗T(p)2)

− (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2))

s3 = p2((2 p4 + 4 p2 − 1) [p]⊗ [p] + (2 p2 − 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))

−T1(p2)⊗T1(p2)− p (T(p)2 ⊗ [p] + [p]⊗T(p)2))T(p)⊗T(p))

s4 = p4((p8 + 12 p6 + 10 p4 + 4 p2 + 1) [p]2 ⊗ [p]2

+ 2 (3 p6 + 5 p4 + 3 p2 + 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))[p]⊗ [p]

+ 4 (p2 + 1)2 T1(p2)[p]⊗T1(p2)[p]

+ (3 p4 + 2 p2 + 1) (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)

+ 2 (p2 + 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)⊗T1(p2)

+ T1(p2)2 ⊗T1(p2)2

− 2 p (p4 + 4 p2 + 1) (T(p)2 ⊗ [p] + [p]⊗T(p)2) [p]⊗ [p]

− 4 p (p2 + 1) (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]⊗ [p]

− 2 p (T(p)2[p]⊗T1(p2)2 + T1(p2)2 ⊗T(p)2[p])

− 4 p3 (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))

+ (p2 + 2)T(p)2[p]⊗T(p)2[p]

+ (T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)2 ⊗T(p)2

+ p2 (T(p)4 ⊗ [p]2 + [p]2 ⊗T(p)4))

s5 = −p6((6 p6 + 2 p4 − p2 + 2) [p]2 ⊗ [p]2

+ (p4 − p2 + 3) (T1(p2)⊗ [p] + [p]⊗T1(p2))[p]⊗ [p]

+ (3 p2 + 4)T1(p2)[p]⊗T1(p2)[p]

− (2 p2 − 1) (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)

+ (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)⊗T1(p2)

− p (2 p2 + 1) (T(p)2 ⊗ [p] + [p]⊗T(p)2)[p]⊗ [p]

− 2 p (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]⊗ [p]

+ p (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))

+ T(p)2[p]⊗T(p)2[p])T(p)⊗T(p))
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s6 = −p8(2 p2 (p8 + 6 p6 + 11 p4 + 8 p2 + 2) [p]3 ⊗ [p]3

+ 2 p2 (5 p4 + 12 p2 + 6)T1(p2)[p]2 ⊗T1(p2)[p]2

+ (3 p4 + 10 p2 − 1)T(p)2[p]2 ⊗T(p)2[p]2 −T(p)2T1(p2)[p]⊗T(p)2T1(p2)[p]

+ 2 p2 (3 p6 + 11 p4 + 12 p2 + 4) (T1(p2)⊗ [p] + [p]⊗T1(p2)) [p]2 ⊗ [p]2

+ 6 p2 (p2 + 1)2 (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)[p]⊗ [p]

+ 6 p2 (p2 + 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)[p]⊗T1(p2)[p]

+ 2 p2 (p2 + 1) (T1(p2)3 ⊗ [p]3 + [p]3 ⊗T1(p2)3)

+ 2 p2 (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)T1(p2)⊗T1(p2)

− p (5 p6 + 13 p4 + 10 p2 + 2) (T(p)2 ⊗ [p] + [p]⊗T(p)2)[p]2 ⊗ [p]2

− p (7 p4 + 12 p2 + 4) (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]2 ⊗ [p]2

− 3p ( p2 + 1) (T(p)2[p]⊗T1(p2)2 + T1(p2)2 ⊗T(p)2[p])[p]⊗ [p]

− p (T(p)2[p]2 ⊗T1(p2)3 + T1(p2)3 ⊗T(p)2[p]2)

− 2 p (3 p4 + 4 p2 + 1) (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))[p]⊗ [p]

− 2 p (3 p2 + 1) (T(p)2 ⊗ [p] + [p]⊗T(p)2)T1(p2)[p]⊗T1(p2)[p]

− p (p2 + 1) (T(p)2T1(p2)2 ⊗ [p]3 + [p]3 ⊗T(p)2T1(p2)2)

− p (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))T1(p2)⊗T1(p2)

+ (5 p2 − 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)2[p]⊗T(p)2[p]

+ 2 p2 (p2 + 1) (T(p)4 ⊗ [p]2 + [p]2 ⊗T(p)4)[p]⊗ [p]

+ 2 p2 (T(p)4 ⊗T1(p2)[p] + T1(p2)[p]⊗T(p)4) [p]⊗ [p]

− p (T(p)4 ⊗T(p)4[p] + T(p)4[p]⊗T(p)4) [p]⊗ [p])

s7 = p11(p (5 p6 − 2 p4 + 2)T(p)[p]3 ⊗T(p)[p]3

+ 8 pT(p)T1(p2)[p]2 ⊗T(p)T1(p2)[p]2

+ pT(p)3[p]2 ⊗T(p)3[p]2

− p (p4 − 3) (T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)[p]2 ⊗T(p)[p]2

− p (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)T(p)[p]⊗T(p)[p]

+ 2 p (T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)T1(p2)[p]⊗T(p)T1(p2)[p]

− p (T1(p2)3 ⊗ [p]3 + [p]3 ⊗T1(p2)3)T(p)⊗T(p)

− (3 p4 − 3 p2 + 2) (T(p)2 ⊗ [p] + [p]⊗T(p)2)T(p)[p]2 ⊗T(p)[p]2

+ (p2 − 3) (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)T(p)[p]2 ⊗T(p)[p]2

− (T(p)2[p]⊗T1(p2)2 + T1(p2)2 ⊗T(p)2[p])T(p)[p]⊗T(p)[p]

+ (2 p2 − 1) (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))T(p)[p]⊗T(p)[p]

− (T(p)2 ⊗ [p] + [p]⊗T(p)2)T(p)T1(p2)[p]⊗T(p)T1(p2)[p])
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s8 = p14(2 p2 (2 p8 + 4 p6 + 14 p4 + 12 p2 + 3) [p]4 ⊗ [p]4

+ 4 p2 (p6 + 7 p4 + 9 p2 + 3) (T1(p2)⊗ [p] + [p]⊗T1(p2)) [p]3 ⊗ [p]3

+ 16 p2 (p2 + 1)2 T1(p2)[p]3 ⊗T1(p2)[p]3

+ 2 p2 (3 p4 + 10 p2 + 5) (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2) [p]2 ⊗ [p]2

+ 8 p2 (p2 + 1) (T1(p2)⊗ [p] + [p]⊗T1(p2))T1(p2)[p]2 ⊗T1(p2)[p]2

+ 4 p2 T1(p2)2[p]2 ⊗T1(p2)2[p]2

+ 4 p2 (p2 + 1) (T1(p2)3 ⊗ [p]3 + [p]3 ⊗T1(p2)3) [p]⊗ [p]

+ p2 (T1(p2)4 ⊗ [p]4 + [p]4 ⊗T1(p2)4)

− 4 p (2 p6 + 3 p4 + 4 p2 + 1) (T(p)2 ⊗ [p] + [p]⊗T(p)2)[p]3 ⊗ [p]3

− 8 p (p2 + 1)2 (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)[p]3 ⊗ [p]3

− 4 p (p2 + 1) (T(p)2[p]⊗T1(p2)2 + T1(p2)2 ⊗T(p)2[p])[p]2 ⊗ [p]2

− 4 p (p4 + 4 p2 + 1) (T(p)2T1(p2)⊗ [p]2 + [p]2 ⊗T(p)2T1(p2))[p]2 ⊗ [p]2

− 8 p (p2 + 1) (T(p)2 ⊗ [p] + [p]⊗T(p)2)T1(p2)[p]2 ⊗T1(p2)[p]2

− 4 p (T(p)2 ⊗T1(p2) + T1(p2)⊗T(p)2)T1(p2)[p]2 ⊗T1(p2)[p]2

− 4 p3 (T(p)2T1(p2)2 ⊗ [p]3 + [p]3 ⊗T(p)2T1(p2)2) + [p]⊗ [p]

+ 2 (5 p4 + 2 p2 + 2)T(p)2[p]3 ⊗T(p)2[p]3

+ 2 (p2 + 2) (T1(p2)⊗ [p] + [p]⊗T1(p2))T(p)2[p]2 ⊗T(p)2[p]2

+ 2T(p)2T1(p2)[p]2 ⊗T(p)2T1(p2)[p]2

+ (T1(p2)2 ⊗ [p]2 + [p]2 ⊗T1(p2)2)T(p)2[p]⊗T(p)2[p]

+ (3 p4 + 2 p2 + 1) (T(p)4 ⊗ [p]2 + [p]2 ⊗T(p)4)[p]2 ⊗ [p]2

+ 2 (p2 + 1) (T(p)4 ⊗T1(p2)[p] + T1(p2)[p]⊗T(p)4) [p]2 ⊗ [p]2

+ (T(p)4 ⊗T1(p2)2 + T1(p2)2 ⊗T(p)4) [p]2 ⊗ [p]2

− 2 p (T(p)2 ⊗ [p] + [p]⊗T(p)2)T(p)2[p]2 ⊗T(p)2[p]2)

Then we �nd the remaining coe�cients s9, · · · , s16, using an easy functional equation
(similar to [An87], p.164, (3.3.79)):

s16−i = (p6[p]⊗ [p])8−isi (i = 0, · · · , 8).

To conclude with, we give the Newton polygons of R(X) and S(X) with respect to powers
of p and X (see Figure 1). It follows from our comutation that all slopes are integral. We
hope that these polygons could help to �nd some geometric objects attached to the
polynomials R(X) and S(X), in the spirit of a recent work of C.Faber and G.Van Der Geer,
[FVdG].
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