Rankin’s lemma of higher genus and explicit formulas
for Hecke operators.

Alexei Panchishkin, Kirill Vankov
http://www-fourier.ujf-grenoble.fr/ panchish
e-mail : panchish@mozart.ujf-grenoble.fr, FAX: 33 (0) 4 76 51 44 78

To dear Yuri Ivanovich Manin for his seventieth birthday with admiration

Abstract

We develop explicit formulas for Hecke operators of higher genus in terms of
spherical coordinates. Applications are given to summation of various generating series
with coefficients in local Hecke algebra and in a tensor product of such algebras. In
particular, we formulate and prove Rankin’s lemma in genus two. An application to a
holomorphic lifting from GSp2 x GSp2 to GSps is given using Ikeda-Miyawaki
constructions.
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1 Introduction: generating series for the Hecke
operators

Let p be a prime. The Satake isomorphism [Sa63] relates p-local Hecke algebras of reductive
groups over QQ to certain polynomial rings. Then one can use a computer in order to find



interesting identities between Hecke operators, between their eigenvalues, and relations to
Fourier coefficients of modular forms of higher degree.

The purpose of the present paper is to extend Rankin’s Lemma to the summation of Hecke
series of higher genus using symbolic computations. We refer to [Ma-Pa77|, where Rankin’s
Lemma was used in the elliptic modular case for multiplicative and additive convolutions of
Dirichlet series. That work was further developped in [Pa87], [Pa02], see also [Ma-Pa03].

Recall that a classical method to produce L-functions for an algebraic group G over Q uses

the generating series
PRV | ISRV
n=1

p primes 6=0
of the eigenvalues of Hecke operators on an automorphic form f on G. We study the
generating series of Hecke operators T(n) for the symplectic group Sp,, and
Ap(n) = Af(T(n)).
Let I' = Sp,(Z) C SLgy(Z) be the Siegel modular group of genus g, and
[plg = pIag = T(p,--- ,p) be the scalar Hecke operator for Spy. According to Hecke and

29
Shimura,

D,(X) = §OO T(p°)X°
=0
1

1-T(p)X + plph X’

ifg=1
(see [Hecke], and [Shi71], Theorem 3.21),
1 - p’[pl2X?

1—T(p)X + {pT1(p?) + p(p? + 1)[pl2} X2 — p*[p|2T(p) X* + pS[p|3X*
if g = 2 (see [Shi63], Theorem 2),

where T(p), T;(p?) (i =1,---,g) are the g + 1 generators of the corresponding Hecke ring
over Z for the symplectic group Spy, in particular, Tg(p2) = [plg.

In the present paper we study explicit formulas for Hecke operators in higher genus in
terms of spherical coordinates. Applications are given to summation of various generating
series with coefficients in local Hecke algebras. The question of computing such series
explicitly was raised by Prof. S.Friedberg during first author’s talk at the conference "Zeta
Functions" (The Independent Moscow University, September 18-22, 2006).

In particular, we formulate and prove Rankin’s lemma in genus two for generating series
with coefficients in a tensor product of local Hecke algebras.

We prove in Theorem [3.] that for g = 2,

1 —p°p] ® [p]X?) - R(X)
S(X)

Z T(p’) @ T(p°) X° = ( , for certain two polynomials
5=0

RX)=14mX+ - +rn X" 47X with 7, = ryy =0,
S(X)=1+s1X +--+5,6X"°

with coefficients explicitly expressed through Hecke operators in Appendix. A motivic
interpretation of the polynomial S is given in terms of the tensor product of motives.



2 Results

2.1 Preparation: a formula for the total Hecke operator T(p’) of
genus 2
We establish first the following useful formula (in spherical variables zg, z1, z2):
Q@ (T(p%)) = p~' 28 (p*H 1y — D) — p a0 f 240 |1, (240) (3+0) (1)
—pm e 4 pa b pm —pa — 7T 22 4+ I1(1+6) o
2D QAR | (140) (248) | 2 240) . (140) _ 2 2)/

— X T2+ T1 25
(1 =21) (1 — m) (1 - m 902) (71 — 1’2))

= p ' (1 —m ) (pm — ) e+ (1 -z m) (11— pag) T

—(1—pm m) (31 — 3) (31 22) T — (p— 21 3) (11 — 22))/
(1—21) (1 —2) (1 — 21 22) (1 — 22)).

Andrianov’s generating series
The expression comes from the following Andrianov’s generating series

1— I(?Zlmz X2

> ) 6 _
;Qx T(p ))X - (1_g;OX)(l—xoxlX)(l—$0$2X)(1_370$1‘T2X)

after developing and a simplification using change of summation.
Note that the formula makes it possible to treat higher generating series of the following

type

ZQ‘Q ) X% (m=2,3,-)

(in spherical variables g, z1, 22)-

2.2 Rankin’s generating series in genus 2

Let us use the spherical variables xg, 1, s and yg, y1,y2 for the Hecke operators.

Note that there are two types of convolutions: the first one is defined through the Fourier
coefficients (it was used by [An-Ka] for the analytic continuation of the standard L-
function), and the second one is defined through the eigenvalues of Hecke operators, and it
is more suitable in order to treat the L-functions attached to tensor products of
representations of the Langlands group. However, a link between the two types is known
only for g = 1.

In order to state a multiplicative analogue of Rankin’s lemma in genus two we need to write
the corrseponding formula for Hecke operator T(p®) (in spherical variables yo, 31, y2)-

) ) ) ) ) )
QD(TE) =p  wdpy> ™ g —pyTY = pyP T YO PO 30

) ) )
—py1y§5+)+py§2+)+py1 Py — gt 2y,
246 1+5 1+45 246 246
oy PO S 0 20 2 OO ) 2 e o u2)/

(T=y1) (T —y2) (L= y192) (11 — 92))



Then we have that the product of the above polynomials is given by

QP(T()) - QFP(TR)) =

p

— 349 2446 3+0 249 249 3+0
2 (3+5) (24+5) _ ) p(3+0) [ (040) | (240) (3+)

Wpe " m—pny

—px x2(3+5) + px2(2+5) +pr —pr2 — $1(2+6) :c22 + xl(“”é) T

+ $1(2+5) x2(1+6) . I1(1+5) :I,'2(2+6) + LE2 $2(2+6) — $2(1+6)

2 2
1 —Ii Ty + 11 T3)

346 246 346 246 246 344
Sy gy — pyTY O YO g 240 (340)

344 246 246 1+6
— oy o 4y oy —pue — T 2 4y g

24§ 5 5) (246 246 1+6
+ 7 g T = T 0 gy — g Y — e o 03)/

(T=2) (1 =m) (1 —z122) (21 — 22)(1 — y1) (1 — 92) (1 — 1 92) (41 — %2))

We wish to compute the generating series

> aP(Tp’) - QP (T(®’) X° € Qlxo, x1, 72, Yo, y1, v [X]-
0=0

The answer is given by the following multiplicative analogue of Rankin’s lemma in genus

two:

THEOREM 2.1 The following equality holds

>

5=

QP(T () - QP(T (")) X° = (2)

(pl’l - $2) (1 — P y2) 1 Y1 Y2

PP(1—=m) (1 —m2) (21 —22) (1 —y1) (1 = y2) (1 — 91 92) (1 — 7021 Yo 91 y2 X)

Y1 (11 —pag) (P Y1 — yz)

+p2(1—331)(1—l’2) (r1 —m) (1= y1) (1 —y2) (31 — y2) (1 — @ 32 90 11 X)

T2 Y2 ($1 - pm)(@h —py2)

+p2(1 —z1) (L —=m2) (21 —2) (1= y1) (1 — y2) (yI — y2) (1 — 20 yo 22 Y2 X)

+p2(1—x1)(1—$2)(1—a:1x2

+p2(1—x1)(1—x2)(1—x1x2

Yy (r —pr2) (1 —py1 )

PP(1—m) (1 —m2) (21 —22) (1 —y1) (1 —y2) (1 — 91 92) (1 — 20 22 40 91 y2 X)

o (po — 22) (p— 1 42)

PPA=—m)(1—m)(z1 —22) (1 —y1) (1 —y2) (1 — y192) (1 — 7021 o X)

122 y1(1 —pom) (pyr — o)

PP —m) (1= 2) (1= zmp) (1= 1) (1= 92) (11 — 1) (1 — 20 21 22 yo 1 X)

nzaye (1 —pzae) (hn —py2)

PPl=—m)(1—m) (I =z 2)(1—y1) (1 —y2) (11 — y2) (1 — 20 71 22 90 y2 X)

Ny (p— 2 22) (L —pyr1y2)

(1=y) (T —=52) (1= y192) (1 — w90 y1 12 X)

12 (1 —paan) (p— y1 42)

~— |~ —| —

(I=9y) (X =y2) (I =y y2) (1 — 2021 22 90 X)



Ty (pm —22) (PY1 — Y2)
P21 = o) (1 —m2) (21 —22) (1 —y1) (1 — y2) (31 — y2) (1 — 20 71 Yo y1 X)
I1 Y2 (P Iy — =T2) (y1 *Pyz)
P2 (1 —21) (1 —m2) (z1 —22) (1 — 1) (1 —92) (31 — 2) (1 — 20 21 90 Y2 X)
22 (11 —pw2) (p— Y1 Y2)
PP(L—21)(1—m2) (21— 22) (1 — 1) (1 — 42) (1 — y192) (1 — 20 22 50 X)
T2 y1 Y2 (1L —para) (1 —pyi y2)
PP(L—2) (1 —22) (1 =21 22) (1 — 1) (1 —92) (1 — w1 92) (1 — 20 21 22 90 Y1 Y2 X)
(p—21m) (P — Y1 42)
P21 =) (1 —m) (1 =z 22) (1 —y1) (1 —y2) (1 — 1 92) (1 — 2090 X)
y1(p—mm) Py — ¥2)
PP(L—21)(1—22) (1 =21 22) (1 — 1) (1 — 92) (1 — 42) (1 — 70 Yo 11 X)
Y2 (p— 11 12) (Y1 — P Y2)
PPA=—m)(1—m) (1 —z122)(1—y1)(1—y) (1 —y2) (1 —20y0y2 X)
REMARK 2.2 (ON THE DENOMINATOR OF ) One finds using a computer that the

polynomials not depending on X in the denominators of (@ cancel after the simplification
in the ring Q[zg, 1, %2, Yo, Y1, y2][X], so that the common denominator becomes

(1 =20 y0X) (1 =20 yoz1 X) (1 — 2090 y1 X) (1 — 209072 X) (1 — 20 90 Y2 X)
I—2yorryn X) (L —zpyoz 22 X) (1 — 20 yo 21 y2 X) (1 — 0 yo y1 22 X)
(I—=20y091 92 X) (1 — 20 Yo 22 y2 X) (1 — 20 Yo 21 y1 22 X) (1 — 20 Yo 21 Y1 Y2 X)
(I —2yom 3292 X) (1 — 20 90 y1 72 Y2 X) (1 — 20 yo 21 Y1 72 Y2 X).

_|_

+

_|_

REMARK 2.3 (COMPARISON WITH g = 1) It turns out by direct computation that the
numerator of the rational fraction (@ is a product of the factor 1 — a2 yd my17212 X2 by a
polynomial of degree 12 in X with coefficients in Q[xo, x1, T2, Yo, Y1, y2| with the constant
term equal to 1 and the leading term

12, 12
Lo" Yo $1x2y1y2 x12.

2
p
Moreover, the factor of degree 12 does not contain terms of degree 1 and 11 in X. The
factor of degree 2 in X is very similar to one in the case g =1 (this series was studied and
used in [Ma-Pa77] ):

> © 51 _ .(146) 5 (1 _ ,(1+0)
Z Qgcl)(T(pé)) . Q(l)(T(pé)) X5 — Z To (1 I ) X Yo (1 (2 )XtS
v 1-— Ty 1-— U
5=0 §=0
I=2)A=y)A-20pX) (1—2)1—y)1 -2y X)

_ Z1 n 1
I-z)Q-y) T —myonnX) (I—2)—y)(1— 20y 2y X)

B 1—x§y§x1y1X2

S -z X) 1 —z0yr X) (1 —azyoyn X) (1 — a0 yo X)

2.3 Symmetric square generating series in genus 2

Using the same method, one can evaluate the symmetric square generating series and the
cubic generating series of higher genus. Note that this series, written here in spherical
variables xg, x1, o is different from one studied by Andrianov-Kalinin, and has the form:



5=0
I+ X+ mX+28n X +18mad X + 28 22 X + xf 2 23 X?)(1 —@X)
—RRa 00 - g2 00 - gZ X0 -ZX)

2.4 Cubic generating series in genus 2

The cubic generating series of higher genus, written here in spherical variables zg, 1, 2 has
the form:

2:9502)('1‘(1935))X‘S =p (ptag o ap X2 ag af oy X2+ 245 af @3 X?

7pZL’inLI24X27pIgZL’12I§X272pIO z} x2X+:L’O x5 X2

+adad e X2 4l ad o) X2 4+ ol o) o) X2 + 348 2 ) X2

tad et el X2 422l ap al X2 —pad o X —pad of X — pad af o X2
—2padm s X —padal el X2+ adal i X +aj ;X

6,2 .3 v2 6,32 v2 3,23 3,32
—pargayxy X°—prgay a5 X™ —pagaizy X —pag ay w5 X

—2padatay X —padaim X +ad i m X + a) ot oy X3
—2paladal X2 —2padwy ap X + o) xf 1) X3+ 2 xp 2f X3P
—padaday X2+ ap maf X + ) o) ay X3+ 28 1 2 X2

—padat ey X2 —padmay X —pad X —pad o X + 218 o o3 X2
+2ad g X)) /((1— 2 X)(1 — 2323 X)(1 — 2323 X)(1 — ai 23 X))

3 Proofs: formulas for the Hecke operators of Sp,

3.1 Satake’s spherical map (2

Our result is based on the use of the Satake spherical map 2, by applying the spherical
map ) to elements T(p°) € Lz of Hecke ring L7 = Z[T(p), T1(p?), -+ , Tpn(p?)] for the
symplectic group, see [An87| chapter 3.

e Case T1(p?) In genus 2 (in spherical variables z¢, 1, z2), we obtain using Andrianov’s
formulas:

a3 ((af 2 + @1 23) p* + @1 22 p* — 11 22 + (21 + 22) P?)

QT4 (p?)) =

o Cases T2(p?) = [p]2 and T(p)

, AUT(p) =21+ 21)(1 + 22)



3.2 Use of Andrianov’s generating series in genus 2

We refer to [An87], p.164, (3.3.75) for the following celebrated summation formula:

2
%) 1— Ty T1 T2 X2
Q2 (T(p) X0 = P 3
; (T(%) I-20X)Q—zmrr X)(1—20mX) (1 — 292 22 X) (3)
gives after development and simplification the following formula
_ 5 5 s 5 5 §
QON(T(") = p" 1 (paf ™ @y — paf*T = paTT T 4 pa T O
—px x2(3+5) +p x2(2+5) +pry —prs — x1(2+5) x22 + x1(1+5) X2
+ m1(2+5) x2(1+5) - $1(1+5) x2(2+6) + a} x2(2+5) —x x2(1+5) — 2w+ @ 1Y)/
(1 =21) (1 —22) (1 — 21 22) (21 — 22))
Then we use two groups of variables: xo,...,z, and yo,...,y, in two copies €, £, of the

sperical map, in order to treat the tensor product of two local Hecke algebras.
Next, in order to carry out the summation of the series

i QT () - QP (T (")) X°
=0

on a computer, we used a subdivision of each summand (over d) into smaller parts. These
parts correspond to symbolic monomials in x9, 52, 23,3, (z172)°, (y1y2)°.

3.3 Rankin’s Lemma of genus 2 (compare with [Jia96])

Let us compute the series
DIM(X) =Y TE") @ T(p°) X° € Loz ® Lo z[X]
§=0

in terms of the generators of Hecke’s algebra L3 7 ® L2 7 given by the following operators:
T(p)© 1, T1(p*) @ 1,[p] ©1,1 @ T(p), 1@ T1(p*), 1 ® [p] € Loz ® Lo z[X].

THEOREM 3.1 (OCTOBER 2006) For g =2, we have the following explicit representation

DID(X) = S 1) @ 1) X0 = LTP RIS PIXD) R -,
6=0

S(X)
R(X),S(X) € Loz ® Loz X]
are given by the equalities and (@:
RX)=1+47X% 4+ + 710X 0 + 712X € Log ®Loz[X] withry =711 =0, (4)
S(X)=1+5X+-+ 56X (5)
=1-(T(p) @ T(p))X + -+ (P°[P] @ [P])*X'° € Loz ® Laz[X],

with r; and s; given in Appendiz. Moreover, there is an easy functional equation (similar to
JAn87], p.164, (3.8.79)):

516—i — (pﬁ[p] ® [p})87i3i (Z =0, ’8)



REMARK 3.2 (COMPARISON WITH THE CASE g =1 (IN TERMS OF HECKE OPERATORS))
The corresponding result in the case g = 1 written in terms of Hecke operators, looks as

follows (see[2.3):
ZT (»°) X° = (1 - p*[p] ® [p]X?)/
5=0

(1-T(p) ® T(p)X + (p(T(p)> ® [p] + [p] ® T(p)*) — 2p°[p] ® [p]) X>
—p*T(p)lp] ® T(p)[p]X° +p'[p]* ® [P]*X™).
Indeed this follows directly from Remark[2.3

4 Applications to L-functions and motives for Sp,

The Fourier expansion of a Siegel modular form.

Let f = Z a(T)q” € M} be a Siegel modular form of weight k and of genus n on the

TJeB,
Siegel upper-half plane H,, = {z € M, (C) | Im(z) > 0}.

The formal Fourier expansion of f uses the symbol

¢ = exp(2mitr(Tz)) H q;;" H qu”

1<j

€ Clai1s- - qnnllaijs q;jl]i,jzl,...,m, where ¢;; = exp(27(v/—1%;;)), and T is in the
semi-group B,, = {T = 'T > 0|7 half-integral }.

Satake parameters of an eigenfunction of Hecke operators

Suppose that f € M} an eigenfunction of all Hecke operators f — f|T, T € L,, ,, for all
primes p, hence f|T = A;(T)f.

Then all the numbers Ay(T) € C define a homomorphism Ay : L,, , — C given by a

(n + 1)-tuple of complex numbers (ag, aq, -+ ,a,) = (C*)"*1 (the Satake parameters of f).
One has a2a; - - - a,, = pFn—n(n+1)/2,

For another Siegel modular form, eigenfunction of Hecke operators g € M}' consider the
corresponding homomorphism A, : £,, , — C given by its Satake parameters

(ﬂOa/Bla e ,611) of 9, and let )\f & )\g : Ln,p @ Ln,p —C

L-functions, functional equation and motives for Sp, (see [Pa94], [Yosh01])

One defines

e Qpp(X)=(1-aX)[] II (-aeei-a; X),

r=11<i1 <<, <n

e R;,(X) )]0 - o' X)(1 - i X) € Qlog !, -+ o' [X].
i=1
Then the spinor L-function L(Sp(f),s) and the standard L-function L(St(f), s, x) of f (for
s € C, and for all Dirichlet characters) x are defined as the Euler products



L(Sp(f),s.x) = [ [ @rax(p)p™) "
L(St(f)’ S’X) = HRfyp(X(p)p_s)_l

Motivic L-functions

Following [Pa94] and [Yosh01], these functions are conjectured to be motivic for all k > n:

L(Sp(f), s, x) = LIM(Sp(f))(x), 8), L(S(f), 8) = LIM(SL(f))(x), 5), where

and the motives M (Sp(f) and M (St(f) are pure if f is a genuine cusp form (not coming
from a lifting of a smaller genus):

o M(Sp(f)) is a motive over Q with coefficients in Q(Af(n))nen of rank 27, of weight
w = kn —n(n+1)/2, and of Hodge type @, ,H"9, with

p=(k—i1)+ (k—iz2)+-+ (k—ip), (6)
g=(k—j1)+(k—j2)+ -+ (k—is), where r + s = n,

1< <io< -+ <4, <N, 1< <ja<- - <js<m,

{iv, - yir} U{gn, - yisy = {1,2,--- ,nk

o M(St(f) is a motive over Q with coefficients in Q(Af(n))nen of rank 2n + 1, of weight
w = 0, and of Hodge type H*® @, (H-kFik=i @ gh—i,=k+i),

A functional equation

Following general Deligne’s conjecture [De79] on the motivic L-functions, the L-function
satisfy a functional equation determined by the Hodge structure of a motive:

A(Sp(f), kn —n(n+1)/2+1—s) = (f)A(Sp(f), s), where
A(SP(f), 8) = T i ()L(Sp(f), s),e(f) = (—1)k2" 7%,

Ty k(s) =Tc(s) =22m)°T(s), T'ok(s) = Te(s)Te(s — k + 2), and
Lyi(s) =1, Tcls —p) TR (s — (w/2))Tr(s+ 1 — (w/2))*- for some non-negative integers
ay and a_, with ay + a_ = w/2, and 'g(s) = 7~%/?T(s/2)

Motive of the Rankin product of genus g = 2

Let f and g be two Siegel cusp eigenforms of weights k and [, k > [, and let M (Sp(f)) and
M(Sp(g)) be the spinor motives of f and g. Then M (Sp(f)) is a motive over Q with
coefficients in Q(Af(n))nen of rank 4, of weight w = 2k — 3, and of Hodge type

HO2k=3 @ gh=2k=1 g gh=1k=2 g 2k=3.0 and M (Sp(g)) is a motive over Q with
coefficients in Q(Ag(n))nen of rank 4, of weight w = 2[ — 3, and of Hodge type

H0,2l73 @ Hl72,l71 @ Hlfl,l72 o) H2l73,0.

The tensor product M (Sp(f)) ® M(Sp(g)) is a motive over Q with coefficients in

QA f(n), Ag(n)nen of rank 16, of weight w = 2k + 21 — 6, and of Hodge type



HO2k+2=6 gy prl=2,2k+1-4 o prl=12k+1=5 g [r21-3,2k=3

- - - - k4-1—3,k+1—3 —5.k—
Hk—2:k+2 4@Hk+l 4,k+1 2@H++ + @Hk+2l 5,k—1
k- 1k+20-5 & Hk+l—3,k+l—3 ® HhH-2k+1-4 ® fht2l-4k—2

HQk—3,2l—3 o H2k+l—5,l—1 @ H2k+l—4,l—2 D H2k+2l—6,0

Motivic L-functions: analytic properties

Following Deligne’s conjecture [De79] on motivic L-functions, applied for a Siegel cusp
eigenform F for the Siegel modular group Sp,(Z) of genus n = 4 and of weight k > 5, one
has A(Sp(F), s) = A(Sp(F), 4k — 9 — s), where

A(Sp(F),s) =Tc(s)Te(s —k+4)Tc(s —k+3)Tc(s —k+2)Tc(s—k+1)
x De(s — 2k 4+ 7)T'c(s — 2k + 6)T'c(s — 2k + 5)L(Sp(F), s),

(compare this functional equation with that given in [An74], p.115).

On the other hand, for n = 2 and for two cusp eigenforms f and g for Sp,(Z) of weights k, I,
k>141, A(Sp(f) @ Sp(g),s) = e(f, 9)A(Sp(f) ® Sp(g), 2k + 21 =5 —s5), [e(f, 9)| = 1, where

A(Sp(f) @ Sp(g),s) = Te(s)le(s — 1 +2)Te(s — 1+ 1)lc(s — k +2)
x Te(s —k+1)Te(s — 20+ 3)c(s —k — 1+ 2)c(s — k — 1 +3)
x L(Sp(f) ® Sp(g), s)-

We used here the Gauss duplication formula I'c(s) = I'r(s)I'r(s + 1). Notice that
a4 = a_ =1 in this case, and the conjectural motive M (Sp(f)) ® M(Sp(g)) does not admit
critical values.

5 A holomorphic lifting from GSpy; x GSps to GSpy: a
conjecture

(compare with constructions in [BEG06], [BEG92], [Jia96] for generic automorphic forms).
Our computation makes it possible to compare the spinor Hecke series of genus 4 computed
in [VaSp4] (in variables wug, u1, u2, ug, u4) with the Rankin product of two Hecke series of
genus 2 (in variables xg, 21, T2, Yo, Y1, y2). It follows from our computation that if we make
the substitution ug = xoyo, u1 = T1,us = To, U3 = Y1, us = Y2 then the denominator of the

series
o0

> A(TE)X’

6=0

coincides with the denominator of the Rankin product
oo
Z Q(T(p%)) - QP(T(°)) X° € Qlzo, 1, 2, Yo, y1, y2] [X]-
6=0

On the basis of this equality we would like to push forward the following
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CONJECTURE 5.1 (ON A LIFTING FROM GSpy X GSpy TO GSps (OF GENUS FOUR)) Let f
and g be two Siegel modular forms of genus 2 and of weights k > 4 and | =k — 2. Then
there exists a Siegel modular form F of genus 4 and of weight k with the Satake parameters

Yo = aofo, 71 = Q1,72 = a2,73 = P1,74 = P,
for a suitable choice of Satake’s parameters ag, ay, s and By, b1, B2 of f and g.

REMARK 5.2 An evidence for the conjecture comes from Ikeda-Miyawaki constructions
([Tke01], [Mur02], [Tke06]): let k be an even positive integer, h € Sox(I'1) a normalized
Hecke eigenform of weight 2k, Fo(h) € Sky1(I'2) = Maass(h) the Maass lift of h, and
Fyy, € Skyn(Tap) the Ikeda lift of h (we assume k =n mod 2, n € N).

Next let f € Siintr(Tr) be an arbitrary Siegel cusp eigenform of genus r and weight
k+n+r, with n,r > 1. Then according to Ikeda-Miyawaki (see [Ike06)]) there exists a
Siegel eigenform Fp ¢ € Sptntr(Lantr) such that

2n

L(s,Fny,St) = L(s, f,St) [ L(s + k+n — j,h) (7)

J=1

(under a non-vanishing condition, see Theorem 2.3 at p.63 in [Mur02]). The form Fy, y is
given by the integral
Fn,g(Z) = (Fanior(diag(Z, Z'), f(Z')) 22

If we take n = 1,7 =2, k:=k + 1 then an example of the validity of the conjecture is given
by g = F(h),

(f,9) = (f, Fa(h)) = Fyp € Sk3(Ta), (f19) = (f, F2(Rh)) € Sk43(I'2) X Sky1(I2).

REMARK 5.3 Notice that the Satake parameters of the Ikeda lift F' = Fs,,(h) of h can be
taken in the form (o, B1, - , Bom, where

i—1/2 —1,i—1/2

mk_m(erl)/Q?ﬁi = ap ) 6m+i =« p ’ (Z = 17 e ’m)

Bo=p
and

(1—ap" ' 2X)(1—a ' p 1 2X) = 1 —a(p)X +p ' X2 h =) " a(n)g"

n=1
see [Mur02].

The L-function of degree 16 in Conjecture [5.1]is related to the tensor product L-function in
[7ia96]. In the example of Remark [5.2]it coincides with the product of two shifted
L-functions of degree 8 of Boecherer-Heim [BoeH06].

CONJECTURE 5.4 (ON A LIFTING FROM GSpay, X GSpay, TO GSpam) Here is a version of
Congjectire[5.1] for any even genus r = 2m. Let f and g be two Siegel modular forms of
genus 2m and of weights k > 2m and l = k — 2m. Then there exists a Siegel modular form
F of genus 4m and of weight k with the Satake parameters

Yo = agBo, V1 = Q1,72 = Q2+, Vom = Q2ms V2mtl = B1, 0, Yam = Bam for suitable
choices ag, a1, ,aom and Bo, B1,- -, Bom of Satake’s parameters of f and g.

One readily checks that the Hodge types of M (Sp(f)) ® M(Sp(g)) and M(Sp(F)) are again
the same (of rank 2*™) (it follows from the above description @, and from Kinneth’s-type
formulas).
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An evidence for this version of the conjecture comes again from Ikeda-Miyawaki
constructions ([Tke01], [Mur02], [Tke06]): let k& be an even positive integer, h € Sox(T'1) a
normalized Hecke eigenform of weight 2k, Fs,, € Skyn(I2,) the Ikeda lift of h of genus 2n
(we assume k =n mod 2, n € N).

Next let f € Sk1n+r(T';) be an arbitrary Siegel cusp eigenform of genus r and weight
k+n+r, with n,r > 1. If we take in n=m,r=2m,k:=k+m,k+n+r:=k+3m,
then an example of the validity of this version of the conjecture is given by

(f,9) = (f, Fam(h)) = Ty € Sky3mTam), (f,9) = (f, Fom) € Skt3m(Pam) X Sktm(Tam)-

Another evidence comes from Siegel-Eiseinstein series
2m
f=E" and g = B3,

of even genus 2m and weights k and k — 2m: we have then

k—2m k—1
040:17a1:p s, Qom =P )

Bo=1,061 = pk’—4m’ oo Bom = pk—Qm,—l’

then we have that

Yo = 1’71 :pk74ma sy 2m = pkila

are the Satake parameters of the Siegel-Eisenstein series F' = E}™.

A Appendix: Coefficients of the polynomials R(X) and
S(X)
We give here explicit expressions for the coefficients of the polynomials R(X) and S(X)

from Theorem [3.I] From these formulas one can observe some nice divisibility properties
(by certain powers of p and the elements [p] ® [p] € L2z ® L22):

R(X)=147ro X%+ 470X + 75X € Loz ® Lo g[X] with 1y =71y =0,
S(X)=145X+-+s56X"°
=1—(T(p) @ T(P))X + -+ (P°[p] @ [P)*X® € Lz ® Lo z[X],
with r; and s; given as follows
rg = p*((2p — D(P* + 1)[p] @ [p] — (0* —p+ 1)(T1(p*) @ [p] + [p] ® T1(p%))
—(T1(p*) @ T1(p*) + T(p)* @ [p] + [p] © T(p)?),
rs = p*(p+1)(2[p] @ [p] + T1(p*) ® [p] + [p] © T1(p?*))T(p) @ T(p),
ra =—p°((p" +2p° — 2p° + 6p" + p* + 6p* + p + 2)[p]* ® [p)?

— (P> +1)(p* - 3p> —p—3)(T1(p*) @ [p] + [P] @ T1(p*))[P) © [P]
+ P+ + DT [Pl @ T1(p*)[p] — (0° —p* — D(T1(p*)* @ [p” + [p)* ® T1(p%)?)
+ (T1(p%) ® [p] + [P] ® T1(p*)) T1(p?) @ T1(p*) — p(»* + 2p° — p + 2)(T(p)* ® [P]
+ [p] @ T(p)*)[p] @ [p] — 2p(T(p)* @ T1(p?) + T1(p*) © T(p)*)[p] ® [P]
+p2(T(p)2T1( )@ [p]? + [p)* ® T(p)*T1(p)) + (p + 2)T(p)*[p] @ T(p)*[p]) ,

rs =—p' (2(p+1)(2p* —p* +p* — D[] @ [p] + (p+ 1 (p — 2)(T1(p*) @ [p] + [p] © T1(p"))

P'( )
—2T1(p”) @ T1(p*) — p(p + 1)(T(p)* @ [p] + [P] @ T(p)*))T(p)[p) © T(p)[p],
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re = —p' (p(P* + 1) (p° — 2p° — 8p° —p—4)[p]* ® [p]*
—p(p° +4p" +2p° +12p* + p + 6)(T1(p°
+p(p— 4@+ DT1(p*)[p]* © T1(p*)[p)?
—p(p+ 4@+ 1)(T:1(p*) @ [p]* + [p]* ® T1(p*)*)[p] @ [P]
—p(T1(p*) @ [p] + [p] @ T1(p*)) T1 () [p] © T1(p”)[p]
p(T1(p*)’ ® [p® + [p)® @ T1(p*)?)

p’ —4p* —p—2)(T(p)* ® [p] + [p] ® T(p)*)[p)* ® [p]*
p* +3)(T(p)* ® T1(p*) + T1(p*) © T(p)*)[p)* @ [p]
2[1)])[] @ [p]

-
+(p?
+ (T(p)*[p] ® T1(p*)* + T1(p?)* ® T(p)
+ (P +3p +p+ 1)(T(p)°T1(p°) ® [p]?
+ (T(p)* @ [p] + [p] @ T(p)*)T1(p*)[p] ® T1(p*)[p]
+ (p* + 1)T(p)*[p)* @ T(p)*[p]*),

re =—p" (2

—2T1(p*) @ T1(p?) — (p + 1)(T(p)* @ [p] + [p] @ T(p)*))T(p)[p)* ©

rg = —p'%(p (2p° + 3p° + 6p* — p* + 6p® — p+2)[p]* @ [p)?

+p(p +1)(P* +3p —p+3)(T1(p?) @ [p] + [p] @ T1(p?))[p] © [p]
p(p+4)(P* + DT1(p*)[p] © T1(p?)[p]
+p(p* —p+1)(T1(p?)* @ [p] + [p)” @ T1(p*)?)
p(T1(p*) @ [p] + [p] ® T1(p*))T1(p*) © T1(p?)
—p(2p +p° +2p—1)(T(p)* @ [p] + [p] ©® T(p)*)[p] @ [p]
—2p*(T(p)* @ T1(p?) + T1(p*) © T(p)?)[p] @ [P]
+p(T(p)*T1(p*) © [p)* + [p)? ® T(p)*T1(p?))
+ (2p + )T (p)’[p] @ T(p)*[p))[p)* © [pI*,

ro = (p+1)( pl@[p ]+T1( *) @ [p] + [p] @ T1(p*))T(p)[P]* ® T(p)[p]*

(p+1)@° +p-1lpl@p] - (p+1D(P* - 2p +2)(T1(p*) ®

(r*) @ [p] + [p] @ T1(»%))[P)* @ [P]”

r10 = p*H((p* + D (p* + 2p° — p* — 1)[p] @ [p] + (»* — p* — D)(T1(p”) @ [p] + [P] ® T1(p*))

- Tl( )@ T1(p?) — 132(T(p)2 ® [p] + [p] ® T(p)*))[p]* ® [p]*
11 = Oa

r12 = p**[p]® ® [p]°,

As for the coefficients of S(X), one has

S(X)=1—(T(p) @ T()X + -+ (0°[p] ® [P])*X'* € Loz ® Lop[X],
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where

s1 = —T(p) ® T(p)

s2=—p2p (P* +1)*[p] ® [p] + 2p (> + 1) (T1(p*) © [p] + [P] © T1(p?
+2pTi(p*) @ T1(p?) — (P? + 1) (T(p)* @ [p] + [p] ® T(p)?)
— (T(p)? ® T1(p*) + T1(p*) © T(p)?))

s3 =p*((2p* +4p° — 1) [p] ® [p] + (2p° — !
- T1(p*) @ T1(p?*) — p(T(p)* @ [p] + [P } T(p)*))T(p) ® T(p))

sq = p*((p® +12p° + 10p* + 4p* + 1) [p]* ® [p)?
+2 (3p6 +5p* +3p* + 1) (T1(p*) @ [p] + [P ® T1(p*))[p] © [p]
+4(p* +1)> T1(p*)[p] ® T1(p?)[pl
+@3p* +2p* +1) (T1(p*)* @ [p]* + [p)° @ T1(p*)?)

+2(p° +1)(T1(p*) @ [p] + [p] @ T1(p*)) T1(p?) @ T1(p?)
+T1(p?)? @ T1(p)?

—2p(p* +4p> + 1) (T(p)* @ [p] + [p] © T(p)*) [p] © [P]

—4p(p® +1)(T(p)* @ T1(p?) + T1(p*) @ T(p)*)[p] @ [p]
—2p(T(p)*[p] © T1(p?*)* + T1(p*)* @ T(p)*[p])

—4p” (T(p)*T1(p?) @ [p)? + [P]* © T(p)*T1(p*))

+ (p* +2) T(p)*[p] © T(p)*[p]

+(T1(p?) @ [p] + [p] © T1(p*))T(p)* @ T(p)*

(
+p° (T(p)* @ [p]* + [p]* ® T(p)*))

—p®((6p° +2p* — p* +2) [p]* ® [p)?

+( — > +3) (T1(p*) @ [p] + [p] @ T1(p?))[p] @ [p]
+ (3p* +4) T1(p*)[p] ® T1(p”)[p]

- 29" - ) (T1(p*)* @ [p)* + [p)> ® T1(p?)?)
+ (T1(p%) ® [p] + [P ® T1(p?)) T1(p*) ® T1(p?)
—p(2p° + 1) (T(p)* © [p] + [p] @ T(p)*)[p] © [p]
—2p(T(p)* @ T1(p*) + T1(p*) © T(p)*)[p] ® [P]
+p(T(P)*T1(p*) @ [p)* + [p)* ® T(p)*T1(p?))

+ T(p)*[p] ® T(p)*[p])T(p) ® T(p))

14



=—p*(2p” (p* +6p° + 11p* +8p* +2) [p]* ® [p)°
+2p° (5p" +12p% + 6) T1(p°)[p)* © T1(p?) [p)?
+(3p* +10p* — 1) T(p)*[p)* @ T(p)*[p)* — T(p)*T1(p*)[p] ® T(p)*T1(p”)[p]
+2p? (3p° + 11p* +12p% +4) (T1(p*) ® [p] + [P] ® T1(»*)) [P]* ® [p]?
+6p% (p* +1)* (T1(p*)* @ [p)* + [P]* ® T1(p*)?)[p] ® [P]
+6p% (> + 1) (T1(p?*) @ [p] + [P] @ T1(p*)) T1(p?)[p] ® T1(p°)[p]
+2p° (p° + 1) (T1(p*)° @ [p)* + [p]® ® T1(p*)?)
+2p° (T1(p*)? @ [p)* + [p)* @ T1(p*)*) T (p 2)®T1( %)
—p(5p° +13p* +10p° + 2) (T(p)* © [p] + [P ® T(p)*)[p]* © [p]?
—p(7p* +12p* +4) (T(p)* @ T1(p°) + T1(p*) ® ())[P]2 ® [p)
—3p(p* + 1) (T(p)*[p] © T1(p*)* + T1(p*)* @ T(p)*[p))[p] © [P]
—p (TP @ T1(p*)* + T1(p%)° © T(p)*[p*)
—2p(3p* +4p° + 1) (T(p)*T1(p*) @ [p)* + [p)* ® T(p)*T1(p*))[p] ® [P]
—2p(3p* + 1) (T(p)* @ [p] + [p] @ T(p)*)T1(p*)[p) ® T1(p?)[p]
—p(P* + 1) (T(p)°T1(p*)* ® [p]* + [p]> ® T(p)*T1(p*))
—p(T(p)*T1(p*) @ [p)* + [p]* @ T(p)*T1(p?)) T1(p*) © T1(p?)

+ (5p* = 1) (T1(p*) ® [p] + [p] ® T1(p*)) T(p)*[p] © T(p)*[p]
+2p% (P> + 1) (T(p)* @ [p)* + [p)> ® T(p)*)[p] @ [P]
+2p° (T(p)* ® T1(p?)[p] + T1(0*)[p] @ T(p)*) [Pl © [p]
—p(T(p)* © T(p)*[p] + T(p)*[p] ® T(p)*) [p] ® [p])

]
p

)
p

P

s7=p" (p(5p° —2p* +2) T(p)[p)’ @ T(p)[p)®
+8pT(p)T1(p*)[p)* @ T(p)T1(p?)[p)?
+pT(p)’[p)° @ T(p)’[p)
—p(p* = 3) (T1(p*) ® [p] + [p] ® T1(p*)) T(p)[p]* ® T(p)[p]*
—p(T1(p*)* @ [p)* + [p]> @ T1(p*)*) T(p)[p] © T(p)[p]
+2p(T1(p?) @ [p] + [p] ® T1(p)) T(p)T1(p*)[p] © T(p)T1(p*)[p]
—p(T1(p*)* @ [p)° + [p]® @ T1(p*)*)T(p) © T(p)
- (3p* =3p” +2) (T(p)* ® [p] + [p] @ T(p)*)T(p)[p)* © T(p)[p]?
+ (p* = 3) (T(p)* @ T1(p*) + T1(p?) ® T(p)*)T(p)[p]* @ T(p)[p)?
—(T(p)*lp] @ T1(p*)* + T1(p*)* © T(p)*[p)) T(p)[p] © T(p)[p]
(2p° — 1) (T(p)*T1(p*) @ [p)* + [P]* @ T(p)*T1(p*)) T (p)[p] © T(p)[p]
( 2

+ )
T(p)* ® [p] + [p] @ T(p)*)T(p)T1(p*)[p] @ T(p)T1(p*)[p))
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ss =p'(2p° (2p° +4p° + 14p* + 12p% + 3) [p]* ® [p]*
+4p” (P° + 7p* +9p” +3) (T1(p*) ® [p] + [p] ® T1(p?)) [p)* © [p]®
+16p° (p° + 1) T1(p°) [p)* © T1 (%) [p)?
+2p° 3p* +10p* +5) (T1(p*)* @ [p] + [p)* @ T1(p?)*) [p)* @ [p]?
+8p (P* + 1) (T1(p*) @ [p] + [p] ® T1(p*)) T1(p*)[P]* ® T1(p*)[p])”
+4p” T1(p*)*[p])? ® T1(p*)*[p)?
+4p° (p° + 1) (T1(p*)* @ [p)* + [p]® ® T1(p*)?) [P © [p]
+p* (T1(p*)* @ [p]* + [p]* © T1(p*)")
—4p(2p° +3p* +4p* + 1) (T(p)* @ [p

| + [p] ® T(p)*)[p]* ® [P
P’ +1)*(T(p)* ® T1(p?) + T1(p*) ®

—8p(p? T(p)*)p)® ® [p)?

—4p(P* +1) (T(p)*[p] @ T1(p*)* + T1(p*)* ® T(p)*[p))[p]* @ [p]?
—4p(p* +4p° + 1) (T(p)*T1(p?) ® [p)* + [p]* © T(p)*T1(p*))[p)* © [P
—8p(® +1)(T(p)* © [p] + [Pl ® T(p)*)T1(p?)[p)* ® T:1(p?)[p]?
—4p(T(p)* @ T1(p?) + T1(p?) @ T(p)*)T1(p*)[p]* ® T1(p*)[p)

—4p> (T(p)*T1(»*)* @ [p]® + [P]° @ T(p)*T1(»*)*) + [p] @ [P]
+2(5p" +2p° +2) T(p)*[p]* ® T(p)*[p)°

+2(p* +2) (T1(p”) @ [p] + [Pl ® T1(p%)) T(p)*[p]* ® T(p)*[p)?
+2T(p)°T1(p*)[p)* ® T(p)*T1(p*)[p)?

p] ]
+(T1(p?)* @ [p* + [p]* ® T1(p*)*) T(p)*[p] ® T(p)*[p]
+(Bp*+2p* + 1) (T(p)* @ [p)* + [p)> @ T(p)")[p]* ® [p]*
+2(p* + 1) (T(p)* © T1(p”)[p] + T1(p)[p] © T(p)*) [p)* ® [p)?
+(T(p)* © T1(0*)* + T1(p*)* ® T(p)*) [p)* ® [p)?
—2p(T(p)* ® [p] + [p] @ T(p)*)T(p)*[p)* ® T(p)*[p]?)

Then we find the remaining coefficients sg, - - - , s14, using an easy functional equation
(similar to [An&7], p.164, (3.3.79)):

si6-i = (P°[p] @ [p))*"si (i=0,---,8).

To conclude with, we give the Newton polygons of R(X) and S(X) with respect to powers
of p and X (see Figure . It follows from our comutation that all slopes are integral. We
hope that these polygons could help to find some geometric objects attached to the
polynomials R(X) and S(X), in the spirit of a recent work of C.Faber and G.Van Der Geer,
[EVAG].
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Figure 1: Newton polygons of R(X) and S(X) with respect to powers of p and X, of heights
34 and 48, resp.
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