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ABSTRACT. In this paper we establish an equivalence between the category of graded D-branes of
type B in Landau-Ginzburg models with homogeneous superpotential W and the triangulated
category of singularities of the fiber of W over zero. The main result is the theorem which
shows that the graded triangulated category of singularities of the cone over a projective variety is
connected via a fully faithful functor to the bounded derived category of coherent sheaves on the
base of the cone. This implies that the category of graded D-branes of type B in Landau-Ginzburg
models with homogeneous superpotential W is connected via a fully faithful functor to the derived

category of coherent sheaves on the projective variety defined by the equation W =0 .

INTRODUCTION

With any algebraic variety X one can naturally associate two triangulated categories: the
bounded derived category DP?(coh(X)) of coherent sheaves and the triangulated subcategory
Perf(X) C D(coh(X)) of perfect complexes on X . If the variety X is smooth, then these
two categories coincide. For singular varieties this is no longer true. In [22] we introduced a new
invariant of a variety X - the triangulated category Dgg(X) of the singularities of X - as the
quotient of D’(coh(X)) by the full subcategory of perfect complexes Perf(X) . The category
Dg,y(X) captures many properties of the singularities of X .

Similarly we can define a triangulated category of singularities Dgg(A) for any noetherian al-
gebra A . We set Dgg(A) = D’(mod—A)/Perf(A) , where DP(mod—A) is the bounded derived
category of finitely generated right A-modules and Berf(A) is its triangulated subcategory con-
sisting of objects which are quasi-isomorphic to bounded complexes of projectives. We will again
call Perf(A) the subcategory of perfect complexes, but usually we will write D®(proj—A) in-
stead of Perf(A) since this category can also be identified with the derived category of the exact
category proj—A of finitely generated right projective A-modules (see, e.g. [19]).

The investigation of triangulated categories of singularities is not only connected with a study
of singularities but is mainly inspired by the Homological Mirror Symmetry Conjecture [20]. More
precisely, the objects of these categories are directly related to D-branes of type B (B-branes) in
Landau-Ginzburg models. Such models arise as a mirrors to Fano varieties [15]. For Fano varieties

one has the derived categories of coherent sheaves (B-branes) and given a symplectic form one can
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propose a suitable Fukaya category (A-branes). Mirror symmetry should interchange these two
classes of D-branes. Thus, to extend the Homological Mirror Symmetry Conjecture to the Fano
case, one should describe D-branes in Landau-Ginzburg models.

To specify a Landau-Ginzburg model in general one needs to choose a target space X , and a
holomorphic function W on X called a superpotential. The B-branes in the Landau-Ginzburg
model are defined as W -twisted Zs -periodic complexes of coherent sheaves on X . These are
chains {--- LA Py 4, P A Py LA P LA Py---} of coherent sheaves in which the composition of
differentials is no longer zero, but is equal to multiplication by W (see, e.g. [17, 22, 23]). In the
paper [22] we analysed the relationship between the categories of B-branes in Landau-Ginzburg
models and triangulated categories of singularities. Specifically, we showed that for an affine X
the product of the triangulated categories of singularities of the singular fibres of W is equivalent
to the category of B-branes of (X, W) .

In this paper we consider the graded case. Let A = @, A; be a graded noetherian algebra
over a field k. We can define the triangulated category of singularities D%;(A) of A as the
quotient DPY(gr—A)/Db(grproj—A) , where DP(gr—A) is the bounded derived category of finitely
generated graded right A-modules and D®(grproj—A) is its triangulated subcategory consisting
of objects which are isomorphic to bounded complexes of projectives.

The graded version of the triangulated category of singularities is closely related to the category of
B-branes in Landau-Ginzburg models (X, W) equipped with an action of the multiplicative group
k* for which W is semi-invariant. The notion of grading on D-branes of type B was defined in the
papers [16, 28]. In the presence of a k* -action one can construct a category of graded B-branes
in the Landau-Ginzburg model (X,W) (Definition 3.1 and Subsection 3.3). Now our Theorem
3.10 gives an equivalence between the category of graded B-branes and the triangulated category
of singularities D%;(A), where A is such that Spec(A) is the fiber of W over 0.

This equivalence allows us to compare the category of graded B-branes and the derived category
of coherent sheaves on the projective variety which is defined by the superpotential W . For
example, suppose X is the affine space AN and W is a homogeneous polynomial of degree d .
Denote by Y c PN~! the projective hypersurface of degree d which is given by the equation
W =0.1If d= N, then the triangulated category of graded B-branes DGrB(W) is equivalent
to the derived category of coherent sheaves on the Calabi-Yau variety Y . Furthermore, if d < N
(i.e. Y is a Fano variety), we construct a fully faithful functor from DGrB(W) to D®(coh(Y)),
and, if d > N (i.e. Y is a variety of general type), we construct a fully faithful functor from
D’(coh(Y)) to DGrB(W) (see Theorem 3.11).

This result follows from a more general statement for graded Gorenstein algebras (Theorem 2.5).
It gives a relation between the triangulated category of singularities Dgrg(A) and the bounded
derived category DP’(qgr A), where qgrA is the quotient of the abelian category of graded fi-
nitely generated A -modules by the subcategory of torsion modules. More precisely, for Gorenstein

algebras we obtain a fully faithful functor between D%;(A) and DP(qgr A) , and the direction
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of this functor depends on the Gorenstein parameter a of A . In particular, when the Goren-
stein parameter a is equal to zero, we obtain an equivalence between these categories. Finally,
the famous theorem of Serre, which identifies D®(qgr A) with DP?(coh(Proj(A))) when A is
generated by its first component, allows to apply this result to geometry.

I am grateful to Alexei Bondal, Anton Kapustin, Ludmil Katzarkov, Alexander Kuznetsov, Tony

Pantev and Johannes Walcher for very useful discussions.

1. TRIANGULATED CATEGORIES OF SINGULARITIES FOR GRADED ALGEBRAS.

1.1. Localization in triangulated categories and semiorthogonal decomposition. Recall

that a triangulated category D is an additive category equipped with the additional data:

a) an additive autoequivalence [1]:D — D, which is called a translation functor,

b) a class of exact (or distinguished) triangles:
XLy -5z %X,

which must satisfy a certain set of axioms (see [27], also [12, 19, 21]).
A functor F: D — D’ between two triangulated categories is called exact if it commutes with
the translation functors, i.e. Fo[l] 2 [1]o F, and transforms exact triangles into exact triangles.
With any pair /' C D, where N is a full triangulated subcategory, in a triangulated category
D , we can associate the quotient category D/N . To construct it let us denote by X(N) a class

of morphisms s in D fitting into an exact triangle
X5y —N-— X[

with N € N . It can be checked that 3(A) is a multiplicative system. Define the quotient D /N
as the localization D[S(N)~!] (see [10, 12, 27]). It is a triangulated category. The translation
functor on D/N s induced from the translation functor in the category D , and the exact
triangles in D/AN are the triangles isomorphic to the images of exact triangles in D . The
quotient functor @ : D — D/N annihilates N . Moreover, any exact functor F : D — D’
between triangulated categories, for which F(X) ~ 0 when X € N, factors uniquely through

Q@ . The following lemma is obvious.

Lemma 1.1. Let N and N’ be full triangulated subcategories of triangulated categories D and
D' respectively. Let F:D — D' and G:D — D be an adjoint pair of exact functors such that
FN)CN' and GN') C N . Then they induce functors

F:D/N — D /N, G:D'/N' — D/N
which are adjoint as well. Moreover, if the functor F :D — D' s fully faithful, then the functor
F:D/N — D'/N" is also fully faithful.

Now recall some definitions and facts concerning admissible subcategories and semiorthogonal
decompositions (see [7, 8]). Let N C D be a full triangulated subcategory. The right orthogonal
to AN is the full subcategory Nt C D consisting of all objects M such that Hom(N,M) =0
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for any N € N . The left orthogonal A is defined analogously. The orthogonals are also

triangulated subcategories.

Definition 1.2. Let I : N < D be an embedding of a full triangulated subcategory N in a
triangulated category D. We say that N s right admissible (respectively left admissible) if there
is a right (respectively left) adjoint functor @Q : D — N. The subcategory N will be called

admissible if it is right and left admissible.

Remark 1.3. For the subcategory N the property of being right admissible is equivalent to
requiring that for each X € D there is an exact triangle N — X — M , with N e N, M € N+

Lemma 1.4. Let N be a full triangulated subcategory in a triangulated category D. If N is right
(respectively left) admissible, then the quotient category D/N s equivalent to Nt (respectively
LN ). Conversely, if the quotient functor Q : D — D/N has a left (respectively right) adjoint
then D/N s equivalent to N+ (respectively *N ).

If N C D is a right admissible subcategory, then we say that the category D has a weak
semiorthogonal decomposition (N, A') . Similarly if &' C D is a left admissible subcategory,
we say that D has a weak semiorthogonal decomposition </\/’ N > .

Definition 1.5. A sequence of full triangulated subcategories (Ni,...,Np) in a triangulated cat-
egory D will be called a weak semiorthogonal decomposition of D if there is a sequence of left
admissible subcategories Dy = N1 C Dy C --- C Dy, =D such that N, is left orthogonal to D,—;
in Dy . Wewill write D= (Ni,...,Ny) . Ifall N, are admissible in D then the decomposition
D = (M,...,N,) is called semiorthogonal.

The existence of a semiorthogonal decomposition on a triangulated category D clarifies the
structure of D . In the best scenario, one can hope that D has a semiorthogonal decomposition
D = (M,...,N,,) in which each elementary constituent N, is as simple as possible, i.e. is

equivalent to the bounded derived category of finite dimensional vector spaces.

Definition 1.6. An object E of a k-linear triangulated category T is called exceptional
if Hom(E,E[p]) = 0 when p # 0, and Hom(E,FE) = k. An exceptional collection in
T is a sequence of exceptional objects (FEy,...,E,) satisfying the semiorthogonality condition
Hom(E;, Ej[p]) =0 for all p when i> j.

If a triangulated category D has an exceptional collection (FEy,...,E,) which generates the
whole D then we say that the collection is full. In this case D has a semiorhtogonal decomposition
with N, = (E,) . Since E, is exceptional each of these categories is equivalent to the bounded

derived category of finite dimensional vector spaces. In this case we write D = (Ey,..., Ey,).

Definition 1.7. An exceptional collection (Ey,...,Ey,) is called strong if, in addition,
Hom(E;, Ej[p]) =0 for all i and j when p # 0.
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1.2. Triangulated categories of singularities for algebras. Let A = & A; be a noetherian
graded algebra over a field k. Denote by mod—A and gr—A the categogfoof finitely generated
right modules and the category of finitely generated graded right modules respectively. Note that
morphisms in gr—A are homomorphisms of degree zero. These categories are abelian. We will
also use the notation Mod—A and Gr—A for the abelian categories of all right modules and all
graded right modules and we will often omit the prefix "right”. Left A-modules are will be viewed
as right A°-modules and A — B bimodules as right A° — B -modules, where A° is the opposite
algebra.

The twist functor (p) on the category gr—A is defined as follows: it takes a graded module
M = &; M; to the module M(p) for which M(p); = M,4; and takes a morphism f: M — N
to the same morphism viewed as a morphism between the twisted modules f(p): M (p) — N(p) .

Consider the bounded derived categories D’(gr—A4) and D?(mod—A). They can be endowed
with natural structures of triangulated categories. The categories D’(gr—A) and D®(mod—A)
have full triangulated subcategories consisting of objects which are isomorphic to bounded com-
plexes of projectives. These subcategories can also be considered as the derived categories of the
exact categories of projective modules DP?(grproj—A) and DP(proj—A) respectively (see, e.g.
[19]). They will be called the subcategories of perfect complexes. Observe also that the category
D?(gr—A) (respectively D?(mod—A) ) is equivalent to the category DgrfA(Gr—A) (respectively
D?nod— 4(Mod—A) ) of complexes of arbitrary modules with finitely generated cohomologies (see

[5]). We will tacitly use this equivalence throughout our considerations.

Definition 1.8. We define triangulated categories of singularities D‘grg(A) and Dgg(A) as the
quotient DP(gr—A)/Db(grproj—A) and DP(mod—A)/Db(proj—A) respectively.

Remark 1.9. As in the commutative case [22, 23|, the triangulated categories of singularities
D%rg(A) and Dgg(A) will be trivial if A has finite homological dimension. Indeed, in this
case any A-module has a finite projective resolution, i.e. the subcategories of perfect complexes

coincide with the full bounded derived categories of finitely generated modules.

Homomorphisms of (graded) algebras f : A — B induce functors between the associated
derived categories of singularities. Furthermore, if B has a finite Tor-dimension as an A -module
then we get the functor éA B between the bounded derived categories of finitely generated
modules which maps perfect complexes to perfect complexes. Therefore, we get functors between

triangulated categories of singularities
L L
®a B : D%;(A) — D%;(B) and ®a B:Dgg(A) — Dgg(B).

If, in addition, B is finitely generated as an A-module, then these functors have right adjoints
induced from the functor which sends a complex of B -modules to itself considered as a complex
of A-modules.

More generally, suppose 4, My is a complex of graded A — B bimodules which as a complex

of graded B -modules is quasi-isomorphic to a perfect complex. Suppose that ,M " has a finite
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L
Tor-amplitude as a left A-module. Then we can define the derived tensor product functor ® 4
M3 : DY(gr—A) — DP(gr—B) . Moreover, since M}y is perfect over B this functor sends

perfect complexes to perfect complexes. Therefore, we get an exact functor
L .
£ 1M},  DE,(4) — DE(B).
L
In the ungraded case we also get the functor ® 4 M}y : Dgg(A) — Dsgg(B).

1.3. Morphisms in categories of singularities. In general, it is not easy to calculate spaces of
morphisms between objects in a quotient category. The following lemma and proposition provide

some information about the morphism spaces in triangulated categories of singularities.

Lemma 1.10. For any object T € Dgrg(A) (respectively T € Dgg(A) ) and for any sufficiently
large k , there is a module M € gr—A (respectively M € mod—A ), depending on T and k ,
and such that T is isomorphic to the image of M|k| in the triangulated category of singularities.
If, in addition, the algebra A has finite injective dimension, then for any sufficiently large k the
corresponding module M satisfies Exty(M,A) =0 for all i > 0.

Proof. The object T is represented by a bounded complex of modules 7" . Choose a bounded
above projective resolution P° = T° and a sufficiently large k& > 0. Consider the stupid
truncation o2 **1P* of P'. Denote by M the cohomology module H**+!(gZ=F+1p®)
Clearly T = M[k] in Dg,(A) (respectively Dgg(4)).

If now A has finite injective dimension, then morphism spaces Hom(T", Afi]) in D®(gr—A)
(respectively DP?(mod—A) ) are trivial for all but finitely many 4 € Z. Soif M corresponds to
T and a sufficiently large k , then we will have Ext% (M, A) =0 forall i >0 . O

Proposition 1.11. Let M be an A -module such that Ext’y(M,A) =0 for all i >0 . Then

for any A -module N we have
Hompyg, (4)(M, N) = Homa (M, N)/R

where R is the subspace of elements factoring through a projective, i.e. e € R iff e = fa with
a: M — P and B: P — N, where P is projective. If M 1is a graded module, then for any
graded A -module N

Homper (4)(M, N) = Homg,4(M, N)/R.
g

Proof. We will only discuss the graded case. By the definition of localization any morphism from

M to N in D%;(A) can be represented by a pair
(1) M- SN,

of morphisms in D’(gr—A) , such that the cone C°(s) is a perfect complex. Consider a bounded

above projective resolution @Q° — N and its stupid truncation UZ*’“Q° for sufficiently large & .



There is an exact triangle
B[k — 0> 7FQ" — N =5 B[k + 1),

where FE denotes the module H _k(aZ_kQ') . Choosing k to be sufficiently large we can guar-
antee that Hom(C'"(s), E[i]) =0 for all i > k . Using the triangle

C'(s)[-1] — N —T" — C'(s),

we find that the map s : N — E[k + 1] can be lifted to a map T° — FE[k + 1] . The map
T* — E[k+ 1] induces a pair of the form

(2) M- Bl +1] <= N,

and this pair gives the same morphism in Dgg(A) as the pair (1). Since Ext'(M,P) =0 for all

¢ > 0 and any projective module P , we obtain
Hom(M, (0%~*Q")[1]) = 0.
Hence, the map a' : M — E[k + 1] can be lifted to a map f which completes the diagram

f
M N

Elk+ 1]

Thus, the map f is equivalent to the map (2) and, as consequence, to the map (1). Hence, any
morphism from M to N in D%;(A) is represented by a morphism from M to N in the
category DP(gr—A) .

Now if f isthe O-morphism in D%;(A) , then without a loss of generality we can assume that
the map a is the zero map. In this case we will have a’ = 0 as well. This implies that f factors
through a morphism M — UZ*’“Q'. By the assumption on M any such morphism can be lifted
to a morphism M — Q°. Hence, if f is the 0-morphism in D%;(A) then it factors through

Q". The same proof works in ungraded case (see [22]). O

Next we describe a useful construction utilizing the previous statements. Let M°~ and N' be
two bounded complexes of (graded) A-modules. Assume that Hom(M ', A[i]) in the bounded
derived categories of A-modules are trivial except for finite number of i € Z. By Lemma 1.10
for sufficiently large k there are modules M, N € gr—A (resp. M,N € mod—A ) such that
M® and N are isomorphic to the images of M[k] and N[k] in the triangulated category of
singularities. Moreover it follows immediately from the assumption on M" and the construction
of M , that for any sufficiently large k& we have Ext%(M,A) =0 whenever i > 0. Hence, by
Proposition 1.11, we get

Hongrg(A)(M.,ﬂ.) ~ HOngrg(A)(MaN) =~ Homy(M,N)/R
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where R is the subspace of elements factoring through a projective module. This procedure works

in the ungraded situation as well.

2. CATEGORIES OF COHERENT SHEAVES AND CATEGORIES OF SINGULARITIES.

2.1. Quotient categories of graded modules. Let A = @ A; be a noetherian graded algebra.
We suppose that A is connected, i.e. Ag = k. Denote by ZtZOOrS—A the full subcategory of gr—A
which consists of all graded A —modules which are finite dimensional over k .

An important role will be played by the quotient abelian category qgr A = gr—A/tors—A. It
has the following explicit description. The objects of qgr A are the objects of gr—A (we denote
by wM the object in qgr A which corresponds to a module M ). The morphisms in qgr A are

given by

(3) Homgg, (M, 7N) := lim Homg, (M’, N)
o
where M’ runs over submodules of M such that M /M’ is finite dimensional.
Given a graded A-module M and an integer p , the graded A -submodule @izp M; of M
is denoted by M3, and is called the p -th tail of M . In the same way we can define the p -th
tail M3, of any complex of modules M" . Since A is noetherian, we have

Homgg (7 M, 7N) = lim Homg, (M>p, N).

p—00

We will also identify M, with the quotient Ms>,/M>pi1.

Similarly, we can consider the subcategory Tors—A C Gr—A of torsion modules. Recall that a
module M is called torsion if for any element z € M one has zA>, =0 for some p. Denote
by QGr A the quotient category Gr—A/Tors—A. The category QGr A contains qgrA as a
full subcategory. Sometimes it is convenient to work in QGr A instead of qgr A.

Denote by IT and w the canonical projections of Gr—A to QGr A and of gr—A to qgrA
respectively. The functor II has a right adjoint (2 and, moreover, for any N € Gr—A

o0
(4) QIIN = P Homqa:(ITA, IIN(n)).
n=—o0o
For any ¢ € Z we can consider the full abelian subcategories Gr—A>; C GrA and gr—As>; C grd
which consist of all modules M such that M, =0 when p <. The natural projection functor
II; : Gr—A>; — QGr —A has a right adjoint (2; satisfying

o0
1IN = @D Homqe, (ITA, II;N (n)).
n=t
Since the category QGr A is an abelian category with enough injectives there is a right derived

functor

R; : DT(QGrA4) — DT (Gr—As;)



defined as

0o
(5) R2,M = D R Homqe: (ITA, M(k)).
k=i

Assume now that the algebra A satisfies condition ”x” from [1, Sec. 3]. We recall that by
definition a connected noetherian graded algebra A satisfies condition ”x” if for every M €
gr—A the grading on the space Extf4 (k, M) is right bounded for all ¢ . In this case it was proved
in [1, Prop. 3.14] that the restrictions of the functors (2; to the subcategory qgr A give functors
wi : qgr A — gr—A>; which are right adjoint to m;. Moreover, it follows from [1, Th. 7.4] that

the functor w; has a right derived
Rw; : DT (qgr A) — DT (gr—As;)

and all RJw; € tors—A for j > 0.
If, in addition, the algebra A is Gorenstein (i.e. if it has a finite injective dimension n and
D(k) = RHoma(k, A) is isomorphic to k(a)[—n] ) we obtain the right derived functor

Ruw; : Db(qgr A — Db(gr—Azi)

between bounded derived categories (see [30, Cor. 4.3]). It is important to note that the functor

Ruw; is fully faithful because m;Rw; is isomorphic to the identity functor ([1, Prop. 7.2]).

2.2. Triangulated categories of singularities for Gorenstein algebras. The main goal of
this section is to establish a connection between the triangulated category of singularities D%;(A)
and the derived category DP(qgr A) , in the case of a Gorenstein algebra A .

When the algebra A has finite injective dimension as right and as left module over itself ( i.e.

A is a dualizing complex for itself) we get two functors

(6) D :=RHomyu (—,A): D’(gr—A )° — D’(gr—A4°),
(7) D° := RHom o (—, A) : D¥(gr—A°)° — D(gr—A4 ),

which are quasi-inverse triangulated equivalences (see [29, Prop. 3.5]).

Definition 2.1. We say that a connected graded noetherian algebra A is Gorenstein if it has a
finite injective dimension n and D(k) = RHomg(k, A) is isomorphic to k(a)[—n] for some
integer a , which is called the Gorenstein parameter of A . (Such algebra is also called AS-

Gorenstein, where "AS” stands for ”Artin-Schelter”.)

9\,

Remark 2.2. It is known (see [30, Cor. 4.3]) that any Gorenstein algebra satisfies condition ”x

and for any Gorenstein algebra A and for any ¢ € Z we have derived functors
Ruw; : D’(qgr A) — DP(gr—As;)

which are fully faithful.
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Now we describe the images of the functors Rw;. Denote by D; the subcategories of D(gr—A)
which are the images of the composition of Rw; and the natural inclusion of Db(gr—Azi) to
D%(gr—A). All D; are equivalent to D®(qgr —A). Further, for any integer i denote by S;(A)
(or simple S; ) the full triangulated subcategory of D’(gr—A) generated by the modules k(e)
with e > —i. In other words, the objects of S.; are complexes M for which the tail Mzz is
isomorphic to zero. Analogously, we define S>; as the triangulated subcategory which is generated
by the objects k(e) with e < —i. In other words, the objects of S>; are complexes of torsion
modules from gr—As;. It is clear that Sc; = S<o(—i) and S>; = S>o(—1).

Furthermore, denote by P.; the full triangulated subcategory of DP(gr—A) generated by
the free modules A(e) with e > —i and denote by P>; the triangulated subcategory which
is generated by the free modules A(e) with e < —i. As above we have P; = Po(—i) and
P> = 7320(—1').

Lemma 2.3. Let A= @ A; be a connected graded noetherian algebra. Then the subcategories
S<i and Po; are left alnzc? respectively right admissible for any i € Z . Moreover, there are weak

semiorthogonal decompositions

(8) D(gr—A) = (S<;, D’(gr—As;)),  DP(tors—A) = (S<i, Sx),

(9) D(gr—A) = (D*(gr—45i). P<;),  D’(grproj—A) = (P>, P<i).
Proof. For any complex M" € D?(mod—A) there is an exact triangle of the form

M3,

i~ M — M /M3,
By definition the object M’/M?,; belongs to S<; and the object M3, is in the left orthog-
onal +S.;. Hence, by Remark 1.3, S.; is left admissible. Moreover, M Zz also belongs to
Db(gr—As;), ie. Dgr—As;) = LS., in the category D’(gr—A). If M’ is a complex of
torsion modules then M3, belongs to S>;. Thus, we obtain both decompositions of (8).

To prove the existence of the decompositions (9) we first note that, due to the connectedness of
A | any finitely generated graded projective A-module is free. Second, any finitely generated free

module P has a canonical split decomposition of the form
0O — Py — P — P>, — 0,

where P.; € P; and P>; € P>;. Third, any bounded complex of finitely generated A-modules
M has a bounded above free resolution P° — M" such that P~ % e P>; for all k> 0. This

implies that the object P ; € P.; from the exact sequence of complexes

0— P

L <5 —>£. QB.ZZ - O)

is a bounded complex. Since P’ is quasi-isomorphic to a bounded complex, the complex B.Zi is
also quasi-isomorphic to some bounded complex K° from D!(gr—As;). Thus, any object M’

has a decomposition

P, — M — K,
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where P, € Po; and K' € D’(gr—As;). This proves the decompositions (9). 0

Lemma 2.4. Let A= A; be a connected graded noetherian algebra which is Gorenstein. Then
i>0
the subcategories S>; and P>; are right and respectively left admissible. Moreover, for any i € Z

there are weak semiorthogonal decompositions
(10) D’(gr—A>;) = (Di,S>i), D'(gr—Asi) = (P>, T,

where the subcategory D; is equivalent to D(qgr A) under the functor Rw;, and T; is equiv-
alent to Dg, (A).
Proof. The functor Rw; is fully faithful and has the left adjoint ;. Thus, we obtain a semi-
orthogonal decomposition
D’(gr—A>;) = (D;, " Di),

where D; = DP(qgr A). Furthermore, the orthogonal +D; consists of all objects M satisfying
7;(M") = 0. Thus, “D; coincides with S>;. Hence, S>; is right admissible in D®(gr—As;)
which is right admissible in whole D?(gr—A). This implies that S>; is right admissible in
D’(gr—A) as well.

The functor D from (6) establishes an equivalence of the subcategory P>;(A)° with the sub-
category P._;+1(A°) which is right admissible by Lemma 2.3. Hence, P>;(A) is left admissible

and there is a decomposition of the form
D’(gr—A5;) = (P>, Ty)

with some 7;.

Now applying Lemma 1.1 to the full embedding of Db(gr—Azi) to DY(gr—A) and us-
ing Lemma 1.4 we get a fully faithful functor from 7; = Db(gr—AZi)/PZi to D%;(A) =
Db(gr—A) / Db(grproj—A). Finally, since this functor is essentially surjective on objects it is actu-
ally an equivalence. O
Theorem 2.5. Let A= A; be a connected graded noetherian algebra which is Gorenstein with

i>0
Gorenstein parameter a . Then the triangulated categories D%;(A) and DP(qgr A) are related

as follows:
(i) if a >0, there are fully faithful functors ®; : D%;(A) — DP(qgr A) and semiorthogonal
decompositions

Db(qgr A) = <7FA(_7’ —a+ 1)7 s 77TA<_i)7 @ZD%;(A»,
where 7 : DY(gr—A) — Db(qgr A) is the natural projection;
(i) if a <0, there are fully faithful functors ¥;: D?(qgr A) — D%;(A) and semiorthogonal
decompositions

D%;(A) = (gk(—1),...,qk(—i 4+ a+ 1), U;D’(qgr A)),

where q: Db(gr—A) — D%;(A) is the natural projection;
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(iii) of a =0, there is an equivalence D%rg(A) = Db(qgr A).
Proof. Lemmas 2.3 and 2.4 gives us that the subcategory 7; is admissible in DY(gr—A) and

the right orthogonal 7} has a weak semiorthogonal decomposition of the form
(11) T+ = (S<i, P>i).-

Now let us describe the right orthogonal to the subcategory D;. First, since A is Gorenstein the
functor D takes the subcategory S>;(A) to the subcategory S<_;_q4+1(A°). Hence, D sends

the right orthogonal S;(A) to the left orthogonal +S._; 11(A°) which coincides with the

1L
<—i—a+1

J‘PZHG. On the other hand, by Lemmas 2.3 and 2.4 we have that

right orthogonal P (A°) by Lemma 2.3. Therefore, the subcategory Sg- coincides with

TPoita = 85 2 (S<i, Di).
This implies that the right orthogonal DZ-L has the following decomposition
(12) Di = (P>ita, S<i)-

Assume that a > 0. In this case, the decomposition (12) is not only semiorthogonal but is in
fact mutually orthogonal, because P>;yq C Db(gr—AZi). Hence, we can interchange P>;y, and
S, lee.

Di" = (S<i, Pita)-
Thus, we obtain that DZ-L C 7} and, consequently, 7; is a full subcategory of D;. Moreover,

we can describe the right orthogonal to 7; in D;. Actually, there is a decomposition
P>i = (Pzita, Pi'),

where P is the subcategory generated by the modules A(—i —a +1),...,A(—i). Moreover,
these modules form an exceptional collection. Thus, the category D; has the semiorthogonal
decomposition
D;=(A(—i—a+1),...,A(—i),T;),
Since D; = D’(qgr A) and T; = Dg;(A) we obtain the decomposition
D’(qgr A) = (rA(—i —a+1),...,7A(—i), »;DE(A)),

where the fully faithful functor ®; is the composition D§,(A) 57 — DP(gr—A) 5 Db(qgr A).
Assume now that a < 0. In this case, the decomposition (11) is not only semiorthogonal but is
in fact mutually orthogonal, because the algebra A is Gorenstein and R Hom g (k, A) = k(a)[—n]

with a < 0. Hence, we can interchange P>; and S, i.e.
T = (P>i, S<i).-

Now we see that 7} C Dii_ . and, consequently, D;_, is the full subcategory of 7;. Moreover,
we can describe the right orthogonal to D;_, in 7;. Actually, there is a decomposition of the
form

Seica = {Scik(=i),.... k(=i +a+1)).
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Therefore, the category 7; = D%;(A) has a semiorthogonal decomposition of the form
(13) 7, = (k(—i),....k(—i+a+1),Di_,),
Since D;_, = D(qgrA) and T; = Dgrg(A) we obtain the decomposition
DE, (A) = (gk(—i), ..., qk(—i+a + 1), ¥;D"(qgr A)),

where the fully faithful functor W; can be defined as the composition D°(qgrA) = D;_, —
Db(gr—A) L Dg,(A). If a =0, then we get equivalence. 0

Remark 2.6. It follows from the construction that the functor ¥;;, from the bounded de-
rived category DPY(qgrA) to Dérg(A) is the composition of the functor Ruw; : D?(qgr A) —
D’(gr—As;), which is given by formula (5), natural embedding D%(gr—As;) — Db(gr—A4), and
the projection DP(gr—A) % Dg, (A).

Let us consider two limiting cases. The first case is when the algebra A has finite homological
dimension. In this case the triangulated category of singularities D%;(A) is trivial and, hence, the
Gorenstein parameter a is non-negative and the derived category D®(qgr A) has a full exceptional
collection o = (wA(0),...,mA(a — 1)) . More precisely we have the following:

Corollary 2.7. Let A= A; be a connected graded noetherian algebra which is Gorenstein with
i>0

Gorenstein parameter a. Suppose that A has finite homological dimension. Then, a > 0 and the

derived category DP(qgr A) has a full strong exceptional collection o = (1A(0),...,7A(a—1)).

Moreover, the category DP(qgr A) is equivalent to the derived category DP(mod— Q(A)) of finite

a—1
(right) modules over the algebra Q(A) := Endgr_4 <@ A(z)) of homomorphisms of o.
=0

Proof. Since A has a finite homological dimension the category D%;(A) is trivial. By

Theorem 2.5 we get that a > 0 and that DP(qgrA) has a full exceptional collection o =
a—1
(mA(0),...,mA(a —1)). Consider the object P, = @ mA(i) and the functor
i=0
Hom(P,,—) : qgr A — mod— Q(A),
a—1 a—1
where Q(A) = Endggr a <@ WA(i)) = Endg,—a (@ A(z)) is the algebra of homomorphisms of
i=0 i=0
the exceptional collection o. It is easy to see that this functor has a right derived functor

R Hom(P,, ) : D’(qgr A) — D’(mod— Q(A))

a—1
(e.g. as a composition Rwy and Hom ( @ A(i),—) ). The standard reasoning (see e.g. [6] or
i=0

[7]) now shows that the functor R Hom(P,,—) is an equivalence. O

Example 2.8. As an application we obtain a well-known result (see [4]) asserting the existence of
a full exceptional collection in the bounded derived category of coherent sheaves on the projective
space P . This result follows immediately if we take A = k[zo,...,x,] with its standard grading.

More generally, if we take A to be the polynomial algebra k[zg,...,z,] graded by degx; = a;,
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then we get a full exceptional collection (O, L0 ai— 1)) in the bounded derived category
of coherent sheaves on the weighted projective space P(ay,...,a,) considered as a smooth orbifold

(see [3, 2]). It is also true for noncommutative (weighted) projective spaces [2].

Another limiting case is when the algebra A is finite dimensional over the base field (i.e. A
is a Frobenius algebra). In this case the category qgr A is trivial and, hence, the triangulated
category of singularities Dgrg(A) has a full exceptional collection (compare with [13, 10.10]). More

precisely we get the following:

Corollary 2.9. Let A = @ A; be a connected graded noetherian algebra which is Gorenstein
i>0
with Gorenstein parameter a. Suppose that A s finite dimensional over the field k. Then,
a < 0 and the triangulated category of singularities D%;(A) has a full exceptional collection
(gk(0),...,qgk(a+1)), where q : D’(gr—A) — D%;(A) is the natural projection. Moreover,
the triangulated category Dgrg(A) is equivalent to the derived category DP(mod— Q(A)) of finite
0
(right) modules over the algebra Q(A) = Endg,—a < b A(z)) .
1=a+1

Proof. Since A is finite dimensional the derived category DPY(qgr A) is trivial. By Theorem
2.5 we get that a < 0 and D%;(A) has a full exceptional collection (¢k(0),...,qk(a+1)).
Unfortunately, this collection is not strong. However, we can replace it by the dual exceptional
collection which is already strong (see Definition 1.7). By Lemma 2.4 there is a weak semiorthogonal
decomposition DP(gr—Asg) = (P>0,Ty), where 7 is equivalent to Dg;(A). Moreover, by

formula (13) we have the following semiorthogonal decomposition for 7 :
T = (k(0), .., k(a +1)).

Denote by E; where i=0,...,—a—1 the modules A(i+a+1)/A(i+a+1)>,. These modules

belong to 7y and form a full exceptional collection

76 = <E07 s 7E7(a+1)>'

Furthermore, this collection is strong and the algebra of homomorphisms of this collection coincides

0
with the algebra Q(A) = Endg—a ( &b A(z)> . As in the previous proposition consider the
1=a+1
—(a+1)
object E = € E; and the functor
=0

R Hom(E, —) : Ty = D§,(A) — D’(mod— Q(A)).

Again the standard reasoning from ([6, 7]) shows that the functor RHom(E, —) is an equivalence

of triangulated categories. O

Example 2.10. The simplest example here is A = k[z]/2""!. In this case the triangulated
category of singularities D%’;(A) has a full exceptional collection and is equivalent to the

bounded derived category of finite dimensional representations of the Dynkin quiver of type
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A, :®e—e— ... —e  because in this case the algebra Q(A) is isomorphic to the path algebra
—_———

n
of this Dynkin quiver. This example is considered in detail in the paper [26].

Remark 2.11. There are other cases when the triangulated category of singularities D%;(A) has
a full exceptional collection. It follows from Theorem 2.5 that if a < 0 and the derived category
D®(qgr A) has a full exceptional collection, then D%;(A) has a full exceptional collection as well.
It happens, for example, in the case when the algebra A is related to a weighted projective line

— an orbifold over P! (see e.g. [11]).

2.3. Categories of coherent sheaves for Gorenstein varieties. Let X be an irreducible
projective Gorenstein variety of dimension n and let £ be a very ample line bundle such that the
dualizing sheaf wyx is isomorphic to £~ for some r € Z. Denote by A the graded coordinate
algebra ;5o H 9(X,L%. The famous Serre theorem [25] asserts that the abelian category of
coherent sheaves coh(X) is equivalent to the quotient category qgr A.

Assume also that HJ(X,L¥) = 0 for all k € Z when j # 0,n. For example, if X is a
complete intersection in PV then it satisfies these conditions. In this case, Theorem 2.5 allows us
to compare the triangulated category of singularities D%;(A) with the bounded derived category

of coherent sheaves DP(coh(X)). To apply that theorem we need the following lemma.

Lemma 2.12. Let X be a projective Gorenstein (irreducible) variety of dimension n. Let L be
a very ample line bundle such that wx = L™ for some r € Z and HI(X,LF) =0 forall k€ Z
when j # 0,n. Then the algebra A = @ H°(X, L") is Gorenstein with Gorenstein parameter

i>0
a=rT.

Proof. Consider the projection functor IT : Gr—A — QGr A and its right adjoint (2: QGr A —
Gr—A which is given by the formula (4)

QIIN = @ Homqa:(ITA, IIN(n)).

n=—oo

The functor {2 has a right derived RJ2 that is given by the formula

R/Q(IIN) @ Ext{,q,(ITA, ITN (n))

n=—oo

(see, e.g. [1, Prop. 7.2]). The assumptions on X and £ imply that RIQ(ITA) = 0 for all
j # 0,n. Moreover, since X is Gorenstein and wx = L7 , Serre duality for X yields that

RN(ITA) @ HO(X, L) = A and  R'Q(ITA)= P H™(X,L') = A*(r),

where A* = Homy(A, k). As X isirreducible, the algebra A is connected. Since II and R{?

are adjoint functors we have

R Homg,(k(s), R2(ITA)) = RHomqg, (ITk(s), [IA) =0
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for all s. Furthermore, we know that R Homy4(k, A*) = RHomy(A,k) = k. This implies
that R Homy(k, A) = k(r)[—n — 1]. This isomorphism implies that the affine cone SpecA is
Gorenstein at the vertex and the assumption on X now implies that SpecA is Gorenstein
scheme ([14, V, §9,10]). Since SpecA has a finite Krull dimension, the algebra A is a dualizing
complex for itself, i.e. it has a finite injective dimension. Thus, the algebra A is Gorenstein with

parameter 7. |

Theorem 2.13. Let X be an irreducible projective Gorenstein variety of dimension n . Let L
be a very ample line bundle such that wyxy = L for some r € Z. Suppose HI(X,LF) =0

for all k€ Z when j#0,n. Set A:= @ HX,L") . Then, the derived category of coherent
i>0
sheaves DP(coh(X)) and the triangulated category of singularities D%;(A) are related as follows:

(i) if >0, d.e. if X s a Fano variety, then there is a semiorthogonal decomposition
b — T
D’(coh(X)) = (L7, Ox, DE,(A)),

(i) if r <0, d.e if X is a variety of general type, then there is a semiorthogonal decompo-
sition
DE, (A) = (gk(r +1),..., gk, D*(coh(X))),
where q: DP(gr—A) — Dérg(A) is the natural projection,
(iii) of =0, i.e. if X s a Calabi-Yau variety, then there is an equivalence
DE, (A) — D(coh(X)).
Proof. Since L 1is very ample Serre’s theorem implies that the bounded derived category
D®(coh(X)) is equivalent to the category DP’(qgr A), where A = Di>o HO(X,LY) . Since
HI(X,£F) =0 for j#0,n and all k € Z, Lemma 2.12 implies that A is Gorenstein. Now,

the theorem immediately follows from Theorem 2.5. O

Corollary 2.14. Let X be an irreducible projective Gorenstein Fano variety of dimension n with
at most rational singularities. Let L be a very ample line bundle such that w;(l = L7 for some
reN. Set A= HO(X, LY . Then the category DP(coh(X)) admits a semiorthogonal

decomposition of the form
D’(coh(X)) = (L7, Ox, D§,(A)).

Proof. The Kawamata-Viehweg vanishing theorem (see, e.g. [18, Th. 1.2.5]) yields H’(X,£F) =0
for j#0,n and all k. Hence, we can apply Theorem 2.13(i). O

Corollary 2.15. Let X be a Calabi-Yau variety. That is, X is an irreducible projective
variety with at most rational singularities, with trivial canonical sheaf wx = Ox , and such
that H/(X,0x) = 0 for j # 0,n. Let L be a some very ample line bundle on X . Set

A= HO(X,L%) . Then there is an equivalence

D’(coh(X)) = DE (A).
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Proof. The variety X has rational singularities hence it is Cohen-Macaulay. Moreover, X is
Gorenstein, because wx = Ox. The Kawamata-Viehweg vanishing theorem ([18, Th. 1.2.5]) yields
HI(X,LF) =0 for j#0,n andall k# 0. Since by assumption H7(X,O0x) =0 for j#0,n ,
we can apply Theorem 2.13 (iii). O

Proposition 2.16. Let X C PN be a complete intersection of m hypersurfaces D, ..., Dy
of degrees dy,...,d, respectively. Then X and L = Ox(1) satisfy the conditions of Theorem
2.13 with Gorenstein parameter r=N+1—>""d; .

Proof. Since the variety X is a complete intersection it is Gorenstein. The canonical class wx is
isomorphic to O(Y_d;— N —1). It can be easily proved by induction on m that H’/(X,Ox(k)) =
0 for all £ and j # 0,n, where n = N —m is the dimension of X. Indeed, The base of the
induction is clear. For the induction step, assume that for Y = D;N---ND,,—; these conditions

hold. Then, consider the short exact sequence
0 — Oy(k—dy) — Oy(k) — Ox(k) — 0.

Since the cohomologies HY(Y,0y(k)) = 0 for all k¥ and j # 0,n + 1 we obtain that
HI(X,0x(k)) =0 forall k and j#0,n . O

Theorem 2.13 can be extended to the case of quotient stacks. To do this we will need an
appropriate generalization of Serre’s theorem [25]. The usual Serre theorem says that if a com-
mutative connected graded algebra A = €,.,A; is generated by its first component, then the
category qgr A is equivalent to the category o_f coherent sheaves coh(X) on the projective variety
X =Proj A . (Such equivalence holds for the categories of quasicoherent sheaves Qcoh(X) and
QGr A too.)

Consider now a commutative connected graded k-algebra A = &p,~, A; which is not necessary
generated by its first component. The grading on A induces an acti_on of the group k* on the
affine scheme SpecA. Let 0 be the closed point of SpecA that corresponds to the ideal
Ay = A>1 C A. This point is invariant under the action.

Denote by Proj A the quotient stack [(SpecA\O) / k*] . (Note that there is a natural map
Proj A — Proj A, which is an isomorphism if the algebra A is generated by A;j .)

Proposition 2.17. (see also [2]) Let A= @& A; be a connected graded finitely generated algebra.
i>0

Then the category of (quasi)coherent sheaves on the quotient stack Proj(A) is equivalent to the
category qgr A (respectively QGr A ).

Proof. Let 0 be the closed point on the affine scheme SpecA which corresponds to the
maximal ideal A; C A. Denote by U the complement SpecA\0. We know that the cat-
egory of (quasi)coherent sheaves on the stack ProjA is equivalent to the category of k* -
equivariant (quasi)coherent sheaves on U. The category of (quasi)coherent sheaves on U is
equivalent to the quotient of the category of (quasi)coherent sheaves on SpecA by the subcat-
egory of (quasi)coherent sheaves with support on 0 (see [9]). This is also true for the cate-

gories of k* -equivariant sheaves. But the category of (quasi)coherent k* -equivariant sheaves
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on SpecA is just the category gr—A (resp. Gr—A ) of graded modules over A, and the sub-
category of (quasi)coherent sheaves with support on 0 coincides with the subcategory tors—A
(resp. Tors—A ). Thus, we obtain that coh(ProjA) is equivalent to the quotient category
qer A =gr—A/tors—A (and Qcoh(ProjA) is equivalent to QGr A = Gr—A/Tors—A ). O

Corollary 2.18. Assume that the noetherian Gorenstein connected graded algebra A from The-
orem 2.5 is finitely generated and commutative. Then instead the bounded derived category
D®(qgr A) in Theorem 2.5 we can substitute the category DP(coh(ProjA)), where ProjA the
quotient stack [(SpecA\O)/k*].

3. CATEGORIES OF GRADED D-BRANES OF TYPE B IN LANDAU-GINZBURG MODELS.

3.1. Categories of graded pairs. Let B = @,.,B; be a finitely generated connected graded
algebra over a field k. Let W € B,, be a central e_lement of degree n which is not a zero-divisor,
ie. Wb=bW forany b€ B and bW =0 only for b =0. Denote by J the two-sided ideal
J:=WB = BW and denote by A the quotient graded algebra B/.J.

With any such element W € B,, we can associate two categories: an exact category GrPair(V)
and a triangulated category DGrB(W).! Objects of these categories are ordered pairs

. pP1
P::(P1<:>P0>
Po

where Py, P € gr—B are finitely generated free graded right B -modules, p; is a map of degree
0 and po is a map of degree n (i.e a map from Py to Pj(n) ) such that the compositions
pop1 and pi1(n)po are the left multiplications by the element W . A morphism f: P — @Q in
the category GrPair(W) is a pair of morphisms f; : P, — Q1 and fy: Py — Qo of degree
0 such that fi(n)po = qofo and ¢1f1 = fop1 . The morphism f = (f1, fo) is null-homotopic
if there are two morphisms s : Py — @1 and t: P, — Qo(—n) such that f; = qo(n)t + sp;
and fo = t(n)po + ¢1s . Morphisms in the category DGrB(W) are the classes of morphisms in
GrPair(W) modulo null-homotopic morphisms.

In other words, objects of both categories are quasi-periodic infinite sequences
K ={-. Kt k_i>Ki+1 ’ﬂKiJr? — )
of morphisms in gr—B of free graded right B-modules so that the composition k‘T'k? of any

two consecutive morphisms is equal to multiplication by W . The quasi-periodicity property here
means that K'[2] = K'(n) . In particular

K* ' = Pi(i-n), K* = Py(i-n), K" =pi(i-n), k* = po(i-n).

A morphism f: K' — L in the category GrPair(W) is a family of morphisms f*: K? — L’
in gr—B which is quasi-periodic, i.e f*? = fi(n), and which commutes with k% and [, i..
fi+1ki — lzfz

1One can also construct a differential graded category the homotopy category of which is equivalent to DGrB.
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Morphisms in the category DGrB(W) are morphisms in GrPair(W) modulo null-homotopic
morphisms, and we consider only quasi-periodic homotopies, i.e. such families s* : K* — Li7!
that s™2 = si(n).

Definition 3.1. The category DGrB(W) constructed above will be called the category of graded
D-branes of type B for the pair (B = @;>¢Bi,W).

Remark 3.2. If B is commutative, then we can consider the affine scheme SpecB. The grading
on B corresponds to an action of the algebraic group k* on SpecB. The element W can be
viewed as a regular function on SpecB which is semi-invariant with respect to this action. This
way, we get a singular Landau-Ginzburg model (SpecB, W) with an action of torus k*. Thus,
Definition 3.1 is a definition of the category of graded D-branes of type B for this model (see also
[16, 28]).

It is clear that the category GrPair(W) is an exact category (see [24] for the definition) with
monomorphisms and epimorphisms being the componentwise monomorphisms and epimorphisms.
The category DGrB(W) can be endowed with a natural structure of a triangulated category. To
exhibit this structure we have to define a translation functor [1] and a class of exact triangles.

The translation functor as usually is defined as a functor that takes an object K to the object
K'[1], where K[1]* = K*! and d[1]' = —d'*!, and takes a morphism f to the morphism f[1]
which coincides with f componentwise.

For any morphism f : K — L° from the category GrPair(W) we define a mapping cone
C’(f) as an object

Q.(f):{...%Li@Ki-HC_i>Lz‘+1@Ki+2ﬂLi—kQ@KH-S_}“'}

, (li fi+1>
= . .
0 _szrl
There are maps g: L — C°(f), g = (id,0) and h:C"(f) — K'[1], h = (0,—id) .
Now we define a standard triangle in the category DGrB(W) as a triangle of the form

such that

K Lr e s K
for some f € GrPair(W) .

Definition 3.3. A triangle K'—L'—M —K'[1] in DGrB(W) will be called an exact (distin-

guished) triangle if it is isomorphic to a standard triangle.

Proposition 3.4. The category DGrB(W) endowed with the translation functor [1] and the

above class of exact triangles becomes a triangulated category.

We omit the proof of this proposition which is more or less the same as the proof of the analogous

result for a usual homotopic category (see, e.g. [12]).
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3.2. Categories of graded pairs and categories of singularities. With any object K° as

above, one associates a short exact sequence
-1 k' -0 —1
(14) 0 — K" — K~ — Coker k™" — 0.

We can attach to an object K the right B-module Coker k~! . It can be easily checked
that the multiplication by W annihilates it. Hence, the module Coker k! is naturally a right
A -module, where A= B/J with J=WB = BW. Any morphism f: K" — L" in GrPair(W¥)
induces a morphism between cokernels. This construction defines a functor Cok : GrPair(W) —

gr—A . Using the functor Cok we can construct an exact functor between triangulated categories
DGrB(W) and Dg,(A) .

Proposition 3.5. There is a functor F which completes the following commutative diagram

GrPair(W) Gk, gr—A

| |

F T
DGIB(W) —£— DE(4).

Moreover, the functor F is an exact functor between triangulated categories.

Proof. We have the functor GrPair(W) — D%rg(A) which is the composition of Cok and the
natural functor from gr—A to D%;(A) . To prove the existence of a functor F' we need to show
that any morphism f: K° — L° which is null-homotopic goes to the 0-morphism in Dgrg(A) .

Fix a homotopy s = (s') with s': K’ — L1, Consider the following decomposition of f :

k_l
K1 KO Coker k1
(5*17]"71) (507‘}00)
. —17? id
L 2oL ! — L1l —— %234 where ul = < 0 l_l) ’
pr pr
l_l
-1 Lo Coker {71

This yields a decomposition of F(f) through a locally free object L°®p A . Hence, F(f) =0 in
the category D%;(A) . By Lemma 3.7, which is proved below, the tensor product K" ®p A is an
acyclic complex. Hence, there is an exact sequence 0 — Coker k' — K! ®p A — Coker k¥ — 0.
Since K'®pA isfree, we have Coker k° 22 Coker k7 1[1] in D%;(A). But, Coker k¥ = F(K'[1]).
Hence, the functor F commutes with translation functors. It is easy to see that F' takes a
standard triangle in DGrB(W) to an exact triangle in Dg,(A). Thus, F is exact. O

Lemma 3.6. The functor Cok is full.
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Proof. Any map g¢: Coker k~! — Coker [=! between A-modules can be considered as the map
of B-modules and can be extended to a map of short exact sequences

k‘_l

0 —— K1 K° Coker k™! —— 0
) [ s
0 —— L7t = L° Coker 7! —— 0,

because K is free. This gives us a sequence of morphisms f = (f*),i € Z, where f* = fO(in)
and f%~! = f~1(in). To prove the lemma it is sufficient to show that the family f is a map

from K° to L°, ie f'k%=19f0 Consider the sequence of equalities
ll(flko _ lOfO) — kalko . Wfﬂ _ f2W _ Wfo — f0(2>W o WfO -0.
Since [' is an embedding, we obtain that f'k0 = (00, O

Lemma 3.7. For any sequence K° € GrPair(W) the tensor product K" ®p A is an acyclic

complex of A -modules and the A -module Coker k™' satisfies the condition

ExtYy(Coker k™1, A) =0 forall i>0.
Proof. It is clear that K’ ®p A is a complex. Applying the Snake Lemma to the commutative
diagram

. ki72 . .
0 —— Ki=2 =, K=l —, Coker k"2 —— 0

wl lw lo
0 —— Ki Mg Coker ki —— 0,

we obtain an exact sequence
0— Coker k' 2 — K'@p A Filw Kt @p A — Coker k' — 0.

This implies that K " ®pg A is an acyclic complex.

Further, consider the dual sequence of left B-modules K'Y, where K’V = Homp(K",B). By
the same reasons as above A®p K " is an acyclic complex. On the other hand, the cohomologies
of the complex {(K%)Y — (K~!)¥ — (K~2)¥ — ...} are isomorphic to Ext’y(Coker k=1, A).
And so, by the acyclicity of A ®p KV , they are equal to 0 for all i > 0. a
Lemma 3.8. If FK' =0, then K =0 in DGrB(W) .

Proof. If FK' =0, then the A-module Coker k~! is perfect as a complex of A-modules. Let
us show that Coker k~! is projective in this case. Indeed, there is a natural number m such

that ExtY(Coker k~', N) = 0 for any A-module N and any i > m. Considering the exact

sequence
0— Coker k21 S K ?gpA— . - —K'opA—K'®gA— Coker k! — 0

and taking into account that all A-modules K'®p A are free, we find that for all modules N
Exty (Coker k=21 N) = 0 when 4 > 0. Hence, Coker k~2™~! is a projective A-module.

This implies that Coker k! is also projective, because it is isomorphic to Coker k~2m~1(—mn).
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Since Coker k~! is projective there is a map f : Coker k= — K° ®p A which splits the
-1

epimorphism pr: K°®p A — Coker k~! . It can be lifted to a map from the complex {K~! LA
K%} to the complex {K 2 W, K%} . Denote the lift by (s~%,u). Consider the following diagram

k,fl

K1 KO Coker k1
o [ |+

K2 W go K'9p A
k’2l lid lpr

K-t L ko Coker k1.

-1
Since the composition prf is identical, the map (k=2s7! u) from the pair {K~! LR K°} to

itself is homotopic to the identity map. Hence, there is a map s°: K© — K~! such that
idp-1 — k7257t = %1 and E71s® = idgo — u.
Moreover, we have the following equalities
0= (uk™ —Ws™) = (uk™ — s 1 )W) = (u — s (n)k°)E 1.

This gives us that u = s !(n)k? , because there are no maps from Coker k! to K . Finally, we
get the sequence of morphisms s : K — K1 where %71 = s71(in), s> = s%(in), such that
ki=1ls' 4 kis't1 =id. Thus the identity morphism of the object K is null-homotopic. Hence, the
object K" is isomorphic to the zero object in the category DGrBy(W). O

Theorem 3.9. The exact functor F :DGrB(W) — D%rg(A) is fully faithful.

Proof. By Lemma 3.7 we have Extf;‘(Coker k=1, A) =0 for i>0. Now, Proposition 1.11 gives

an isomorphism
HomDsS;r (a)(Coker k™1, Coker I71) = Homg,— 4(Coker k™1, Coker I™1)/R,
g

where R is the subspace of morphisms factoring through projective modules. Since the functor
Cok is full we get that the functor F' is also full.

Next we show that F is faithful. The reasoning is standard. Let f: K" — L° be a morphism
for which F(f) =0 . Include f in an exact triangle K° iR L" —% M". Then the identity map
of FL® factors through the map FL’ N FM®. Since F is full, thereisamap h:L" — L'
factoring through ¢:L" — M’ such that Fh =id . Hence, the cone C°(h) of map h goes to
zero under the functor F . By Lemma 3.8 the object C°(h) is the zero object as well, so h is

an isomorphism. Thus ¢g:L" — M’ is a split monomorphism and f =0 . O
Theorem 3.10. Suppose that the algebra B has a finite homological dimension. Then the functor
F:DGrB(W) — D%;(A) is an equivalence.

Proof. We know that F' is fully faithful. To prove the theorem we need to show that each object
T e D%rg(A) is isomorphic to FK' for some K € DGrB(W) .
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The algebra B has a finite homological dimension and, as consequence, it has a finite injective
dimension. This implies that A = B/J has a finite injective dimension too. By Lemma 1.10 any
object T € Dgrg(A) is isomorphic to the image of an A-module M such that Ext’ (M, A) =0
for all ¢ > 0. This means that the object D(M)= RHoma (M, A) is aleft A-module. We can

consider a projective resolution Q" — D(M). The dual of Q" is a right projective A -resolution
0—M—{P" — P — ...}

Consider M as B-module and chose an epimorphism KY — M from free B-module K.
Denote by k~': K~' — K9 the kernel of this map.

The short exact sequence 0 — B B oA4-0 implies that for a projective A-module
P and any B-module N we have equalities Extz(P,N) = 0 when i > 1. This also yields
that ExtiB(M, N)=0 for ¢ >1 and any B-module N, because M has a right projective
A -resolution and the algebra B has finite homological dimension. Therefore, Extiz (K~ N) =0
for i >0 and any B-module N, ie. B-module K~! is projective. Since A is connected
and finitely generated, any graded projective module is free. Hence, K1 is free.

Since the multiplication on W gives the zero map on M, there is a map k°: K° — K~1(n)
such that k%' =W and k~'(n)k® = W . This way, we get a sequence K ' with

K¥*=K%i-n), K*'=K '(i-n), ¥ =k°(i-n), ' =k""(i-n).
and this sequence is an object of DGrB(W) for which FK =T . O

3.3. Graded D-branes type B and coherent sheaves. By a Landau-Ginzburg model we mean
the following data: a smooth variety X equipped with a symplectic Kéhler form w, closed real
2-form B, which is called B-field, and a regular nonconstant function W on X . The function
W is called the superpotential of the Landau-Ginzburg model. Since for the definition of D-branes
of type B a symplectic form and B-field are not needed we do not fix them.

With any point A € A' we can associate a triangulated category DB)(W). We give a construc-
tion of this categories under the condition that X = Spec(B) is affine (see [17, 22]). The category

of coherent sheaves on an affine scheme X = Spec(B) is the same as the category of finitely gener-

. p1
ated B -modules. The objects of the category DB)(W') are ordered pairs P := ( P 4><p Py ),
0

where Py, P; are finitely generated projective B -modules and the compositions pgop; and pipg
are the multiplications by the element (W — \) € B . The morphisms in the category DB(W)
are the classes of morphisms between pairs modulo null-homotopic morphisms, where a morphism
f: P — @ between pairs is a pair of morphisms f; : P, — Q1 and fq: Py — Qo such that
fipo = qofo and ¢ fi = fop1 . The morphism f is null-homotopic if there are two morphisms
s: Php— Q1 and t: P — Qo such that f; =qot+sp1 and fo=1tpg+ qis .

We define a category of D-branes of type B (B-branes) on X = Spec(B) with the superpotential
W as the product DB(W) = [[ycp1 DBA(W).
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It was proved in the paper [22, Cor. 3.10] that the category DB)(W) for smooth affine X is
equivalent to the triangulated category of singularities Dgg(X)) , where X is the fiber over X €
Al. Therefore, the category of B-branes DB(W) is equivalent to the product [],cs1 Dgg(X2).
For non-affine X the category [[yca1 Dsg(X)) can be considered as a definition of the category
of D-branes of type B. Note that, in the affine case, X, is Spec(A,), where A\ = B/(W —\)B
and, hence, the triangulated categories of singularities Dgg(Xy) is the same that the category
Dy (A3).

Assume now that there is an action of the group k* on the Landau-Ginzburg model (X, W)
such that the superpotential W is semi-invariant of the weight d. Thus, X = Spec(B) and
B =@, B; is a graded algebra. The superpotential W is an element of B;. Let us assume that
B is positively graded and connected. In this case, we can consider the triangulated category of
graded B-branes DGrB(W) , which was constructed in subsection 3.1 (see Definition 3.1).

Denote by A the quotient graded algebra B/W B. We see that the affine variety Spec(A)
is the fiber Xy of W over the point 0. Denote by Y the quotient stack [(Spec(A)\ 0)/k*],
where 0 is the point on Spec(A) corresponding to the ideal A;. Theorems 2.5, 3.10 and
Proposition 2.17 allow us to establish a relation between triangulated category of graded B-branes
DGrB(W) and the bounded derived category of coherent sheaves on the stack Y.

First, Theorem 3.10 gives us the equivalence F between the triangulated category of graded
B-branes DGrB(WW) and the triangulated category of singularities D%;(A). Second, Theorem
2.5 describes the relationship between the category Dg;(A) and the bounded derived category
D®(qgr A). Third, the category D’(qgr A) is equivalent to the derived category D’(coh(Y)) by
Proposition 2.17. In the particular case, when X is the affine space AV with the standard action

of the group k* , we get the following result.

Theorem 3.11. Let X be the affine space AN and let W be a homogeneous polynomial of
degree d. Let Y C PN71 be the hypersurface of degree d which is given by the equation W = 0.
Then, there is the following relation between the triangulated category of graded B-branes DGrB(W)
and the derived category of coherent sheaves DP(coh(Y)) :

(i) if d< N ,i.e. if Y is a Fano variety, there is a semiorthogonal decomposition
D’(coh(Y)) = (Oy(d — N +1),...,0y,DGrB(W)),
(ii) of d> N ,i.e. if X is a variety of general type, there is a semiorthogonal decomposition
DGrB(W) = (F~q(k(r +1)),..., F 1 q(k), D’(coh(Y))),

where q: DP(gr—A) — D%rg(A) is the natural projection, and F : DGrB — D%;(A) is
the equivalence constructed in Proposition 3.5.

(iii) of d= N, i.e. if 'Y is a Calabi-Yau variety, there is an equivalence

DGrB(W) = Db(coh(Y)).
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Remark 3.12. We can also consider a weighted action of the torus k* on the affine space
AN with positive weights (a1,...,an), a; > 0 for all i. If the superpotential W is quasi-
homogeneous then we have the category of graded B-branes DGrB(W). The polynomial W
defines an orbifold (quotient stack) Y C PV~!(ay,...,an). The orbifold Y is the quotient of
Spec(A)\0 by the action of k*, where A =Kk[zy,...,zxn]/W. Proposition 2.17 gives the equiv-
alence between DP(coh(Y)) and DPY(qgr A). And Theorem 2.5 shows that we get an analogue of

Theorem 3.11 for the weighted case as well.
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