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Abstract

Let X be an algebraic K3 surface, v = (r,H, s) a primitive isotropic
Mukai vector on X and MX(v) the moduli of sheaves over X with v. Let
N(X) be the Picard lattice of X.

In [14] and [3], all divisors in moduli of (X,H) (i. e. pairs H ∈ N(X)
with rk N(X) = 2) implying MX(v) ∼= X were described. They give some
Mukai’s correspondences of X with itself.

Applying these results, we show that there exists v and a codimension
2 submoduli in moduli of (X,H) (i. e. a pair H ∈ N(X) with rk N(X) =
3) implying MX(v) ∼= X, but this submoduli cannot be extended to a
divisor in the moduli with the same property. There are plenty of similar
examples.

We discuss the general problem of description of all similar submoduli
(to generalize results of [14] and [3] to the general case), and defined by
them Mukai’s correspondences of X with itself and their compositions,
trying to outline a possible general theory.

1 Introduction

To 70th Birthday of Yuri Ivanovich Manin

We consider algebraic K3 surfaces X over C. We remind that a non-singular
projective algebraic (or Kählerian compact) surface X is a K3 surface if its
canonical class KX is equal to zero and the irregularity q = dim Ω1[X] = 0.

Further, N(X) denotes the Picard lattice of X, and T (X) the transcendental
lattice. Further, ρ(X) = rk N(X) denotes the Picard number of X.

We consider primitive isotropic Mukai vectors

v = (r, l, s), r ∈ N, s ∈ Z, l ∈ N(X), l2 = 2rs. (1.1)
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on X. We denote by Y = MX(v) = MX(r, l, s) the K3 surface which is the
minimal resolution of singularities of the moduli space of sheaves over X with
the Mukai vector v. Clarify in Mukai [4] — [7] and Yoshioka [21]. In this case,
the corresponding quasi-universal sheave on X×Y , and its Chern class define a
2-dimensional algebraic cycle on X×Y and a correspondence between X and Y
according to Mukai [5]. It has very nice geometric properties. For more details,
see Sect. 6.

If Y ∼= X, then we obtain an important 2-dimensional algebraic cycle on
X×X, and a correspondence of X with itself. Thus, the question, when Y ∼= X
is very interesting.

If ρ(X) = 1, we give the corresponding results in Sect. 3. The author
believes that they should be known to specialists.

Let D ∈ N(X). Then one has the natural isomorphism given by the tensor
product

TD : MX(r, l, s) ∼= MX(r, l + rD, s+ r(D2/2) +D · l), E 7→ E ⊗ O(D).

For r, s > 0, one has the isomorphism which is called reflection

δ : MX(r, l, s) ∼= MX(s, l, r).

E. g. see [5] and [18], [19], [22].
For integers d1, d2 > 0 such that (d1, d2) = (d1, s) = (r, d2) = 1, one has the

isomorphism
ν(d1, d2) : MX(r, l, s) ∼= MX(d2

1r, d1d2l, d
2
2s)

and its inverse ν(d1, d2)−1. See [5], [6], [14], [3].
In Theorem 3.1 and Corollary 3.1, we show that if ρ(X) = 1 and X is

general, then for two primitive isotropic Mukai vectors v1 and v2, moduliMX(v1)
and MX(v2) are isomorphic if and only if there exists their isomorphism which
is a composition of the three isomorphisms described above. They and their
specializations for higher Picard numbers give universal isomorphisms between
moduli of sheaves over X.

It is known (e.g. see [19]) that for l ∈ N(X) and ±l2 > 0, one has Tyurin’s
isomorphism

Tyu = Tyu(±l) : MX(±l2/2, l,±1) ∼= X . (1.2)

In Corollary 3.2 (see also Remark 4.1) we show that, if ρ(X) = 1, then
MX(r,H, s) and X are isomorphic if and only if there exists their isomorphism
which is a composition of the three universal isomorphisms above between mod-
uli of sheaves, and the Tyurin’s isomorphism. See also [14] for a similar result.

It was shown in [14] and geometrically interpreted in [3] (together with Carlo
Madonna) that analogous results are valid for ρ(X) = 2 and X which is gen-
eral for its Picard lattice, i. e. the automorphism group of the transcendental
periods is trivial: Aut (T (X),H2,0(X)) = ±1. (See also [1], [2], [13] about im-
portant particular cases of these results.) We review these results in Sect. 4, see
Theorems 4.1, 4.2 and 4.3 for exact formulations. They show that in this case
(i. e. when ρ(X) = 2 and X is general for its Picard lattice), MX(r,H, s) ∼= X
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if and only if there exists an isomorphism between MX(r,H, s) and X which is
given by a composition of the universal isomorphisms TD, δ and ν(d1, d2) be-
tween moduli of sheaves over X and by Tyurin’s isomorphism between moduli of
sheaves over X and X itself. The results for ρ(X) = 1 above clarify appearance
of the natural isomorphisms TD, δ, ν(d1, d2), Tyu in these results for Picard
number 2.

Importance of the results for ρ(X) = 2 and general X is that they describe
all divisorial conditions on moduli of algebraic polarized K3 surfaces (X,H)
which imply that MX(r,H, s) ∼= X. More exactly, the results for ρ(X) = 2
describe all abstract polarized Picard lattices H ∈ N of the rank rk N = 2
such that if H ∈ N ⊂ N(X), then MX(r,H, s) ∼= X. We remind that the
codimension of moduli of such X in the 19-dimensional moduli of algebraic
polarized K3 surfaces is then 1. Applying these results, in Theorems 4.4 and
4.5, we give a necessary condition on Mukai vector (r,H, s) and a K3 surface X,
for the isomorphismMX(r,H, s) ∼= X would follow from a divisorial condition on
moduli of polarized K3 surfaces. In Example 4.1, we give an exact numerical case
when this necessary condition is not satisfied. Thus, for K3 surfaces X of this
example, the isomorphism MX(r,H, s) ∼= X cannot follow from any divisorial
condition on moduli of polarized K3 surfaces which implies the isomorphism
MX′(r,H, s) ∼= X ′ for K3 surfaces X ′ satisfying this divisorial condition.

Applying these results, in Sect. 5, Theorem 5.1, we give an exact example
of the type of a primitive isotropic Mukai vector (r,H, s) and a pair H ∈ N of
a (abstract) polarized K3 Picard lattice of the rank rk N = 3 such that for any
polarized K3 surface (X,H) with H ∈ N ⊂ N(X) one has MX(r,H, s) ∼= X, but
this isomorphism does not follow from any divisorial condition (i. e. from Picard
number 2) on moduli of polarized K3 surfaces. Thus, moduli of these polarized
K3 surfaces have codimension 2, and they cannot be extended to a divisor in
moduli of polarized K3 surfaces preserving the isomorphism MX(r,H, s) ∼= X.
This is the main result of this paper. In Sect. 5, we give many similar examples
for Picard number ρ(X) ≥ 3.

These results give important corollaries for higher Picard number ρ(X) ≥ 3
of the results for Picard number 1 and 2, described above. They also show that
the case of ρ(X) ≥ 3 is very non-trivial. These are the main subjects of this
paper.

Another important subject of this paper is to formulate some general con-
cepts and predict the general structure of possible results for higher Picard
number ρ(X) ≥ 3.

At the end of Sect. 5, for a type (r,H, s) of a primitive isotropic Mukai
vector, we introduce the concept of a critical polarized K3 Picard lattice H ∈
N (for the problem of correspondences of a K3 surface with itself). Roughly
speaking, it means that MX(r,H, s) ∼= X for a polarized K3 surface X such
that H ∈ N ⊂ N(X), but the same is not valid for any primitive sublattice
H ∈ N1 ⊂ N of strictly smaller rank. Thus, the corresponding moduli of K3
surfaces have dimension 20− rk N , and they are not specialization of moduli of
higher dimension of analogous K3 surfaces.

Classification of critical polarized K3 Picard lattices is the main problem of
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correspondences of a K3 surface with itself via moduli of sheaves. Our results
for ρ = 1 and ρ = 2 can be interpreted as classification of all critical polarized
K3 Picard lattices of the rank one and two. The described above example of
the lattice N of the rank three from Theorem 5.1, gives an example of a critical
polarized K3 Picard lattice of the rank three. In Theorem 5.4 we prove that
rk N ≤ 12 for a critical polarized K3 Picard lattice N . In Problem 5.2, we raise
a problem of exact estimate of the rank of critical polarized K3 Picard lattices
for the fixed type of a primitive isotropic Mukai vector. This problem is now
solved only for very special types, when the rank is equal to one.

In Sect. 6, we interpret the results above in terms of the action of corre-
spondences as isometries in H2(X,Q), and their compositions. For example,
Tyurin’s isomorphisms (1.2) give reflections in elements l ∈ N(X) and generate
the full automorphism group O(N(X) ⊗ Q). Each primitive isotropic Mukai
vector (r,H, s) on X with MX(r,H, s) ∼= X generates some class of isometries
from O(N(X)⊗Q). See Sect. 6 for exact formulations. Thus, the main problem
of correspondences of X with itself via moduli of sheaves is to find all these gen-
erators and their relations. We formulate the corresponding problems (1), (2),
(3) and (4) at the end of Sect. 6. They show that, in principle, general results
for any ρ(X) should look similar to the now known results for ρ(X) = 1, 2.

A reader can see that our general idea is that a very complicated structure
of correspondences of a general (for its Picard lattice) K3 surface X with itself
via moduli of sheaves is hidden inside of the abstract Picard lattice N(X),
and we try to recover this structure. This should lead to some non-trivial
constructions related to the abstract Picard lattice N(X) and more closely relate
it to geometry of the K3 surface.

The author is grateful to D.O. Orlov for useful discussions.

2 Preliminary notations about lattices

We use notations and terminology from [10] about lattices, their discriminant
groups and forms. A lattice L is a non-degenerate integral symmetric bilinear
form. I. e. L is a free Z-module equipped with a symmetric pairing x · y ∈ Z
for x, y ∈ L, and this pairing should be non-degenerate. We denote x2 = x · x.
The signature of L is the signature of the corresponding real form L⊗ R. The
lattice L is called even if x2 is even for any x ∈ L. Otherwise, L is called odd.
The determinant of L is defined to be detL = det(ei · ej) where {ei} is some
basis of L. The lattice L is unimodular if detL = ±1. The dual lattice of L is
L∗ = Hom(L, Z) ⊂ L⊗Q. The discriminant group of L is AL = L∗/L. It has
the order | detL|. The group AL is equipped with the discriminant bilinear form
bL : AL × AL → Q/Z and the discriminant quadratic form qL : AL → Q/2Z if
L is even. To get this forms, one should extend the form of L to the form on
the dual lattice L∗ with values in Q.
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3 Isomorphisms between MX(v) for a general K3
surface X and a primitive isotropic Mukai vec-
tors v

We consider algebraic K3 surfaces X over C. We remind that a non-singular
projective algebraic (or Kählerian compact) surface X is a K3 surface if the
canonical class KX is equal to zero and the irregularity q = dim Ω1[X] = 0.

Further N(X) denotes the Picard lattice of X, and T (X) the transcendental
lattice of X.

We consider primitive isotropic Mukai vectors

v = (r, l, s), r ∈ N, s ∈ Z, l ∈ N(X), l2 = 2rs. (3.1)

on X. We denote by Y = MX(v) = MX(r, l, s) the K3 surface which is the
minimal resolution of singularities of the moduli space of sheaves over X with
the Mukai vector v. Clarify in Mukai [4] — [7] and Yoshioka [21].

In this section, we call an algebraic K3 surface to be general if the Picard
number ρ(X) = rk N(X) = 1 and the automorphsim group of the transcenden-
tal periods of X is trivial over Q: Aut(T (X)⊗Q, H2,0(X)) = ±1.

Here we consider the following question: When for a general algebraic K3
surface X and two its primitive isotropic Mukai vectors v1 = (r1, l1, s1) and
v2 = (r2, l2, s2), the moduli spaces MX(v1) and MX(v2) are isomorphic?

We have the following three universal isomorphisms between moduli of shea-
ves over a K3 surface :

Let D ∈ N(X). Then one has the natural isomorphism given by the tensor
product

TD : MX(r, l, s) ∼= MX(r, l + rD, s+ r(D2/2) +D · l), E 7→ E ⊗ O(D).

Moreover, here Mukai vectors

v = (r, l, s), TD(v) = (r, l + rD, s+ r(D2/2) +D · l)
have the same general common divisor and the same square under Mukai pairing.
In particular, they are primitive and isotropic simultaneously.

Taking D = kH where H is a hyperplane section and k > 0, using the iso-
morphisms TD, we can always replace MX(r, l, s) by an isomorphic MX(r, l′, s′)
where l′ is ample, and then l′2 > 0. Thus, in our problem, we can further as-
sume that v = (r, l, s) where r > 0 and l is ample. Then l2 = 2rs > 0 and s > 0
either. Further we assume that.

For r, s > 0, one has the isomorphism which is called reflection

δ : MX(r, l, s) ∼= MX(s, l, r).

E. g. see [5] and [18], [19], [22]. Thus, using the reflection, we can further
assume that 0 < r ≤ s.
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For integers d1, d2 > 0 such that (d1, d2) = (d1, s) = (r, d2) = 1, one has the
isomorphism

ν(d1, d2) : MX(r, l, s) ∼= MX(d2
1r, d1d2l, d

2
2s)

and its inverse ν(d1, d2)−1. See [5], [6], [14], [3]. Using the isomorphisms
ν(d1, d2), ν(d1, d2)−1 and the reflection δ, we can always assume that the prim-
itive isotropic Mukai vector v = (r, l, s) satisfies:

v = (r, l, s) has 0 < r ≤ s, l2 = 2rs and l ∈ N(X) is primitive and ample.
(3.2)

We call such a primitive isotropic Mukai vector as a reduced primitive isotropic
Mukai vector (for ρ(X) = 1).

We have the following result.

Theorem 3.1. Let X be a general algebraic K3 surface, i. e. N(X) = ZH
where H is a primitive polarization of X and Aut (T (X) ⊗ Q,H2,0(X)) = ±1.
Let v = (r,H, s) and v′ = (r′,H, s′) are two reduced primitive isotropic Mukai
vectors on X (see (3.2)), i. e. 0 < r ≤ s and 0 < r′ ≤ s′.

Then MX(v) ∼= MX(v′) if and only if v = v′, i. e. r′ = r, l′ = l.

It follows that the described above universal (i. e. valid for all algebraic K3
surfaces, even general ones) isomorphisms TD, δ and ν(d1, d2) are sufficient to
find isomorphic moduli of sheaves with primitive isotropic Mukai vectors for a
general K3 surface.

Corollary 3.1. Let X be a general algebraic K3 surface and v, v′ are primitive
isotropic Mukai vectors on X.

Then MX(v) ∼= MX(v′) if and only if there exists an isomorphism between
MX(v) and MX(v′) which is a composition of the universal isomorphisms TD,
δ and ν(d1, d2).

Proof. Considerations below are very similar to much more general and difficult
considerations in ([14], Sect. 2.3).

We have

N(X) = ZH = {x ∈ H2(X,Z) | x ·H2,0(X) = 0},
and the transcendental lattice of X is

T (X) = N(X)⊥H2(X,Z).

The lattices N(X) and T (X) are orthogonal complements to one another in
the unimodular lattice H2(X,Z). We have that N(X)⊕ T (X) ⊂ H2(X,Z) is a
sublattice of a finite index. Here and in what follows ⊕ denotes the orthogonal
sum. Since H2(X,Z) is unimodular and N(X) = ZH is its primitive sublattice,
there exists u ∈ H2(X,Z) such that u ·H = 1.

We denote by N(X)∗ = ZH/(2rs) ⊂ N(X)⊗Q and T (X)∗ ⊂ T (X)⊗Q the
dual lattices. Then H2(X,Z) ⊂ N(X)∗ ⊕ T (X)∗, and

u = H/(2rs)⊕ t∗(H), t∗(H) ∈ T (X)∗.
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The element

t∗(H) mod T (X) ∈ T (X)∗/T (X) ∼= Z/2rsZ

is defined canonically by the primitive element H ∈ H2(X,Z). We evidently
have

H2(X,Z) = [N(X), T (X), u = H/(2rs) + t∗(H)]

where [ · ] means “generated by” · . The element t∗(H) mod T (X) evidently
distinguishes between different polarized K3 surfaces with Picard number one
and the same transcendental periods. More exactly, for another polarized K3
surface (X ′,H ′) and its transcendental periods (T (X ′),H2,0(X ′)), the periods
of X and X ′ are isomorphic (and then X ∼= X ′ by the Global Torelli Theorem
[15]) if and only if there exists an isomorphism φ : T (X) ∼= T (X ′) of the tran-
scendental lattices such that (φ⊗C)(H2,0(X)) = H2,0(X ′) and (φ⊗Q)(t∗(H))
mod T (X) = t∗(H ′) mod T (X ′).

Thus, calculation of the periods of X in terms of its transcendental periods
is contained in the following statement.

Proposition 3.1. Let (X,H) be a polarized K3 surface with a primitive polar-
ization H such that H2 = 2rs. Assume that N(X) = ZH (i. e. ρ(X) = 1).

Then
H2(X,Z) = [N(X) = ZH,T (X), H/(2rs) + t∗(H)]

where t∗(H) ∈ T (X)∗. The element t∗(H) mod T (X) is defined uniquely.
Moreover, H2,0(X) ⊂ T (X)⊗ C.
(In general, when ρ(X) ≥ 1, one should replace T (X) by H⊥H2(X,Z).)

Let Y = MX(r,H, s). Let us calculate periods of Y .
We denote by

H̃(X,Z) = H0(X,Z) +H2(X,Z) +H4(X,Z) = U ⊕H2(X,Z)

(it is the direct sum) the Mukai lattice of X. Here U = Ze1 +Ze2 is the hyper-
bolic plane where canonically Ze1 = H0(X,Z) and Ze2 = H4(X,Z) with the
Mukai pairing e2

1 = e2
2 = 0 and e1 · e2 = −1. Here H2(X,Z) is the cohomology

lattice of X with the intersection pairing. Here ⊕ denotes the orthogonal sum
of lattices. We have

v = re1 + se2 +H. (3.3)

By Mukai [5], we have

H2(Y,Z) = v⊥/Zv, (3.4)

and H2,0(Y ) = H2,0(X) by the canonical projection. This defines periods of
Y and the isomorphism class of the K3 surface Y (by Global Torelli Theorem
[15]). Let us calculate periods of Y similarly to Proposition 3.1.

Any element f of H̃(X,Z) can be uniquely written as

f = xe1 + ye2 + αH/(2rs) + t∗, x, y, α ∈ Z, t∗ ∈ T (X)∗.
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We have f · v = −sx− ry+ α, and f ∈ v⊥ if and only if −sx− ry+ α = 0, and
then

f = xe1 + ye2 + (sx+ ry)(H/(2rs)) + t∗.

By Proposition 3.1, f ∈ H̃(X,Z) if and only if t∗ = (sx+ ry)t∗(H) mod T (X).
Since T (X) ⊂ v⊥, we can write

f = xe1 + ye2 + (sx+ ry) (H/(2rs) + t∗(H)) mod T (X), x, y ∈ Z .

We denote
c = (r, s), a = r/c, b = s/c.

Then (a, b) = 1. We have h = −ae1 + be2 ∈ v⊥ and h2 = 2ab = 2rs/c2.
Moreover, h ⊥ T (X) and then h ⊥ H2,0(X). Thus,

h mod Zv = −ae1 + be2 mod Zv (3.5)

gives an element of the Picard lattice N(Y ). We have

e1 =
v − ch−H

2r
, e2 =

v + ch−H
2s

.

It follows that

f =
sx+ ry

2rs
v +

c(−sx+ ry)
2rs

h+ (sx+ ry)t∗(H) mod T (X), x, y ∈ Z . (3.6)

Here f mod Zv gives all elements of H2(Y,Z) and H2,0(Y ) = H2,0(X) ⊂
T (X)⊗ C.

It follows that f mod Zv ∈ T (Y ) (where Zv gives the kernel of v⊥ and
H2(Y,Z) = v⊥/Zv) if and only if −sx + ry = 0, equivalently −bx + ay =
0, equivalently (since (a, b) = 1) x = az, y = bz where z ∈ Z, and then
(sx+ ry)t∗(H) = z(sa+ rb)t∗(H) = z 2abc t∗(H) where z ∈ Z. It follows that

T (Y ) = [T (X), 2abc t∗(H)]. (3.7)

Since t∗(H) mod T (X) has the order 2rs = 2abc2 in T (X)∗/T (X) ∼= Z/2rsZ,
it follows that [T (Y ) : T (X)] = c (this is the result of Mukai, [5]).

By (3.6), (3.7), we have f ⊥ H2,0(Y ) = H2,0(X), equivalently f mod Zv ∈
N(Y ), if and only if

f =
sx+ ry

2rs
v +

c(−sx+ ry)
2rs

h

where sx+ ry ≡ 0 mod 2abc. Thus, acx+ bcy ≡ 0 mod 2abc and ax+ by ≡ 0
mod 2ab. Since (a, b) = 1, it follows that x = bx̃, y = aỹ where x̃, ỹ ∈ Z, and
x̃+ ỹ ≡ 0 mod 2. Thus, ỹ = −x̃+ 2k where k ∈ Z. It follows that

f =
k

c
v + (−x̃+ k)h, x̃, k ∈ Z.
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Thus, h mod Zv generates the Picard lattice N(Y ), and h mod Zv can be
considered as the polarization of Y (or −h mod Zv which does not matter
from the point of view of periods and the isomorphism class of Y ).

Let us calculate t∗(h) ∈ T (Y )∗. Then in (3.6) we should take an element f
with c(−sx+ ry)/(2rs) = 1/(2ab). Thus, −sx+ ry = c or −bx+ ay = 1. Then

t∗(h) = (sx+ ry)t∗(H) mod T (Y ).

By (3.7), T (Y )∗ = [T (X), ct∗(H)] and T (Y )∗/T (Y ) ∼= Z/2abZ.
Thus, t∗(h) = (bx + ay) (ct∗(H)) mod [T (X), 2ab (ct∗(H))] is defined by

m ≡ bx + ay mod 2ab. Since −bx + ay = 1, we have m ≡ 2ay − 1 ≡ −1
mod 2a and m ≡ 2bx + 1 ≡ 1 mod 2b. This defines m mod 2ab uniquely.
We call such m mod 2ab as Mukai element (compare with [6]). Thus, m(a, b)
mod 2ab is called Mukai element if

m(a, b) ≡ −1 mod 2a and m(a, b) ≡ 1 mod 2b. (3.8)

Thus, t∗(h) = m(a, b) ct∗(H) mod [T (X), 2abc t∗(H)].
Thus, finally, we finished the calculation of periods of Y in terms of periods

of X (see Proposition 3.1).

Proposition 3.2. Let (X,H) be a polarized K3 surface with a primitive polar-
ization H such H2 = 2rs, r, s > 0. Assume that N(X) = ZH (i. e. ρ(X) = 1).
Let Y = MX(r,H, s). Let c = (r, s) and a = r/c, b = s/c.

Then N(Y ) = Zh where h2 = 2ab, T (Y ) = [T (X), 2abc t∗(H)], T (Y )∗ =
[T (X), ct∗(H)] and t∗(h) mod T (Y ) = m(a, b)ct∗(H) mod T (Y ) where m(a, b)
mod 2ab is the Mukai element: m(a, b) ≡ −1 mod 2a, m(a, b) ≡ 1 mod 2b.
Thus,

H2(Y,Z) = [N(Y ), T (Y ), h/(2ab) + t∗(h)] =

[Zh, [T (X), 2abc t∗(H)], h/(2ab) +m(a, b)ct∗(H)].

(In general, when ρ(X) ≥ 1, one should replace T (X) by H⊥H2(X,Z) and T (Y )
by h⊥H2(Y,Z).)

Now let us prove Theorem 3.1. We need to recover r and s from periods of
Y . By Proposition 3.2, we have N(Y ) = Zh where h2 = 2ab. Thus, we recover
ab. Since c2 = 2rs/2ab, we recover c.

We have (T (X) ⊗Q,H2,0(X)) ∼= (T (Y ) ⊗ Q,H2,0(Y )). Since X is general,
there exists only one such isomorphism up to multiplication by ±1. It follows
that there exists only one (up to multiplication by ±1) embedding T (X) ⊂
T (Y ) of lattices which identifies H2,0(X) and H2,0(Y ). By Proposition 3.2,
then t∗(h) mod T (Y ) = m̃(a, b)ct∗(H) mod T (Y ) where m̃(a, b) ≡ ±m(a, b)
mod 2ab and m(a, b) is the Mukai element. Assume pα|ab and pα+1 does not
divide ab where p is prime and α > 0. Then m̃(a, b) ≡ ±1 mod 2pα. Evidently,
here only one sing ±1 is possible, and we denote by a the product of all such pα

having m̃(a, b) ≡ −1 mod 2pα, and by by b the product of all such remaining pα

having m̃(a, b) ≡ 1 mod 2pα. If a > b, we should change a and b places. Thus,
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we recover a and b and the reduced primitive Mukai vector (r,H, s) = (ac,H, bc)
such that periods of MX(r,H, s) are isomorphic to the periods of Y .

This finishes the proof.

Remark 3.1. The same Propositions 3.1, 3.2 and the proofs are valid for an
algebraic K3 surface X and a primitive element H ∈ N(X) with H2 = 2rs 6= 0,
if one replaces T (X) by the orthogonal complement H⊥H2(X,Z).

As an example of an application of Theorem 3.1, let us consider the case
when MX(r, l, s) ∼= X. It is known (e.g. see [19]) that for l ∈ N(X) and
±l2 > 0, one has the Tyurin isomorphism

Tyu = Tyu(±l) : MX(±l2/2, l,±1) ∼= X . (3.9)

Existence of such an isomorphism follows at once from Global Torelli Theorem
for K3 surfaces [15] using Propositions 3.1, 3.2 and Remark 3.1.

Thus, for a general K3 surface X and a reduced primitive isotropic Mukai
vector v = (r,H, 1) where r = H2/2, we have MX(r,H, 1) ∼= X. By Theorem
3.1, we then obtain the following result where we also use the well-known fact
that Aut (T (X),H2,0(X)) = ±1 if ρ(X) = 1 (see (4.25) below); it is sufficient
to consider the automorphism group over Z for this result.

Corollary 3.2. Let X be an algebraic K3 surface with ρ(X) = 1, i. e. N(X) =
ZH where H is a primitive polarization of X. Let v = (r,H, s) be a reduced
primitive isotropic Mukai vector on X (see (3.2)), i. e. 0 < r ≤ s.

Then MX(v) ∼= X if and only if v = (1,H,H2/2), i. e. r = 1, s = H2/2.

4 Isomorphisms between MX(v) and X for a gen-
eral K3 surface X with ρ(X) = 2

Here we consider general K3 surfaces X with ρ(X) = rk N(X) = 2. Here
a K3 surface X will be called general if the group of automorphisms of the
transcendental periods is trivial: Aut (T (X),H2,0(X)) = ±1.

For ρ(X) ≥ 2, we don’t know when MX(v1) ∼= MX(v2) for primitive isotropic
Mukai vectors v1 and v2 on X. But we still have the universal isomorphisms
TD, D ∈ N(X), the reflection δ, the isomorphism ν(d1, d2) and the Tyurin
isomorphism Tyu considered in Section 3. They are universal isomorphisms, i.
e. they are defined for all K3 surfaces, even with Picard number one.

First, we review results of [14] and [3] where for general K3 surfaces X with
ρ(X) = 2 all primitive isotropic Mukai vectors v with MX(v) ∼= X were found.
In particular, we know when MX(v1) ∼= MX(v2) in the case when both moduli
are isomorphic to X. The result is that MX(v) ∼= X if and only if there exists
such an isomorphism which is a composition of the universal isomorphisms δ,
TD and ν(d1, d2) between moduli of sheaves over X and the Tyurin isomorphism
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Tyu between moduli of sheaves over X and X itself. More exactly, the results
are as follows.

Using universal isomorphisms TD, we can assume that the primitive isotropic
Mukai vector is

v = (r,H, s), r > 0, s > 0, H2 = 2rs.

(We can even assume that H is ample.) We are interested in the case when
Y = MX(r,H, s) ∼= X.

We denote c = (r, s) and a = r/c, b = s/c. Then (a, b) = 1. Let H is divisible
by d ∈ N where H̃ = H/d is primitive in N(X). Primitivity of v = (r,H, s)
means that (r, d, s) = (c, d) = 1. Since H̃2 = 2abc2/d2 is even, we have d2|abc2.
Since (a, b) = (c, d) = 1, it follows that d = dadb where da = (d, a), db = (d, b),
and we can introduce integers

a1 =
a

d2
a

, b1 =
b

d2
b

.

Then we obtain that H̃2 = 2a1b1c
2.

Let γ = γ(H̃) is defined by H̃ ·N(X) = γZ, i.e. H ·N(X) = γdZ. Clearly,
γ|H̃2 = 2a1b1c

2.
We denote

n(v) = (r, s, dγ) = (r, s, γ). (4.1)

By Mukai [5], we have T (X) ⊂ T (Y ), and

n(v) = [T (Y ) : T (X)] (4.2)

where T (X) and T (Y ) are transcendental lattices of X and Y . Thus,

Y ∼= X =⇒ n(v) = (r, s, dγ) = (c, dγ) = (c, γ) = 1. (4.3)

Assuming that Y ∼= X and then n(v) = 1, we have γ|2a1b1, and we can
introduce

γa = (γ, a1), γb = (γ, b1), γ2 =
γ

γaγb
. (4.4)

Clearly, γ2|2.
In ([14], Theorem 4.4) the following general theorem had been obtained

(about its important particular cases see also [1], [2] and [13]). In the theorem,
we use notations c, a, b, d, da, db, a1, b1 introduced above. The same notations γ,
γa, γb and γ2 as above are used if one replacesN(X) by a 2-dimensional primitive
sublattice N ⊂ N(X), e. g. H̃ ·N = γZ, γ > 0. We denote detN = −γδ and
Zf(H̃) denotes the orthogonal complement to H̃ in N .

Theorem 4.1. Let X be a K3 surface and H a polarization of X such that
H2 = 2rs where r, s ∈ N. Assume that the Mukai vector (r,H, s) is primitive.
Let Y = MX(r,H, s) be the K3 surface which is the moduli of sheaves over X
with the isotropic Mukai vector v = (r,H, s). Let H̃ = H/d, d ∈ N, be the
corresponding primitive polarization.

11



We have Y ∼= X if there exists h̃1 ∈ N(X) such that H̃ and h̃1 belong to
a 2-dimensional primitive sublattice N ⊂ N(X) such that H̃ · N = γZ, γ > 0,
(c, dγ) = 1, and the element h̃1 belongs to the a-series or to the b-series described
below:

h̃1 belongs to the a-series if

h̃2
1 = ±2b1c, H̃ · h̃1 ≡ 0 mod γ(b1/γb)c, f(H̃) · h̃1 ≡ 0 mod δb1c (4.5)

(where γb = (γ, b1));
h̃1 belongs to the b-series if

h̃2
1 = ±2a1c, H̃ · h̃1 ≡ 0 mod γ(a1/γa)c, f(H̃) · h̃1 ≡ 0 mod δa1c (4.6)

(where γa = (γ, a1)).
These conditions are necessary to have Y ∼= X if ρ(X) ≤ 2 and X is a

general K3 surface with its Picard lattice, i. e the automorphism group of the
transcendental periods (T (X),H2,0(X)) is ±1.

In [3], the theorem 4.1 was geometrically interpreted as follows.

Theorem 4.2. Let X be a K3 surface and H a polarization of X such that
H2 = 2rs where r, s ∈ N. Assume that the Mukai vector (r,H, s) is primitive.
Let Y = MX(r,H, s) be the K3 surface which is the moduli of sheaves over X
with the isotropic Mukai vector v = (r,H, s). Let H̃ = H/d, d ∈ N, be the
corresponding primitive polarization.

Assume that there exists h̃1 ∈ N(X) such that H̃ and h̃1 belong to a 2-
dimensional primitive sublattice N ⊂ N(X) such that H̃ · N = γZ, γ > 0,
(c, dγ) = 1, and the element h̃1 belongs to the a-series or to the b-series described
below:

h̃1 belongs to the a-series if

h̃2
1 = ±2b1c, H̃ · h̃1 ≡ 0 mod γ(b1/γb)c, f(H̃) · h̃1 ≡ 0 mod δb1c (4.7)

(where γb = (γ, b1));
h̃1 belongs to the b-series if

h̃2
1 = ±2a1c, H̃ · h̃1 ≡ 0 mod γ(a1/γa)c, f(H̃) · h̃1 ≡ 0 mod δa1c (4.8)

(where γa = (γ, a1)).
Then we have:
If h̃1 belongs to the a-series, then

h̃1 = d2H̃ + b1cD for some d2 ∈ N, D ∈ N, (4.9)

which defines the isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · δ · ν(da, db)−1 : Y = MX(r,H, s) ∼= X. (4.10)
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If h̃1 belongs to the b-series, then

h̃1 = d2H̃ + a1cD for some d2 ∈ N, D ∈ N, (4.11)

which defines the isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · ν(da, db)−1 : Y = MX(r,H, s) ∼= X. (4.12)

Since conditions of Theorems 4.1, 4.2 are necessary for general K3 surfaces
with ρ(X) ≤ 2, we obtain

Theorem 4.3. Let X be a K3 surface with a polarization H such that H2 = 2rs,
r, s ≥ 1, the Mukai vector (r,H, s) be primitive, and Y = MX(r,H, s) be the
moduli of sheaves over X with the isotropic Mukai vector (r,H, s). Assume that
ρ(X) ≤ 2 and X is general with its Picard lattice (i. e. the automorphism group
of the transcendental periods Aut(T (X), H2,0(X)) = ±1). Let H̃ = H/d, d ∈ N,
be the corresponding primitive polarization.

Then Y = MX(r,H, s) is isomorphic to X if and only if there exists d2 ∈ N
and D ∈ N = N(X) such that

either
h̃1 = d2H̃ + b1cD has h̃2

1 = ±2b1c, (4.13)

which defines the isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · δ · ν(da, db)−1 : Y = MX(r,H, s) ∼= X, (4.14)

or
h̃1 = d2H̃ + a1cD has h̃2

1 = ±2a1c, (4.15)

which defines the isomorphism

Tyu(±h̃1) · TD · ν(1, d2) · ν(da, db)−1 : Y = MX(r,H, s) ∼= X. (4.16)

Theorem 3.1 clarifies appearance of the isomorphisms TD, δ, ν(d1, d2) and
Tyu in these results for Picard number 2. They are universal and exist for all
K3 surfaces; moreover, they are all isomorphisms which one needs to distinguish
isomorphic moduli MX(v) for isotropic Mukai vectors v on a general K3 surface
X. Thus, appearance of the isomorphisms TD, δ, ν(d1, d2) and Tyu is very
natural in the results above.

Remark 4.1. For The Picard number ρ(X) = 1, Theorems 4.1, 4.2 and 4.3 are
formally equivalent to Corollary 3.2. Really, for ρ(X) = 1 we have γ = 2a1b1c

2.
Thus, (γ, c) = 1 implies that c = 1. Then γ = 2a1b1 and γ2 = 2, γa = a1,
γb = b1. Conditions of Theorem 4.1 can be satisfied only for h̃1 = H̃ which
implies that a1 = 1 for the a-series, and b1 = 1 for the b-series (one can formally
put f(H̃) = 0). Thus, for ρ(X) = 1 and general X, we have Y ∼= X if and only
if c = 1 and either a1 = 1 or b1 = 1. This is equivalent to Corollary 3.2.
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Under conditions of Theorem 4.1, let us assume that for a primitive 2-
dimensional sublattice N ⊂ N(X) an element h̃1 ∈ N with h̃2

1 = ±2b1c be-
longs to the a-series. This is equivalent to the condition (4.9) of Theorem 4.2.
Replacing h̃1 by −h̃1 if necessary, we see that (4.9) is equivalent to

h̃1 = d2H̃ + b1cD, d2 ∈ Z, D ∈ N. (4.17)

Since H̃ is primitive, the lattice N has a basis H̃, D ∈ N , i. e. N = [H̃, D].
Since H̃ ·N = γZ where (γ, c) = 1, the matrix of N in this basis is

(
H̃2 H̃ ·D
H̃ ·D D2

)
=
(

2a1b1c
2 γk

γk 2t

)
(4.18)

where k, t ∈ Z and γ|2a1b1, (γ, c) = 1 and (2a1b1c
2/γ, k) = 1.

The condition of a-series (4.17) is then equivalent to existence of h̃1 ∈
[H̃, b1cN ] = [H̃, b1cD] with h̃2

1 = ±2b1c. Thus, the lattice N1 = [H̃, b1cD]
with the matrix (

2a1b1c
2 b1cγk

b1cγk b21c
22t

)
(4.19)

must have h̃1 with h̃2
1 = ±2b1c. Writing h̃1 as h̃1 = xH̃ + yb1cD, we obtain

that the quadratic equation a1cx
2 + γkxy + b1cty

2 = ±1 must have an integral
solution. Similarly, for b-series we obtain the equation b1cx2 + γkxy+ a1cty

2 =
±1. Thus, we finally obtain a very elementary reformulation of the results above.

Lemma 4.1. For the matrix (4.18) of the lattice N in Theorems 4.1, 4.2 and
4.3, the conditions of a-series are equivalent to existence of an integral solution
of the equation

a1cx
2 + γkxy + b1cty

2 = ±1, (4.20)

and for b-series of the equation

b1cx
2 + γkxy + a1cty

2 = ±1. (4.21)

This calculation has a very important corollary. Let us assume that a prime
p|γb = (γ, b1). Then for the equation (4.20) we obtain a congruence a1cx

2 ≡ ±1
mod p. Thus, ±a1c is a square mod p. Similarly, for the equation (4.21), we
obtain that ±b1c is a square mod p for a prime p|γa = (γ, a1).

Thus, we obtain an important necessary condition of Y = MX(v) ∼= X for
ρ(X) = 2.

Theorem 4.4. Let X be a K3 surface with a polarization H such that H2 = 2rs,
r, s ≥ 1, the Mukai vector (r,H, s) be primitive, and Y = MX(r,H, s) be the
moduli of sheaves over X with the isotropic Mukai vector (r,H, s). Assume that
ρ(X) ≤ 2 and X is general with its Picard lattice (i. e. the automorphism group
of the transcendental periods Aut(T (X), H2,0(X)) = ±1). Let H̃ = H/d, d ∈ N,
be the corresponding primitive polarization, H̃ ·N(X) = γZ and (γ, c) = 1.
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Then Y = MX(r,H, s) ∼= X implies that for one of ± either

∀ p|γb =⇒
(±a1c

p

)
= 1 (4.22)

or

∀p|γa =⇒
(±b1c

p

)
= 1. (4.23)

Here p means any prime, and
(
x
2

)
= 1 means that x ≡ 1 mod 8.

Thus, if

∀ ±
(
∃ p|γb such that

(±a1c

p

)
= −1 and ∃p|γasuch that

(±b1c
p

)
= −1

)

(4.24)
then Y = MX(r,H, s) is not isomorphic to X for a general (for its Picard
lattice) K3 surface X with ρ(X) ≤ 2.

Example 4.1. Assume that a1 = 5, b1 = 13, c = 1 and γ = 5·13 (or γ = 2·5·13).
Obviously, then (4.24) is valid. Thus, for

v = (5,H, 13), H2 = 2 · 5 · 13, and γ = 5 · 13 or 2 · 5 · 13

(then H is always primitive), for any general K3 surface X with ρ(X) = 2 and
any H ∈ N(X) with H2 = 2 ·5 ·13 and H ·N(X) = γZ, the moduli Y = MX(v)
are not isomorphic to X. There are a lot of such Picard lattices given by (4.18).

In [13], it is shown that any primitive isotropic Mukai vector v = (r,H, s)
with H2 = 2rs and γ = 1 can be realized by a general K3 surface X with
Picard number 2 and Y = MX(v) ∼= X. It is possible that Theorem 4.4 gives
all necessary conditions to have similar result for any γ. We hope to consider
this problem later.

Importance of these results for general K3 surfaces X with ρ(X) = 2 is that
these results describe all divisorial conditions on moduli of polarized K3 surfaces
which imply that Y = MX(r,H, s) ∼= X. Let us consider the corresponding
simple general arguments.

It is well-known (see [9] and [11] where it was observed first, it seems) that
Aut(T (X),H2,0(X)) ∼= Cm is a finite cyclic group of the order m, and its
representation in T (X) ⊗ Q is the sum of irreducible representations of the
dimension φ(m) (φ(m) is the Euler function), and H2,0(X) is a line in one of
eigen-spaces of Cm. In particular, φ(m)|rkT (X) and the dimension of moduli
of these X is equal to

dimMod(X) =
rk T (X)
φ(m)

− 1 (4.25)

if m > 2. If m = 1, 2, then dimMod(X) = rk T (X)− 2.
Let us consider polarized K3 surfaces (X,H) with the polarization H2 = 2rs

and a primitive isotropic Mukai vector (r,H, s), r, s > 0. Let us assume that
Y = MX(r,H, s) ∼= X.
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If ρ(X) = 1, then rk T (X) = 21 and φ(m)|21. It follows that m = 1 or
m = 2 because 21 is odd. Thus Aut(T (X),H2,0(X)) = ±1, and then c = 1 and
either a1 = 1 or b1 = 1 by Corollary 3.2 (or Remark 4.1). By specialization
principle (see Lemma 2.1.1 in [14]), then Y ∼= MX(r,H, s) for all K3 surfaces X
and the Mukai vector with these invariants:

c = 1, and either a1 = 1 or b1 = 1. (4.26)

Now let us assume that (r,H, s) does not satisfy (4.26), but Y = MX(r,H, s)
∼= X. By Corollary 3.2, then ρ(X) 6= 1. Then ρ(X) ≥ 2 and dimMod(X) ≤
20−ρ(X) ≤ 18. Thus, a divisorial condition on moduli or polarized K3 surfaces
(X,H) to have Y = MX(r,H, s) ∼= X means that ρ(X) = 2 for a general
K3 surface satisfying this condition. All these conditions are described by the
isomorphism classes of H ∈ N(X) where rk N(X) = 2 and H ∈ N(X) satisfies
the equivalent (for this case) Theorems 4.1, 4.2 or 4.3. If H ∈ N ⊂ N(X) is a
primitive sublattice of the rank two and H ∈ N satisfies equivalent Theorems
4.1 4.2, then Y = MX(r,H, s) ∼= X by the specialization principle. This means
that X belongs to the closure of the divisor defined by the moduli of polarized
K3 surfaces (X ′,H) with the Picard lattice N(X ′) = N of the rank two. Thus,
Y ′ = MX(r,H, s) ∼= X ′ because X ′ satisfies the divisorial condition H ∈ N
where H ∈ N ⊂ N(X ′).

By Theorem 4.4 we obtain

Theorem 4.5. Let for r, s ≥ 1,

v = (r,H, s), H2 = 2rs

be a type of a primitive isotropic Mukai vector, and γ|2a1b1, and (γ, c) = 1.
Then, if (4.24) is valid, there does not exist a divisorial condition on mod-

uli of polarized K3 surfaces (X,H) which implies Y = MX(r,H, s) ∼= X and
H · N(X) = γZ. Thus, these K3 surfaces have codimension at least 2 in 19-
dimensional moduli of polarized K3 surfaces (X,H).

For example, this is valid for r = 5, s = 13 (then H is primitive and d = 1),
and γ = 5 · 13 (or γ = 2 · 5 · 13).

In the section below, we will show that the numerical example of Theorem
4.5 can be satisfied by K3 surfaces X with ρ(X) = 3. Thus, these K3 surfaces
define a 17-dimensional submoduli in 19-dimensional moduli of polarized K3
surfaces. This submoduli cannot be extended to a divisor in moduli preserving
the condition Y = MX(r,H, s) ∼= X.

5 Isomorphisms between MX(v) and X for a gen-
eral K3 surface X with ρ(X) ≥ 3

Here we show that it is interesting and non-trivial to generalize results of the
previous section to ρ(X) ≥ 3.

16



Let K = [e1, e2, (e1 +e2)/2] be a negative definite 2-dimensional lattice with
e2

1 = −6, e2
2 = −34 and e1 · e2 = 0. Then ((e1 + e2)/2)2 = (−6− 34)/4 = −10 is

even, and the lattice K is even. Since 6x2 + 34y2 = 8 has no integral solutions,
it follows that K has no elements δ ∈ K with δ2 = −2. Let us consider the
lattice

S = ZH ⊕K
which is the orthogonal sum of ZH with H2 = 2 · 5 · 13 and the lattice K. By
standard results about K3 surfaces, there exists a polarized K3 surface (X,H)
with the Picard lattice S and the polarization H ∈ S. We then have H · S =
2 · 5 · 13Z. Thus, γ = 2 · 5 · 13.

Let Y = MX(5,H, 13). We have the following result. Perhaps, it gives the
main result of the paper.

Theorem 5.1. For any polarized K3 surface (X,H) with N(X) = S where S is
the hyperbolic lattice of the rank 3 defined above, one has Y = MX(5,H, 13) ∼= X
which gives a 17-dimensional moduli MS of polarized K3 surfaces (X,H) with
Y = MX(5, H, 13) ∼= X.

On the other hand, MS is not contained in any 18-dimensional moduli MN

of polarized K3 surfaces (X ′,H) where H ∈ N(X ′) = N ⊂ S is a primitive
sublattice of rk N = 2 and MX′(5,H, 13) ∼= X ′. Thus, MS is not defined by any
divisorial condition on moduli of polarized K3 surfaces (X,H) (or, it is not a
specialization of) implying MX(5,H, 13) ∼= X.

Proof. For this case, c = (5, 13) = 1 and (γ, c) = 1. By Mukai results (3.4) and
(4.2), then the transcendental periods (T (X),H2,0(X)) and (T (Y ),H2,0(Y ))
are isomorphic. The discriminant group AS = S∗/S of the lattice S = T (X)⊥

is a cyclic group Z/(2 · 5 · 13 · 3 · 17Z). Thus, the minimal number l(AS) of
generators of AS is one. Thus, l(AS) ≤ rk S − 2. By Theorem 1.14.4 in [10],
a primitive embedding of T (X) into the cohomology lattice of K3 (which is an
even unimodular lattice of signature (3, 19)) is then unique, up to isomorphisms.
It follows that the isomorphism between transcendental periods of X and Y can
be extended to an isomorphism between periods of X and Y . By Global Torelli
Theorem for K3 surfaces [15], the K3 surfaces X and Y are isomorphic. (These
considerations are now standard.)

Let H ∈ N ⊂ S be a primitive sublattice with rk N = 2. Since H · S =
H · HZ = 2 · 5 · 13Z, it follows that H · N = 2 · 5 · 13Z, and the invariant
γ = 2 · 5 · 13 is the same for any sublattice N ⊂ S containing H. By Theorem
4.5, then MX′(r,H, s) is not isomorphic to X ′ for any general K3 surface (X ′,H)
with N(X ′) = N .

This finishes the proof.

Similar arguments can be used to prove the following general statement for
ρ(X) ≥ 12 which shows that there are many cases when Y = MX(r,H, s) ∼= X
which don’t follow from divisorial conditions on moduli. Its first statement is
well-known (e. g. see Proposition 2.2.1 in [1]).
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Theorem 5.2. Let (X,H) be a polarized K3 surface with ρ(X) ≥ 12, and for
r, s ≥ 1 let (r,H, s) be a primitive isotropic Mukai vector on X, i. e. H2 = 2rs
and (c, d) = 1. Assume that H̃ ·N(X) = γZ.

Then Y = MX(r,H, s) ∼= X if (γ, c) = 1 (Mukai necessary condition).
On the other hand, if (4.24) satisfies, the isomorphism Y = MX(r,H, s) ∼=

X does not follow from any divisorial condition on moduli of polarized K3 sur-
faces. I. e. for any primitive 2-dimensional sublattice H ∈ N ⊂ N(X), there ex-
ists a polarized K3 surface (X ′,H) with N(X ′) = N such that Y ′ = MX′(r,H, s)
is not isomorphic to X ′.

Proof. Since ρ(X) ≥ 12, then rk T (X) ≤ 22 − 12 = 10 and l(AT (X)) ≤
rk T (X) = 10. Since N(X) and T (X) are orthogonal complements to one
another in the unimodular lattice H2(X,Z), it follows that AN(X)

∼= AT (X)

and l(AN(X)) ≤ 10 ≤ rk N(X) − 2. By Theorem 1.14.4 in [10], a primitive
embedding of T (X) into the cohomology lattice of K3 is then unique up to
isomorphisms. Like in the proof of Theorem 5.1, it follows that Y ∼= X.

Let us prove the second statement. Since H · N(X) = γZ and H ∈ N ⊂
N(X), it follows that H ·N(X ′) = γ(N)Z where γ|γ(N). If (c, γ(N)) > 1, then
Y ′ is not isomorphic to X because [T (Y ′) : T (X ′)] = (c, γ(N)) > 1 by Mukai’s
result (4.2). Assume (c, γ(N)) = 1. Obviously, (4.24) for γ implies (4.24) for
γ(N). Let X ′ be a general K3 surface with N(X ′) = N . By Theorem 4.4, then
Y ′ = MX′(r,H, s) is not isomorphic to X ′.

This finishes the proof.

Theorems 5.1 and 5.2 can be unified to the following the most general
(known) statement: when Y = MX(r,H, s) ∼= X for any primitive isotropic
Mukai vector on X satisfying Mukai’s necessary condition.

Theorem 5.3. Let X be a K3 surface, the Picard lattice N(X) is unique in its
genus, and the natural homomorphism

O(N(X))→ O(qN(X))

is surjective where qN(X) is the discriminant quadratic form of N(X). Equiv-
alently, any isomorphism of the transcendental periods of X and another K3
surface can be extended to an isomorphisms of periods of X and the other K3
surface.

Then for any primitive isotropic Mukai vector v = (r,H, s) on X such that
(c, γ) = 1 (Mukai necessary condition), one has Y = MX(r,H, s) ∼= X.

On the other hand, if X is general, i. e. Aut (T (X),H2,0(X)) = ±1, and
(4.24) satisfies, then the isomorphism Y = MX(r,H, s) ∼= X does not follow
from any divisorial condition on moduli of polarized K3 surfaces (X,H). I.
e. for any primitive 2-dimensional sublattice H ∈ N ⊂ N(X), there exists a
polarized K3 surface (X ′,H) with N(X ′) = N such that Y ′ = MX′(r,H, s) is
not isomorphic to X ′.

The results of Section 4 and these results suggest the following general con-
cepts.
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Let r ∈ N and s ∈ Z. We formally put H2 = 2rs and introduce c = (r, s)
and a = r/c, b = s/c. Let d ∈ N, (d, c) = 1 and d2|ab. We call

(r,H, s), H2 = 2rs, d (5.1)

the type of a primitive isotropic Mukai vector of K3. Clearly, a Mukai vector
of the type (5.1) on a K3 surface X is just an element H ∈ N(X) such that
H2 = 2rs and H̃ = H/d is primitive. Like above, we introduce da = (d, a),
db = (d, b) and put a1 = a/d2

a, b1 = b/d2
b . Then H̃2 = 2a1b1c

2.
Let N be an even lattice which can be primitively embedded into a Picard

lattice of some algebraic K3 surface (equivalently, there exists a Kählerian K3
surface with this Picard lattice). This is equivalent for N to be either negative
definite, or semi-negative definite with 1-dimensional kernel, or hyperbolic (i. e.
N has the signature (1, ρ− 1)), and to have a primitive embedding into an even
unimodular lattice of the signature (3, 19). Further, we call N as an abstract
K3 Picard lattice (or just a K3 Picard lattice). Let H ∈ N . We call H ∈ N as
a polarized (abstract) K3 Picard lattice, in spite of H2 can be non-positive. We
consider such pairs up to natural isomorphisms. Another polarized K3 Picard
lattice H ′ ∈ N ′ is called isomorphic to H ∈ N if there exists an isomorphism
f : N ∼= N ′ of lattices such that f(H) = H ′.

Definition 5.1. Let us fix a type (5.1) of a primitive isotropic Mukai vector of
K3. A polarized K3 Picard lattice H ∈ N is called critical for correspondences
of a K3 surface with itself via moduli of sheaves for the type (5.1) of Mukai
vector (further we abbreviate this as H ∈ N is a critical polarized K3 Picard
lattice for the type (5.1)) if H2 = 2rs and H̃ = H/d ∈ N is primitive; moreover
the conditions (a) and (b) below satisfy:

(a) for any K3 surface X such that H ∈ N ⊂ N(X) is a primitive sublattice,
one has Y = MX(r,H, s) ∼= X.

(b) the condition (a) above is not valid if one replaces H ∈ N by H ∈ N1

for any primitive sublattice H ∈ N1 ⊂ N of N of strictly smaller rank rk N1 <
rk N .

In ([14], Theorem 2.3.3), for a polarized K3 Picard lattice H ∈ N , the
criterion is given for a general (and then any) K3 surface with H ∈ N = N(X) to
have Y = MX(r,H, s) ∼= X. Moreover, by the specialization principle (Lemma
2.1.1 in [14]), if this criterion is satisfied, then Y = MX(r,H, s) ∼= X for any
K3 surface X such that H ∈ N ⊂ N(X) is a primitive sublattice. Thus, for the
problem of describing in terms of Picard lattices, of all K3 surfaces X such that
Y = MX(r,H, s) ∼= X, the main problem is as follows.

Problem 5.1. For a given type of a primitive isotropic Mukai vector (5.1)
of K3, describe all critical polarized K3 Picard lattices H ∈ N (for the
problem of correspondences of a K3 surface with itself via moduli of sheaves).

Now we have the following examples of solution of this problem.

By (3.9), or Corollary 3.2, or Remark 4.1, we have classification of critical
polarized K3 Picard lattices of the rank one.
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Example 5.1. For the type (r,H, s), H2 = 2rs, d where c = 1 and either
a1 = 1 or b1 = ±1, we obtain that N = ZH̃ where H̃2 = 2a1b1 gives all critical
polarized K3 Picard lattices H = dH̃ ∈ N of the rank one.

Example 5.2. For the type of Mukai vector which is different from Example
5.1, classification of the critical polarized K3 Picard lattices of the rank 2 is
given by equivalent Theorems 4.1, 4.2 or 4.3.

Example 5.3. For the Mukai vector of the type (5, H, 13) with H2 = 2 · 5 · 13
and d = 1, the polarized Picard lattice H ∈ S of Theorem 5.1 is critical of the
rank rk S=3, by Theorem 5.1. Obviously, there are plenty of similar examples.
It would be very interesting and non-trivial to find all critical polarized K3
Picard lattices H ∈ S of the rank 3.

Example 5.4. By Theorem 5.2, we should expect that there exist critical po-
larized K3 Picard lattices of the rank more than 3. On the other hand, the same
Theorem 5.2 gives that the rank of a critical polarized K3 Picard lattice is less
or equal to 12.

We have

Theorem 5.4. For any type (r,H, s), H2 = 2rs and d of a primitive isotropic
Mukai vector of K3, the rank of a critical polarized K3 Picard lattice H ∈ N is
not more than 12: we have rk N ≤ 12.

Proof. Let H ∈ N be a critical polarized K3 Picard lattice of this type and
rk N ≥ 13. Let us take any primitive sublattice H ∈ N ′ ⊂ N of the rk N ′ = 12
such that H̃ ·N ′ = H̃ ·N . Obviously, it does exist. Let X be an algebraic K3
surface such thatH ∈ N ′ ⊂ N(X). Then rk N(X) ≥ 12 and Y = MX(r,H, s) ∼=
X by Theorem 5.2.

Then the condition (b) of Definition 5.1 is not satisfied, and we get a con-
tradiction. Thus, rk N ≤ 12.

This finishes the proof.

It would be very interesting to give an exact estimate for the rank of critical
polarized K3 Picard lattices.

Problem 5.2. For a given type (5.1) of a primitive isotropic Mukai vector of
K3, give the exact estimate of the rank rk N of a critical polarized K3 Picard
lattices H ∈ N of this type (for the problem of isomorphisms of K3 surfaces
with itself).

Now we don’t know the answer to this problem for any type (5.1) different
from Example 5.1.
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6 Compositions of correspondences of a K3 sur-
face with itself via moduli of sheaves. The
general Problem of classification of correspon-
dences of a K3 surface with itself via moduli
of sheaves

Here we want to interpret the results above in terms of the action of correspon-
dences on 2-dimensional cohomology lattice of a K3 surface. Moreover, we try
to formulate the general problem of classification of correspondences of a K3
surface with itself via moduli of sheaves.

Let v = (r,H, s) be a primitive isotropic Mukai vector on a K3 surface X
and Y = MX(r,H, s). We denote by πX and πY the corresponding projections
of X × Y to X and Y respectively.

By Mukai ([5], Theorem 1.5), the corresponding quasi-universal sheaf E on
X × Y and defined by this sheaf algebraic cycle

ZE =
(
πX
∗√tdX

)
· ch(E) ·

(
πY
∗√tdY

)
/σ(E) (6.1)

give the isomorphism of the full cohomology groups and the corresponding
Hodge structures

fZE : H∗(X,Q)→ H∗(Y,Q), t 7→ πY ∗(ZE · πX∗t). (6.2)

Moreover, according to Mukai, it defines the isomorphism of lattices (or isome-
try)

fZE : v⊥ → H4(Y,Z)⊕H2(Y,Z)

where fZE (v) = w ∈ H4(Y,Z) is the fundamental cocycle, and the orthogonal
complement v⊥ is taken in the Mukai lattice H̃(X,Z). It follows Mukai’s formula
(3.4) which we have used in Sect. 3.

In particular, taking the composition of fZE with the projection
π : H4(Y,Z) ⊕H2(Y,Z)→ H2(Y,Z), we obtain the embedding of lattices

fZE : H⊥H2(X,Z) → H2(Y,Z)

which can be extended to the isometry

f̃ZE : H2(X,Q)→ H2(Y,Q) (6.3)

of the quadratic forms over Q by Witt’s Theorem.
If H2 = 0, this extension is unique.
If H2 6= 0, there are two such extensions different by ±1 on ZH. Let us

agree to take
f̃ZE (H̃) = ch (6.4)
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where h is defined in (3.5), and we use Proposition 3.2 which relates periods of
X and Y .

The defined Hodge isometry (6.3) can be considered as a little change of
the Mukai’s algebraic cycle (6.1) to get an isometry in second cohomologies.
Clearly, it is also defined by some algebraic cycle because changes the Mukai
isomorphism (6.2) only in the algebraic part.

By Proposition 3.2, we obtain that the isometry f̃E is given by the embed-
dings

H̃⊥ ⊂ h⊥ = [H̃⊥, 2a1b1ct
∗(H̃)], ZH̃ ⊂ Zh, H̃ = ch,H2,0(X) = H2,0(Y ).

(6.5)
This identifies quadratic forms H2(X,Q) = H2(Y,Q) over Q, and the lattices
H2(X,Z), H2(Y,Z) as its two sublattices.

Let
O(H2(X,Q))0 = {f ∈ O(H2(X,Q)) | f |T (X) = ±1} ∼=

∼= O(N(X)⊗Q)× {±1T (X)},
and

O(H2(X,Z))0 = O(H2(X,Z)) ∩O(H2(X,Q))0.

By Global Torelli Theorem for K3 surfaces [15], we immediately obtain:

Proposition 6.1. If a K3 surface X is general for its Picard lattice, then
Y = MX(r,H, s) ∼= X if and only if there exists an automorphism φ(r,H, s) ∈
O(H2(X,Q)0) such that φ(H2(X,Z)) = H2(Y,Z).

If Y ∼= X, then we can give the definition.

Definition 6.1. If Y = MX(r,H, s) ∼= X and X is general for its Picard lattice,
then the isomorphism of Proposition 6.1

φ(r,H, s) mod O(H2(X,Z))0 ∈ O(H2(X,Q))0/O(H2(X,Z))0

is called the action on H2(X,Q) of the correspondence of a general (for its
Picard lattice) K3 surface X with itself via moduli of sheaves Y = MX(r,H, s)
on X with the primitive isotropic Mukai vector v = (r,H, s).

By Global Torelli Theorem for K3 surfaces [15], the group O(H2(X,Z))0

mod ±1 can be considered as generated by correspondences defined by graphs of
automorphisms of X and by the reflections sδ : x 7→ x+(x·δ)δ, x ∈ H2(X,Z), in
elements δ ∈ N(X) with δ2 = −2. By Riemann–Roch Theorem for K3 surfaces,
±δ contains an effective curve E. If ∆ ⊂ X ×X is the diagonal, the effective
2-dimensional algebraic cycle ∆ + E × E ⊂ X ×X acts as the reflection sδ in
H2(X,Z) (the author knows this from Mukai [8]). Thus, considering actions of
correspondences modulo O(H2(X,Z))0 mod ± 1 is very natural.

Let us consider Tyurin’s isomorphism (3.9) defined by the Mukai vector
v = (±H2/2,H,±1) where H ∈ N(X) has H2 6= 0 and ±H2 > 0. Assume that
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H̃ = H/d is primitive. Then MX(±H2/2,H,±1) ∼= MX(±H̃2/2 H̃,±1), and
we can assume that H̃ is primitive.

Then c = 1, a1 = ±H̃2/2 and b1 = ±1, m(a1, b1) ≡ −1 mod 2a1b1, h = H̃.
We have

H2(X,Z) = [ZH̃, H̃⊥, H̃ + t∗(H̃)],

H2(Y,Z) = [ZH̃, H̃⊥, H̃ − t∗(H̃)].

Then the reflection s eH with respect to H̃,

s eH(x) = x− 2(x · H̃)H̃

H̃2
, x ∈ H2(X,Q),

belongs to O(H2(X,Q))0, and s eH(H2(X,Z)) = H2(Y,Z). Moreover, the reflec-
tions sH and s eH coincide.

Thus, we obtain

Proposition 6.2. For a K3 surface X and H ∈ N(X) with ±H2 > 0, the
Tyurin isomorphism

MX(±H2, H,±1) ∼= X

defines the correspondence of X with itself with the action

sH mod O(H2(X,Z)0)

where sH is the reflection in the element H.
By classical and well-known results, their compositions generate the full

group O(H2(X,Q))0 mod ± 1.

6.1 The general problem of classification of correspon-
dences of a K3 surface with itself via moduli of sheaves

We will need some notations. For a sublattice N ⊂ N(X), we introduce

O(N ⊗Q)0 = {f ∈ O(H2(X,Q)) | f |N⊥H2(X,Z) = ±1}

and
O(N)0 = O(H2(X,Z)) ∩O(N ⊗Q)0.

Let X be a general (for its Picard lattice) K3 surface X and N(X) its
Picard lattice. The problem of classification of correspondences of X with itself
via moduli of sheaves consists of the following problems (from the author’s point
of view now):

(1) Find all primitive isotropic Mukai vectors (r,H, s) on X such that Y =
MX(r,H, s) ∼= X.

(2) For a primitive isotropic Mukai vector (r,H, s) from (1), find all critical
polarized Picard sublattices H ∈ N(r,H, s) ⊂ N(X).
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For each of them, the corresponding action of the correspondence φ(r,H, s)
from Definition 6.1 can be taken from O(N(r,H, s) ⊗ Q)0. We denote it as
φN(r,H,s), and it looks like a reflection with respect to N(r,H, s). For two
critical polarized Picard sublattices H ∈ N(r,H, s) and H ∈ N ′(r,H, s), the
automorphisms φN(r,H,s) and φN ′(r,H,s) are different by an automorphism from
O(H2(X,Z))0.

(3) The structures (1) and (2) are important because for two primitive
isotropic Mukai vectors (r,H, s) and (r′,H ′, s′) from (1) and two their crit-
ical polarized Picard sublattices H ∈ N(r,H, s) and H ′ ∈ N(r′,H ′, s′), the
isomorphism between MX(r,H, s) and MX(r′,H ′, s′) which is defined by

φN(r′,H′,s′)φ
−1
N(r,H,s),

comes from K3 surfaces with the Picard sublattice N(r,H, s) + N(r′,H ′, s′) ⊂
N(X), and it can be considered as a natural isomorphism between these moduli.

(4) All these generators φN(r,H,s) mod O(N(r,H, s))0 can be considered as
natural generators for correspondences of X with itself via moduli of sheaves,
together with automorphisms of X and reflections sδ, δ ∈ N(X) and δ2 = −2.
They and their relations are the natural subject to study.

For ρ(X) = 1, 2, problems (1)—(4) are solved. See Sections 3 and 4. Results
of Sect. 5 show that these problems are very non-trivial for ρ(X) ≥ 3.

As an example, let us take a general K3 surface X with the Picard lattice
N(X) = S of Theorem 5.1 of the rank three (or any other Picard lattice of the
rank three which satisfies Theorem 5.3). Let v = (r,H, s) be a primitive isotropic
Mukai vector on X. Then Y = MX(r,H, s) ∼= X if and only if (γ, c) = 1 where
H̃ · S = γZ. Moreover, we have three cases:

(a) If c = 1 and either a1 = 1 or b1 = ±1 (Tyurin’s case), then the critical
sublattice is N(v) = ZH̃, it has the rank one and is unique. The corresponding
φN(v) = sH mod O(H2(X,Z))0.

(b) If v = (r,H, s) is different from (a), but the critical sublattice N(v)
has the rank two (the divisorial case), then all critical sublattices N(v) are
generated by H̃ and h̃1 ∈ [H̃, a1cN(X)] with h̃2

1 = ±2a1c or h̃1 ∈ [H̃, b1cN(X)]
with h̃2

1 = ±2b1c. (See theorems of Sect. 4). All these N(v) give automorphisms
φN(v) which are different by elements from O(H2(X,Z))0.

(c) If v = (r,H, s) is different from (a) and (b), then the critical sublattice
N(v) = N(X) has the rank three. These cases really happen by Theorem 5.1.
We obtain φN(v) mod O(H2(X,Z))0.

Any two v1, v2 satisfying one of these conditions (a), (b) or (c), and corre-
sponding their critical sublattices N(v1), N(v2) generate natural isomorphisms
φN(v2)φ

−1
N(v1) between corresponding moduli of sheaves over X (all of them are

isomorphic to X) which are specializations of the corresponding isomorphisms
from the Picard sublattice N(v1) +N(v2) ⊂ N(X).
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A reader can see that our general idea is that a very complicated structure of
correspondences of a general (for its Picard lattice) K3 surface X with itself via
moduli of sheaves is hidden inside of the abstract Picard lattice N(X), and we
try to recover this structure. This should lead to some non-trivial constructions
related to the abstract Picard lattice N(X) and more closely relate it to the
geometry of the K3 surface.
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