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0. Introduction

(0.1) Let F be a totally real number field of degree d. It is well known that one can associate to any
cuspidal Hilbert eigenform f over F of parallel weight 2 a compatible system of two-dimensional l-adic
Galois representations Vl(f) of ΓF = Gal(Q/F ) over Ql (having fixed embeddings Q ↪→ C and Q ↪→ Ql).
(0.2) On the other hand, the Shimura variety X associated to RF/QGL(2)F has reflex field Q, which
means that its étale cohomology groups give rise to l-adic representations of ΓQ = Gal(Q/Q). The action
of ΓQ on the intersection cohomology of the Bailey-Borel compactification X∗ of X was determined, up
to semi-simplification, by Brylinski and Labesse [Br-La]: non-primitive cohomology (into which we include
IH0) occurs in even degrees and decomposes as

IH2j
et (X∗ ⊗Q Q,Ql)non−prim

∼−→
⊕

χ

χ(−j),

where each χ is a finite order character of ΓQ. Primitive cohomology occurs only in degree d and its
semi-simplification decomposes as

IHd
et(X

∗ ⊗Q Q,Ql)
ss
prim

∼−→
⊕

f

π(f)⊗Wl(f),

where f is as above, π(f) is the automorphic representation of GL(2,AF ) associated to f , and

Wl(f) = Ind⊗F/QVl(f)

(the tensor induction of Vl(f)) is a 2d-dimensional l-adic representation of ΓQ, which is defined as follows.
A choice of coset representatives

ΓQ =
d∐

i=1

giΓF (0.2.1)

defines an injective group homomorphism

ΓQ ↪→ Sd n Γd
F , g 7→ (σ, (h1, . . . , hd)), ggi = gσ(i)hi, (0.2.2)

and Ind⊗F/QVl(f) is obtained from the (Sd n Γd
F )-module Vl(f)⊗d by pull-back via the map (0.2.2).

(0.3) In particular, the action of ΓQ on IHd
et(X

∗⊗Q Q,Ql)ssprim extends to an action of Sd n Γd
F . The same

should be true for the action on IHd
et(X

∗ ⊗Q Q,Ql)prim, since general conjectures predict that ΓQ should
act semi-simply on IH∗

et(Y ⊗Q Q,Ql), for any proper scheme Y over Spec(Q).
The representations χ(−j) of ΓQ occurring in the non-primitive cohomology of X∗ do not extend to repre-
sentations of Sd n Γd

F , but they extend to representations of the group (Sd n Γd
F )0, which is defined as the

fibre product

(Sd n Γd
F )0 −→ Sd n Γd

F

↓ ↓
Γab

Q

VF/Q−→ Γab
F ,

(0.3.1)

in which the right vertical arrow is trivial on Sd and is given by the product map on Γd
F . As the field F is

totally real, the transfer map VF/Q is injective, which means that we can (and will) consider (Sd n Γd
F )0 as

a subgroup of Sd n Γd
F . The inclusion (0.2.2) factors through an inclusion ΓQ ↪→ (Sd n Γd

F )0.
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(0.4) Question. To sum up: the results of [Br-La] combined with the semi-simplicity conjecture imply
that the action of ΓQ on IH∗

et(X
∗⊗Q Q,Ql) should extend to an action of (Sd n Γd

F )0. Is there a geometric
explanation of this hidden symmetry of IH∗

et(X
∗ ⊗Q Q,Ql)?

(0.5) This question admits a more invariant formulation. Recall that the inclusion (0.2.2) depends on the
choice of coset representatives (0.2.1). The same choice defines an isomorphism of F -algebras

F ⊗Q Q ∼−→ F
d
, a⊗ b 7→ (a⊗ g−1

i (b))i,

hence a group isomorphism

Sd n Γd
F

∼−→ AutF−alg(F ⊗Q Q), (0.5.1)

the composition of which with (0.2.2) coincides with the canonical injective map

ΓQ = AutQ−alg(Q) ↪→ AutF−alg(F ⊗Q Q), g 7→ idF ⊗ g. (0.5.2)

The subgroup AutF−alg(F⊗QQ)0 of AutF−alg(F⊗QQ) corresponding to (Sd nΓd
F )0 under the isomorphism

(0.5.1) is independent of any choices, which means that we should restate Question 0.4 as follows.

(0.6) Question. Is there a geometric explanation of the fact that the action of ΓQ on IH∗
et(X

∗ ⊗Q Q,Ql)
extends to an action of AutF−alg(F ⊗Q Q)0? For example, does X∗ ⊗Q Q (or a related space) admit an
action of AutF−alg(F ⊗Q Q)0?

(0.7) Idle speculation. The recipe (0.2.2) defines an inclusion

G ↪→ Sd n Hd (0.7.1)

(depending on chosen coset representatives of H in G) whenever H is a subgroup of index d of a group G.
If p : Y −→ Z is an unramified covering of degree d between “nice” connected topological spaces and
H = π1(Y, y), G = π1(Z, p(y)), then there are at least two geometric incarnations of (0.7.1).

Firstly, if Z̃ denotes the universal covering of Z, then

G
∼−→ Aut(Z̃/Z), Sd n Hd ∼−→ Aut(Y ×Z Z̃/Y )

and (0.7.1) comes from the canonical map

Aut(Z̃/Z) −→ Aut(Y ×Z Z̃/Y ), g 7→ idY × g. (0.7.2)

In our situation, the rôle of p (resp., by Z̃) is played by the structure map Spec(F ) −→ Spec(Q) (resp., by
Spec(Q), and (0.7.2) is nothing but (0.5.2).
Secondly, Sd n Hd is closely related to π1(Y d/Sd, p

−1(p(y))), and there is a canonical map

Z −→ Y d/Sd, z 7→ p−1(z). (0.7.3)

In other words, the map induced by (0.7.3)

π1(Z, z) −→ π1(Y d/Sd, p
−1(z))

is an approximative version of (0.7.1).
In our situation, in which the rôle of Y (resp., of Z) is played by Spec(F ) (resp., by Spec(Q)), we are
confronted with the fact that the analogue of Y d (resp., of Y d/Sd) should be the d-th power (resp., the
d-th symmetric power) of Spec(F ) over the elusive absolute point Spec(F1). A Grothendieckean approach
to Question 0.6 would then involve

• making sense of the d-th symmetric power Symd(F/F1) of Spec(F ) over Spec(F1);
• extending X∗ to an object X̃∗ defind over (a desingularisation of) Symd(F/F1);
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• relating l-adic intersection cohomology groups (1) of X∗ and X̃∗.
At present, this seems beyond reach, but as A. Genestier pointed out to us, everything makes sense for
Drinfeld modular varieties over global fields of positive characteristic.
(0.8) Leaving speculations aside, in the present article we test Question 0.6 by studying the action of ΓQ

on the set of CM points. It is convenient to replace RF/QGL(2)F by the the group G defined as the fibre
product

G −→ RF/Q(GL(2)F )y ydet

Gm,Q −→ RF/Q(Gm,F ),

since the corresponding Shimura variety is a moduli space for polarised Hilbert-Blumenthal abelian varieties
(HBAV) equipped with adelic level structures.
The first main result of the present article (see 2.2.5 below) is the following.

(0.9) Theorem. The group AutF−alg(F ⊗Q Q)0 acts naturally on the set of CM points of the Shimura
variety Sh(G, X ) associated to G. This action extends the natural action of ΓQ and commutes with the

action of G(Af ) = G(Q̂) on Sh(G, X ).

The key point in the proof is to show that Tate’s 1-cocycle fΦ : ΓQ −→ K̂∗/K∗, which describes the Galois
action on the set of CM points by K, naturally extends to a 1-cocycle f̃Φ : AutF−alg(F ⊗Q Q)0 −→ K̂∗/K∗

(above, K is a totally imaginary quadratic extension of F , K̂ is the ring of finite adèles of K and Φ is a CM
type of K). In fact, fΦ extends to a 1-cocycle f̃Φ defined on a slightly bigger subgroup AutF−alg(F ⊗Q Q)1
of AutF−alg(F ⊗Q Q), which corresponds to the fibre product

(Sd n Γd
F )1 −→ Sd n Γd

Fy y(1,prod)

Γab
Q /〈c〉

V F/Q

↪→ Γab
F /〈c1, . . . , cd〉,

where c ∈ Γab
Q (resp., c1, . . . , cd ∈ Γab

F ) is the complex conjugation (resp., are the complex conjugations at
the infinite primes of F ). We have

AutF−alg(F ⊗Q Q)1/AutF−alg(F ⊗Q Q)0
∼−→ (Z/2Z)d−1,

but only the elements of AutF−alg(F ⊗Q Q)0 preserve the positivity of the polarisations.
(0.10) A more abstract formulation of this result involves a generalisation of the Taniyama group T and
its finite level quotients KT . More precisely, in the special case when K is a Galois extension of Q, the
maps f̃Φ factor through AutF−alg(F ⊗Q Kab)1 = Im

(
AutF−alg(F ⊗Q Q)1 −→ AutF−alg(F ⊗Q Kab)

)
and

can be put together, yielding a 1-cocycle

f̃ : AutF−alg(F ⊗Q Kab)1 −→ KS (K̂)/KS (K), (0.10.1)

where KS is the Serre torus associated to K.
Our second main result (see 2.4.2-3 below) states that the coboundary of f̃ gives rise to an exact sequence
of affine group schemes over Q

1 −→ KS
ı̃−→ KT̃

π̃−→ AutF−alg(F ⊗Q Kab)′1 −→ 1, (0.10.2)

where AutF−alg(F⊗QKab)′1 is a certain F/Q-form form of the constant group scheme AutF−alg(F⊗QKab)1.
Moreover, there is a group homomorphism s̃p : AutF−alg(F ⊗Q Kab)1 −→ KT̃ (F̂ ) satisfying π̃ ◦ s̃p = id.
The pull-back of (0.10.2) to AutQ−alg(Kab) = Gal(Kab/Q) is the level K Taniyama extension

(1) Establishing a relation between de Rham cohomology of X∗ and X̃∗ could also be of interest, in view
of potential applications to period relations for Hilbert modular forms.
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1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1.

For varying K, the 1-cocycles f̃ are compatible. When put together, they give rise to an exact sequence of
affine group schemes over Q

1 −→ S −→ T̃ −→ lim−→F
AutF−alg(F ⊗Q Q)′1 −→ 1 (0.10.3)

(where S is the inverse limit of the tori KS with respect to the norm maps), whose pull-back to ΓQ coincides
with the Taniyama extension

1 −→ S −→ T −→ ΓQ −→ 1.

(0.11) Question. As shown in [De], the Taniyama group T has a natural Tannakian interpretation. Does

T̃ , or its subgroup scheme T̃0 ⊂ T̃ sitting in the exact sequence

1 −→ S −→ T̃0 −→ lim−→F
AutF−alg(F ⊗Q)′0 −→ 1,

have a similar interpretation?

(0.12) If A is a polarised HBAV over Q, then H1
dR(A/Q) is a free F ⊗Q Q-module of rank 2, and for

each prime p the F ⊗Q Q ⊗Q Qp-module H1
dR(A/Q) ⊗Q Qp has an additional crystalline structure. The

comparison theorems between étale and crystalline cohomology together with Faltings’s isogeny theorem
imply that the F -linear isogeny class of A is determined by H1

dR(A/Q) with this additional structure. It
is very likely (even though we have not checked this) that the action (0.9) of AutF−alg(F ⊗Q Q)0 on the
set of CM points of Sh(G, X ) is compatible, via the functor A 7→ H1

dR(A/Q), with the natural action of
AutF−alg(F ⊗Q Q) on the category of F ⊗Q Q-modules.

(0.13) Question. What happens for non-CM points? In other words, for what g ∈ AutF−alg(F ⊗Q Q)0 is
there a polarised HBAV A′ over Q such that

H1
dR(A′/Q) = g∗ H1

dR(A/Q),

with all the additional structure?

1. Background material

In §1.4-1.7 of this chapter we recall the main results of the theory of complex multiplication. In §1.1-1.3 we
collect some elementary background material.

Notation and conventions: An action of a group on a set always means a left action. We write A ⊗ B
instead of A⊗Z B and denote by Q the algebraic closure of Q in C. By a number field we always understand
a subfield of Q of finite degree over Q. The ring of integers of a number field k will be denoted by Ok. For
each subfield L of Q we denote ΓL = Gal(Q/L) and X(L) = HomQ−alg(L,Q). The restriction map g 7→ g|L
defines an isomorphism of left ΓQ-sets ΓQ/ΓL

∼−→ X(L). Denote by c ∈ ΓQ the complex conjugation. For
any abelian group A, we denote Â = A⊗ Ẑ. If A is a ring, so is Â (if k is a number field, then k̂ is the ring
of finite adèles of k).

1.1 Wreath products and Galois theory

(1.1.1) Notation. If X and Y are sets, we denote by Y X = {f : X −→ Y } the set of maps from X to Y .
If Y is a group, so is Y X . The group of permutations of the set X, denoted by SX = {bijective maps σ :
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X −→ X}, acts on Y X by σf = f ◦ σ−1. For any group H, the semi-direct product of HX and SX (with
respect to this action of SX on HX) is equal to

SX n HX = {(σ, h) | σ ∈ SX , h : X −→ H}, (σ, h)(σ′, h′) = (σσ′, (h ◦ σ′)h′).

If Y is a left H-set, then Y X is a left (SX n HX)-set via the action

(σ, h)(y) = (hy) ◦ σ−1, h ∈ HX , y ∈ Y X , (hy)(x) = (h(x))(y(x)). (1.1.1.1)

(1.1.2) Basic construction. Let H be a subgroup of a group G. Fix a section s : X = G/H −→ G of
the natural projection G −→ G/H. Left multiplication by g ∈ G defines a permutation σ = (x 7→ gx) ∈ SX .
For each x ∈ X,

gs(x) = s(gx)h(x), h(x) ∈ H,

and the map

g 7→ (σ, h) = ((x 7→ gx), (x 7→ s(gx)−1gs(x))) ∈ SX n HX

is an injective group homomorphism

ρs : G ↪→ SX n HX (X = G/H). (1.1.2.1)

If s′ : X = G/H −→ G is another section, then s′ = st, t ∈ HX , and

∀g ∈ G ρs′(g) = (1, t)−1ρs(g)(1, t). (1.1.2.2)

If (G : H) <∞, then the diagram

G
ρs−→ SX n HXy y(1,prod)

Gab V−→ Hab

(1.1.2.3)

is commutative, where prod denotes the product map h 7→
∏

x∈X h(x) (mod [H,H]) and V is the transfer.
The map ρs factors through an injective group homomorphism

G ↪→ (SX n HX)0,

where (SX n HX)0 is the group defined as the fibre product

(SX n HX)0 −→ SX n HXy y(1,prod)

Gab V−→ Hab.

(1.1.2.4)

If V is injective, we can (and will) identify (SX n HX)0 with its image in SX n HX .

(1.1.3) Proposition. Let k′/k be a Galois extension (not necessarily finite) and X a finite set. The action
of Γk′/k = Gal(k′/k) = Autk−alg(k′) on k′ gives rise, as in (1.1.1.1), to an action of SX n ΓX

k′/k on (k′)X by

k-algebra automorphisms, and each k-algebra automorphism of (k′)X arises in this way:

SX n ΓX
k′/k = Autk−alg((k′)X), (σ, h) 7→ (a 7→ (ha) ◦ σ−1).

Proof. Any k-algebra automorphism f of (k′)X must permute the set of irreducible idempotents {1x | x ∈ X}
of (k′)X : f(1x) = 1σ(x), σ ∈ SX . This implies that (σ, 1)◦f preserves the decomposition (k′)X =

∏
x∈X k′ ·1x,

hence (σ, 1) ◦ f ∈ Autk−alg(k′)X = ΓX
k′/k, which implies that f ∈ SX n ΓX

k′/k.
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(1.1.4) Proposition. Let k′/k be as in Proposition 1.1.3. Let F/k be a finite subextension of k′/k; denote
X = Homk−alg(F, k′). Fix a section s : X −→ Γk′/k of the restriction map Γk′/k −→ Γk′/k/Γk′/F = X,
g 7→ g|F . The chosen section induces an isomorphism of k-algebras

s : (k′)X −→ (k′)X , u 7→ (x 7→ s(x)(u(x))).

(i) The map
α : F ⊗k k′ −→ (k′)X , a⊗ b 7→ (x 7→ x(a)b)

is an isomorphism of k-algebras.
(ii) The map

βs : F ⊗k k′
α−→ (k′)X s←− (k′)X , a⊗ b 7→ (x 7→ as(x)−1(b))

is an isomorphism of F -algebras.
(iii) The map βs satisfies

∀g ∈ Autk−alg(k′) = Γk′/k βs ◦ (idF ⊗ g) = ρs(g)βs,

hence induces a group isomorphism

βs∗ : AutF−alg(F ⊗k k′) ∼−→ AutF−alg((k′)X) = SX n ΓX
k′/F , f 7→ βs ◦ f ◦ β−1

s

satisfying βs∗(idF ⊗ g) = ρs(g), for all g ∈ Γk′/k.
(iv) If s′ = st : X −→ Γk′/k is another section of the restriction map g 7→ g|F (t : X −→ Γk′/F ), then

∀g ∈ AutF−alg(F ⊗k k′) βs′∗(g) = (1, t)−1 βs∗(g) (1, t),

i.e., βs∗ = Ad(1, t) ◦ βs′∗.

Proof. (i) This is a well-known fact from Galois theory.
(ii) The map βs is an isomorphism of k-algebras, by (i). For each a ∈ F , we have βs(a) : x 7→ a, which
means that βs is a morphism of F -algebras.
(iii) Let a ∈ F , b ∈ k′, g ∈ Γk′/k = G, H = Γk′/F ; denote ρs(g) = (σ, h). For each x ∈ X we have

σ(x) = gx, h(x) = s(gx)−1gs(x) = s(σ(x))−1gs(x) ∈ H, βs(a⊗ b)(x) = as(x)−1(b),

hence

βs ◦ (idF ⊗ g)(a⊗ b) = βs(a⊗ g(b)) : x 7→ as(x)−1(g(b)).

On the other hand,

(σ, h) ◦ βs(a⊗ b) : x 7→ h(σ−1(x))
(
a s(σ−1(x))−1(b)

)
= a

(
s(x)−1g

)
(b),

which proves that βs ◦ (idF ⊗ g) = ρs(g) ◦ βs, as claimed.
(iv) We have βs′ = t−1βs, as

∀x ∈ X βs′(a⊗ b)(x) = at(x)−1 ◦ s(x)−1(x) = t(x)−1
(
as(x)−1(b)

)
= t(x)−1 (βs(a⊗ b)(x)) ,

in the notation of the proof of (iii). It follows that

βs′∗(g) = βs′ ◦ g ◦ β−1
s′ = t−1βs ◦ g ◦ β−1

s t = t−1βs∗(g)t,

as claimed.
(1.1.5) To sum up the discussion from 1.1.3-4, the natural map

(idF ⊗−) : Γk′/k = Autk−alg(k′) −→ AutF−alg(F ⊗k k′), g 7→ idF ⊗ g

is a canonical incarnation of the morphism ρs : Γk′/k ↪→ SX n ΓX
k′/F , as βs∗ ◦ (idF ⊗−) = ρs.
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(1.1.6) Proposition. Let k ⊂ F ⊂ k′ and s : X −→ Γk′/k be as in Proposition 1.1.4. Given ũ ∈ Γk′/k,

denote u = ũ|F , F ′ = u(F ) and X ′ = Homk−alg(F ′, k′). The bijection X
∼−→ X ′ (x 7→ x′ = xu−1) gives rise

to a section s′ : X ′ −→ Γk′/k of the restriction map g 7→ g|F ′ , given by s′(x′) = s(x)ũ−1.
(i) The map

ũ∗ : SX n ΓX
k′/F −→ SX′ n ΓX′

k′/F ′ , (σ, h) 7→ (σ′, h′)

σ′(x′) = σ(x)′ (⇐⇒ σ′(xu−1) = σ(x)u−1), h′(x′) = ũh(x)ũ−1 (⇐⇒ h′(xu−1) = ũh(x)ũ−1)

is a group isomorphism satisfying ũ∗ ◦ ρs = ρs′ .
(ii) ∀ũ, ũ′ ∈ Γk′/k ũ′∗ũ∗ = (ũ′ũ)∗.

Proof. Easy calculation.

(1.1.7) Proposition. In the situation of Proposition 1.1.6,
(i) the map

[u] : AutF−alg(F ⊗k k′) −→ AutF ′−alg(F ′ ⊗k k′)
g 7→ (u⊗ idk′) ◦ g ◦ (u−1 ⊗ idk′)

is a group isomorphism satisfying [u′u] = [u′] ◦ [u] and

∀g ∈ Γk′/k [u](idF ⊗ g) = idF ′ ⊗ g.

(ii) The following diagram is commutative.

AutF−alg(F ⊗k k′)
βs∗−→ SX n ΓX

k′/Fy[u]

yũ∗

AutF ′−alg(F ′ ⊗k k′)
βs′∗−→ SX′ n ΓX′

k′/F ′

(iii) If F ′ = F , then the group automorphism

βs∗ ◦ [u] ◦ β−1
s∗ : SX n ΓX

k′/F −→ SX n ΓX
k′/F

is given by the formula (σ, h) 7→ (σu, hu), where

∀x ∈ X σu(x) = σ(xu)u−1, hu(x) = s (σu(x))−1
s (σu(x)u) h(xu)s(xu)−1s(x).

(iv) If F is a Galois extension of k, then the maps [u] define an action of ΓF/k on AutF−alg(F ⊗k k′), the
set of fixed points of which is equal to idF ⊗ Γk′/k.

Proof. (i) Straightforward. (ii) Let g ∈ AutF−alg(F ⊗k k′); denote (σ, h) = βs∗(g) and (σ′, h′) = ũ∗(σ, h).
For a⊗ b ∈ F ⊗k k′, write g(1⊗ b) =

∑
ai ⊗ bi; then g(a⊗ b) =

∑
aai ⊗ bi. As βs(a⊗ b)(x) = as(x)−1(b),

the equalities

βs(g(a⊗ b))(x) = ((σ, h)βs(a⊗ b))(x) (x ∈ X)

read as ∑
aais(x)−1(bi) = ah(σ−1(x))s(σ−1(x))−1(b) (x ∈ X). (1.1.7.1)

As ([u](g))(1⊗ b) =
∑

u(ai)⊗ bi, the statement to be proved, namely

∀x′ ∈ X ′ ∀a′ ∈ F ′ ∀b ∈ k′ βs′(([u](g))(a′ ⊗ b))(x′) ?= ((σ′, h′)βs′(a′ ⊗ b))(x′),

reads as
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∑
a′u(ai)s′(x′)−1(bi)

?= a′h′(σ′−1(x′))s′(σ′−1(x′))−1(b),

which is obtained from (1.1.7.1) (with x = x′u) by applying u, since

s′(x′)−1 = ũs(x)−1, s′(σ′−1(x′))−1 = ũs(σ−1(x))−1, h′(σ′−1(x′)) = ũh(σ−1(x))ũ−1.

(iii) The assumption F ′ = F implies that s′ = st, where t : X −→ Γk′/F is given by t(x) = s(x)−1s(xu)ũ−1.
It follows from (ii) and Proposition 1.1.4(iv) that

βs∗ ◦ [u] ◦ β−1
s∗ = βs∗ ◦ β−1

s′∗ ◦ ũ∗ = Ad(1, t) ◦ ũ∗,

hence

(σu, hu) = (1, t)(σ′, h′)(1, t)−1 = (σ′, (t ◦ σ′)h′t−1), σu(x) = σ′(x) = σ(xu)u−1,

hu(x) = t(σu(x))h′(x)t(x)−1 = s (σu(x))−1
s (σu(x)u)h(xu)s(xu)−1s(x).

(1.1.8) Proposition. In the situation of Proposition 1.1.4, let F ′/F be a subextension of k′/F ; denote
X ′ = Homk−alg(F ′, k′) and fix a section s′ : X ′ −→ Γk′/k of the restriction map g 7→ g|F ′ . For each x′ ∈ X ′,
define t(x′) ∈ Γk′/F by the relation s′(x′) = s(x′|F )t(x′).
(i) The map

ρs,s′ : SX n ΓX
k′/F −→ SX′ n ΓX′

k′/F ′ , (σ, h) 7→ (σ′, h′),

σ′(x′) = s(σ(x))h(x)s(x)−1x′, h′(x′) = t(σ′(x′))−1h(x)t(x′), x = x′|F

is a group homomorphism satisfying

σ′(x′)|F = σ(x), s′(σ′(x′))h′(x′)s′(x′)−1 = s(σ(x))h(x)s(x)−1.

(ii) The following diagram is commutative.

AutF−alg(F ⊗k k′)
βs∗−→ SX n ΓX

k′/Fy(idF ′⊗F−)

yρs,s′

AutF ′−alg(F ′ ⊗k k′)
βs′∗−→ SX′ n ΓX′

k′/F ′

Proof. (i) Easy calculation. (ii) As in the proof of Proposition 1.1.7, fix a⊗b ∈ F⊗kk′, g ∈ AutF−alg(F⊗kk′)
and denote (σ, h) = βs∗(g). Writing g(1⊗ b) =

∑
ai ⊗ bi, then (1.1.7.1) (for σ(x) instead of x) reads as∑

ais(σ(x))−1(bi) = h(x)s(x)−1(b) (x ∈ X). (1.1.8.1)

Define (σ′, h′) := ρs,s′(σ, h); we must show that

∀x′ ∈ X ′ ∀a′ ∈ F ′ ∀b ∈ k′ βs′ ((idF ′ ⊗F g)(a′ ⊗ b)) (x′) ?= ((σ′, h′)βs′(a′ ⊗ b))(x′),

which can be rewritten (again using (1.1.7.1) and replacing x′ by σ′(x′)) as follows:∑
a′ais

′(σ′(x′))−1(bi)
?= a′h′(x′)s′(x′)−1(b) (x′ ∈ X ′). (1.1.8.2)

As σ′(x′)|F = σ(x′|F ), the equality (1.1.8.2) is obtained by multiplying (1.1.8.1) (for x = x′|F ) by t(σ′(x′))−1

on the left.
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1.2 Class Field Theory

(1.2.1) Let k be a number field. Denote by

k∗+ = Ker (k∗ −→ π0((k ⊗R)∗)) , O∗
k,+ = O∗

k ∩ k∗+

the set of totally positive elements and the set of totally positive units of k, respectively. Let Ak be the
adèle ring of k and Ck = A∗

k/k∗ the idèle class group of k. The reciprocity map

reck : Ck −→ Γab
k

will be normalised by letting local uniformisers correspond to geometric Frobenius elements. As reck

induces an isomorphism π0(Ck) ∼−→ Γab
k , its restriction to the group of finite idèles gives rise to a surjective

continuous morphism

rk : k̂∗/k∗+ −→ Γab
k .

(1.2.2) It follows from the structure of the connected component of Ck ([Ar-Ta], ch. 9, Thm. 3) that the
kernel of rk is isomorphic, as an Aut(k/Q)-module, to O∗

k,+ ⊗ (Ẑ/Z) = O∗
k,+ ⊗ (Q̂/Q).

(1.2.3) For k = Q, the map rQ is an isomorphism, and its composition with the canonical isomorphism
Ẑ∗ ∼−→ Q̂∗/Q∗

+ (induced by the inclusion of Ẑ into Q̂) is inverse to the cyclotomic character

χ : Γab
Q

∼−→ Ẑ∗, g(ζ) = ζχ(g) (∀ζ a root of unity in Q).

(1.2.4) If k′/k is a finite extension of number fields, then the inclusion k ↪→ k′ and the norm Nk′/k : k′∗ −→
k∗ induce commutative diagrams

k̂∗/k∗+
ik′/k−→ k̂′∗/k′∗+

↓ rk ↓ r′k

Γab
k

Vk′/k−→ Γab
k′

k̂′∗/k′∗+
Nk′/k−→ k̂∗/k∗+

↓ r′k ↓ rk

Γab
k′

jk′/k−→ Γab
k ,

(1.2.4.1)

where Vk′/k is the transfer map and jk′/k is given by the restriction map g 7→ g|kab .

(1.2.5) Proposition. For any number field L,

Ker
(
VL/Q : Γab

Q −→ Γab
L

)
=

{
{1, c}, if L is totally complex
{1}, otherwise.

Proof. Let L′ be the Galois closure of L over Q. As

Im
(
iL/Q

)
∩Ker(rL) ⊆

(
O∗

L′,+ ⊗ Q̂/Q
)Gal(L′/Q)

= {1},

the first commutative diagram (1.2.4.1) for L/Q implies that i−1
L/Q (Ker(rL)) is equal to

Ker
(
iL/Q

)
=

(
Q∗ ∩ L∗+

)
/Q∗

+ =
{

Q∗/Q∗
+ = {±1}, if L is totally complex

{1}, otherwise.

As rQ is an isomorphism and rQ(−1) = c, the statement follows.

1.3 CM fields

Let K be a non-real CM number field; let F be its maximal totally real subfield (in other words, c(K) = K,
τc = cτ 6= τ for all τ ∈ X(K), and F = Kc=1). Denote X = X(F ).
(1.3.1) Complex conjugations. Fix a section s : X −→ ΓQ of the restriction map g 7→ g|F . For each
x ∈ X, the image of the element s(x)−1cs(x) ∈ ΓF in Γab

F is independent on the chosen section; denote it by
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cx ∈ Γab
F (this is the complex conjugation defined by the real place x of F ). Denote by 〈cX〉 the subgroup of

Γab
F generated by all cx (x ∈ X). The signs at the real places induce an isomorphism

(sgn ◦ x)x∈X : F ∗/F ∗
+

∼−→ {±1}X .

Compatibility of the local and global reciprocity maps implies that

∀a ∈ F ∗ rF (aF ∗
+) =

∏
x∈X

cax
x , (−1)ax = sgn(x(a)).

As Ker(rF ) is a Q-vector space, we have Ker(rF ) ∩ F ∗/F ∗
+ = {1}, which means that rF induces an isomor-

phism F ∗/F ∗
+

∼−→ 〈cX〉.
(1.3.2) Transfer maps. If we denote by

R : ΓF −→ ΓK , g, cg 7→ g (g ∈ ΓK)

the “retraction map” from ΓF to ΓK , then

∀h ∈ ΓF VK/F (h|F ab) = VK/F (ch|F ab) = hchc|Kab = 1+c (R(h)|Kab) . (1.3.2.1)

As noted in 1.2.5,

Ker
(
VK/Q : Γab

Q −→ Γab
K

)
= rQ

(
Ker(iK/Q)

)
= rQ

(
Q∗/Q∗

+

)
= {1, c} = 〈c〉. (1.3.2.2)

The equality Ker(rF ) = O∗
F,+ ⊗ Q̂/Q = O∗

K ⊗ Q̂/Q = Ker(rK) implies, thanks to (1.2.4.1), that

Ker
(
VK/F : Γab

F −→ Γab
K

)
= rF

(
Ker(iK/F )

)
= rF

(
F ∗/F ∗

+

)
= 〈cX〉. (1.3.2.3)

As a result, the map

V F/Q : Γab
Q /〈c〉 ↪→ Γab

F /〈cX〉 (1.3.2.4)

induced by VF/Q is injective and

{h ∈ Γab
F | VK/F (h) ∈ VK/Q(Γab

Q )} = 〈cX〉VF/Q(Γab
Q ). (1.3.2.5)

It also follows that

VF/Q(Γab
Q ) ∩ 〈cX〉 = 〈VF/Q(c)〉 (1.3.2.6)

is the cyclic group of order 2 generated by VF/Q(c) =
∏

x∈X cx.
(1.3.3) As observed in [Ta, Lemma 1], the finiteness of O∗

K/O∗
F,+ implies that c (resp., 1 + c) acts trivially

(resp., invertibly) on the Q-vector space Ker(rK).

(1.3.4) Proposition. (i) The continuous homomorphism (induced by rK)

{a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗ −→ {g ∈ Γab
K | g|F ab ∈ 〈cX〉VF/Q(Γab

Q )}

is bijective. Denote by `K its inverse; then 1+c`K(g) = χ(u(g))K∗, where u(g) ∈ Γab
Q /〈c〉 is the (unique)

element satisfying V F/Q (u(g)) = 〈cX〉g|F ab (equivalently, VK/Q (u(g)) = 1+cg).

(ii) More precisely, if g ∈ Γab
K satisfies

g|F ab = VF/Q(u(g))
∏
x∈X

cax
x (u(g) ∈ Γab

Q , ax ∈ Z/2Z),

then NK/F (`K(g)) = χ(u(g))αF ∗
+ ∈ F̂ ∗/F ∗

+, where α ∈ F ∗ and

∀x ∈ X sgn(x(α)) = (−1)ax .
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(iii) The canonical morphism (induced by the inclusion ÔK ↪→ K̂)

{x ∈ Ô∗
K | 1+cx ∈ Ẑ∗} −→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗

has finite kernel and cokernel.
(iv) The morphism `K defined in (i) admits a lift

˜̀
K : {g ∈ Γab

K | g|F ab ∈ 〈cX〉VF/Q(Γab
Q )} −→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}

which is a homomorphism when restricted to a suitable open subgroup.

Proof. (i) In the following commutative diagram the right column is exact and rQ is an isomorphism.

0
↓

Ker(rK)
↓

Ẑ∗ −→ K̂∗/K∗

↓ rQ ↓ rK

Γab
Q

VK/Q−→ Γab
K

↓
0

As 1 + c acts invertibly on Ker(rK), the Snake Lemma implies that rK induces an isomorphism

Ker
(
K̂∗/K∗ 1+c−→ K̂∗/K∗Ẑ∗

)
∼−→ Ker

(
1 + c = VK/F ◦ jK/F : Γab

K −→ Γab
K /VK/Q(Γab

Q )
)
;

by (1.3.2.5), the second group is equal to {g ∈ Γab
K | g|F ab ∈ 〈cX〉VF/Q(Γab

Q )}. The remaining statement
follows from the fact that

rK

(
1+c`K(g)

)
= 1+cg = VK/F ◦ jK/F (g) = VK/F (g|F ab) = VK/F ◦ VF/Q (u(g)) =

= VK/Q (u(g)) = rK ◦ iK/Q ◦ r−1
Q (u(g)) = rK (χ(u(g))) .

(ii) Let a ∈ K̂∗ be a lift of `K(g) such that 1+ca = bα′, where b ∈ Ẑ∗, α′ ∈ K∗; then α′ ∈ (K∗)c=1 = F ∗. As

g|F ab = rF (NK/F (a)) = rF (b)rF (α′) = VF/Q(rQ(b))
∏
x∈X

c
a′x
x , (−1)a′x = sgn(x(α′)),

it follows from (1.3.2.6) that there is t ∈ Z/2Z such that

u(g) = rQ(b)ct, ∀x ∈ X a′x = ax + t.

This implies that χ(u(g)) = b(−1)t and

NK/F (`K(g)) = 1+caF ∗
+ = χ(u(g))αF ∗

+

with α = α′(−1)t, hence

∀x ∈ X sgn(x(α)) = sgn(x(α′))(−1)t = (−1)a′x+t = (−1)ax .

(iii) This follows from the finiteness of the groups Ker,Coker(1 + c : O∗
K −→ O∗

K) and ClK = K̂∗/Ô∗
KK∗,

combined with the Snake Lemma applied to the diagrams
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0 −→ O∗
K −→ Ô∗

K −→ Ô∗
K/O∗

K −→ 0y1+c

y1+c

y1+c

0 −→ O∗
K/Z∗ −→ Ô∗

K/Ẑ∗ −→ Ô∗
K/Ẑ∗O∗

K −→ 0

and

0 −→ Ô∗
K/O∗

K −→ K̂∗/K∗ −→ ClK −→ 0y1+c

y1+c

y1+c

0 −→ Ô∗
K/Ẑ∗O∗

K −→ K̂∗/Ẑ∗K∗ −→ ClK −→ 0.

Above, Ô∗
K is a shorthand for (ÔK)∗. Note also that Ẑ∗ ∩O∗

K = Z∗ inside Ô∗
K .

(iv) By (i) and (iii), rK induces a continuous homomorphism of pro-finite abelian groups

f : A = {x ∈ Ô∗
K | 1+cx ∈ Ẑ∗} −→ B = {g ∈ Γab

K | g|F ab ∈ 〈cX〉VF/Q(Γab
Q )}

with finite kernel and cokernel. This implies that there exists an open subgroup (= a compact subgroup of
finite index) A′ ⊂ A such that A′∩Ker(f) = {1}. Then B′ = f(A′) is a compact subgroup of finite index (=
an open subgroup) of B, and f induces a topological isomorphism f ′ : A′ ∼−→ B′. Fix coset representatives
B =

⋃
i biB

′ (disjoint union) and lifts ãi ∈ K̂∗ of `K(bi) ∈ K̂∗/K∗ such that bi0 = 1 and ãi0 = 1; the map

˜̀
K : B −→ K̂∗, bif

′(a′) 7→ ãia
′ (a′ ∈ A′)

has the required properties.

1.4 Tate’s cocycle [Ta]

Let Φ be a CM type of K, i.e. a subset Φ ⊂ X(K) such that X(K) = Φ ∪ cΦ (disjoint union).
(1.4.1) Tate’s half transfer is the continuous map FΦ : ΓQ −→ Γab

K defined by the formula

FΦ(g) =
∏
ϕ∈Φ

w(gϕ)−1gw(ϕ) (mod ΓKab), (1.4.1.1)

where w : X(K) −→ X(Q) = ΓQ is any section of the restriction map g 7→ g|K satisfying w(cy) = cw(y),
for all y ∈ X(K).
The restriction map g 7→ g|F defines a bijection Φ ∼−→ X(F ). Composing its inverse with w, we obtain a
section t : X(F ) −→ X(Q) = ΓQ of the restriction map to F , which implies that

FΦ(g)|F ab =
∏

x∈X(F )

t(gx)−1ca(g,x)gt(x) (mod ΓF ab) ∈ 〈cX〉VF/Q(g) (a(g, x) ∈ Z/2Z). (1.4.1.2)

The maps FΦ satisfy
FΦ(gg′) = Fg′Φ(g)FΦ(g′) (g, g′ ∈ ΓQ) (1.4.1.2)

and

u ◦ FΦ(g) ◦ u−1 = FΦu−1(g) (g ∈ ΓQ), (1.4.1.3)

for any isomorphism of CM number fields u : K
∼−→ K ′. In addition, if K ′ is a CM number field containing

K and Φ′ = {y ∈ X(K ′) | y|K ∈ Φ} is the CM type of K ′ induced from Φ, then

FΦ′(g) = VK′/K (FΦ(g)) (g ∈ ΓQ). (1.4.1.4)

(1.4.2) Tate’s cocycle is the map fΦ : ΓQ −→ K̂∗/K∗ defined as
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fΦ(g) = `K (FΦ(g)) , (1.4.2.1)

where

`K : {g ∈ Γab
K | g|F ab ∈ 〈cX〉VF/Q(Γab

Q )} ∼−→ {a ∈ K̂∗ | 1+ca ∈ Ẑ∗K∗}/K∗ ⊂ K̂∗/K∗

is the morphism from 1.3.4(i). It follows that

1+cFΦ(g) = VK/F (FΦ(g)|F ab) = VK/F ◦ VF/Q(g) = VK/Q(g) =

= rK ◦ iK/Q ◦ r−1
Q

(
g|Qab

)
= rK(χ(g)).

As in the proof of 1.3.4(i), this implies that

1+cfΦ(g) = χ(g)K∗, rK (fΦ(g)) = FΦ(g). (1.4.2.2)

In Tate’s original definition, the properties (1.4.2.2) were used to characterise fΦ(g).
The identities (1.4.1.2-4) imply that

fΦ(gg′) = fg′Φ(g)fΦ(g′) (g, g′ ∈ ΓQ), (1.4.2.3)

ufΦ(g) = fΦu−1(g) (g ∈ ΓQ, u : K
∼−→ K ′) (1.4.2.4)

and

fΦ′(g) = iK′/K (fΦ(g)) (K ⊂ K ′, Φ′ induced from Φ). (1.4.2.5)

(1.4.3) Tate [Ta] conjectured that the idèle class fΦ(g) determines the action of g ∈ ΓQ on abelian
varieties with complex multiplication and on their torsion points. Building upon earlier results of Shimura
and Taniyama, he proved the conjecture up to an element of F̂ ∗ of square 1. The full conjecture was
subsequently proved by Deligne [La,ch.7,§4].
More precisely, if A is a CM abelian variety of type (K, Φ, a, t) in the sense of [La,ch.7,§3] (see 2.2.5 below),
then gA is of type (K, gΦ, af, tχ(g)/1+cf), where f ∈ K̂∗ is any lift of fΦ(g). Furthermore, for each complex
uniformisation

θ : CΦ/a
∼−→ A(C)

there is a unique uniformisation

θ′ : CgΦ/af
∼−→ gA(C)

such that the action of g on A(Q)tors = A(C)tors is given by

g : A(Q)tors
θ−1

−→ K/a
[×f ]−→ K/af

θ′−→ gA(Q)tors.

This implies that, for each full level structure η : (F/OF )2 ∼−→ A(Q)tors, the level structure gη is equal to

gη : (F/OF )2
η−→ A(Q)tors

θ−1

−→ K/a
[×f ]−→ K/af

θ′−→ gA(Q)tors. (1.4.3.1)

1.5 The Serre torus

Let K be as in 1.3.
(1.5.1) The torus KT = RK/Q (Gm) represents the functor A 7→ KT (A) = (K ⊗Q A)∗ on Q-algebras A.
The ΓQ-equivariant bijections
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KT
(
Q

)
=

(
K ⊗Q Q

)∗ ∼−→ (Q
∗
)X(K) = HomSets(X(K),Q

∗
) ∼−→ HomZ(Z[X(K)],Q

∗
)

a⊗ b 7→ (y 7→ y(a)b) (y ∈ X(K))

imply that the character group of KT is equal to

X∗(KT ) = Z[X(K)] = {
∑

y∈X(K)

ny[y] | ny ∈ Z},

with g ∈ ΓQ acting on X∗(KT ) by

λ =
∑

ny[y] 7→ gλ =
∑

ny[gy] =
∑

ng−1y[y]. (1.5.1.1)

(1.5.2) The Serre torus of K is the quotient KS of KT (defined over Q) whose character group is equal
to

X∗(KS ) = {λ ∈ X∗(KT ) | 1+cλ ∈ Z ·NK/Q} (NK/Q =
∑

y∈X(K)

[y]).

Each CM type Φ of K defines a character λΦ ∈ X∗(KS ): λΦ(y) = 1 (resp., = 0) if y ∈ Φ (resp., if y ∈ cΦ).
Moreover, the abelian group X∗(KS ) is generated by the characters λΦ ([Sch, 1.3.2]), and

∀g ∈ ΓQ
gλΦ = λgΦ.

(1.5.3) Tate’s half transfer satisfies the following identity: if n is a function

n : {CM types of K} −→ Z, Φ 7→ nΦ,

such that
∑

Φ nΦλΦ = 0, then

∀g ∈ ΓQ

∏
Φ

FΦ(g)nΦ = 1 ∈ Γab
K . (1.5.3.1)

Applying `K , we deduce from (1.5.3.1) that

∀g ∈ ΓQ

∏
Φ

fΦ(g)nΦ = 1 ∈ K̂∗/K∗. (1.5.3.2)

(1.5.4) In the special case when K is a Galois extension of Q, the action (1.5.1.1) of ΓQ factors through
Gal(K/Q), which implies that the tori KT and KS are split over K.
In addition, the action of Gal(K/Q) on K induces an action of Gal(K/Q) on the Q-group scheme KT , which
will be denoted by t 7→ g ∗ t (g ∈ Gal(K/Q)). The corresponding action on the character group

(h ∗ λ)(t) = λ(h−1 ∗ t) (λ ∈ X∗(KT )) (1.5.4.1)

is given by

λ =
∑

ny[y] 7→ h ∗ λ =
∑

ny[yh−1] =
∑

nyh[y].

The two actions are related by

ι(hλ) = h ∗ ι(λ) (h ∈ Gal(K/Q), λ ∈ X∗(KT )), (1.5.4.2)

where

ι : X∗(KT ) −→ X∗(KT ),
∑

ny[y] 7→
∑

ny[y−1] =
∑

ny−1 [y] (1.5.4.3)
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is the involution induced by the inverse map g 7→ g−1 on Gal(K/Q) = X(K). As ι(λΦ) = λΦ−1 , the
involution ι and the action (1.5.4.1) preserve X∗(KS ), and we have

h ∗ λΦ = λΦh−1 . (1.5.4.4)

We denote by

ι : KSK = KS ⊗Q K −→ KSK

the morphism corresponding to ι.

1.6 Universal Taniyama elements [Mi], [Sch]

In this section, we assume that K is a CM number field which is a Galois extension of Q.
(1.6.1) The two actions of Gal(K/Q) on X∗(KS ) correspond to two actions of Gal(K/Q) on KS (K̂):
the Galois action t 7→ gt and the algebraic action t 7→ h ∗ t, which commute with each other and satisfy

(gλ)(gt) = g(λ(t)), (h ∗ λ)(h ∗ t) = λ(t) (λ ∈ X∗(KS ), t ∈ KS (K̂)),

respectively.

(1.6.2) Proposition. (i) There exists a unique map f ′ : ΓQ −→ KS (K̂)/KS (K) such that λΦ ◦ f ′ = fΦ,
for all CM types Φ of K. The map f ′ factors through Gal(Kab/Q).
(ii) For each λ ∈ X∗(KS ), denote f ′λ = λ ◦ f ′ : ΓQ −→ K̂∗/K∗; then f ′λ+µ(g) = f ′λ(g)f ′µ(g).
(iii) ∀λ ∈ X∗(KS ) ∀g, g′ ∈ ΓQ f ′λ(gg′) = f ′g′λ(g)f ′λ(g′).
(iv) ∀h ∈ Gal(K/Q) h(f ′λ(g)) = f ′h∗λ(g).

Proof. (i) As the torus KS is split over K and X∗(KS ) is a free abelian group generated by the CM
characters λΦ, we have

KS (K̂)/KS (K) = HomZ(X∗(KS ), K̂∗)/HomZ(X∗(KS ),K∗) = HomZ(X∗(KS ), K̂∗/K∗) =

= {α : {CM types of K} −→ K̂∗/K∗ ∣∣ ∏
α(Φ)nΦ = 1 whenever

∑
nΦλΦ = 0}.

The existence and uniqueness of f ′ then follows from (1.5.3.2). As K is a Galois extension of Q, the maps
FΦ (hence fΦ, too) factor through Gal(Kab/Q).
(ii) This is a consequence of (the proof of) (i).
(iii), (iv) If λ = λΦ, the statement of (iii) (resp., of (iv)) is just (1.4.2.3) (resp., (1.4.2.4)). The general case
then follows from (ii).

(1.6.3) Proposition. (i) Define the map f : ΓQ −→ KS (K̂)/KS (K) by the formula f(g) = (ι (f ′(g)))−1
.

The map f factors through Gal(Kab/Q) and has the following properties.

(ii) The maps fλ = λ ◦ f : ΓQ −→ K̂∗/K∗ (λ ∈ X∗(KS )) satisfy

fλ+µ(g) = fλ(g)fµ(g), fλ(g) = f ′ι(λ)(g)−1, fλ(gg′) = fg′∗λ(g)fλ(g′).

(iii) ∀h ∈ Gal(K/Q) ∀g ∈ ΓQ
h(fλ(g)) = fhλ(g), h(f(g)) = f(g).

(iv) ∀g, g′ ∈ ΓQ f(gg′) =
(
g′−1 ∗ f(g)

)
f(g′).

Proof. The statements of (i), (ii) and the first part of (iii) are immediate consequences of 1.6.2, thanks to
(1.5.4.2). The second part of (iii) follows from(

hλ
) (

h(f(g))
)

= h(λ (f(g)))
(iii)
=

(
hλ

)
(f(g)) (λ ∈ X∗(KS )),

while (iv) is a consequence of the last formula from (ii) and
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λ
(
g′−1 ∗ f(g)

)
= (g′ ∗ λ) (f(g)) .

(1.6.4) For each CM type Φ of K, the map fλΦ is given by

fλΦ(g) = fΦ−1(g)−1,

which implies that

rK ◦ fλΦ(g) = FΦ−1(g)−1.

In the notation of ([Sch], 4.2), we have fλ(g) = fK(g, λ). The map f is the “universal Taniyama element”
of ([Mi], I.5.7).

(1.6.5) Proposition. If K ′ is a CM number field, which is a Galois extension of Q and contains K, then

the universal Taniyama elements fK : ΓQ −→ KS (K̂)/KS (K) and fK′ : ΓQ −→ K′S (K̂ ′)/K′S (K ′) over
K and K ′, respectively, satisfy fK = NK′/K ◦ fK′ .

Proof. As the map iK′/K : K̂∗/K∗ −→ K̂ ′∗/K ′∗ is injective, it is enough to check that, for any CM type Φ
of K and g ∈ ΓQ,

iK′/K ◦ λΦ ◦ fK(g) ?= iK′/K ◦ λΦ ◦NK′/K ◦ fK′(g) ∈ K̂ ′∗/K ′∗,

which follows from (1.4.2.5), since

iK′/K ◦ λΦ ◦ fK(g) = iK′/K

(
fΦ−1(g)−1

) (1.4.2.5)
= fΦ′−1(g)−1 = λΦ′ ◦ fK′(g) = iK′/K ◦ λΦ ◦NK′/K ◦ fK′(g),

where Φ′ is the CM type of K ′ induced from Φ.

1.7 The Taniyama group ([Mi], [Mi-Sh], [Sch])

Let K be as in §1.6.
(1.7.1) The Taniyama group of level K sits in an exact sequence of affine group schemes over Q

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1

such that the action of (the constant group scheme) Gal(Kab/Q) on KS defined by this exact sequence is
given by the algebraic action (g, t) 7→ g ∗ t. In addition, there exists a continuous group homomorphism

sp : Gal(Kab/Q) −→ KT (Q̂)

satisfying π ◦ sp = id.
(1.7.2) Choosing a section

α : Gal(Kab/Q) −→ KT (K)

of the map KT (K) −→ Gal(Kab/Q) (which is surjective, as the torus KS is split over K and H1(K,Gm) =
0), the map

b : Gal(Kab/Q) −→ KS (K̂), b(g) = sp(g)α(g)−1

has the following properties.

(1.7.2.1) The induced map b : Gal(Kab/Q) −→ KS (K̂)/KS (K) does not depend on the choice of α.
(1.7.2.2) ∀g, g′ ∈ Gal(Kab/Q) b(gg′) =

(
g′−1 ∗ b(g)

)
b(g′).

(1.7.2.3) ∀h ∈ Gal(K/Q) ∀g ∈ Gal(Kab/Q) h
(
b(g)

)
= b(g).
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(1.7.2.4) The “coboundary” dg,g′ =
(
g′−1 ∗ b(g)

)
b(g′) b(gg′)−1 is a locally constant function on Gal(Kab/Q)2.

(1.7.3) Conversely, any map b satisfying (1.7.2.1-4) gives rise to an object from 1.7.1 ([Mi-Sh], Prop. 2.7):
firstly, the reverse 2-cocycle dg,g′ with values in KS (K) defines an exact sequence of affine group schemes
over K

1 −→ KSK
i−→ G′ π−→ Gal(Kab/Q) −→ 1 (1.7.3.1)

equipped with a section α : Gal(Kab/Q) −→ G′(K) such that

∀g, g′ ∈ Gal(Kab/Q) α(gg′) = α(g)α(g′)dg,g′ .

Secondly, the map

sp : Gal(Kab/Q) −→ G′(K̂), sp(g) = b(g)α(g)

is a group homomorphism satisfying π ◦ sp = id. Thirdly, each element h ∈ ΓK acts on G′(Q) by

h(sα(g)) = hsα(g) (s ∈ KS (Q)). (1.7.3.2)

In order to descend the sequence (1.7.3.1) to an exact sequence of group schemes over Q

1 −→ KS
i−→ G

π−→ Gal(Kab/Q) −→ 1,

it is enough to extend the action of ΓK from (1.7.3.2) to an action of ΓQ compatible with i and π. This is
done by putting

h(sα(g)) = ch(g) hsα(g), ch(g) = b(g) h(b(g))−1 ∈ KS (K) (h ∈ ΓQ, g ∈ Gal(Kab/Q)).

As h(sp(g)) = sp(g) for all h ∈ ΓQ and g ∈ Gal(Kab/Q), the map sp has values in G(Q̂). Up to isomorphism,
the quadruple (G, i, π, sp) obtained by this method depends only on b, not on its lift b.
(1.7.4) The Taniyama group KT of level K is defined by applying the construction from 1.7.3 to the
universal Taniyama element f , which satisfies (1.7.2.2-3), by Proposition 1.6.3. The existence of a lift b of f
satisfying (1.7.2.4) is established in the following Proposition.

(1.7.5) Proposition. There exists a lift b : Gal(Kab/Q) −→ KS (K̂) of f whose “coboundary” dg,g′ =(
g′−1 ∗ b(g)

)
b(g′) b(gg′)−1 is a locally constant function on Gal(Kab/Q)2.

Proof. Let ˜̀
K be as in 1.3.4(iv). As the maps FΦ (which factor through Gal(Kab/Q)) are continuous, there

exists an open subgroup U ⊂ Γab
K such that ˜̀

K , when restricted to
⋃

Φ FΦ(U), is a homomorphism. If nΦ ∈ Z
satisfy

∑
Φ nΦλΦ = 0, then the relation (1.5.3.1) implies that

∀u ∈ U
∏
Φ

˜̀
K (FΦ(u))nΦ = 1 ∈ K̂∗.

As in the proof of 1.6.2(i), we conclude that, for each u ∈ U , there exists a unique element b′(u) ∈ KS (K̂)
satisfying λΦ(b′(u)) = ˜̀

K (FΦ(u)). Fix coset representatives Gal(Kab/Q) =
⋃

j giU (disjoint union) and lifts
s̃j ∈ KS (K̂) of f ′(gj) ∈ KS (K̂)/KS (K) such that gj0 = 1 and s̃j0 = 1; define a map b′ : Gal(Kab/Q) −→
KS (K̂) by

b′(gju) = s̃jb
′(u) (u ∈ U).

The map b(g) := (ι(b′(g)))−1 then has the required property.
(1.7.6) Proposition 1.6.5 implies that the pull-backs of the group schemes KT via ΓQ −→ Gal(Kab/Q)
form, for varying K, a projective system compatible with the norm maps NK′/K : K′S −→ KS . In the
limit, they give rise to an exact sequence
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1 −→ S
i−→ T

π−→ ΓQ −→ 1 (1.7.6.1)

equipped with a splitting sp : ΓQ −→ T (Q̂). The main result of [De] states that the affine group scheme
T (= the Taniyama group) is the Tannaka dual of the category CMQ of CM motives (for absolute Hodge
cycles) defined over Q. The group scheme KT corresponds to the full Tannakian subcategory of CMQ

consisting of objects with coefficients in K.

2. Hidden symetries of the CM theory

Throughout this chapter, K and F are as in 1.3. We denote X = X(F ). In §2.1 (resp., §2.2) we extend
Tate’s half transfer (resp., Tate’s cocycle) from ΓQ to AutF−alg(F ⊗Q) (resp., to AutF−alg(F ⊗Q)1). In
§2.3-2.4 we use our generalisation of Tate’s cocycle to construct a generalised Taniyama group.

2.1 Generalised half transfer

(2.1.1) Fix a section s : X −→ ΓQ of the restriction map g 7→ g|F . As in 1.1.2-4, the choice of s determines
the following objects:

(2.1.1.1) An injection ρs : ΓQ ↪→ SX n ΓX
F .

(2.1.1.2) An isomorphism βs∗ : AutF−alg(F⊗Q) ∼−→ AutF−alg(Q
X

) = SX nΓX
F satisfying βs∗(idF ⊗g) = ρs(g).

In addition, we obtain

(2.1.1.3) A bijection between (Z/2Z)X and the set of CM types of K: a function α : X −→ Z/2Z corresponds
to the CM type {cα(x)s(x)|K = s(x)cα(x)|K}x∈X .

(2.1.1.4) A section ws : X(K) −→ ΓQ of the restriction map g 7→ g|K satisfying ws(cy) = cws(y), namely
ws(cas(x)|K) = cas(x) (x ∈ X, a ∈ Z/2Z).

For h ∈ ΓX
F , we denote by h : X −→ Z/2Z the image of h in Gal(K/F )X ∼−→ (Z/2Z)X . In other words,

∀x ∈ X h(x)|K = ch(x), R(h(x)) = ch(x)h(x),

where R : ΓF −→ ΓK is the retraction map from 1.3.2. We let SX n ΓX
F act on (Z/2Z)X via (1.1.1.1) and

the natural projection (σ, h) 7→ (σ, h):

(σ, h)α = (α + h) ◦ σ−1. (2.1.1.5)

(2.1.2) Rewriting Tate’s half transfer in terms of ρs. Let Φ be a CM type of K. If g ∈ ΓQ, then

ρs(g) = (σ, h) ∈ SX n ΓX
F , ∀x ∈ X σ(x) = gx, h(x) = s(gx)−1gs(x) = s(σ(x))−1gs(x) ∈ ΓF .

Let α ∈ (Z/2Z)X correspond to Φ, as in (2.1.1.3). For each x ∈ X, the element

ϕx = cα(x)s(x)|K = s(x)cα(x)|K ∈ Φ

satisfies ws(ϕx) = cα(x)s(x) and

gϕx = gs(x)cα(x)|K = s(σ(x))h(x)cα(x)|K = cα(x)+h(x)s(σ(x))|K ,

which implies that ws(gϕx) = cα(x)+h(x)s(σ(x)) and

ws(gϕx)−1gws(ϕx) = s(σ(x))−1cα(x)+h(x)gcα(x)s(x) = s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x) =

=
[
s(σ(x))−1cα(x)+h(x)s(σ(x))cα(x)+h(x)

] [
cα(x)+h(x)h(x)cα(x)

] [
cα(x)s(x)−1cα(x)s(x)

]
.

(2.1.2.1)
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Denote by γx,s the image of s(x)−1cs(x)c ∈ ΓK in Γab
K . Using this notation, we have (as each of the three

elements in square brackets in (2.1.2.1) lies in ΓK)

FΦ(g) =
∏
x∈X

ws(gϕx)−1gws(ϕx)|Kab =
∏

x∈|(σ,h)α|

γx,s

∏
x∈|α|

γ−1
x,s

∏
x∈X

cα(x)R(h(x))cα(x)|Kab , (2.1.2.2)

where we have denoted by |α| = {x ∈ X | α(x) 6= 0} the support of α. This calculation justifies the
following

(2.1.3) Proposition-Definition. For each α ∈ (Z/2Z)X , the formula

sF̃α(σ, h) =
∏
x∈X

s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)|Kab =

=
∏

x∈|(σ,h)α|

γx,s

∏
x∈|α|

γ−1
x,s

∏
x∈X

cα(x)R(h(x))cα(x)|Kab

defines a map

sF̃α : SX n ΓX
F −→ Γab

K

(depending on s and α) satisfying sF̃α ◦ρs = FΦ, where Φ is the CM type corresponding to α, as in (2.1.1.3).

(2.1.4) Proposition. The maps sF̃α have the following properties.

(i) ∀g, g′ ∈ SX n ΓX
F sF̃α(gg′) = sF̃g′α(g) sF̃α(g′).

(ii) For each (σ, h) ∈ SX n ΓX
F ,

sF̃α(σ, h)|F ab =
∏

x∈|(σ,h)α|

cx

∏
x∈|α|

cx

∏
x∈X

h(x)|F ab , 1+c
(

sF̃α(σ, h)
)

= ṼK/F (σ, h) =
∏
x∈X

1+cR(h(x))|Kab ,

where we have denoted ṼK/F (σ, h) =
∏

x∈X VK/F (h(x)|F ab).
(iii) Each map sF̃α factors through SX n Gal(Kab/F )X .
(iv) If g = (σ, h) ∈ SX n ΓX

F satisfies gα = α, then

sF̃α(g) =
∏
x∈X

cα(x)R(h(x))cα(x)|Kab .

(v) ∀(σ, h) ∈ SX n ΓX
K sF̃0(σ, h) =

∏
x∈X h(x)|Kab .

(vi) ∀α ∈ (Z/2Z)X
sF̃0(1, cα) =

∏
x∈|α| γx,s.

Proof. (i) If g = (σ, h) and g′ = (σ′, h′), then gg′ = (σσ′, (h ◦ σ′)h′) and α′ := g′α = (α + h
′
) ◦ σ′−1, which

implies that sF̃α(gg′) sF̃α(g′)−1
sF̃g′α(g)−1 is equal to

∏
x∈X

(
cα(x)+h(σ′(x))+h

′
(x)h(σ′(x))h′(x)cα(x)

) (
cα(x)+h

′
(x)h′(x)cα(x)

)−1 (
cα′(x)+h(x)h(x)cα′(x)

)−1

=

=
∏
x∈X

(
cα′(σ′(x))+h(σ′(x))h(σ′(x))cα′(σ′(x))

) (
cα′(x)+h(x)h(x)cα′(x)

)−1

= 1.

(ii) The first formula is a consequence of the fact that

∀x ∈ X γx,s|F ab = cxc, cα(x)R(h(x))cα(x)|F ab = ch(x)h(x)|F ab ;

applying (1.3.2.1), we obtain the second formula.
The statements (iii)-(vi) follow directly from the definitions.
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(2.1.5) Change of s. Let s, s′ −→ ΓQ be two sections of the restriction map g 7→ g|F . We have
s′ = st, where t : X −→ ΓF . As in 2.1.1, we write, for each x ∈ X, t(x)|K = ct(x) (t(x) ∈ Z/2Z); then
R(t(x)) = ct(x)t(x) ∈ ΓK . The recipe (2.1.1.3), applied to s and s′, respectively, associates to each CM type
Φ of K two functions α = αΦ,s, α

′ = αΦ,s′ : X −→ Z/2Z such that

Φ = {cα(x)s(x)|K} = {cα′(x)s′(x)|K} (=⇒ α′ = α + t).

According to Proposition 1.1.4, the following diagram is commutative:

SX n ΓX
F

Ad(1,t)−1

��

ΓQ

ρs

44iiiiiiiiiiiiiiiiiiiiiiiiii //

ρs′

**UUUUUUUUUUUUUUUUUUUUUUUUUU AutF−alg(F ⊗Q)

βs∗

88qqqqqqqqqqqqq

βs′∗

&&MMMMMMMMMMMMM

SX n ΓX
F

(2.1.5.1)

For (σ, h) ∈ SX n ΓX
F , denote

(σ′, h′) := Ad(1, t)−1(σ, h) = (1, t)−1(σ, h)(1, t) = (σ, (t ◦ σ)−1ht) ∈ SX n ΓX
F . (2.1.5.2)

The map ṼK/F from Proposition 2.1.4(ii) satisfies ṼK/F (σ, h) = ṼK/F (σ′, h′), which means that the map

ṼK/F ◦ βs∗ : AutF−alg(F ⊗Q) −→ Γab
K (2.1.5.3)

does not depend on s; we denote it again by ṼK/F . The equalities

(σ, h)α = (α + h) ◦ σ−1, (σ′, h′)α′ = (α′ + h
′
) ◦ σ−1 = (α + h) ◦ σ−1 + t ∈ (Z/2Z)X

imply that the action of SX n ΓX
F on (Z/2Z)X defined in (2.1.1.5) gives rise to an action of the group

AutF−alg(F ⊗Q) on the set of CM types of K, which is characterised by

∀g ∈ AutF−alg(F ⊗Q) αgΦ,s = βs∗(g)αΦ,s, (2.1.5.4)

but which does not depend on s.

(2.1.6) Proposition. In the notation of (2.1.5.2), we have sF̃α(σ, h) = s′ F̃α′(σ′, h′) ∈ Γab
K .

Proof. The relations s′ = st, (σ′, h′) = (σ, (t ◦ σ)−1ht), h
′
= h + t + t ◦ σ, α′ = α + t, (σ, h)α = (α + h) ◦ σ−1

and (σ′, h′)α′ = (σ, h)α + t imply that

s′ F̃α′(σ′, h′) =
∏
x∈X

t(σ(x))−1s(σ(x))−1cα(x)+h(x)+t(σ(x))s(σ(x))h(x)s(x)−1c(α+t)(x)s(x)t(x)|Kab =

=
∏
x∈X

A′((σ, h)α, x)−1B(α, x)A′(α, x),

where

A′(α, x) = cα(x)s(x)−1c(α+t)(x)s(x)t(x)|Kab , B(α, x) = cα(x)R(h(x))cα(x)|Kab .

As

sF̃α(σ, h) =
∏
x∈X

A((σ, h)α, x)−1B(α, x)A(α, x),
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where

A(α, x) = cα(x)s(x)−1cα(x)s(x)|Kab ,

the equality sF̃α(σ, h) = s′ F̃α′(σ′, h′) follows from the fact that

∀x ∈ X A(α, x)−1A′(α, x) = s(x)−1ct(x)s(x)t(x)|Kab

does not depend on α.

(2.1.7) Proposition-Definition. In the notation of 2.1.5, the map

F̃Φ = sF̃α(σ, h) ◦ βs∗ : AutF−alg(F ⊗Q) −→ Γab
K

depends on Φ, but not on s; it has the following properties.
(i) ∀g ∈ ΓQ F̃Φ(idF ⊗ g) = FΦ(g).
(ii) ∀g, g′ ∈ AutF−alg(F ⊗Q) F̃Φ(gg′) = F̃g′Φ(g)F̃Φ(g′).
(iii) ∀g ∈ AutF−alg(F ⊗Q) 1+cF̃Φ(g) = ṼK/F (g) (in the notation of (2.1.5.3)).

Proof. The independence of F̃Φ on s follows from Proposition 2.1.6 and the commutative diagram (2.1.5.1).
The remaining statements are consequences of Proposition 2.1.4.

(2.1.8) Galois functoriality of F̃Φ. Given an element ũ ∈ ΓQ, define u := ũ|K , uF := u|F , K ′ := u(K),
F ′ = uF (F ) and X ′ = X(F ′). As in Proposition 1.1.6 (for k = Q and k′ = Q), a fixed section s : X −→ ΓQ

of the restriction map g 7→ g|F defines a section s′ : X ′ −→ ΓQ of the restriction map g 7→ g|F ′ , given by

s′(x′) = s′(xu−1
F ) = s(x) ◦ ũ−1 (x ∈ X).

(2.1.9) Proposition. For each α : X −→ Z/2Z, the diagram

SX n ΓX
F

sF̃α−→ Γab
Kyũ∗

yu

SX′ n ΓX′

F ′
s′ F̃α′−→ Γab

K′

is commutative, where ũ∗ is the map defined in Proposition 1.1.6, α′ : X ′ −→ Z/2Z is given by α′(x′) = α(x)
(x = x′uF ) and the right vertical map (which depends only on u) is given by g 7→ ũgũ−1.

Proof. For (σ, h) ∈ SX n ΓX
F , we have ũ∗(σ, h) = (σ′, h′), where σ′(x′) = σ(x)u−1

F , h′(x′) = ũh(x)ũ−1

(x′ = xu−1
F ). The relations s′(σ′(x′)) = s(σ(x))ũ−1, s′(x′) = s(x)ũ−1, h

′
(x′) = h(x) and α′(x′) = α(x) imply

s′ F̃α′(σ′, h′) =
∏

x′∈X′

s′(σ′(x′))−1cα′(x′)+h
′
(x′)s′(σ′(x′))h′(x′)s′(x′)−1cα′(x′)s′(x′)|K′ab =

= ũ
∏
x∈X

s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x)|Kab ũ−1 = u
(

sF̃α(σ, h)
)

.

(2.1.10) Corollary. For each CM type Φ of K, the diagram

AutF−alg(F ⊗Q) F̃Φ−→ Γab
Ky[uF ]

yu

AutF ′−alg(F ′ ⊗Q)
F̃Φu−1−→ Γab

K′
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is commutative, where [uF ] is the map defined in Proposition 1.1.7(i).

Proof. This follows from Proposition 2.1.9 combined with Proposition 1.1.7(ii) (for k = Q and k′ = Q), if
we take into account the fact that

{cα′(x′)s′(x′)|K′}x′∈X′ = {cα(x)s(x)|K u−1}x∈X .

2.2 Generalised Tate’s cocycle

(2.2.1) Let (SX n ΓX
F )1 be the group defined as the fibre product

(SX n ΓX
F )1 −→ SX n ΓX

Fy y(1,prod)

Γab
Q /〈c〉

V F/Q

↪→ Γab
F /〈cX〉.

As the morphism V F/Q is injective (1.3.2.4), we can (and will) identify (SX nΓX
F )1 with its image in SX nΓX

F .
The group (SX n ΓX

F )0, defined in (1.1.2.4), sits in an exact sequence

1 −→ (SX n ΓX
F )0 −→ (SX n ΓX

F )1 −→ 〈cX〉/VF/Q(〈c〉) −→ 1.

For i = 0, 1, the subgroups β−1
s∗

(
(SX n ΓX

F )i

)
of AutF−alg(F ⊗Q) are independent on the choice of a section

s : X −→ ΓQ; we denote them by

AutF−alg(F ⊗Q)0 ⊂ AutF−alg(F ⊗Q)1 ⊂ AutF−alg(F ⊗Q).

(2.2.2) Definition. For each CM type Φ of K, define a map

f̃Φ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗

by

f̃Φ(g) = `K

(
F̃Φ(g)

)
,

where `K is the morphism from Proposition 1.3.4(i). [This definition makes sense, by Proposition 2.1.4(ii).]

(2.2.3) Proposition. The maps f̃Φ have the following properties.

(i) rK ◦ f̃Φ = F̃Φ.

(ii) ∀g ∈ ΓQ f̃Φ(idF ⊗ g) = fΦ(g).
(iii) Each map f̃Φ factors through

AutF−alg(F ⊗Kab)1 := Im
(
AutF−alg(F ⊗Q)1 −→ AutF−alg(F ⊗Kab)

)
.

(iv) ∀g, g′ ∈ AutF−alg(F ⊗Q)1 f̃Φ(gg′) = f̃g′Φ(g)f̃Φ(g′).
(v) If u : K

∼−→ K ′ is an isomorphism of CM number fields, then

f̃Φu−1 ◦ [u|F ] = u ◦ f̃Φ.

(vi) For g ∈ AutF−alg(F ⊗ Q)1, denote by u(g) ∈ Γab
Q /〈c〉 the unique element satisfying VK/Q(u(g)) =

1+cF̃Φ(g); then 1+cf̃Φ(g) = χ(u(g))K∗.

(vii) For g ∈ AutF−alg(F⊗Q)0, denote by u(g) ∈ Γab
Q the unique element satisfying VF/Q(u(g)) = F̃Φ(g)|F ab ;

then NK/F (f̃Φ(g)) = χ(u(g))αF ∗
+ ∈ F̂ ∗/F ∗

+, where α ∈ F ∗ satisfies

∀x ∈ X sgn(x(a)) =
{

1, if Φ and gΦ agree at x
−1, if Φ and gΦ do not agree at x
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(we say that two CM types Φ and Φ′ of K agree at x ∈ X if the unique element of Φ whose restriction to F
is x is equal to the unique element of Φ′ whose restriction to F is x).

Proof. The statement (i) holds by definition, while (ii)-(v) follow from the correspondings assertions for
F̃Φ, proved in Proposition 2.1.7 and Corollary 2.1.10. The property (vi) (resp., (vii)) is a consequence
of Proposition 1.3.4(i) (resp., 1.3.4(ii)) combined with the second (resp., the first) formula in Proposition
2.1.4(ii).

(2.2.4) Proposition. Let K ′ be a CM number field containing K; denote X ′ = X(F ′), where F ′ is the
maximal totally real subfield of K ′. If Φ is a CM type of K and Φ′ is the induced CM type of K ′, then:

(i) ∀g ∈ AutF−alg(F ⊗Q) F̃Φ′(idF ′ ⊗F g) = VK′/K

(
F̃Φ(g)

)
∈ Γab

K′ .

(ii) ∀i = 0, 1 ∀g ∈ AutF−alg(F ⊗Q)i idF ′ ⊗F g ∈ AutF ′−alg(F ′ ⊗Q)i.

(iii) ∀g ∈ AutF−alg(F ⊗Q)1 f̃Φ′(idF ′ ⊗F g) = iK′/K

(
f̃Φ(g)

)
∈ K̂ ′∗/K ′∗.

Proof. (i) Fix a section s : X −→ ΓQ; let α : X −→ Z/2Z correspond to Φ, as in (2.1.1.3). The sets
ΓK/ΓK′ and ΓF /ΓF ′ are canonically identified. Fix a section u : ΓK/ΓK′ = HomK−alg(K ′,Q) −→ ΓK of
the restriction map g 7→ g|K and define a section s′ : X ′ −→ ΓQ by

s′(s(x)y|F ′) = s(x)u(y) (x ∈ X, y ∈ ΓF /ΓF ′);

then Φ′ corresponds to α′ = α ◦ p : X ′ −→ Z/2Z, where we have denoted by p : X ′ −→ X the restriction
map g 7→ g|F . Proposition 1.1.8 implies that the elements

(σ, h) = βs∗(g) ∈ SX n ΓX
F , (σ′, h′) = βs′∗(idF ′ ⊗F g) ∈ SX′ n ΓX′

F ′

are related by

σ′(s(x)y|F ′) = s(σ(x))h(x)y|F ′ , s′(σ′(s(x)y|F ′)) = s(σ(x))u(h(x)y),
h′(s(x)y|F ′) = u(h(x)y)−1h(x)u(y) (x ∈ X, y ∈ ΓF /ΓF ′),

hence h
′
= h ◦ p. For x ∈ X and x′ ∈ X ′, put

k(x) = s(σ(x))−1cα(x)+h(x)s(σ(x))h(x)s(x)−1cα(x)s(x) ∈ ΓK

k′(x′) = s′(σ′(x′))−1cα′(x′)+h
′
(x′)s′(σ′(x′))h′(x′)s′(x′)−1cα′(x′)s′(x′) ∈ ΓK′ .

By definition,

F̃Φ(g) = sF̃α(σ, h) =
∏
x∈X

k(x)|Kab ∈ Γab
K , F̃Φ′(idF ′ ⊗F g) = s′ F̃α′(σ′, h′) =

∏
x′∈X′

k′(x′)|K′ab ∈ Γab
K′ .

For each x ∈ X and y ∈ ΓF /ΓF ′ ,

k′(s(x)y|F ′) = u(h(x)y)−1k(x)u(y) ∈ ΓK′ ,

which implies that k(x)y = k(x)u(y)|K′ = u(h(x)y)|K′ = h(x)y, hence u(h(x)y) = u(k(x)y) and∏
x′∈p−1(x)

k′(x′)|K′ab =
∏

y∈ΓK/ΓK′

u(k(x)y)−1k(x)u(y)|K′ab = VK′/K (k(x)|Kab) .

Taking the product over all x ∈ X yields (i). The statement (ii) follows from the fact that, in the notation
used in the proof of (i),
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∏
x′∈p−1(x)

h′(x′)|F ′ab =
∏

y∈ΓF /ΓF ′

u(h(x)y)−1h(x)u(y)|F ′ab = VF ′/F (h(x)|F ab) .

Finally, (iii) follows by applying `K′ to the statement of (i) (which makes sense, by (ii) for i = 1).
(2.2.5) Action of AutF−alg(F ⊗Q)0 on CM points of Hilbert modular varieties. Given a polarised
HBAV (Hilbert-Blumentahl abelian variety) A relative to F with CM, then A is defined over Q, and there
exist

• a CM field K of degree 2 over F ;
• a CM type Φ of K (which defines an embedding K ↪→ CΦ, α 7→ (ϕ 7→ ϕ(α))ϕ∈Φ);
• a fractional ideal a of K;
• an element t ∈ K∗ such that t 6∈ F ∗, t2 ∈ F ∗ and ∀ϕ ∈ Φ Im(ϕ(t)) < 0;
• an OK-linear isomorphism θ : CΦ/a

∼−→ A(C) such that the Riemann form of the pull-back of the
polarisation of A by θ is induced by the form Et(x, y) = TrK/Q(tx cy) on K.

One says that A is a CM abelian variety of type (K, Φ, a, t) (via θ). The type is determined up to trans-
formations (K, Φ, a, t) 7→ (K, Φ, aα, t/1+cα) (α ∈ K∗), and it determines A with its polarisation up to
isomorphism.
Given g ∈ AutF−alg(F ⊗Q)0, let u(g) ∈ Γab

Q be as in Proposition 2.2.3(vii). Fix a lift f̃ ∈ K̂∗ of f̃Φ(g) ∈
K̂∗/K∗ and define A′ = CgΦ/af̃ , with polarisation given by Et′ , where

t′ = t χ(u(g))/1+cf̃ ∈ K∗

(t′ satisfies t′ 6∈ F ∗, t′2 ∈ F ∗ and ∀ϕ′ ∈ gΦ Im(ϕ′(t′)) < 0, the last condition by Proposition 2.2.3(vii)).
Given, in addition, a full level structure η : (F/OF )2 ∼−→ A(Q)tors of A under which the Weil pairing
associated to the given polarisation is a Q̂∗-multiple of the standard form Tr

F̂ /Q̂
◦ det

F̂
on F̂ 2, let η′ be the

following level structure of A′:

η′ : (F/OF )2
η−→ A(C)tors

θ−1

−→ K/a
[×f̃ ]−→ K/af̃ = A′(C)tors.

The isomorphism class of the triple (A′, Et′ , η
′) depends only on g and on the isomorphism class [(A,Et, η)]

of (A,Et, η). Proposition 2.2.3 implies that the assignement

g[(A,Et, η)] = [(A′, Et′ , η
′)]

defines an action of AutF−alg(F ⊗Q)0 on the isomorphism classes of polarised HBAV (relative to F ) with
CM, equipped with a full level structure. Moreover, this action commutes with the action of G(F̂ ) on η (by
γ : η 7→ η ◦ γ), where G is the fibre product

G −→ RF/Q(GL(2)F )

↓
ydet

Gm,Q −→ RF/Q(Gm,F ).

In view of the results of Tate and Deligne alluded to in 1.4.3, it follows from Proposition 2.2.3 that the action
of AutF−alg(F ⊗Q)0 we have just defined extends the usual Galois action of ΓQ.

Recall that f̃Φ(g) is defined even for g ∈ AutF−alg(F ⊗Q)1. However, the positivity of polarisations implies
that the above recipe makes sense only if the conlusion of Proposition 2.2.3(vii) is satisfied, namely if
g ∈ AutF−alg(F ⊗Q)0.

(2.2.6) Proposition-Definition. Fix s : X −→ ΓQ as in 2.1.1; then X(K) = {s(x)ca|K | x ∈ X, a ∈
Z/2Z}.
(i) Let g ∈ AutF−alg(F ⊗Q); denote (σ, h) = βs∗(g) ∈ SX n ΓX

F . The formula

g (s(x)ca|K) := s(σ(x))ch(x)+a|K = s(σ(x))h(x)ca|K
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defines an action of AutF−alg(F ⊗ Q) on X(K). The action of g on X(K) depends only on the image of
(σ, h) in SX n Gal(K/F )X .
(ii) This action does not depend on the choice of s.
(iii) For each CM type Φ ⊂ X(K) of K, the set gΦ = {gy | y ∈ Φ} coincides with gΦ, defined in (2.1.5.4).
(iv) If g = idF ⊗ u, u ∈ ΓQ, then gy = u ◦ y = uy, for each y ∈ X(K).

Proof. Easy calculation.

(2.2.7) Corollary-Definition. (i) The induced action of AutF−alg(F ⊗Q) on X∗(KT ) = Z[X(K)]

λ =
∑

ny[y] 7→ gλ =
∑

ny[gy] (g ∈ AutF−alg(F ⊗Q))

extends the action (1.5.1.1) of ΓQ and leaves stable the subgroup X∗(KS ) of X∗(KT ) spanned by the CM
characters λΦ.
(ii) In the special case when K is a Galois extension of Q, the involution ι from (1.5.4.3) gives rise to another
action of AutF−alg(F ⊗Q) on X∗(KT ), namely

g ∗ ι(λ) = ι(gλ) (λ ∈ X∗(KT )).

This action extends the action (1.5.4.1) of ΓQ and leaves stable X∗(KS ).

(2.2.8) Proposition. Let n : {CM types of K} −→ Z be a function satisfying

∑
Φ

nΦλΦ = w ·NK/Q = w
∑

y∈X(K)

[y] ∈ X∗(KS ) (w ∈ Z). Then :

(i) ∀g ∈ AutF−alg(F ⊗Q)
∏

Φ F̃Φ(g)nΦ = ṼK/F (g)w.

(ii) If w = 0, then ∀g ∈ AutF−alg(F ⊗Q)1
∏

Φ f̃Φ(g)nΦ = 1 ∈ K̂∗/K∗.

Proof. (i) Fix s : X −→ ΓQ as in 2.1.1, and parametrise the CM types by functions α : X −→ Z/2Z, as in
(2.1.1.3): we write Φα = {s(x)cα(x)|K}x∈X , nα = nΦα

and λα = λΦα
. The condition

∑
Φ nΦλΦ = w ·NK/Q

is equivalent to

∀x ∈ X
∑
α

nαλα(x) =
∑
α

nα(1− λα(x)) = w.

The statement (i) follows from the fact that, for each g = (σ, h) ∈ SX n ΓX
F ,

∏
α

sF̃α(g)nα =
∏
x∈X

γ

∑
α
(nαλgα(x)−nαλα(x))

x,s R(h(x))
∑

α
nα(1−λα(x)) (cR(h(x)))

∑
α

nαλα(x) =

=
∏
x∈X

1+cR(h(c))w = ṼK/F (g)w.

If w = 0, the statement (ii) follows by applying `K to (i).

2.3 Generalised universal Taniyama elements

As in §1.6, we assume that K is a CM number field which is a Galois extension of Q.
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(2.3.1) Proposition. (i) There exists a unique map f̃ ′ : AutF−alg(F ⊗ Q)1 −→ KS (K̂)/KS (K) such

that λΦ ◦ f̃ ′ = f̃Φ, for all CM types Φ of K. The map f̃ ′ factors through AutF−alg(F ⊗Kab)1.
(ii) For each λ ∈ X∗(KS ), denote f̃ ′λ = λ◦ f̃ ′ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗; then f̃ ′λ+µ(g) = f̃ ′λ(g)f̃ ′µ(g).
(iii) ∀λ ∈ X∗(KS ) ∀g, g′ ∈ AutF−alg(F ⊗Q)1 f̃ ′λ(gg′) = f̃ ′g′λ(g)f̃ ′λ(g′).
(iv) ∀u ∈ Gal(K/Q) u(f̃ ′λ(g)) = f̃ ′u∗λ([u|F ]g).
(v) ∀g ∈ ΓQ f̃ ′(idF ⊗ g) = f ′(g).

Proof. The statements (i) and (ii) follow from Proposition 2.2.8(ii) by the same argument as in the proof
of Proposition 1.6.2. If λ = λΦ, then (iii) (resp., (iv)) is just the statement of Proposition 2.2.3 (iv) (resp.,
(v)); the general case follows from (ii). Finally, (v) is a consequence of the uniqueness of f ′, as

∀Φ λΦ(f̃ ′(idF ⊗ g)) = f̃Φ(idF ⊗ g) = fΦ(g) = λΦ(f ′(g)),

by Proposition 2.2.3(ii).

(2.3.2) Proposition. (i) Define the map f̃ : AutF−alg(F ⊗ Q)1 −→ KS (K̂)/KS (K) by the formula

f̃(g) = (ι(f̃ ′(g)))−1. This map factors through AutF−alg(F ⊗Kab)1 and has the following properties.

(ii) The maps f̃λ = λ ◦ f̃ : AutF−alg(F ⊗Q)1 −→ K̂∗/K∗ (λ ∈ X∗(KS )) satisfy

f̃λ+µ(g) = f̃λ(g)f̃µ(g), f̃λ(g) = f̃ ′ι(λ)(g)−1, f̃λ(gg′) = f̃g′∗λ(g)f̃λ(g′).

(iii) ∀u ∈ Gal(K/Q) ∀g ∈ AutF−alg(F ⊗Q)1 u(f̃λ(g)) = f̃uλ([u|F ]g), u(f̃(g)) = f̃([u|F ]g).
(iv) ∀g, g′ ∈ AutF−alg(F ⊗Q)1 f̃(gg′) = (g′−1 ∗ f̃(g)) f̃(g′).
(v) ∀g ∈ ΓQ f̃(idF ⊗ g) = f(g).

Proof. As in the proof of Proposition 1.6.3, everything follows from Proposition 2.3.1.

(2.3.3) Proposition. There exists a lift b̃ : AutF−alg(F ⊗Kab)1 −→ KS (K̂) of f̃ whose “coboundary”

d̃g,g′ = (g′−1 ∗ b̃(g)) b̃(g′) b̃(gg′)−1 is a locally constant function on (AutF−alg(F ⊗Kab)1)2.

Proof. The argument from the proof of Proposition 1.7.5 applies.

(2.3.4) Proposition. If K ′ is a CM number field, which is a Galois extension of Q and contains K,

then the generalised universal Taniyama elements f̃K : AutF−alg(F ⊗Q)1 −→ KS (K̂)/KS (K) and f̃K′ :
AutF ′−alg(F ′ ⊗Q)1 −→ K′S (K̂ ′)/K′S (K ′) over K and K ′, respectively, satisfy

∀g ∈ AutF−alg(F ⊗Q)1 f̃K(g) = NK′/K

(
f̃K′(idF ′ ⊗F g)

)
.

Proof. This follows from Proposition 2.2.4(iii), as in the proof of Proposition 1.6.5.

2.4 Generalised Taniyama group

Let K be as in §2.3.
(2.4.1) Let us try to apply the method of [Mi-Sh, Prop. 2.7] (see 1.7.3 above) to the generalised universal
Taniyama element f̃ and its lift b̃. The reverse 2-cocycle d̃g,g′ with values in KS (K) gives rise to an exact
sequence of affine group schemes over K

1 −→ KSK
ı̃−→ G̃′ π̃−→ AutF−alg(F ⊗Kab)1 −→ 1 (2.4.1.1)

(where the term on the right is considered as a constant group scheme), equipped with a section α̃ :
AutF−alg(F ⊗Kab)1 −→ G̃′(K) such that

∀g, g′ ∈ AutF−alg(F ⊗Kab)1 α̃(gg′) = α̃(g)α̃(g′)d̃g,g′ .
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The map

s̃p : AutF−alg(F ⊗Kab)1 −→ G̃′(K̂), s̃p(g) = b̃(g)α̃(g)

is a group homomorphism satisfying π̃ ◦ s̃p = id.
(2.4.2) Each element u ∈ ΓK acts on G̃′(Q) by

u(s α̃(g)) = us α̃(g) (s ∈ KS (Q)) (2.4.2.2)

We extend this action to an action of ΓQ: for u ∈ ΓQ and g ∈ AutF−alg(F ⊗Kab)1, set

c̃u(g) = b̃([u|F ]g) u(̃b(g))−1 ∈ KS (K).

As

∀u, u′ ∈ ΓQ ∀g ∈ AutF−alg(F ⊗Kab)1 c̃uu′(g) = c̃u([u′|F ]g) u(c̃u′(g)),

the formula

u(s α̃(g)) = c̃u(g) us α̃(g) (s ∈ KS (Q), g ∈ AutF−alg(F ⊗Kab)1) (2.4.2.3)

defines an action of ΓQ on G̃′(Q) which extends the action (2.4.2.2) of ΓK .

We define KT̃ to be the affine group scheme over Q such that KT̃ (Q) = G̃′(Q), with the ΓQ-action given
by (2.4.2.3). The exact sequence (2.4.1.1) descends to an exact sequence

1 −→ KS
ı̃−→ KT̃

π̃−→ AutF−alg(F ⊗Kab)′1 −→ 1, (2.4.2.4)

where we have denoted by AutF−alg(F ⊗Kab)′1 a twisted form of the constant group scheme AutF−alg(F ⊗
Kab)1, for which u ∈ ΓQ acts on

AutF−alg(F ⊗Kab)′1(Q) = AutF−alg(F ⊗Kab)1

by [u|F ]. Note that

AutF−alg(F ⊗Kab)′1(Q) = idF ⊗Gal(Kab/Q), (2.4.2.5)

by Proposition 1.1.6(iv).

(2.4.3) As f̃ extends f (and the restriction of b̃ to Gal(Kab/Q)2 satisfies 1.7.5), there is a commutative
diagram of affine group schemes over Q with exact rows

1 −→ KS
i−→ KT

π−→ Gal(Kab/Q) −→ 1∥∥∥ y y(idF⊗−)

1 −→ KS
ı̃−→ KT̃

π̃−→ AutF−alg(F ⊗Kab)′1 −→ 1.

Moreover, there is a commutative diagram of groups

KT (Q̂)
sp←− Gal(Kab/Q)y y(idF⊗−)

KT̃ (K̂)
s̃p←− AutF−alg(F ⊗Kab)1

such that π ◦ sp = id, π̃ ◦ s̃p = id. As

∀u ∈ ΓQ ∀g ∈ AutF−alg(F ⊗Kab)1 us̃p(g) = u(̃ b(g)α̃(g)) = c̃u(g) ũb(g) α̃([u|F ]g) =

= b̃([u|F ]g) α̃([u|F ]g) = s̃p([u|F ]g),
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the map s̃p is ΓQ-equivariant. As [u|F ] depends only on the image of u in Gal(F/Q), it follows that the
image of s̃p is contained in KT̃ (F̂ ), and that s̃p is Gal(F/Q)-equivariant.

(2.4.4) It follows from Proposition 2.3.4 that the pull-backs of K′T̃ to AutF−alg(F ⊗ Q)′1 (for varying
K ′ ⊃ K) give rise to an extension of AutF−alg(F ⊗Q)′1 by S . These extensions for varying F are again
compatible; they give rise to an extension of affine group schemes over Q

1 −→ S −→ T̃ −→ lim−→F
AutF−alg(F ⊗Q)′1 −→ 1,

whose pull-back to ΓQ coincides with (1.7.6.1).

(2.4.5) It would be of interest to give an “abstract” definition of T̃ along the lines of [De]. As observed in
2.2.5, it is the group AutF−alg(F ⊗Q)0 rather than AutF−alg(F ⊗Q)1 which has a geometric significance,
which means that one should rather consider the subgroup scheme T̃0 ⊂ T̃ sitting in the exact sequence

1 −→ S −→ T̃0 −→ lim−→F
AutF−alg(F ⊗Q)′0 −→ 1.
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