Hidden symmetries of the theory of complex multiplication
Jan Nekovar

To Yuri Manin on the occasion of his 70th birthday, with admiration

0. Introduction

(0.1) Let F be a totally real number field of degree d. It is well known that one can associate to any
cuspidal Hilbert eigenform f over F' of parallel weight 2 a compatible system of two-dimensional I-adic
Galois representations Vi(f) of T'r = Gal(Q/F) over Q, (having fixed embeddings Q — C and Q — Q,).
(0.2) On the other hand, the Shimura variety X associated to Rp,qGL(2)r has reflex field Q, which
means that its étale cohomology groups give rise to l-adic representations of I'q = Gal(Q/Q). The action
of I'q on the intersection cohomology of the Bailey-Borel compactification X* of X was determined, up
to semi-simplification, by Brylinski and Labesse [Br-La]: non-primitive cohomology (into which we include
ITHY) occurs in even degrees and decomposes as

IHthJ(X* ®qQ Qval)nonfprim o @X(_j)7
X

where each x is a finite order character of I'q. Primitive cohomology occurs only in degree d and its
semi-simplification decomposes as

IHgt(X* ®Q Qa Ql);srim - @W(f) ® Wl(f)v
!

where f is as above, w(f) is the automorphic representation of GL(2, Ar) associated to f, and

Wi(f) = Ind?/QVl(f)

(the tensor induction of V;(f)) is a 2¢-dimensional l-adic representation of I'q, which is defined as follows.
A choice of coset representatives

d

rq=[orr (0.2.1)
i=1
defines an injective group homomorphism
FQ — Sd X F%‘? g— (07 (hh RS hd))v 99i = go’(i)hia (022)

and Ind%/QVl(f) is obtained from the (S; x I'%)-module V;(f)®? by pull-back via the map (0.2.2).

(0.3) In particular, the action of 'q on TH%(X* ®q Q, Ql)isrim extends to an action of S; x I'4. The same
should be true for the action on IH, 4(X* 2q Q, Q;)prim, since general conjectures predict that I'q should
act semi-simply on IH}, (Y ®q Q, Q;), for any proper scheme Y over Spec(Q).

The representations x(—j) of I'q occurring in the non-primitive cohomology of X* do not extend to repre-
sentations of Sy X 1"%, but they extend to representations of the group (Sg x F%)o, which is defined as the
fibre product

(Sd X FCFl‘)O — Sd X F‘Ii;v
1 § 1 (0.3.1)
ry 81,
in which the right vertical arrow is trivial on S; and is given by the product map on F%. As the field F is

totally real, the transfer map Vg, q is injective, which means that we can (and will) consider (Sg x I'd)o as
a subgroup of Sy x I'4. The inclusion (0.2.2) factors through an inclusion I'q < (Sg x I'4)o.
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(0.4) Question. To sum up: the results of [Br-La] combined with the semi-simplicity conjecture imply
that the action of I'q on IH} (X* ®q Q, Q;) should extend to an action of (Sq x I't)o. Is there a geometric
explanation of this hidden symmetry of IH}(X* ®q Q,Q;)?

(0.5) This question admits a more invariant formulation. Recall that the inclusion (0.2.2) depends on the
choice of coset representatives (0.2.1). The same choice defines an isomorphism of F-algebras

FoqQ->F'  a®bo (a®g ()

hence a group isomorphism

Sgq X F% AN Autp_alg(F ®Xq Q), (0.5.1)

the composition of which with (0.2.2) coincides with the canonical injective map

FQ = AUthalg(Q) — Autp,alg(F XQ 6), g—idp ®g. (0.5.2)

The subgroup Autp_ a1, (F®qQ)o of Autr_ay(F ®q Q) corresponding to (Sqx I'4)o under the isomorphism
(0.5.1) is independent of any choices, which means that we should restate Question 0.4 as follows.

(0.6) Question. Is there a geometric explanation of the fact that the action of I'q on IH} (X™ ®q Q. Q)
extends to an action of Autp_q,(F ®q Q)o? For example, does X* ®q Q (or a related space) admit an
action of Autp_qq(F ®q Q)o?

(0.7) Idle speculation. The recipe (0.2.2) defines an inclusion

G — Sqx H? (0.7.1)

(depending on chosen coset representatives of H in G) whenever H is a subgroup of index d of a group G.

If p: Y — Z is an unramified covering of degree d between “nice” connected topological spaces and
H=m(Y,y), G=m(Z,p(y)), then there are at least two geometric incarnations of (0.7.1).

Firstly, if Z denotes the universal covering of Z, then

G =5 Aut(Z)Z),  Sqw H* =5 Aut(Y x5 Z]Y)

and (0.7.1) comes from the canonical map

Aut(Z/Z) — Aut(Y xz Z)Y), g~ idy x g. (0.7.2)

In our situation, the role of p (resp., by Z) is played by the structure map Spec(F') — Spec(Q) (resp., by

Spec(Q), and (0.7.2) is nothing but (0.5.2).
Secondly, Sq x H? is closely related to w1 (Y?/Sq, p~*(p(y))), and there is a canonical map

Z — Y8y, 2z pi(2). (0.7.3)

In other words, the map induced by (0.7.3)

m(Z,2) — (Y ?/Sa,p"(2))

is an approximative version of (0.7.1).

In our situation, in which the role of Y (resp., of Z) is played by Spec(F') (resp., by Spec(Q)), we are
confronted with the fact that the analogue of Y (resp., of Y¢/S;) should be the d-th power (resp., the
d-th symmetric power) of Spec(F') over the elusive absolute point Spec(F;). A Grothendieckean approach
to Question 0.6 would then involve

e making sense of the d-th symmetric power Sym®(F/F;) of Spec(F) over Spec(F1);
e extending X* to an object X* defind over (a desingularisation of) Sym?(F/F,);
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e relating l-adic intersection cohomology groups (V) of X* and X*.
At present, this seems beyond reach, but as A. Genestier pointed out to us, everything makes sense for
Drinfeld modular varieties over global fields of positive characteristic.

(0.8) Leaving speculations aside, in the present article we test Question 0.6 by studying the action of I'q
on the set of CM points. It is convenient to replace Rp/qGL(2)r by the the group G defined as the fibre
product

G — Rpq(GLR)r)

l Lo

Gnaq — Rpq(Gmr),
since the corresponding Shimura variety is a moduli space for polarised Hilbert-Blumenthal abelian varieties
(HBAV) equipped with adelic level structures.

The first main result of the present article (see 2.2.5 below) is the following.

(0.9) Theorem. The group Autp_q,(F ®q Q)o acts naturally on the set of CM points of the Shimura
variety Sh(G, Z") associated to G. This action extends the natural action of I'q and commutes with the

action of G(Ay) = G(Q) on Sh(G, Z).

The key point in the proof is to show that Tate’s 1-cocycle fo : I'q — K* /K*, which describes the Galois
action on the set of CM points by K, naturally extends to a 1-cocycle fq> AutF alg(F ®q Q) — K*/K*
(above, K is a totally imaginary quadratic extension of F, K is the ring of finite adeles of K and ® is a CM

type of K). In fact, fe extends to a 1-cocycle fo defined on a slightly bigger subgroup Autp_q1,(F ®q Q)1
of Autp_q1e(F ®q Q), which corresponds to the fibre product

(Sd X F(}—,)l e Sd X F%
l(lyprod)
b Vr/a b
'y /{c) - T¥®/{c,...,ca),
where ¢ € Fg’ (resp., C1,...,Cq € F‘};b) is the complex conjugation (resp., are the complex conjugations at

the infinite primes of F'). We have

Autp_ g (F ©q Q)1/Autr_ay(F ©q Q)o — (2/22)",
but only the elements of Autp_qi4(F ®q Q) preserve the positivity of the polarisations.

(0.10) A more abstract formulation of this result involves a generalisation of the Taniyama group .7 and
its finite level quotients g .7. More precisely, in the special case when K is a Galois extension of Q, the
maps fo factor through Autp_q (F ®q K%); = Im (AutF_alg(F ®q Q) — Autp_q4(F ®q K“b)) and
can be put together, yielding a 1-cocycle

[ Autp oy (F 9 K%) — k7 (K)/ xS (K), (0.10.1)
where g.¥ is the Serre torus associated to K.

Our second main result (see 2.4.2-3 below) states that the coboundary of f gives rise to an exact sequence
of affine group schemes over Q

1 — k. = T = Autp_ay(F @q K, — 1, (0.10.2)
where Aut p_ a1 (F ®q K)] is a certain F/Q-form form of the constant group scheme Aut p_ 1o (F ®q K);.
Moreover, there is a group homomorphism sp : Autp_a.(F ®q K%), — g7 (F) satisfying 7 o sp = id.
The pull-back of (0.10.2) to Autq_ag(K?) = Gal(K?/Q) is the level K Taniyama extension

(1) Establishing a relation between de Rham cohomology of X* and X* could also be of interest, in view
of potential applications to period relations for Hilbert modular forms.
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1— g -5 k7 5 Gal(K*/Q) — 1

For varying K, the 1-cocycles fare compatible. When put together, they give rise to an exact sequence of
affine group schemes over Q

1 — 9 — T — lim Autp_ay(F ®q Q)] — 1 (0.10.3)
F

where 5” is the inverse limit of the tori Ky with respect to the norm maps), whose pull-back to I'g coincides
1% Ps), p Q
with the Taniyama extension

l1—Y — T —Tq—1
(0.11) Question. As shown in [De], the Taniyama group .7 has a natural Tannakian interpretation. Does
T, or its subgroup scheme 9, C 7 sitting in the exact sequence

1 — .Y — % — limAutF,alg(F@)Q)é) — 1,

D
have a similar interpretation?

(0.12) If A is a polarised HBAV over Q, then H},(A/Q) is a free F ®q Q-module of rank 2, and for
each prime p the F ®q Q ®q Q,-module H},(4/Q) ®q Q, has an additional crystalline structure. The
comparison theorems between étale and crystalline cohomology together with Faltings’s isogeny theorem
imply that the F-linear isogeny class of A is determined by H},(A/Q) with this additional structure. It
is very likely (even though we have not checked this) that the action (0.9) of Autp_q,(F ®q Q)o on the
set of CM points of Sh(G, Z") is compatible, via the functor A — H}.(A/Q), with the natural action of
Autp_q4(F ®q Q) on the category of F' ®q Q-modules.

(0.13) Question. What happens for non-CM points? In other words, for what g € Autp_a14(F ®q Q)g is
there a polarised HBAV A’ over Q such that
Hip(A'/Q) = g" Hir(A/Q),

with all the additional structure?

1. Background material

In §1.4-1.7 of this chapter we recall the main results of the theory of complex multiplication. In §1.1-1.3 we
collect some elementary background material.

Notation and conventions: An action of a group on a set always means a left action. We write A ® B
instead of A®z B and denote by Q the algebraic closure of Q in C. By a number field we always understand
a subfield of Q of finite degree over Q. The ring of integers of a number field & will be denoted by Oy. For
each subfield L of Q we denote I'y, = Gal(Q/L) and X (L) = Homq_alz(L, Q). The restriction map g — g|r,
defines an isomorphism of left FQ sets FQ /T, — X(L). Denote by ¢ € I'q the complex conJugatlon For

any abelian group A, we denote A=A®Z IfAisa ring, so is A (if k£ is a number field, then % is the ring
of finite adeles of k).

1.1 Wreath products and Galois theory

(1.1.1) Notation. If X and Y are sets, we denote by YX = {f : X — Y’} the set of maps from X to Y.
If Y is a group, so is YX. The group of permutations of the set X, denoted by Sx = {bijective maps o :
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X — X}, acts on YX by 9f = foo~ L. For any group H, the semi-direct product of HX and Sx (with
respect to this action of Sx on HY) is equal to

Sx x H* ={(o,h) |0 € Sx, h: X — H}, (o,h) (0’ b)) = (c0’, (hod')R).

If Y is a left H-set, then Y is a left (Sx x H¥)-set via the action

(@.h)(y) = (hy) oo™, he HY, ye Y™, (hy)(@) = (h(x))(y(x)). (L111)

(1.1.2) Basic construction. Let H be a subgroup of a group G. Fix a section s : X = G/H — G of
the natural projection G — G/H. Left multiplication by g € G defines a permutation ¢ = (z — gz) € Sx.
For each z € X,

gs(x) = s(gz)h(x),  h(z) e H,

and the map

g (0.h) = (& = gx), (= s(gz)"'gs(x))) € Sx x HY

is an injective group homomorphism

ps: G — Sx x HX (X =G/H). (1.1.2.1)

If s : X = G/H — G is another section, then s’ = st, t € HX, and

Yge G  pu(g) = (1,t) ps(9)(1,1). (1.1.2.2)
If (G: H) < o0, then the diagram

G L leXHX

| | ooy (1.1.2.3)

Gab \4 Hab

is commutative, where prod denotes the product map h +— ], .y h(z) (mod [H, H]) and V is the transfer.
The map p;s factors through an injective group homomorphism

G — (Sx x HY)o,
where (Sx x HX)g is the group defined as the fibre product
(be(HX)o — be(HX
| | cron (1.1.2.4)

Gab \4 Hab.

If V is injective, we can (and will) identify (Sx x HX)q with its image in Sx x H™.

(1.1.3) Proposition. Let k'/k be a Galois extension (not necessarily finite) and X a finite set. The action
of Ty, = Gal(k'/k) = Auty_ag (k) on k' gives rise, as in (1.1.1.1), to an action of Sx x I‘ﬁ/k on (k)X by
k-algebra automorphisms, and each k-algebra automorphism of (k' )X arises in this way:

Sx X Fi(,/k = Auty_ae (X)), (o,h) — (a+ (ha) oo™ 1).

Proof. Any k-algebra automorphism f of (k’)X must permute the set of irreducible idempotents {1, | z € X}
of (K)X: f(1;) = 15(z), ¢ € Sx. This implies that (o, 1)o f preserves the decomposition (k') =], cx ¥ 14,
hence (0,1) o f € Autg_a5(k)* = Fi(,/k, which implies that f € Sx x Fﬁ/k.
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(1.1.4) Proposition. Let k’/k be as in Proposition 1.1.3. Let F/k be a finite subextension of k' /k; denote
X = Homy_a4(F, k). Fix a section s : X — T’/ of the restriction map Uy i, — TUpoyi /T /p = X,
g — g|p. The chosen section induces an isomorphism of k-algebras

s (k)Y — (K)%, ue (0 s(@)(u(@)).

(i) The map
a:Fepk — (K)X, a®b— (z+— xz(a)b)

is an isomorphism of k-algebras.
(ii) The map
Bs: Fop k' 2 (KX <& ()X, a®@bw (z— as(z)" (b))

is an isomorphism of F-algebras.
(iii) The map (s satisfies

Vg € AUtkfalg(kl) = Fk’/k ﬁs o (ldF ® g) = ps(g)ﬁm
hence induces a group isomorphism
Bsx AU-thalg(F K k/) o AUthalg«k/)X) = Sx x F?;/Fa fr—=Bsofo 65_1

satisfying Bs.(idr ® g) = ps(g), for all g € Ty .
(iv) Ifs’ = st : X — 'y, is another section of the restriction map g +— g|r (t: X — T'y//p), then

Vg S Autp_alg(F Rk k/) 53/*(9) = (17t>71 ﬂs*(g) (Lt)v
1..6., ﬁs* = Ad(l,t) 9] 65’*'

Proof. (i) This is a well-known fact from Galois theory.

(i) The map fs is an isomorphism of k-algebras, by (i). For each a € F, we have §(a) : © — a, which
means that G, is a morphism of F-algebras.

(iii) Let ac€ F,be k', g €Ty, =G, H=T} p; denote ps(g) = (0, h). For each x € X we have

o(x) =gz, h(z) = s(gz) " gs(z) = s(o(z))"'gs(z) € H, Bs(a®@b)(x) = as(x)~" (b),

hence

Bs o (idr © g)(a ©@b) = Bs(a ® g(b)) : & = as(x) " (g(b)).
On the other hand,

(0,h) 0 Bs(a®b) : = Ao~ () (as(o™ " (x)) 7' (b)) = a(s(z)~"g) (b),
which proves that §; o (idp ® g) = ps(9) o Bs, as claimed.

(iv) We have By =t710,, as
Vo eX  Pu(a®d)(z)=at(x) os(@)” (z) = t(x) " (as(z) 7' (b)) = t(x) " (Bs(a @ D)(x))
in the notation of the proof of (iii). It follows that
/Bs’*(g) = ﬁs/ ©go 6;/1 = t_lﬂs ©go /Bs_lt = t_lﬂs*(g)t,

as claimed.

(1.1.5) To sum up the discussion from 1.1.3-4, the natural map

(idp ® =) : Thr i, = Auty_aig (k') — Autp_ag(F @ k'), gridrp®g

is a canonical incarnation of the morphism p, : I'y /3, — Sx x Fﬁ/F, as B 0 (Idp ® —) = ps.
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(1.1.6) Proposition. Let k C F C k' and s : X — T/, be as in Proposition 1.1.4. Given u € Ty,
denote u = u|p, F' = u(F) and X' = Homy_a14(F’, k). The bijection X — X' (z + o’ = zu~!) gives rise
to a section s’ : X' — Ty, of the restriction map g — g|p, given by s'(2') = s(z)u™".
(i) The map
ﬂ*:SXxFi(,/F—>SX/D<F§I/F,, (o,h) — (o', 1)

o) =o0(x) (= o(zu™) =o(z)u™t), B'(2') =ah(x)u ! (<= b (zu™') =uh(z)u")
is a group isomorphism satistying U, o ps = ps-
(i) Yu,u € Ty W, = (WW)x-
Proof. Easy calculation.

(1.1.7) Proposition. In the situation of Proposition 1.1.6,

(i) the map
[u] : AutF,alg(F Rk k/) — Autplfalg(Fl Rk k’/)
g — (u®idy)ogo (u @ ide)
is a group isomorphism satisfying [u'u] = [u'] o [u] and

Vg S Fk’/k [u](ldF ® g) = idF/ ® g.

(ii) The following diagram is commutative.

Autp,alg(F Rk k/) =5 Sy x Fi(//F
[ |
Autp_ag(F @u k) 25 Sy x TX
F’—alg k X’ k' /F’
(iii) If F' = F, then the group automorphism
B o [ul 0 BL1: Sx x TR jp — Sx X T /o
is given by the formula (o,h) — (o4, h,,), where

Ve e X ou(x) = o(zu)ut, ho(x) = s (0u(2)) " s (ou()u) h(zu)s(zu) " s(x).

(iv) If F is a Galois extension of k, then the maps [u] define an action of I/, on Autp_a5(F ®y k'), the
set of fixed points of which is equal to idr @ 'y /i

Proof. (i) Straightforward. (ii) Let g € Autp_ag(F ®p k'); denote (0,h) = Bsx(g) and (o, h') = (o, h).
Fora®b e F @ k', write g(1 ®b) = Y a; ® b;; then gla @ b) = 5" aa; @ b;. As Bs(a @ b)(z) = as(z)~1(b),
the equalities

Bs(9(a @ b))(z) = ((,h)Bs(a © b)) (z) (z € X)
read as
Zaais(w)_l(bi) =ah(o(x))s(o(x)) 1 (b) (x € X). (1.1.7.1)
As ([u](9))(1 ®b) = > u(a;) ® b;, the statement to be proved, namely
va'e X'Va' € F'vbe K Bu(([ul(g)(a @ b)) = (o', h)By (@ @ b)),

reads as



S dulan)s' ()7 (b) £ (0 @) (0 @),

which is obtained from (1.1.7.1) (with « = 2’u) by applying u, since

s'@) Tt =as)T, ST @) T =use (@) Ko@) = ah(eT (@)a

(iii) The assumption F’ = F implies that s’ = st, where t : X — T/ p is given by t(x) = s(z)'s(zu)u~".

It follows from (ii) and Proposition 1.1.4(iv) that

Bs« o [u] o ;kl = Box Oﬂs_’i oty = Ad(1,t) o uy,

hence

(0w, hy) = (L,t) (o, ) (1,6) "t = (o, (to o )Wt™1), ou(r) =o' (z) = o(zu)u?,
ha(z) = t(ou ()R (2)t(x) " = s (0u(2)) " s (ou(2)u) h(zu)s(zu)~ s(z).

(1.1.8) Proposition. In the situation of Proposition 1.1.4, let F'/F be a subextension of k'/F; denote

X" = Homy,_ag(F', k') and fix a section s' : X' — Ty, of the restriction map g +— g|p/. For each z' € X',

define t(x") € I'ys ) by the relation s'(x") = s(z'|p)t(z").

(i) The map

ps 1 Sx X T g — Sxi X T o, (0,h) = (07, 1),
o'(2') = s(o(z))h(z)s(x) 1/, B (2") = t(o' (2')) " h(z)t(2), x=2aF

is a group homomorphism satisfying

(ii) The following diagram is commutative.

Autp_ag(Fop k') 25 Sy xT¥ .
l(idF/(X)F—) J/ps,s’

AutF(ialg(F/ Rk k/) % SX’ X Fi(///F’

Proof. (i) Easy calculation. (ii) As in the proof of Proposition 1.1.7, fix a®b € F®k', g € Autp_a1q(F @1 k')
and denote (o, h) = Bs.(g). Writing g(1 ® b) = > a; ® b;, then (1.1.7.1) (for o(z) instead of z) reads as

Zais(a(x))_l(bi) = h(x)s(z)"(b) (x € X). (1.1.8.1)

Define (¢/,h') := ps o (0, h); we must show that

o

Vo' € X'Va' € F'Vbe k' Bs ((dp @F g)(a’ @ b)) (2') = (o', 1)) Bs (@’ @ b))(2"),
which can be rewritten (again using (1.1.7.1) and replacing 2’ by o’(z')) as follows:
Za’ais’(al(x'))_l(bi) =da'h(2)s (2') "1 (b) (' € X'). (1.1.8.2)

As o/(2')|r = o(2'|F), the equality (1.1.8.2) is obtained by multiplying (1.1.8.1) (for z = 2'|r) by t(o’(2')) !
on the left.



1.2 Class Field Theory
(1.2.1) Let k be a number field. Denote by

K, =Ker (k' — m((k@R)"),  Of, =0ink}
the set of totally positive elements and the set of totally positive units of k, respectively. Let Aj be the
adele ring of k and Cj, = A} /k* the idele class group of k. The reciprocity map
recy : Cp — ng

will be normalised by letting local uniformisers correspond to geometric Frobenius elements. As recy
induces an isomorphism 7o(Cy) — T'%0| its restriction to the group of finite ideles gives rise to a surjective
continuous morphism

T E*/k‘i — b,
(1.2.2) It follows from the structure of the connected component of Cj, ([Ar-Ta], ch. 9, Thm. 3) that the
kernel of 7y, is isomorphic, as an Aut(k/Q)-module, to Oy | ® (Z/Z) = O; | ® (Q/Q).
(1.2.3) For k = Q, the map rq is an isomorphism, and its composition with the canonical isomorphism
Z* — Q*/Q7 (induced by the inclusion of Z into Q) is inverse to the cyclotomic character

X : Fg’ =, 7, g(¢) = ¢X@) (V¢ a root of unity in Q).

(1.2.4) If £'/K is a finite extension of number fields, then the inclusion k& <— &’ and the norm Ny, ), : K™ —
k* induce commutative diagrams

~ Ly ~ ~ N, ~
S S T Bk Bk
Lk L7 L7 | & (1.2.4.1)
V/ j !’
g 4Ty rg 4o,

where Vi /i, is the transfer map and ji/ /) is given by the restriction map g +— g|gas.

(1.2.5) Proposition. For any number field L,

ab w | {1,c}, if L is totally complex
Ker (Vi/q :Tg —TIT) = { {1}, otherwise.

Proof. Let L' be the Galois closure of L over Q. As

N Gal(L'/Q)
Im (ir,/q) N Ker(r) € (07, © Q/Q) - 1,

the first commutative diagram (1.2.4.1) for L/Q implies that zz/lQ (Ker(rp)) is equal to

. .o T X Q*/Q% = {1}, if L is totally complex
Ker (ZL/Q) = (Q N L+) /Q+ = { {1}, " otherwise.

As rq is an isomorphism and rq(—1) = ¢, the statement follows.

1.3 CM fields

Let K be a non-real CM number field; let F' be its maximal totally real subfield (in other words, ¢(K) = K,
Tc=cr# 7 foral 7 € X(K), and F = K°=1). Denote X = X(F).

(1.3.1) Complex conjugations. Fix a section s : X — T'q of the restriction map g — g|p. For each

x € X, the image of the element s(z) tcs(x) € I'p in T'% is independent on the chosen section; denote it by
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c; € T (this is the complex conjugation defined by the real place x of F). Denote by (cx) the subgroup of
I'% generated by all ¢, (z € X). The signs at the real places induce an isomorphism

(sgno)zex : F*/F; > {£1}¥.

Compatibility of the local and global reciprocity maps implies that

Ya € F* re(aFy) = H g, (=1)% = sgn(z(a)).
reX

As Ker(rp) is a Q-vector space, we have Ker(rg) N F*/F; = {1}, which means that rx induces an isomor-
phism F*/F; — (cx).
(1.3.2) Transfer maps. If we denote by
R:FF—)FK7 g9,¢g—4g (gGFK)
the “retraction map” from I'r to 'k, then
Vh eTp Vic/r (h|pav) = Vig/p (ch|pav) = hehe|gan = ¢ (R(R)| o) . (1.3.2.1)
As noted in 1.2.5,

Ker (Vi/q : T§ — I'¥) =rq (Ker(ix/q)) =rq (Q*/Q%) = {1,¢} = (0). (1.3.2.2)
The equality Ker(rp) = Of , ® Q/Q = O35 ® Q/Q = Ker(rg) implies, thanks to (1.2.4.1), that

Ker (Vig/p : T — TR) =rp (Ker(ixr)) = rp (F*/F}) = (cx). (1.3.2.3)

As a result, the map

Vi :T§/e) = TF/(ex) (1.3.2.4)
induced by Vi, q is injective and
{h e TP | Vi/r(h) € Vi /q(TE)} = (ex) Viyq(T'y). (1.3.2.5)
It also follows that
VF/Q(F‘S’) N{cx) = (Vr/qlc)) (1.3.2.6)

is the cyclic group of order 2 generated by Vr/q(c) = [ cx Co-

(1.3.3) As observed in [Ta, Lemma 1], the finiteness of O} /O% , implies that ¢ (resp., 1+ c) acts trivially
(resp., invertibly) on the Q-vector space Ker(rg).

(1.3.4) Proposition. (i) The continuous homomorphism (induced by 7 )
{oe K" |"a e Z7K Y /K" — {g €T | glp € (ex) Viyq(Tg)}

is bijective. Denote by (y its inverse; then Tl (g) = x(u(g))K*, where u(g) € F"Qb/<c> is the (unique)

element satisfying V/q (u(g)) = (cx)g|par (equivalently, Vic/q (u(g)) = '*eg).
(ii) More precisely, if g € T satisfies

9lrer = Viyq(u(e) [] (u(g) €TE, a, € Z/27),
zeX

then N, p(lx(g)) = x(u(g))aF'f € ﬁ*/FJ*r, where o € F* and
Ve e X sgn(z(a)) = (—1)%.
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(ili) The canonical morphism (induced by the inclusion Ox — K)
(reOy| "2 eZ} — {ac K* | " ac Z°K*}/K*

has finite kernel and cokernel.
(iv) The morphism {k defined in (i) admits a lift

U : {g € TR | glrws € (ex) Viyq(T§)} — {a € K* | **a € K"}
which is a homomorphism when restricted to a suitable open subgroup.

Proof. (i) In the following commutative diagram the right column is exact and rq is an isomorphism.

Vk/Q
—

As 1+ c acts invertibly on Ker(rx), the Snake Lemma implies that rx induces an isomorphism
Ker (K*/K* - R*/K*Z*) = Ker (1+¢=Virojrr: T — TR /Vi/q(Tg)) ;

by (1.3.2.5), the second group is equal to {g € I'Y | glpar € (cx) Vp/q(I'y)}. The remaining statement
follows from the fact that

ric ("TUk(9)) =g = Vi r 0 k() = Vi (glpa) = Vi 0 Vg (u(g)) =
= Vi/q (u(g)) = ri oix/qorg' (u(g) = rx (x(u(g))).

(i) Let a € K* be a lift of £ (g) such that *¢a = bo/, where b € Z*, o/ € K*; then o/ € (K*)=! = F*. As

glpa = re(Nigsr(a)) = re®)re(a’) = Vijq(ra®)) [T (—1)* = sgn(z(a’)),
zeX
it follows from (1.3.2.6) that there is ¢t € Z/2Z such that
u(g) = rq(b)c', VeeX a,=a,+t.
This implies that x(u(g)) = b(—1)* and
Ni/r (U (9)) = "eaF} = x(u(g))aFy
with a = o/(—1)*, hence
Vo e X sgn(z(e)) =sgn(z(a))(—1)" = (~1)%*H = (~1).

(i) This follows from the finiteness of the groups Ker, Coker(1 + ¢ : O3 — O3 ) and Cli = I?*/@}‘{K*,
combined with the Snake Lemma applied to the diagrams
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o — 0, — 0 — 0,/0r — 0
l1+c llJrc l1+c
0 — O04/Z" — Oy)Z* — 03)7Z°0 — 0
and

0 — 6%/0}} — K*/K* — Clg — 0

llJrc llJrc llJrc

0 — O03/2°0; — K*)Z*K* — Clgx — 0.
Above, 6}} is a shorthand for (5;)* Note also that Z* N O3, = Z* inside 6}{
(iv) By (i) and (iii), 7k induces a continuous homomorphism of pro-finite abelian groups
fiA={z €0 |2 eZ} — B={g€T% | glpw € (cx) Vr/q(T'§)}

with finite kernel and cokernel. This implies that there exists an open subgroup (= a compact subgroup of
finite index) A" C A such that A’NKer(f) = {1}. Then B’ = f(A’) is a compact subgroup of finite index (=

~

an open subgroup) of B, and f induces a topological isomorphism f’: A’ — B’. Fix coset representatives
B =, b; B’ (disjoint union) and lifts a; € K* of {x(b;) € K*/K* such that b;, = 1 and @;, = 1; the map

(g : B — K*, bif'(a') — a;a’ (o € A

has the required properties.

1.4 Tate’s cocycle [Ta]

Let ® be a CM type of K, i.e. a subset ® C X(K) such that X(K) = ® U c® (disjoint union).
(1.4.1) Tate’s half transfer is the continuous map Fg : 'q — I'¥? defined by the formula

Fa(g) = [ wlge) "gw(p) (mod T'kw), (L4.1.1)
peP

where w : X(K) — X(Q) = I'q is any section of the restriction map g +— g|x satisfying w(cy) = cw(y),
for all y € X(K).

The restriction map g — g|r defines a bijection ® — X (F). Composing its inverse with w, we obtain a
section t : X (F) — X (Q) = I'q of the restriction map to F', which implies that

Fo(g)lpar = [] tlg2)7 " @ gt(z) (mod T'pus) € (cx)Vr/q(9) (a(g,x) € Z/2Z). (1.4.1.2)
zeX(F)

The maps Fg satisfy
Fo(99') = Fya(9)Fa(g) (9,9’ €Tq) (1.4.1.2)

and

uwo Fgp(g)ou™ = Fp,-1(g) (g €Tq), (1.4.1.3)

for any isomorphism of CM number fields u : K —— K’. In addition, if K’ is a CM number field containing
K and @' = {y € X(K') | y|x € ®} is the CM type of K’ induced from ®, then

Fo(g) = Vir/k (Fa(g)) (9elq). (1.4.1.4)
(1.4.2) Tate’s cocycle is the map fo : 'q — K*/K* defined as
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fa(g) =tk (Fo(g)), (1.4.2.1)
where
li - {g S F‘;(b | g|Fab € <Cx> VF/Q(F((ZQI))} AN {a c [?* | l+e, Z*K*}/K* - I?*/K*
is the morphism from 1.3.4(i). It follows that

"°Fe(9) = Vie/r (Fo(9)|par) = Vie/r © Veyq(9) = Vi/q(g) =
=TrKoiK/qQ0° 7’(51 (9lqar) = (x(9))-

As in the proof of 1.3.4(i), this implies that
fa(9) = x(9)K*,  rk (fa(g)) = Fa(g). (1.4.2.2)

In Tate’s original definition, the properties (1.4.2.2) were used to characterise fo(g).
The identities (1.4.1.2-4) imply that

fo(99') = fya(9)fa(g) (9.9 € Tq), (1.4.2.3)
“fo(9) = fou-1(9) (geTlq, u: K =5 K') (1.4.2.4)

and
Jor(9) = ix /K (fo(9)) (K C K', ' induced from ®). (1.4.2.5)

(1.4.3) Tate [Ta] conjectured that the idele class fo(g) determines the action of g € I'q on abelian
varieties with complex multiplication and on their torsion points. Building upon earlier results of Shimura
and Taniyama, he proved the conjecture up to an element of F* of square 1. The full conjecture was
subsequently proved by Deligne [La,ch.7,84].

More precisely, if A is a CM abelian variety of type (K, ®, a,t) in the sense of [La,ch.7,§3] (see 2.2.5 below),

then 94 is of type (K, g®,af,tx(g9)/* ¢f), where f € K~ is any lift of fe(g). Furthermore, for each complex
uniformisation

0:C%/a = A(C)
there is a unique uniformisation
0 : CI%*Jaf =5 9A(C)

such that the action of g on A(Q)iors = A(C)tors is given by

g: A(Q)tors E) K/a [X—fl K/af 0—l> gA(Q)tor&
This implies that, for each full level structure n : (F/Or)* — A(Q)tors, the level structure 9 is equal to

9 (F/Op)? 5 AQiors “— K/a "I K/af 25 IA(Q)rone. (1.4.3.1)

1.5 The Serre torus

Let K be as in 1.3.

(1.5.1) The torus kT = Rg/q (Gn) represents the functor A — gT(A) = (K ®q A)" on Q-algebras A.
The I'q-equivariant bijections
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* *

«T(Q) = (K©qQ) = (Q)¥") =Homs(X(K), Q) — Homz(Z[X(K),Q)
a®b — (y = y(a)b) (y € X(K))

imply that the character group of T is equal to

X*(kT) = ZIX(K) ={ > nylyl|n, €7z},
yeEX(K)

with g € T'q acting on X*(xT') by

A= mylyl = A=) nylgyl = ng-1ylyl. (1.5.1.1)

(1.5.2) The Serre torus of K is the quotient .7 of T (defined over Q) whose character group is equal
to

X*(g) ={r e X*(xT) | ""°N € Z- Ng)q} (Njg= Y )
yEX(K)

Each CM type ® of K defines a character \g € X*(x.%): Aao(y) =1 (resp., =0) if y € ® (resp., if y € cP).
Moreover, the abelian group X*(x.#) is generated by the characters Ag ([Sch, 1.3.2]), and

VgEFQ g)\qJZ)\gq).

(1.5.3) Tate’s half transfer satisfies the following identity: if n is a function

n : {CM types of K} — Z, D — ng,

such that ), neAe = 0, then
Vgelq  [[Fel9)"* =1€Tg. (1.5.3.1)
P

Applying ¢k, we deduce from (1.5.3.1) that

VgeTq  [[fe(9m =1€ K*/K". (1.5.3.2)
b

(1.5.4) In the special case when K is a Galois extension of Q, the action (1.5.1.1) of I'q factors through
Gal(K/Q), which implies that the tori xT and . are split over K.

In addition, the action of Gal(K/Q) on K induces an action of Gal(K/Q) on the Q-group scheme g T, which
will be denoted by ¢ — g=t (g € Gal(K/Q)). The corresponding action on the character group

(h* A)(t) = A(h~! *t) (A € X*(xT)) (1.5.4.1)

is given by
A=Y "nylyl o hx A= nylyh7 =D nylyl.
The two actions are related by

((MA) = hx (V) (h € Gal(K/Q), X € X*(xT)), (1.5.4.2)

where

VX (RT) — X T) S omylil e Yoyl = Y nyaly] (15.4.3)
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is the involution induced by the inverse map g — ¢~ on Gal(K/Q) = X(K). As t(A\¢) = Ag-1, the
involution ¢ and the action (1.5.4.1) preserve X*(x.7), and we have

h * )\cp = Aq;.h—l . (1544)
We denote by

Lk Ik =S R K — gk Ik

the morphism corresponding to ¢.

1.6 Universal Taniyama elements [Mi], [Sch]

In this section, we assume that K is a CM number field which is a Galois extension of Q.

(1.6.1) The two actions of Gal(K/Q) on X*(x.#) correspond to two actions of Gal(K/Q) on .7 (K):
the Galois action ¢ — 9t and the algebraic action ¢ — h * ¢, which commute with each other and satisfy

FAE) =2A@),  (hxA)(hxt) = At) (A € X* (k). t € kS (K)),

respectively.

~

(1.6.2) Proposition. (i) There exists a unique map f': I'q — g (K)/k.(K) such that Ap o f' = fo,
for all CM types ® of K. The map f' factors through Gal(K?/Q).

(i) For each A € X*(x.%), denote f§ = Ao f':Tq — K*/K*; then f5, () = f4(9)f4(9).

(iii) VA e X" (k) Vg, 9'€Tq  filg9) = f3,(9)fA(9")-

(iv) Vhe Gal(K/Q)  "(fi(9)) = fr.a(9)-

Proof. (i) As the torus g.% is split over K and X*(x.%) is a free abelian group generated by the CM
characters \g, we have

k7 (K)/ k.7 (K) = Homz(X*(k.%), K*) /Homz(X*(x.7), K*) = Homz (X *(x.%), K*/K*) =
= {a: {CM types of K} — K*/K* | Ha(@)”q’ = 1 whenever Zmp)\<p = 0}.
The existence and uniqueness of f’ then follows from (1.5.3.2). As K is a Galois extension of Q, the maps
Fy (hence fs, too) factor through Gal(K/Q).
(ii) This is a consequence of (the proof of) (i).

(iil), (iv) If A = Ag, the statement of (iii) (resp., of (iv)) is just (1.4.2.3) (resp., (1.4.2.4)). The general case
then follows from (ii).

(1.6.3) Proposition. (i) Define the map f :T'q — k7 (K)/ k.7 (K) by the formula f(g) = (. (f'(9))) "
The map f factors through Gal(K% /Q) and has the following properties.
(ii) Themaps fx =Aof:T'q — K*/K* (A€ X*(x)) satisty

Pran(9) = @ Fu9), @) =L@ fa99) = foer(9) fr(9)-

(i) Vhe Gal(K/Q)VgeTq  "(fr(g)) = fu(g), "(f(9)) = f(g)-
(iv) V9,9’ €Tq f(g9") = (9 = f(9)) f(d).

Proof. The statements of (i), (ii) and the first part of (iii) are immediate consequences of 1.6.2, thanks to
(1.5.4.2). The second part of (iii) follows from

(") (“(F @) =" () Z (") (F(9)) (A e X" (k7))

while (iv) is a consequence of the last formula from (ii) and

15



Mg ™= fl9) = (9" ) ((9))-
(1.6.4) For each CM type ® of K, the map f\, is given by

Fra(9) = fa-r(9)7H,
which implies that

TK © fag(9) = Fp-1(g) ™"

In the notation of ([Sch], 4.2), we have fA(g) = fx(g,A). The map f is the “universal Taniyama element”
of ([Mi], L.5.7).

(1.6.5) Proposition. If K’ is a CM number field, Which is a Galois extension of Q and contains K, then
the universal Taniyama elements fx : I'q — g (K )/Kf( ) and fx :Tq — xS (K')/ k-7 (K') over
K and K', respectively, satisfy fx = Ng/k o fr.

Proof. As the map ig /g : I?*/K* — I?’*/K’* is injective, it is enough to check that, for any CM type ®
of K and g € I'q,

ix /K © Ao o fx(9) = ik © Ao © Niryi o frr(g) € K™ /K",
which follows from (1.4.2.5), since

. . 4y (1425 _ )
ik © Ao 0 fi(9) = ir ke (fo-1(9)™") (1:425) for-1(9) ™" = Xev o fxr(9) = ixr /i 0 Ao © Nieryxc 0 frer(9),

where ® is the CM type of K’ induced from .

1.7 The Taniyama group ([Mi], [Mi-Sh], [Sch])

Let K be as in §1.6.

(1.7.1) The Taniyama group of level K sits in an exact sequence of affine group schemes over Q

1— g -5 7 5 Gal(K*/Q) — 1

such that the action of (the constant group scheme) Gal(K/Q) on . defined by this exact sequence is
given by the algebraic action (g,t) — g *¢. In addition, there exists a continuous group homomorphism

sp: Gal(K™/Q) — x.7(Q)
satisfying 7 o sp = id.
(1.7.2) Choosing a section

a:Gal(K?/Q) — k.7 (K)
of the map x .7 (K) — Gal(K/Q) (which is surjective, as the torus g.7 is split over K and H*(K, G,,) =
0), the map

b: Gal(K*/Q) — x.s(K),  blg) = sp(g)alg) ™"

has the following properties.

(1.7.2.1) The induced map b : Galeab/Q) — g )J (K) does not depend on the choice of a.
(1.7.2.2) Vg,¢' € Gal(K/Q) b(gg') = (¢ = b(g)) blg")
(1.7.2.3) Vh € Gal(K/Q) Vg € Gal(K®/Q) " (b(g)) = 5
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(1.7.2.4) The “coboundary” dy . = (¢'~* *b(g)) b(¢’) b(gg’) " is a locally constant function on Gal(K*/Q)>.

(1.7.3) Conversely, any map b satisfying (1.7.2.1-4) gives rise to an object from 1.7.1 ([Mi-Sh], Prop. 2.7):
firstly, the reverse 2-cocycle dg o with values in x.%(K) defines an exact sequence of affine group schemes
over K

1 — g I% —5 G 7 Gal(K?/Q) — 1 (1.7.3.1)
equipped with a section « : Gal(K?/Q) — G’(K) such that

Vg,g' € Gal(K*/Q)  a(gg’) = a(g)a(g)dg.g -

Secondly, the map

sp: Gal(K™/Q) — G'(K),  sp(g) = b(g)a(g)
is a group homomorphism satisfying m o sp = id. Thirdly, each element h € I'gr acts on G’'(Q) by

"(salg)) = "s alg) (s € .7 (Q)). (173.2)

In order to descend the sequence (1.7.3.1) to an exact sequence of group schemes over Q

1 — .7 -5 G5 Gal(K™/Q) — 1,

it is enough to extend the action of I' from (1.7.3.2) to an action of I'q compatible with ¢ and . This is
done by putting

"sa(g)) = cnlg)"salg),  cu(g) =blg)"(blg)) ™" € kI (K) (h€Tq, g € Gal(K"/Q)).

As "(sp(g)) = sp(g) forallh € Iq and g € Gal(K*/Q), the map sp has values in G(Q). Up to isomorphism,
the quadruple (G, 4,7, sp) obtained by this method depends only on b, not on its lift b.

(1.7.4) The Taniyama group .7 of level K is defined by applying the construction from 1.7.3 to the
universal Taniyama element f, which satisfies (1.7.2.2-3), by Proposition 1.6.3. The existence of a lift b of f
satisfying (1.7.2.4) is established in the following Proposition.

(1.7.5) Proposition. There exists a lift b: Gal(K*/Q) — Ky(l/(\') of f whose “coboundary” dgy o =
(971 xb(g)) b(g') b(gg') " is a locally constant function on Gal(K/Q)?.

Proof. Let Ik be as in 1.3.4(iv). As the maps Fp (which factor through Gal(K/Q)) are continuous, there
exists an open subgroup U C I'%? such that £x, when restricted to | J4 Fo(U), is a homomorphism. If ne € Z
satisfy Y 4 neAe = 0, then the relation (1.5.3.1) implies that

vueU  []lx (Fe(u)"™ =1€K".
(o]

As in the proof of 1.6.2(i), we conclude that, for each u € U, there exists a unique element o' (u) € KY(I?)
satisfying Ag (V' (1)) = £k (Fy(u)). Fix coset representatives Gal(K%/Q) = U, g:U (disjoint union) and lifts
5, € kI (K) of f'(g;) € k.S (K)/k.7(K) such that gj, = 1 and 3, = 1; define a map b/ : Gal(K®/Q) —
Ky([?) by

' (gyu) = 3,0/ (u) (ue D).

The map b(g) := (1(b'(g)))~* then has the required property.

(1.7.6) Proposition 1.6.5 implies that the pull-backs of the group schemes x .7 via I'q — Gal(K%/Q)
form, for varying K, a projective system compatible with the norm maps N/ k : k. — k. In the
limit, they give rise to an exact sequence
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(2.1

1—.7 %7 5lq—1 (1.7.6.1)

equipped with a splitting sp : 'q — Z(Q). The main result of [De] states that the affine group scheme
Z (= the Taniyama group) is the Tannaka dual of the category CMgq of CM motives (for absolute Hodge
cycles) defined over Q. The group scheme x.7 corresponds to the full Tannakian subcategory of C'Mq
consisting of objects with coefficients in K.

2. Hidden symetries of the CM theory

Throughout this chapter, K and F' are as in 1.3. We denote X = X(F). In §2.1 (vesp., §2.2) we extend
Tate’s half transfer (resp., Tate’s cocycle) from I'q to Autp_aq(F ® Q) (resp., to Autp_ai(F ® Q)1). In
§2.3-2.4 we use our generalisation of Tate’s cocycle to construct a generalised Taniyama group.

2.1 Generalised half transfer

(2.1.1) Fix asection s : X — I'q of the restriction map g — g|r. Asin 1.1.2-4, the choice of s determines
the following objects:

1.1) An injection pg:Tq < Sx x I'%.

(2.1.1.2) An isomorphism [y : Autp_alg(F(X)Q) AN Autp_alg(QX) = Sx xI'¥ satisfying B.. (idr®g) = ps(g)-

In addition, we obtain

(2.1.1.3) A bijection between (Z/2Z)% and the set of CM types of K: a function o : X — Z/2Z corresponds

to the CM type {c*®s(z)|x = s(z)c*® |k }rex.

(2.1.1.4) A section ws : X(K) — TI'q of the restriction map g — ¢|x satisfying ws(cy) = cws(y), namely

ws(c®s(x)|kx) = c*s(x) (xe€ X, a€Z/2Z).
For h € T'%, we denote by h : X — Z/2Z the image of h in Gal(K/F)*X — (Z/2Z)*. In other words,

VeeX  h()x =", Rh(z)) = Oh(),

where R : T'p — Tk is the retraction map from 1.3.2. We let Sx x 'y act on (Z/2Z)% via (1.1.1.1) and
the natural projection (o, h) — (o, h):

(o,h)a = (a+h)oo . (2.1.1.5)
(2.1.2) Rewriting Tate’s half transfer in terms of p;. Let ® be a CM type of K. If g € I'q, then

ps(g9) = (0,h) € Sx x Ty, Vee X o(z) =gz, h(z) = s(gz) " *gs(x) = s(o(x)) 'gs(z) € Tp.
Let o € (Z/2Z)* correspond to ®, as in (2.1.1.3). For each x € X, the element
0r = @ s(z) | = s(2)c* P | € D
satisfies ws(p,) = c*@s(x) and
92 = g5(2)c* i = 5(0(2) (@)@ ic = DO s (2))

which implies that ws(gps) = @@ g(5(z)) and

wy(902) " gws(p2) = s(0(2) LD g D5 (@) = s(0 (@) O 50 (@) (@) (@) e s(z) =

= [s(a(x))*1ca(wHﬁ(I)s(a(x))ca(””)Jrﬁ(“:)} {c"‘(w)JrE(m)h(x)c"‘(w)} [c“(“:)s(x)*lca(m)s(:c)] )
(2.1.2.1)
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Denote by 7, s the image of s(x) lcs(x)e € Tk in T9. Using this notation, we have (as each of the three
elements in square brackets in (2.1.2.1) lies in T'k)

= ] ws(9ea) "gwa(@a)lgae = [ e [] vob I] ¢ R((2)c" @ g, (2.1.2.2)
reX z€|(o,h)c| €| reX

where we have denoted by |a| = {z € X | a(z) # 0} the support of a. This calculation justifies the
following

(2.1.3) Proposition-Definition. For each a € (Z/2Z)%, the formula

Falo,h) = [ s(o(@) 7@ 50 () () s(2) ™ e s(2) jeun =

reX
= H Yx,s H 7;; H CQ(I)R(h(m))Ca($)|Kab
z€|(o,h)a] T€|af zeX

defines a map B
sFp:Sx x T —T9

(depending on s and «) satisfying s F, ops = Fg, where ® is the CM type corresponding to «, as in (2.1.1.3).

(2.1.4) Proposition. The e maps F,, have the  following properties.

(i) Vg.g' € Sx xT¥  F, (gg) Fyalg) sFalg).
(ii) For each (o,h) € Sx x I'%,

sﬁcx(o—7 h)|F‘“’ = H Cy H Cx H h(x)|Fabv e <5Fa(07 h)) VK/F a, h H 1+CR K‘lba

z€|(o,h)al  z€|lal zEX zeX

where we have denoted VK/F(U, h) =Il,ex Vi r(h(z)|par).
(iii) Each map ,F, factors through Sx x Gal(K/F)X
(iv) If g = (o,h) € Sx x I'X satisfies go = «, then

Falg) = TT @ R((@))e*® | o
zeX
(v) W(o,h) € Sx xT¥  Fo(o,h) = [Lex ()| o
(Vi) Vo€ (Z/22)%  Fo(1,¢%) = [l cia) Vo

Proof. (i) 1f g = (0,h) and ¢' = (¢, 1), then gg' = (00”, (h o 0')h') and o/ := g'a = (a—l—ﬁl) o o’~t, which

implies that oFa(g99") sFa(g')  sFya(g)™! is equal to

H (CQ(I)JFE(U/(I))JFEI(CD)h(O’l(I))h/(I)Ca(z)) (CQ(I)JFE/(I)}L/(:E)CQ(I))_1 (Ca’(x)+ﬁ(m)h(l,)ca’(z)>_1 _

zeX
1

= [T (e p(g @)en (o0 (e @R (e’ @) =1,
reX
(ii) The first formula is a consequence of the fact that

Ve e X Va,s|Fav = CgC, @ R(A(2))c ™ | pas = Cﬁ(m)h(l')h:‘ab;

applying (1.3.2.1), we obtain the second formula.
The statements (iii)-(vi) follow directly from the definitions.
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(2.1.5) Change of s. Let s,s — T'q be two sections of the restriction map g — g|p. We have
s' = st, where t : X — T'p. As in 2.1.1, we write, for each z € X, t(z)[x = M) (t(x) € Z/2Z); then
R(t(z)) = c™®¢t(z) € T'k. The recipe (2.1.1.3), applied to s and ', respectively, associates to each CM type

® of K two functions o = ag 5,0/ = ap,s : X — Z/27Z such that

= {@s(@)]ic} = ('@ (0)] i} (= o = a+1).

According to Proposition 1.1.4, the following diagram is commutative:

Sx x I'X (2.1.5.1)
ps
Bsx
FQ _— Autp_alg(F ®Q) Ad(1,t)~ !
SX X F?
For (o,h) € Sx x T'%, denote
(o/,h) == Ad(1,t) " (o, h) = (1,8) " (o, h)(1,t) = (o, (to o) ht) € Sx x T'x. (2.1.5.2)

The map ‘~/K/F from Proposition 2.1.4(ii) satisfies ‘N/K/F((L h) = YN/K/F(U’, h’), which means that the map
Vie/r 0 Box : At p_aig(F © Q) — I (2.1.5.3)
does not depend on s; we denote it again by I~/K /r- The equalities

(o,h)a = (a+h)oo™?, (o' W)/ = +h)oo = (a+h)oo +Tc (Z/22)F
imply that the action of Sx x I'f on (Z/2Z)* defined in (2.1.1.5) gives rise to an action of the group
Autp_aq(F ® Q) on the set of CM types of K, which is characterised by
Vg€ Autp_ag(F® Q)  agaos = Bsc(9)aa,s, (2.1.5.4)
but which does not depend on s.

2.1.6) Proposition. In the notation of (2.1.5.2), we have ,F,(o,h) = o Fy o' W) eI,
K

Proof. The relations s’ = st, (¢/,h') = (o, (to o)~ tht), R =h+i+too, o/ =a+t, (o,h)a= (a+h)oo™?
and (o/,h/)a/ = (o, h)a + t imply that

oFur (0 1) = [ Ho(@)) (o (@) @@ (o () h()s(a) D@ s(a)t(x)]| o =
reX

— H A'((o,h)o, ) ' B, ) A (o, ),

reX

where

A, z) = @ s(z) 1O s(a)t (@) gar,  Bla,z) = @ R(h(2))c* ™| gas.

JFalo,h) = ] Al(o, h)a,2) " Bla, ) A ),

zeX
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where

Ao, z) = @ s(2) 1@ 5(2)| s,

the equality  Fin(0,h) = g Fa (o', h') follows from the fact that

Vo e X A, ) A (o, 1) = s(2) " @ s(2)t ()] sear
does not depend on «.

(2.1.7) Proposition-Definition. In the notation of 2.1.5, the map
Fp = oFa(0,h) 0 fes : Autp_oe(F © Q) — TP

depends on ®, but not on s; it has the following properties.

(i) VgeTl'q  Folidr ®g) = Fo(9). ~ ~

(ii) Vg,9' € Autp_ag(F®Q)  Fal(gy') = Fya(g)Fa(g').

(iii) Vg € Autp_ag(F®Q)  "°Fy(g) = Vi/r(g) (in the notation of (2.1.5.3)).

Proof. The independence of Fy on s follows from Proposition 2.1.6 and the commutative diagram (2.1.5.1).
The remaining statements are consequences of Proposition 2.1.4.

(2.1.8) Galois functoriality of Fp. Given an element @ € Iq, define u := U|x, up = ulp, K" := u(K),

F' = up(F) and X' = X(F’). As in Proposition 1.1.6 (for k = Q and k' = Q), a fixed section s : X — I'q
of the restriction map g — g|r defines a section s’ : X’ — T'q of the restriction map g — g¢|#s, given by

s'(2') = §'(zupt) = s(x) ou? (x € X).

(2.1.9) Proposition. For each a: X — Z/2Z, the diagram

X sl ab
leXFF — FK

& L
S, E‘/a/

’
SX’ X F%(/ — F?{bl

is commutative, where i, Is the map defined in Proposition 1.1.6, o : X' — Z /27 is given by o/(z") = a(z)

(v = 2'ur) and the right vertical map (which depends only on ) is given by g + ugu~'.

Proof. For (o,h) € Sx x I'¥, we have u,(0,h) = (0/,h'), where o’'(z') = o(x)uz', W (z') = Th(z)a?
(z' = zuj'). The relations s'(o’(2)) = s(o(2))u !, s'(2') = s(z)a?, E/(ac') = h(z) and o/(z') = a(z) imply

o Fo(o’ 1) = H § (0 (@)1 I S (6! ()W ()8 (@) 71 s (@) | o =
z'eX’
= [ slo(@) @@ s(o(2))h(w)s(@) @ s(a)| g T = u (Sﬁa(a, h)) .
zeX

(2.1.10) Corollary. For each CM type ® of K, the diagram

Autp_ . (FRQ) % o

o [

Py
Autp_az(F'®Q) == Tg,

1
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is commutative, where [up] is the map defined in Proposition 1.1.7(i).

Proof. This follows from Proposition 2.1.9 combined with Proposition 1.1.7(ii) (for k = Q and k¥’ = Q), if
we take into account the fact that

{8 (@) i Yrex: = (@@ s(@)| i u Yoex.

2.2 Generalised Tate’s cocycle

(2.2.1) Let (Sx x I'f); be the group defined as the fibre product
(Sx xT%); — SyxTIZ¥
J{ l(l,prod)
rg/e) LE/{ex).

Ve
As the morphism V r/q is injective (1.3.2.4), we can (and will) identify (Sy x % )1 with its image in Sy x I'x.
The group (Sx x I'z:)o, defined in (1.1.2.4), sits in an exact sequence

1— (Sx xI'3)o — (Sx x ')y — {(ex)/Vr/q({e)) — 1.

For i = 0,1, the subgroups (..} ((SX X ng)z) of Autp_,1(F ® Q) are independent on the choice of a section
5 : X — I'q; we denote them by

Autp,alg(F ®6)0 - Autp,alg(F ®Q)1 C Autp,alg(F & Q)
(2.2.2) Definition. For each CM type ® of K, define a map

fAl:p : AutF_alg(F ®6)1 i I?*/K*
by
folg) =k (Fw(g)) ;
where (f is the morphism from Proposition 1.3.4(i). [This definition makes sense, by Proposition 2.1.4(ii).]

(2.2.3) Proposition. The maps ﬁp have the following properties.
(1) Tk O fq;. = Fq>.~

(i) Vgelq  fe(idr ®g) = fa(g)-

(iii) Fach map fg factors through

Autp_alg(F ® Kab)l = Im (Autp_alg(F ®Q)1 — Autp_alg(F ® Kab)) .

(iv) Vg,g' € Autp ag(FO Q)1 falgg) = fya(9)falg).
(v) Ifu: K = K’ is an isomorphism of CM number fields, then
fq;.u—l e} [U|F] =Uuo fcp.

(vi) For g € Autp_ae(F ® Q)1, denote by u(g) € Fg’/(c) the unique element satisfying Vi q(u(g)) =

4 Fy(g); then ' fo(g) = x(u(g)) K*. N
vil) Forg € Autp_g ®Q)o, denote by u(g) € the unique element satistying Vi /q(u(g)) = Fao(g)|pab;
i) F A (F'®Q)o, d b I‘g’ h i ] istying Vp,q F

then NK/F(ﬁp(g)) = x(u(g))aF; € ﬁ*/Fj, where o € F* satisfies

. ], if ® and g® agree at x
Yre X sgn(x(a)) = { -1, if ® and g® do not agree at
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(we say that two CM types ® and ®' of K agree at x € X if the unique element of ® whose restriction to F
is z is equal to the unique element of ®' whose restriction to F' is x).

Proof. The statement (i) holds by definition, while (ii)-(v) follow from the correspondings assertions for
Fg, proved in Proposition 2.1.7 and Corollary 2.1.10. The property (vi) (resp., (vii)) is a consequence
of Proposition 1.3.4(i) (resp., 1.3.4(ii)) combined with the second (resp., the first) formula in Proposition
2.1.4(ii).

(2.2.4) Proposition. Let K’ be a CM number field containing K; denote X' = X (F"), where F’ is the
maximal totally real subfield of K'. If ® is a CM type of K and @' is the induced CM type of K', then:

(l) Vg € AutF,alg(F ®6) ﬁ@/(idp/ QF g) = VK’/K (ﬁ@(g)) € F(]]’(b/.
(11) Vi=0,1Vg € Autp,alg(F ®6)2 idp Qp g € Autp/,alg(F/ ®Q)z
(i) Vg€ Autp wg(F@ Q) Jorlide @rg) = iroyic (folg)) € K*/K".

Proof. (i) Fix a section s : X — T'q; let @ : X — Z/2Z correspond to @, as in (2.1.1.3). The sets
'k /Tks and I'p/I'ps are canonically identified. Fix a section u : I'x /T g = Homg _a15(K’, Q) — 'k of
the restriction map g — g|x and define a section s’ : X' — I'q by

s'(s(x)ylrr) = s(x)uly) (e X,yelp/T'p);

then &’ corresponds to o' = aop: X' — Z/27Z, where we have denoted by p : X’ — X the restriction
map g — g|p. Proposition 1.1.8 implies that the elements

(0,h) = Beu(g) € Sx X T, (o', 1)) = By (idp @p g) € Sx/ x [

are related by

o' (s(@)ylr) = s(o(@)h(@)ylr, ' (0'(s(2)ylr)) = s(o(@))u(h(z)y),
W (s(@)yler) = u(h(z)y) " h(z)u(y) (€ X,y el'p/Tp),

hence i =hop. For z € X and 2/ € X/, put

k(z) = s(o(2)) L@ g0 (2))h(2)s(z) L@ s(z) € Tk

k/(x/) _ 8’(0’(x/))_1ca/(””')+ﬁl(w')s’(o/(x’))h/(x/)s'(x')_lc"/(w/)s’(x') e FK’~

By definition,

Fo(g) = sFa(o,h) = [[ k@)lxer €TR,  Forlidp @p g) = o Far (o', 1) = [[ ¥(@)|xm € TH.

zEX r'eX’
For each z € X and y € T'r/T'f,

K (s(@)ylr) = u(h(z)y) " k(z)uly) € T,
which implies that k(z)y = k(x)u(y)|x = uw(h(2)y)|x = h(x)y, hence u(h(z)y) = uw(k(z)y) and
I[I K@lgw=T[ ulk@)y)  k@)uy)lge = Vi x (k@)|ga).
z’'€p~1(x) yel Kk /T i/

Taking the product over all x € X yields (i). The statement (ii) follows from the fact that, in the notation
used in the proof of (i),
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[[ W@l = T ul@)y) " h@)uly)lma = Vee (h(@)]po).

z'ep~t(x) yelp /T g

Finally, (iii) follows by applying ¢k to the statement of (i) (which makes sense, by (ii) for i = 1).
(2.2.5) Action of Autp_,;;(F ®Q)o on CM points of Hilbert modular varieties. Given a polarised
HBAV (Hilbert-Blumentahl abelian variety) A relative to F' with CM, then A is defined over Q, and there

exist

a CM field K of degree 2 over F;

a CM type @ of K (which defines an embedding K — C?, a — (¢ — ¢(a))pes);

a fractional ideal a of K;

an element ¢t € K* such that t ¢ F*, t? € F* and Vo € ® Im(p(t)) < 0;

an Og-linear isomorphism 6 : C®*/a —~ A(C) such that the Riemann form of the pull-back of the
polarisation of A by 6 is induced by the form Ey(x,y) = Trg q(tz Y) on K.

One says that A is a CM abelian variety of type (K, ®,a,t) (via 6). The type is determined up to trans-
formations (K, ®,a,t) — (K,®,aa,t/7¢a) (o € K*), and it determines A with its polarisation up to
isomorphism.

Given g € Autp_a5(F © Q)o, let u(g) € I'§ be as in Proposition 2.2.3(vii). Fix a lift fe K of folg) €
l?*/K* and define A’ = Cg‘b/aﬁ with polarisation given by E;/, where

"= tx(ulg))/tf € K
(t' satisfies t' ¢ F*, t2 € F* and V¢’ € g¢® Im(¢'(t')) < 0, the last condition by Proposition 2.2.3(vii)).
Given, in addition, a full level structure 1 : (F/Or)? — A(Q)tors of A under which the Weil pairing

associated to the given polarisation is a Q*-multiple of the standard form Trf/a ) detf on ﬁz, let " be the

following level structure of A’:

0 (FJOR)? " A(C)ios s K/a " K /af = A/(C)ione.

The isomorphism class of the triple (4’, Ev, ') depends only on g and on the isomorphism class [(A4, E¢,7)]
of (A, Et,n). Proposition 2.2.3 implies that the assignement

(A, Er,m)] = (A, By n)]

defines an action of Autp_,(F @ Q)o on the isomorphism classes of polarised HBAV (relative to F') with
CM, equipped with a full level structure. Moreover, this action commutes with the action of G(F') on 7 (by

v :1n+—mno~y), where G is the fibre product
G — Rp/q(GL(2)F)
l J{det
Gnq — Rpq(Gmr)

In view of the results of Tate and Deligne alluded to in 1.4.3, it follows from Proposition 2.2.3 that the action
of Autp_a1z(F ® Q)o we have just defined extends the usual Galois action of I'q.

Recall that ﬁb (g) is defined even for g € Autp_a4(F ® Q)1. However, the positivity of polarisations implies
that the above recipe makes sense only if the conlusion of Proposition 2.2.3(vii) is satisfied, namely if
g € Autp_n(F ® Q)o.

(2.2.6) Proposition-Definition. Fix s : X — T'q as in 2.1.1; then X(K) = {s(z)c*|x | z € X, a €
Z/2Z}. B
(i) Let g € Autp_ag(F ® Q); denote (0, h) = Bs.(g) € Sx x I'Y. The formula

9 (s(2)c| ) := (o))" = s(o (@) h(x)e’ |k
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defines an action of Autp_.e(F @ Q) on X(K). The action of g on X(K) depends only on the image of
(0,h) in Sx x Gal(K/F)™X.

(ii) This action does not depend on the choice of s.

(iii) For each CM type ® C X (K) of K, the set 9® = {9y | y € ®} coincides with g®, defined in (2.1.5.4).
(iv) Ifg=idr ®u, u € T'q, then 9y = uoy = uy, for each y € X (K).

Proof. Easy calculation.
(2.2.7) Corollary-Definition. (i) The induced action of Autp_ag(F ® Q) on X*(xT) = Z[X (K)]

A= Zny[y] —=IN = Zny[gy] (9 € Autp_ag(F ©Q))
extends the action (1.5.1.1) of I'q and leaves stable the subgroup X*(x.%) of X*(xT) spanned by the CM
characters \g.
(ii) In the special case when K is a Galois extension of Q, the involution ¢ from (1.5.4.3) gives rise to another
action of Autp_a1.(F ® Q) on X*(xT'), namely

gxt(A) =(9A) (A e X*(kT)).

This action extends the action (1.5.4.1) of I'q and leaves stable X*(x.%).

(2.2.8) Proposition. Let n: {CM types of K} — Z be a function satisfying

Zn¢/\¢=w-NK/Q:w Z [y] € X" (k-) (weZ). Then:
@ yeEX(K)

(1) Vg S AutF—alg(F ®Q) Hq) ﬁ‘i’(g)nq) = VK/F(g)w' N
(i) Ifw=0, then ¥g € Autp_ag(F@Q) [l folg)™ = 1€ K*/K*.

Proof. (i) Fix s: X — TI'q as in 2.1.1, and parametrise the CM types by functions o : X — Z/2Z, as in

(2.1.1.3): we write @, = {s(x)ca(z)|K}m€X, No = Ny, and A\, = Ag,. The condition ) 4 neAe = w - Ng/q
is equivalent to

Ve e X Zna)\a(x):Zna(l—/\a(x)):w.
« «
The statement (i) follows from the fact that, for each g = (o,h) € Sx x I'%,

Y o (PaXga(z)—naXa(2)) n (1= Ao (2)) /e nada (2
HSFa(g) o= H 'ygg R(h(x))za (1=Aal( ))( R(h(x)))za Aa(z) _

zeX

= H HCR(h(C))w = VK/F(g)w'

rzeX

If w = 0, the statement (ii) follows by applying ¢x to (i).
2.3 Generalised universal Taniyama elements

As in §1.6, we assume that K is a CM number field which is a Galois extension of Q.
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(2.3.1) Proposition. (i) There exists a unique map f o Autp_ ag(F® Q) — xI(K K)/k.%(K) such
that Ag o f = fp, for all CM types ® of K. The map f' factors through Autp_ a1g(F ® K%),. B

(ii) For each A € X*(k.%), denote fA = Ao f: Autp_ a1g(F®Q)1 — K*/K*; then f/\+u( )= f/\( )1,.(9)-
(iii) VA€ X*(x7) V9,9 € Autp_ag(FO Q)1 filg9) = f1,(9)Fi(9)-

(iv) VueGal(K/Q)  “(f{(9)) = fln([ulrg).

(v) Vgelq  f'(idr®g) = f'(9)

Proof. The statements (i) and (ii) follow from Proposition 2.2.8(ii) by the same argument as in the proof

of Proposition 1.6.2. If A = Ag, then (iii) (resp., (iv)) is just the statement of Proposition 2.2.3 (iv) (resp.,
(v)); the general case follows from (ii). Finally, (v) is a consequence of the uniqueness of f’, as

Yo Ae(f'(idr ©9) = Jalidr ®9) = fa(9) = Xa(f'(9)).
by Proposition 2.2.3(ii).
(2.3.2) Proposition (i) Define the map f : Autp_ ag(F® Q) — S (K )/Kf( ) by the formula

flg) = (L(f’(g))) . This map factors through Autp_.(F ® K); and has the following properties.
(i) The maps fy = Ao f: Autp_ alg(F ® Q) — K*/K* (A€ X*(x.%)) satisfy

Fanle) =A@ fule), K@ =Fu@™"  Alg) = Ffoal) i)

(ii)) Vu € Gal(K/Q) Vg € Autr_ug(FO Q) (Fa(9)) = Fallulrlg).  *(Flg)) = Fllulrlg).

(iv) Yg,9' € Autr_ag(F® Q)1 flgg') = (9" * f(9)) f(9).

(v) VgeTq  flidr@g) = f(9)-

Proof. As in the proof of Proposition 1.6.3, everything follows from Proposition 2.3.1.

(2 3.3) Proposition. There exists a lift b Autp_ alg(F ® K%); — g (K K) of f whose “coboundary”
dgy = (g +b(g))b(g') blgg’) ™" is a locally constant function on (Autp_a,(F @ K);)2.

Proof. The argument from the proof of Proposition 1.7.5 applies.

(2.3.4) Proposition. If K’ is a CM number field, which is a Galois extension of Q and contains K,
then the generalised universal Taniyama elements fx : Autp_ag(F ® Q) — g LK )/Ky( ) and fg' :
Autr_ag(F' ® Q)1 — gL (K') /S (K') over K and K', respectively, satisfy

Vg € Autr_a.(F ® Q)1 frl(g) = Ngi/k (fK/(idF’ ®F 9)) :
Proof. This follows from Proposition 2.2.4(iii), as in the proof of Proposition 1.6.5.

2.4 Generalised Taniyama group

Let K be as in §2.3.

(2.4.1) Let us try to apply the method of [Mi-Sh, Prop. 2.7] (see 1.7.3 above) to the generalised universal
Taniyama element f and its lift b. The reverse 2-cocycle dg o with values in x.7(K) gives rise to an exact
sequence of affine group schemes over K

1— KjﬂK _z) é/ L) Authalg(F X Kab)l — 1 (2411)

(where the term on the right is considered as a constant group scheme), equipped with a section @& :
Autp_ae(F ® K%); — G'(K) such that

V9,9’ € Autp_ag(F @ K™)  a(gg’) = alg)alg)dg,y -
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The map

§p: Autp_ag(F @ K, — G'(K),  $p(g) = blg)alg)

is a group homomorphism satisfying 7 o sp = id.
(2.4.2) Each element u € I acts on G'(Q) by

“(sa(g)) ="sa(g) (s € k7 (Q)) (2.4.2.2)
We extend this action to an action of I'q: for u € I'q and g € Autp_ae(F ® K)1, set

Culg) = b([ulrlg) “(blg)) " € kI (K).
As

Vu,u' € Tq Vg € Autp_aq(F @ K); Cuw (9) = cu (W' Flg) “(Cur (),

the formula

“sal(g)) =cu(g) “salg) (s € k7(Q), g € Autp_ae(F @ K);) (2.4.2.3)

defines an action of I'q on G/(Q) which extends the action (2.4.2.2) of T'k.

We define K? to be the affine group scheme over Q such that K?(G) =G (Q), with the I'q-action given
by (2.4.2.3). The exact sequence (2.4.1.1) descends to an exact sequence

1 — x. = kT = Autp_a,(F @ K — 1, (2.4.2.4)

where we have denoted by Autp_ae(F ® K%)) a twisted form of the constant group scheme Autp_,1,(F ®
K);, for which u € 'q acts on

Autp_alg(F [ Kab)/l(a) = AUtF—alg(F X Kab)l
by [u|r]. Note that

Autp_e(F @ K*)}(Q) = idr ® Gal(K?/Q), (2.4.2.5)
by Proposition 1.1.6(iv).

(2.4.3) As f extends f (and the restriction of b to Gal(K®/Q)? satisfies 1.7.5), there is a commutative
diagram of affine group schemes over Q with exact rows

1 — g 5 k7 = Gal(K/Q) 1
I Jure
1 — g9 LN K? SN Autp_alg(F X Kab)/l — 1.
Moreover, there is a commutative diagram of groups
k7(Q) <~ Cal(K"/Q)
l Jors-
kT (K) <& Autp_ ., (F © K%),
such that mosp =1id, T o sp =id. As

Vu € Tq Vg € Autp_ag(F® K®)  “splg) = "“(b(g)a(g)) = cu(g) b(g) &([ulrlg) =
= b([ulrg) a([ul rlg) = 5p([u|r]g),
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the map $p is I'q-equivariant. As [u|p] depends only on the image of u in Gal(F/Q), it follows that the
image of sp is contained in Kﬂ(ﬁ), and that sp is Gal(F/Q)-equivariant.

(2.4.4) Tt follows from Proposition 2.3.4 that the pull-backs of kT to Autr_a.(F ® Q)} (for varying
K' D K) give rise to an extension of Autp_,i(F ® Q)] by . These extensions for varying F' are again
compatible; they give rise to an extension of affine group schemes over Q

1— .7 — 7 — limAutp_a,(F Q)] — 1,
P

whose pull-back to I'q coincides with (1.7.6.1).

(2.4.5) It would be of interest to give an “abstract” definition of ?falong the lines of [De]. As observed in
2.2.5, it is the group Autp_,i(F ® Q) rather than Autp_a.(F ® Q)1 which has a geometric significance,
which means that one should rather consider the subgroup scheme J5 C 7 sitting in the exact sequence

1. % — liL>nAutF_a1g(F®6)6 — L.
F
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