

A GENERALIZATION OF THE CAPELLI IDENTITY

E. MUKHIN, V. TARASOV, AND A. VARCHENKO

ABSTRACT. We prove a generalization of the Capelli identity. As an application we obtain an isomorphism of the Bethe subalgebras actions under the $(\mathfrak{gl}_N, \mathfrak{gl}_M)$ duality.

To Yuri Manin on the occasion of 70-th birthday, with admiration.

1. INTRODUCTION

Let \mathcal{A} be an associative algebra over complex numbers. Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix with entries in \mathcal{A} . The *row determinant* of A is defined by the formula:

$$\text{rdet}(A) := \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma_1} \dots a_{n\sigma_n}.$$

Let x_{ij} , $i, j = 1, \dots, M$, be commuting variables. Let $\partial_{ij} = \partial/\partial x_{ij}$,

$$E_{ij} = \sum_{a=1}^M x_{ia} \partial_{ja}. \quad (1.1)$$

Let $X = (x_{ij})_{i,j=1}^M$ and $D = (\partial_{ij})_{i,j=1}^M$ be $M \times M$ matrices.

The classical Capelli identity [C1] asserts the following equality of differential operators:

$$\text{rdet} \left(E_{ji} + (M-i)\delta_{ij} \right)_{i,j=1}^M = \det(X) \det(D). \quad (1.2)$$

This identity is a “quantization” of the identity

$$\det(AB) = \det(A) \det(B)$$

for any matrices A, B with commuting entries.

The Capelli identity has the following meaning in the representation theory. Let $\mathbb{C}[X]$ be the algebra of complex polynomials in variables x_{ij} . There are two natural actions of the Lie algebra \mathfrak{gl}_M on $\mathbb{C}[X]$. The first action is given by operators from (1.1) and the second action is given by operators $\tilde{E}_{ij} = \sum_{a=1}^M x_{ai} \partial_{aj}$. The two actions commute and the corresponding $\mathfrak{gl}_M \oplus \mathfrak{gl}_M$ action is multiplicity free.

Research of E.M. is supported in part by NSF grant DMS-0601005. Research of A.V. is supported in part by NSF grant DMS-0555327.

It is not difficult to see that the right hand side of (1.2), considered as a differential operator on $\mathbb{C}[X]$, commutes with both actions of \mathfrak{gl}_M and therefore lies in the image of the center of the universal enveloping algebra $U\mathfrak{gl}_M$ with respect to the first action. Then the left hand side of the Capelli identity expresses the corresponding central element in terms of $U\mathfrak{gl}_M$ generators.

Many generalizations of the Capelli identity are known. One group of generalizations considers other elements of the center of $U\mathfrak{gl}_M$, called quantum immanants, and then expresses them in terms of \mathfrak{gl}_M generators, see [C2], [N1], [O]. Another group of generalizations considers other pairs of Lie algebras in place of $(\mathfrak{gl}_M, \mathfrak{gl}_M)$, e.g. $(\mathfrak{gl}_M, \mathfrak{gl}_N)$, $(\mathfrak{sp}_{2M}, \mathfrak{gl}_2)$, $(\mathfrak{sp}_{2M}, \mathfrak{so}_N)$, etc, see [MN], [HU]. The third group of generalizations produces identities corresponding not to pairs of Lie algebras, but to pairs of quantum groups [NUW] or superalgebras [N2].

In this paper we prove a generalization of the Capelli identity which seemingly does not fit the above classification.

Let $\mathbf{z} = (z_1, \dots, z_N)$, $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_M)$ be sequences of complex numbers. Let $Z = (z_i \delta_{ij})_{i,j=1}^N$, $\Lambda = (\lambda_i \delta_{ij})_{i,j=1}^M$ be the corresponding diagonal matrices. Let X and D be the $M \times N$ matrices with entries x_{ij} and ∂_{ij} , $i = 1, \dots, M$, $j = 1, \dots, N$, respectively. Let $\mathbb{C}[X]$ be the algebra of complex polynomials in variables x_{ij} , $i = 1, \dots, M$, $j = 1, \dots, N$. Let $E_{ij}^{(a)} = x_{ia} \partial_{ja}$, where $i, j = 1, \dots, M$, $a = 1, \dots, N$.

In this paper we prove that

$$\prod_{a=1}^N (u - z_a) \operatorname{rdet} \left((\partial_u - \lambda_i) \delta_{ij} - \sum_{a=1}^N \frac{E_{ji}^{(a)}}{u - z_a} \right)_{i,j=1}^M = \operatorname{rdet} \begin{pmatrix} u - Z & X^t \\ D & \partial_u - \Lambda \end{pmatrix}. \quad (1.3)$$

The left hand side of (1.3) is an $M \times M$ matrix while the right hand side is an $(M + N) \times (M + N)$ matrix.

Identity (1.3) is a “quantization” of the identity

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B)$$

which holds for any matrices A, B, C, D with commuting entries, for the case when A and D are diagonal matrices.

By setting all z_i, λ_j and u to zero, and $N = M$ in (1.3), we obtain the classical Capelli identity (1.2), see Section 2.4.

Our proof of (1.3) is combinatorial and reduces to the case of 2×2 matrices. In particular, it gives a proof of the classical Capelli identity, which may be new.

We invented identity (1.3) to prove Theorem 3.1 below, and Theorem 3.1 in its turn was motivated by results of [MTV2]. In Theorem 3.1 we compare actions of two Bethe subalgebras.

Namely, consider $\mathbb{C}[X]$ as a tensor product of evaluation modules over the current Lie algebras $\mathfrak{gl}_M[t]$ and $\mathfrak{gl}_N[t]$ with evaluation parameters \mathbf{z} and $\boldsymbol{\lambda}$, respectively. The action of

the algebra $\mathfrak{gl}_M[t]$ on $\mathbb{C}[X]$ is given by the formula

$$E_{ij} \otimes t^n = \sum_{a=1}^N x_{ia} \partial_{ja} z_i^n,$$

and the action of the algebra $\mathfrak{gl}_N[t]$ on $\mathbb{C}[X]$ is given by the formula

$$E_{ij} \otimes t^n = \sum_{a=1}^M x_{ai} \partial_{aj} \lambda_i^n.$$

In contrast to the previous situation, these two actions do not commute.

The algebra $U\mathfrak{gl}_M[t]$ has a family of commutative subalgebras $\mathcal{G}(M, \boldsymbol{\lambda})$ depending on parameters $\boldsymbol{\lambda}$ and called the Bethe subalgebras. For a given $\boldsymbol{\lambda}$, the Bethe subalgebra $\mathcal{G}(M, \boldsymbol{\lambda})$ is generated by the coefficients of the expansion of the expression

$$\text{rdet} \left((\partial_u - \lambda_i) \delta_{ij} - \sum_{a=1}^N \sum_{s=1}^{\infty} (E_{ji}^{(a)} \otimes t^s) u^{-s-1} \right)_{i,j=1}^M \quad (1.4)$$

with respect to powers of u and ∂_u , cf. Section 3. For different versions of definitions of Bethe subalgebras and relations between them, see [FFR], [T], [R], [MTV1].

Similarly, there is a family of Bethe subalgebras $\mathcal{G}(N, \boldsymbol{z})$ in $U\mathfrak{gl}_N[t]$ depending on parameters \boldsymbol{z} .

For fixed $\boldsymbol{\lambda}$ and \boldsymbol{z} , consider the action of the Bethe subalgebras $\mathcal{G}(M, \boldsymbol{\lambda})$ and $\mathcal{G}(N, \boldsymbol{z})$ on $\mathbb{C}[X]$ as defined above. In Theorem 3.1 we show that the actions of the Bethe subalgebras on $\mathbb{C}[X]$ induce the same subalgebras of endomorphisms of $\mathbb{C}[X]$.

The paper is organized as follows. In Section 2 we describe and prove formal Capelli-type identities and in Section 3 we discuss the relations of the identities to the Bethe subalgebras.

2. IDENTITIES

2.1. The main identity. We work over the field of complex numbers, however all results of this paper hold over any field of characteristic zero.

Let \mathcal{A} be an associative algebra. Let $A = (a_{ij})_{i,j=1}^n$ be an $n \times n$ matrix with entries in \mathcal{A} . Define the *row determinant* of A by the formula:

$$\text{rdet}(A) := \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{1\sigma_1} \dots a_{n\sigma_n},$$

where S_n is the symmetric group on n elements.

Fix two natural numbers M and N and a complex number $h \in \mathbb{C}$. Consider noncommuting variables u, p_u, x_{ij}, p_{ij} , where $i = 1, \dots, M$, $j = 1, \dots, N$, such that the commutator of two variables equals zero except

$$[p_u, u] = h, \quad [p_{ij}, x_{ij}] = h,$$

$$i = 1, \dots, M, j = 1, \dots, N.$$

Let X, P be two $M \times N$ matrices given by

$$X := (x_{ij})_{i=1, \dots, M}^{j=1, \dots, N}, \quad P := (p_{ij})_{i=1, \dots, M}^{j=1, \dots, N}.$$

Let $\mathcal{A}_h^{(MN)}$ be the associative algebra whose elements are polynomials in p_u, x_{ij}, p_{ij} , $i = 1, \dots, M$, $j = 1, \dots, N$, with coefficients that are rational functions in u .

Let $\mathcal{A}^{(MN)}$ be the associative algebra of linear differential operators in u, x_{ij} , $i = 1, \dots, M$, $j = 1, \dots, N$, with coefficients in $\mathbb{C}(u) \otimes \mathbb{C}[X]$.

We often drop the dependence on M, N and write $\mathcal{A}_h, \mathcal{A}$ for $\mathcal{A}_h^{(MN)}$ and $\mathcal{A}^{(MN)}$, respectively.

For $h \neq 0$, we have the isomorphism of algebras

$$\begin{aligned} \iota_h : \mathcal{A}_h &\rightarrow \mathcal{A}, \\ u, x_{ij} &\mapsto u, x_{ij}, \\ p_u, p_{ij} &\mapsto h \frac{\partial}{\partial u}, h \frac{\partial}{\partial x_{ij}}. \end{aligned} \tag{2.1}$$

Fix two sequences of complex numbers $\mathbf{z} = (z_1, \dots, z_N)$ and $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_M)$. Define the $M \times M$ matrix $G_h = G_h(M, N, u, p_u, \mathbf{z}, \boldsymbol{\lambda}, X, P)$ by the formula

$$G_h := \left((p_u - \lambda_i) \delta_{ij} - \sum_{a=1}^N \frac{x_{ja} p_{ia}}{u - z_a} \right)_{i,j=1}^M. \tag{2.2}$$

Theorem 2.1. *We have*

$$\prod_{a=1}^N (u - z_a) \operatorname{rdet}(G_h) = \sum_{A, B, |A|=|B|} (-1)^{|A|} \prod_{a \notin B} (u - z_a) \prod_{b \notin A} (p_u - \lambda_b) \det(x_{ab})_{a \in A}^{b \in B} \det(p_{ab})_{a \in A}^{b \in B},$$

where the sum is over all pairs of subsets $A \subset \{1, \dots, M\}$, $B \subset \{1, \dots, N\}$ such that A and B have the same cardinality, $|A| = |B|$. Here the sets A, B inherit the natural ordering from the sets $\{1, \dots, M\}$, $\{1, \dots, N\}$. This ordering determines the determinants in the formula.

Theorem 2.1 is proved in Section 2.5.

2.2. A presentation as a row determinant of size $M + N$. Theorem 2.1 implies that the row determinant of G can be written as the row determinant of a matrix of size $M + N$.

Namely, let Z be the diagonal $N \times N$ matrix with diagonal entries z_1, \dots, z_N . Let Λ be the diagonal $M \times M$ matrix with diagonal entries $\lambda_1, \dots, \lambda_M$:

$$Z := (z_i \delta_{ij})_{i,j=1}^N, \quad \Lambda := (\lambda_i \delta_{ij})_{i,j=1}^M.$$

Corollary 2.2. *We have*

$$\prod_{a=1}^N (u - z_a) \operatorname{rdet} G = \operatorname{rdet} \begin{pmatrix} u - Z & X^t \\ P & p_u - \Lambda \end{pmatrix},$$

where X^t denotes the transpose of the matrix X .

Proof. Denote

$$W := \begin{pmatrix} u - Z & X^t \\ P & p_u - \Lambda \end{pmatrix},$$

The entries of the first N rows of W commute. The entries of the last M rows of W also commute. Write the Laplace decomposition of $\text{rdet}(W)$ with respect to the first N rows. Each term in this decomposition corresponds to a choice of N columns in the $N \times (N + M)$ matrix $(u - Z, X^t)$. We label such a choice by a pair of subsets $A \subset \{1, \dots, M\}$ and $B \subset \{1, \dots, N\}$ of the same cardinality. Namely, the elements of A correspond to the chosen columns in X^t and the elements of the complement to B correspond to the chosen columns in $u - Z$. Then the term in the Laplace decomposition corresponding to A and B is exactly the term labeled by A and B in the right hand side of the formula in Theorem 2.1. Therefore, the corollary follows from Theorem 2.1. \square

Let A, B, C, D be any matrices with commuting entries of sizes $N \times N, N \times M, M \times N$ and $M \times M$, respectively. Let A be invertible. Then we have the equality of matrices of sizes $(M + N) \times (M + N)$:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & 0 \\ C & D - CA^{-1}B \end{pmatrix} \begin{pmatrix} 1 & A^{-1}B \\ 0 & 1 \end{pmatrix}$$

and therefore

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B). \quad (2.3)$$

The identity of Corollary 2.2 for $h = 0$ turns into identity (2.3) with diagonal matrices A and D . Therefore, the identity of Corollary 2.2 may be thought of as a “quantization” of identity (2.3) with diagonal A and D .

2.3. A relation between determinants of sizes M and N . Introduce new variables v, p_v such that $[p_v, v] = h$.

Let $\bar{\mathcal{A}}_h$ be the associative algebra whose elements are polynomials in p_u, p_v, x_{ij}, p_{ij} , $i = 1, \dots, M$, $j = 1, \dots, N$, with coefficients in $\mathbb{C}(u) \otimes \mathbb{C}(v)$.

Let $e : \bar{\mathcal{A}}_h \rightarrow \bar{\mathcal{A}}_h$ be the unique linear map which is the identity map on the subalgebra of $\bar{\mathcal{A}}_h$ generated by all monomials which do not contain p_u and p_v and which satisfy

$$e(ap_u) = e(a)v, \quad e(ap_v) = e(a)u,$$

for any $a \in \bar{\mathcal{A}}_h$.

Let $\bar{\mathcal{A}}$ be the associative algebra of linear differential operators in u, v, x_{ij} , $i = 1, \dots, M$, $j = 1, \dots, N$, with coefficients in $\mathbb{C}(u) \otimes \mathbb{C}(v) \otimes \mathbb{C}[x_{ij}]$. Then for $h \neq 0$, we have the

isomorphism of algebras extending the isomorphism (2.1):

$$\begin{aligned}\bar{\iota}_h : \bar{\mathcal{A}}_h &\rightarrow \bar{\mathcal{A}}, \\ u, v, x_{ij} &\mapsto u, v, x_{ij}, \\ p_u, p_v, p_{ij} &\mapsto h \frac{\partial}{\partial u}, h \frac{\partial}{\partial v}, h \frac{\partial}{\partial x_{ij}}.\end{aligned}$$

For $a \in \bar{\mathcal{A}}$ and a function $f(u, v)$ let $a \cdot f(u, v)$ denotes the function obtained by the action of a considered as a differential operator in u and v on the function $f(u, v)$.

We have

$$\bar{\iota}_h(e(a)) = \exp(-uv/h)\bar{\iota}_h(a) \cdot \exp(uv/h)$$

for any $a \in \bar{\mathcal{A}}_h$ such that a does not depend on either p_u or p_v .

Define the $N \times N$ matrix $H_h = H_h(M, N, v, p_v, \mathbf{z}, \boldsymbol{\lambda}, X, P)$ by

$$H_h := \left((p_v - z_i) \delta_{ij} - \sum_{b=1}^M \frac{x_{bj} p_{bi}}{v - \lambda_b} \right)_{i,j=1}^N, \quad (2.4)$$

cf. formula (2.2).

Corollary 2.3. *We have*

$$e\left(\prod_{a=1}^N (u - z_a) \operatorname{rdet}(G_h) \right) = e\left(\prod_{b=1}^M (v - \lambda_b) \operatorname{rdet}(H_h) \right).$$

Proof. Write the dependence on parameters of the matrix G : $G_h = G_h(M, N, u, p_u, \mathbf{z}, \boldsymbol{\lambda}, X, P)$. Then

$$H_h = G_h(N, M, v, p_v, \boldsymbol{\lambda}, \mathbf{z}, X^T, P^T).$$

The corollary now follows from Theorem 2.1. \square

2.4. A relation to the Capelli identity. In this section we show how to deduce the Capelli identity from Theorem 2.1.

Let s be a complex number. Let $\alpha_s : \mathcal{A}_h \rightarrow \mathcal{A}_h$ be the unique linear map which is the identity map on the subalgebra of \mathcal{A}_h generated by all monomials which do not contain p_u , and which satisfies

$$\alpha_s(aup_u) = s\alpha_s(a)$$

for any $a \in \bar{\mathcal{A}}_h$.

We have

$$\bar{\iota}_h(\alpha_s(a)) = u^{-s/h}\bar{\iota}_h(a) \cdot u^{s/h}$$

for any $a \in \bar{\mathcal{A}}_h$.

Consider the case $z_1 = \dots = z_N = 0$ and $\lambda_1 = \dots = \lambda_M = 0$ in Theorem 2.1.

Then it is easy to see that the row determinant $\text{rdet}(G)$ can be rewritten in the following form

$$u^M \text{rdet}(G_h) = \text{rdet} \left(h(up_u - M + i)\delta_{ij} - \sum_{a=1}^N x_{ja}p_{ia} \right)_{i,j=1}^M.$$

Applying the map α_s , we get

$$\alpha_s(u^M \text{rdet}(G_h)) = \text{rdet} \left(h(s - M + i)\delta_{ij} - \sum_{a=1}^N x_{ja}p_{ia} \right)_{i,j=1}^M.$$

Therefore applying Theorem 2.1 we obtain the identity

$$\text{rdet} \left(h(s - M + i)\delta_{ij} - \sum_{a=1}^N x_{ja}p_{ia} \right)_{i,j=1}^M = \sum_{A,B,|A|=|B|} (-1)^{|A|} \prod_{b=0}^{M-|A|-1} (s - bh) \det(x_{ab})_{a \in A}^{b \in B} \det(p_{ab})_{a \in A}^{b \in B}.$$

In particular, if $M = N$, and $s = 0$, we obtain the famous Capelli identity:

$$\text{rdet} \left(\sum_{a=1}^M x_{ja}p_{ia} + h(M - i)\delta_{ij} \right)_{i,j=1}^M = \det X \det P.$$

If $h = 0$ then all entries of X and P commute and the Capelli identity reads $\det(XP) = \det(X)\det(P)$. Therefore, the Capelli identity can be thought of as a “quantization” of the identity $\det(AB) = \det(A)\det(B)$ for square matrices A, B with commuting entries.

2.5. Proof of Theorem 2.1.

We denote

$$E_{ij,a} := x_{ja}p_{ia}/(u - z_a).$$

We obviously have

$$[E_{ij,a}, E_{kl,b}] = \delta_{ab}(\delta_{kj}(E_{il,a})' - \delta_{il}(E_{kj,a})'),$$

where the prime denotes the formal differentiation with respect to u .

Denote also $F_{jk,a}^1 = -E_{jk,a}$ and $F_{jj,0}^0 = (p_u - \lambda_j)$.

Expand $\text{rdet}(G)$. We get an alternating sum of terms,

$$\text{rdet}(G_h) = \sum_{\sigma,a,c} (-1)^{\text{sgn}(\sigma)} F_{1\sigma(1),a(1)}^{c(1)} F_{2\sigma(2),a(2)}^{c(2)} \dots F_{M\sigma(M),a(M)}^{c(M)}, \quad (2.5)$$

where the summation is over all triples σ, a, c such that σ is a permutation of $\{1, \dots, M\}$ and a, c are maps $a : \{1, \dots, M\} \rightarrow \{0, 1, \dots, N\}$, $c : \{1, \dots, M\} \rightarrow \{0, 1\}$ satisfying: $c(i) = 1$ if $\sigma(i) \neq i$; $a(i) = 0$ if and only if $c(i) = 0$.

Let m be a product whose factors are of the form $f(u)$, p_u , p_{ij} , x_{ij} where $f(u)$ are some rational functions in u . Then the product m will be called *normally ordered* if all factors of the form p_u, p_{ij} are on the right from all factors of the form $f(u), x_{ij}$. For example, $(u - 1)^{-2}x_{11}p_u p_{11}$ is normally ordered and $p_u(u - 1)^{-2}x_{11}p_{11}$ is not.

Given a product m as above, define a new normally ordered product $:m:$ as the product of all factors of m in which all factors of the form p_u, p_{ij} are placed on the right from all factors of the form $f(u), x_{ij}$. For example, $:p_u(u-1)^{-2}x_{11}p_{11} := (u-1)^{-2}x_{11}p_u p_{11}$.

If all variables p_u, p_{ij} are moved to the right in the expansion of $\text{rdet}(G)$ then we get terms obtained by normal ordering from the terms in (2.5) plus new terms created by the non-trivial commutators. We show that in fact all new terms cancel in pairs.

Lemma 2.4. *For $i = 1, \dots, M$, we have*

$$\text{rdet}(G_h) = \sum_{\sigma, a, c} (-1)^{\text{sgn}(\sigma)} F_{1\sigma(1), a(1)}^{c(1)} \dots F_{(i-1)\sigma(i-1), a(i-1)}^{c(i-1)} \left(: F_{i\sigma(i), a(i)}^{c(i)} \dots F_{M\sigma(M), a(M)}^{c(M)} : \right), \quad (2.6)$$

where the sum is over the same triples σ, a, c as in (2.5).

Proof. We prove the lemma by induction on i . For $i = M$ the lemma is a tautology. Assume it is proved for $i = M, M-1, \dots, j$, let us prove it for $i = j-1$.

We have

$$\begin{aligned} F_{(j-1)r, a}^1 : F_{j\sigma(j), a(j)}^{c(j)} \dots F_{M\sigma(M), a(M)}^{c(M)} : &= \\ : F_{(j-1)r, a}^1 F_{j\sigma(j), a(j)}^{c(j)} \dots F_{M\sigma(M), a(M)}^{c(M)} : + \sum_k : F_{j\sigma(j), a(j)}^{c(j)} \dots (-E_{kr, a})' \dots F_{M\sigma(M), a(M)}^{c(M)} : , \end{aligned} \quad (2.7)$$

where the sum is over $k \in \{j, \dots, M\}$ such that $a(k) = a$, $\sigma(k) = j-1$ and $c(k) = 1$.

We also have

$$\begin{aligned} F_{(j-1)(j-1), 0}^0 : F_{j\sigma(j), a(j)}^{c(j)} \dots F_{M\sigma(M), a(M)}^{c(M)} : &= \\ : F_{(j-1)(j-1), 0}^0 F_{j\sigma(j), a(j)}^{c(j)} \dots F_{M\sigma(M), a(M)}^{c(M)} : + \sum_k : F_{j\sigma(j), a(j)}^{c(j)} \dots (-E_{k\sigma(k), a(k)})' \dots F_{M\sigma(M), a(M)}^{c(M)} : , \end{aligned} \quad (2.8)$$

where the sum is over $k \in \{j, \dots, M\}$ such that $c(k) = 1$.

Using (2.7), (2.8), rewrite each term in (2.6) with $i = j$. Then the k -th term obtained by using (2.7) applied to the term labeled by σ, c, a with $c(j-1) = 0$ cancels with the k -th obtained by using (2.8) applied to the term labeled by $\tilde{\sigma}, \tilde{c}, \tilde{a}$ defined by the following rules.

$$\begin{aligned} \tilde{\sigma}(i) &= \sigma(i) \quad (i \neq j-1, k), \quad \tilde{\sigma}(j-1) = j-1, \quad \tilde{\sigma}(k) = \sigma(j-1), \\ \tilde{c}(i) &= c(i) \quad (i \neq j-1), \quad \tilde{c}(j-1) = 0, \\ \tilde{a}(i) &= a(i) \quad (i \neq j-1), \quad \tilde{a}(j-1) = 0. \end{aligned}$$

After this cancellation we obtain the statement of the lemma for $i = j-1$. \square

Remark 2.5. The proof of Lemma 2.4 implies that if the matrix σG_h is obtained from G_h by permuting the rows of G_h by a permutation σ then $\text{rdet}(\sigma G_h) = (-1)^{\text{sgn}(\sigma)} \text{rdet}(G_h)$.

Consider the linear isomorphism $\phi_h : A_h \rightarrow A_0$ which sends any normally ordered monomial m in A_h to the same monomial m in A_0 .

By (2.6) with $i = 1$, the image $\phi_h(\text{rdet}(G_h))$ does not depend on h and therefore can be computed at $h = 0$. Therefore Theorem 2.1 for all h follows from Theorem 2.1 for $h = 0$. Theorem 2.1 for $h = 0$ follows from formula (2.3).

3. THE $(\mathfrak{gl}_M, \mathfrak{gl}_N)$ DUALITY AND THE BETHE SUBALGEBRAS

3.1. Bethe subalgebra. Let E_{ij} , $i, j = 1, \dots, M$, be the standard generators of \mathfrak{gl}_M . Let \mathfrak{h} be the Cartan subalgebra of \mathfrak{gl}_M ,

$$\mathfrak{h} = \bigoplus_{i=1}^M \mathbb{C} \cdot E_{ii}.$$

We denote $U\mathfrak{gl}_M$ the universal enveloping algebra of \mathfrak{gl}_M .

For $\mu \in \mathfrak{h}^*$, and a \mathfrak{gl}_M module L denote by $L[\mu]$ the vector subspace of L of vectors of weight μ ,

$$L[\mu] = \{v \in L \mid hv = \langle \mu, h \rangle v \text{ for any } h \in \mathfrak{h}\}.$$

We always assume that $L = \bigoplus_{\mu} L[\mu]$.

For any integral dominant weight $\Lambda \in \mathfrak{h}^*$, denote by L_{Λ} the finite-dimensional irreducible \mathfrak{gl}_M -module with highest weight Λ .

Recall that we fixed sequences of complex numbers $\mathbf{z} = (z_1, \dots, z_N)$ and $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_M)$. From now on we will assume that $z_i \neq z_j$ and $\lambda_i \neq \lambda_j$ if $i \neq j$.

For $i, j = 1, \dots, M$, $a = 1, \dots, N$, let $E_{ji}^{(a)} = 1^{\otimes(a-1)} \otimes E_{ji} \otimes 1^{\otimes(N-a)} \in (U\mathfrak{gl}_M)^{\otimes N}$.

Define the $M \times M$ matrix $\tilde{G} = \tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)$ by

$$\tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) := \left(\left(\frac{\partial}{\partial u} - \lambda_i \right) \delta_{ij} - \sum_{a=1}^N \frac{E_{ji}^{(a)}}{u - z_a} \right)_{i,j=1}^M.$$

The entries of \tilde{G} are differential operators in u whose coefficients are rational functions in u with values in $(U\mathfrak{gl}_M)^{\otimes N}$.

Write

$$\text{rdet}(\tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)) = \frac{\partial^M}{\partial u^M} + \tilde{G}_1(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) \frac{\partial^{M-1}}{\partial u^{M-1}} + \dots + \tilde{G}_M(M, N, \mathbf{z}, \boldsymbol{\lambda}, u).$$

The coefficients $\tilde{G}_i(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)$, $i = 1, \dots, M$, are called *the transfer matrices of the Gaudin model*. The transfer matrices are rational functions in u with values in $(U\mathfrak{gl}_M)^{\otimes N}$.

The transfer matrices commute:

$$[\tilde{G}_i(M, N, \mathbf{z}, \boldsymbol{\lambda}, u), \tilde{G}_j(M, N, \mathbf{z}, \boldsymbol{\lambda}, v)] = 0,$$

for all i, j, u, v , see [T] and Proposition 7.2 in [MTV1].

The transfer matrices clearly commute with the diagonal action of \mathfrak{h} on $(U\mathfrak{gl}_M)^{\otimes N}$.

For $i = 1, \dots, M$, it is clear that $\tilde{G}_i(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) \prod_{a=1}^N (u - z_a)^i$ is a polynomial in u whose coefficients are pairwise commuting elements of $(U\mathfrak{gl}_M)^{\otimes N}$. Let $\mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}) \subset (U\mathfrak{gl}_M)^{\otimes N}$ be the commutative subalgebra generated by the coefficients of polynomials $\tilde{G}_i(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) \prod_{a=1}^N (u - z_a)^i$, $i = 1, \dots, M$. We call the subalgebra $\mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda})$ the *Bethe subalgebra*.

Let $\mathcal{G}(M, \boldsymbol{\lambda}) \subset U\mathfrak{gl}_M[t]$ be the subalgebra considered in the introduction. Let $U\mathfrak{gl}_M[t] \rightarrow (U\mathfrak{gl}_M)^{\otimes N}$ be the algebra homomorphism defined by $E_{ij} \otimes t^n \mapsto \sum_{a=1}^N E_{ij}^{(a)} z_a^n$. Then the subalgebra $\mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda})$ is the image of the subalgebra $\mathcal{G}(M, \boldsymbol{\lambda})$ under that homomorphism.

The Bethe subalgebra clearly acts on any N -fold tensor products of \mathfrak{gl}_M representations.

Define the *Gaudin Hamiltonians*, $H_a(M, N, \mathbf{z}, \boldsymbol{\lambda}) \subset (U\mathfrak{gl}_M)^{\otimes N}$, $a = 1, \dots, N$, by the formula

$$H_a(M, N, \mathbf{z}, \boldsymbol{\lambda}) = \sum_{b=1, b \neq a}^N \frac{\Omega^{(ab)}}{z_a - z_b} + \sum_{b=1}^M \lambda_b E_{bb}^{(a)},$$

where $\Omega^{(ab)} := \sum_{i,j=1}^M E_{ij}^{(a)} E_{ji}^{(b)}$.

Define the *dynamical Hamiltonians* $H_a^\vee(M, N, \mathbf{z}, \boldsymbol{\lambda}) \subset (U\mathfrak{gl}_M)^{\otimes N}$, $a = 1, \dots, M$, by the formula

$$H_a^\vee(M, N, \mathbf{z}, \boldsymbol{\lambda}) = \sum_{b=1, b \neq a}^M \frac{(\sum_{i=1}^N E_{ab}^{(i)})(\sum_{i=1}^N E_{ba}^{(i)}) - \sum_{i=1}^N E_{aa}^{(i)}}{\lambda_a - \lambda_b} + \sum_{b=1}^N z_b E_{aa}^{(b)}.$$

It is known that the Gaudin Hamiltonians and the dynamical Hamiltonians are in the Bethe subalgebra, see e.g. Appendix B in [MTV1]:

$$H_a(M, N, \mathbf{z}, \boldsymbol{\lambda}) \in \mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}), \quad H_b^\vee(M, N, \mathbf{z}, \boldsymbol{\lambda}) \in \mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}),$$

$$a = 1, \dots, N, b = 1, \dots, M.$$

3.2. The $(\mathfrak{gl}_M, \mathfrak{gl}_N)$ duality. Let $L_\bullet^{(M)} = \mathbb{C}[x_1, \dots, x_M]$ be the space of polynomials of M variables. We define the \mathfrak{gl}_M -action on $L_\bullet^{(M)}$ by the formula

$$E_{ij} \mapsto x_i \frac{\partial}{\partial x_j}.$$

Then we have an isomorphism of \mathfrak{gl}_M modules

$$L_\bullet^{(M)} = \bigoplus_{m=0}^{\infty} L_m^{(M)}$$

the submodule $L_m^{(M)}$ being spanned by homogeneous polynomials of degree m . The submodule $L_m^{(M)}$ is the irreducible \mathfrak{gl}_M module with highest weight $(m, 0, \dots, 0)$ and highest weight vector x_1^m .

Let $L_\bullet^{(M,N)} = \mathbb{C}[x_{11}, \dots, x_{1N}, \dots, x_{M1}, \dots, x_{MN}]$ be the space of polynomials of MN commuting variables.

Let $\pi^{(M)} : (U\mathfrak{gl}_M)^{\otimes N} \rightarrow \text{End}(L_\bullet^{(M,N)})$ be the algebra homomorphism defined by

$$E_{ij}^{(a)} \mapsto x_{ia} \frac{\partial}{\partial x_{ja}}.$$

In particular, we define the \mathfrak{gl}_M action on $L_\bullet^{(M,N)}$ by the formula

$$E_{ij} \mapsto \sum_{a=1}^N x_{ia} \frac{\partial}{\partial x_{ja}}.$$

Let $\pi^{(N)} : (U\mathfrak{gl}_N)^{\otimes M} \rightarrow \text{End}(L_{\bullet}^{(M,N)})$ be the algebra homomorphism defined by

$$E_{ij}^{(a)} \mapsto x_{ai} \frac{\partial}{\partial x_{aj}}.$$

In particular, we define the \mathfrak{gl}_N action on $L_{\bullet}^{(M,N)}$ by the formula

$$E_{ij} \mapsto \sum_{a=1}^M x_{ai} \frac{\partial}{\partial x_{aj}}.$$

We have isomorphisms of algebras,

$$\begin{aligned} (\mathbb{C}[x_1, \dots, x_M])^{\otimes N} &\xrightarrow{\sim} L_{\bullet}^{(M,N)}, & 1^{\otimes(j-1)} \otimes x_i \otimes 1^{\otimes(N-j)} &\mapsto x_{ij}, \\ (\mathbb{C}[x_1, \dots, x_N])^{\otimes M} &\xrightarrow{\sim} L_{\bullet}^{(M,N)}, & 1^{\otimes(i-1)} \otimes x_j \otimes 1^{\otimes(M-i)} &\mapsto x_{ij}. \end{aligned} \quad (3.1)$$

Under these isomorphisms the space $L_{\bullet}^{(M,N)}$ is isomorphic to $(L_{\bullet}^{(M)})^{\otimes N}$ as a \mathfrak{gl}_M module and to $(L_{\bullet}^{(N)})^{\otimes M}$ as a \mathfrak{gl}_N module.

Fix $\mathbf{n} = (n_1, \dots, n_N) \in \mathbb{Z}_{\geq 0}^N$ and $\mathbf{m} = (m_1, \dots, m_M) \in \mathbb{Z}_{\geq 0}^M$ with $\sum_{i=1}^N n_i = \sum_{a=1}^M m_a$. The sequences \mathbf{n} and \mathbf{m} naturally correspond to integral \mathfrak{gl}_N and \mathfrak{gl}_M weights, respectively.

Let \mathbf{L}_m and \mathbf{L}_n be \mathfrak{gl}_N and \mathfrak{gl}_M modules, respectively, defined by the formulas

$$\mathbf{L}_m = \otimes_{a=1}^M L_{m_a}^{(N)}, \quad \mathbf{L}_n = \otimes_{b=1}^N L_{n_b}^{(M)}.$$

The isomorphisms (3.1) induce an isomorphism of the weight subspaces,

$$\mathbf{L}_n[\mathbf{m}] \simeq \mathbf{L}_m[\mathbf{n}]. \quad (3.2)$$

Under the isomorphism (3.2) the Gaudin and dynamical Hamiltonians interchange,

$$\pi^{(M)} H_a(M, N, \mathbf{z}, \boldsymbol{\lambda}) = \pi^{(N)} H_a^{\vee}(N, M, \boldsymbol{\lambda}, \mathbf{z}), \quad \pi^{(M)} H_b^{\vee}(M, N, \mathbf{z}, \boldsymbol{\lambda}) = \pi^{(N)} H_b(N, M, \boldsymbol{\lambda}, \mathbf{z}),$$

for $a = 1, \dots, N, b = 1, \dots, M$, see [TV].

We prove a stronger statement that the images of \mathfrak{gl}_M and \mathfrak{gl}_N Bethe subalgebras in $\text{End}(L_{\bullet}^{(M,N)})$ are the same.

Theorem 3.1. *We have*

$$\pi^{(M)}(\mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda})) = \pi^{(N)}(\mathcal{G}(N, M, \boldsymbol{\lambda}, \mathbf{z})).$$

Moreover, we have

$$\begin{aligned} \prod_{a=1}^N (u - z_a) \pi^{(M)} \text{rdet}(\tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)) &= \sum_{a=1}^N \sum_{b=1}^M A_{ab}^{(M)} u^a \frac{\partial^b}{\partial u^b}, \\ \prod_{b=1}^M (v - \lambda_b) \pi^{(N)} \text{rdet}(\tilde{G}(N, M, \boldsymbol{\lambda}, \mathbf{z}, v)) &= \sum_{a=1}^N \sum_{b=1}^M A_{ab}^{(N)} v^b \frac{\partial^a}{\partial v^a}, \end{aligned}$$

where $A_{ab}^{(M)}, A_{ab}^{(N)}$ are linear operators independent on $u, v, \partial/\partial u, \partial/\partial v$ and

$$A_{ab}^{(M)} = A_{ab}^{(N)}.$$

Proof. We obviously have

$$\begin{aligned}\pi^{(M)}(\tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)) &= \bar{i}_{h=1}(G_{h=1}), \\ \pi^{(N)}(\tilde{G}(N, M, \boldsymbol{\lambda}, \mathbf{z}, v)) &= \bar{i}_{h=1}(H_{h=1}),\end{aligned}$$

where $G_{h=1}$ and $H_{h=1}$ are matrices defined in (2.2) and (2.4).

Then the coefficients of the differential operators $\prod_{a=1}^N (u - z_a) \pi^{(M)} \operatorname{rdet}(\tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u))$ and $\prod_{b=1}^M (v - \lambda_b) \pi^{(N)} \operatorname{rdet}(\tilde{G}(N, M, \boldsymbol{\lambda}, \mathbf{z}, v))$ are polynomials in u and v of degrees N and M , respectively, by Theorem 2.1. The rest of the theorem follows directly from Corollary 2.3. \square

3.3. Scalar differential operators. Let $w \in \mathbf{L}_n[\mathbf{m}]$ be a common eigenvector of the Bethe subalgebra $\mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda})$. Then the operator $\operatorname{rdet}(\tilde{G}(M, N, \mathbf{z}, \boldsymbol{\lambda}, u))$ acting on w defines a monic scalar differential operator of order M with rational coefficients in variable u . Namely, let $D_w(M, N, \boldsymbol{\lambda}, \mathbf{z})$ be the differential operator given by

$$D_w(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) = \frac{\partial^M}{\partial u^M} + \tilde{G}_1^w(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) \frac{\partial^{M-1}}{\partial u^{M-1}} + \cdots + \tilde{G}_M^w(M, N, \mathbf{z}, \boldsymbol{\lambda}, u),$$

where $\tilde{G}_i^w(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)$ is the eigenvalue of the i th transfer matrix acting on the vector w :

$$\tilde{G}_i(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)w = \tilde{G}_i^w(M, N, \mathbf{z}, \boldsymbol{\lambda}, u)w.$$

Using isomorphism (3.2), consider w as a vector in $\mathbf{L}_m[\mathbf{n}]$. Then by Theorem 3.1, w is also a common eigenvector for algebra $\mathcal{G}(N, M, \boldsymbol{\lambda}, \mathbf{z})$. Thus, similarly, the operator $\operatorname{rdet}(\tilde{G}(N, M, \boldsymbol{\lambda}, \mathbf{z}, v))$ acting on w defines a monic scalar differential operator of order N , $D_w(N, M, \boldsymbol{\lambda}, \mathbf{z}, v)$.

Corollary 3.2. *We have*

$$\begin{aligned}\prod_{a=1}^N (u - z_a) D_w(M, N, \mathbf{z}, \boldsymbol{\lambda}, u) &= \sum_{a=1}^N \sum_{b=1}^M A_{ab,w}^{(M)} u^a \frac{\partial^b}{\partial u^b}, \\ \prod_{b=1}^M (v - \lambda_b) D_w(N, M, \boldsymbol{\lambda}, \mathbf{z}, v) &= \sum_{a=1}^N \sum_{b=1}^M A_{ab,w}^{(N)} v^b \frac{\partial^a}{\partial v^a},\end{aligned}$$

where $A_{ab,w}^{(M)}$, $A_{ab,w}^{(N)}$ are numbers independent on $u, v, \partial/\partial u, \partial/\partial v$. Moreover,

$$A_{ab,w}^{(M)} = A_{ab,w}^{(N)}.$$

Proof. The corollary follows directly from Theorem 3.1. \square

Corollary 3.2 was essentially conjectured in Conjecture 5.1 in [MTV2].

Remark 3.3. The operators $D_w(M, N, \mathbf{z}, \boldsymbol{\lambda})$ are useful objects, see [MV1], [MTV2], [MTV3]. They have the following three properties.

- (i) The kernel of $D_w(M, N, \mathbf{z}, \boldsymbol{\lambda})$ is spanned by the functions $p_i^w(u)e^{\lambda_i u}$, $i = 1, \dots, M$, where $p_i^w(u)$ is a polynomial in u of degree m_i .
- (ii) All finite singular points of $D_w(M, N, \mathbf{z}, \boldsymbol{\lambda})$ are z_1, \dots, z_N .
- (iii) Each singular point z_i is regular and the exponents of $D_w(M, N, \mathbf{z}, \boldsymbol{\lambda})$ at z_i are $0, n_i + 1, n_i + 2, \dots, n_i + M - 1$.

A converse statement is also true. Namely, if a linear differential operator of order M has properties (i-iii), then the operator has the form $D_w(M, N, \mathbf{z}, \boldsymbol{\lambda})$ for a suitable eigenvector w of the Bethe subalgebra. This statement may be deduced from Proposition 3.4 below.

We will discuss the properties of such differential operators in [MTV4], cf. also [MTV2] and Appendix A in [MTV3].

3.4. The simple joint spectrum of the Bethe subalgebra. It is proved in [R], that for any tensor product of irreducible \mathfrak{gl}_M modules and for generic $\mathbf{z}, \boldsymbol{\lambda}$ the Bethe subalgebra has a simple joint spectrum. We give here a proof of this fact in the special case of the tensor product \mathbf{L}_n .

Proposition 3.4. *For generic values of $\boldsymbol{\lambda}$, the joint spectrum of the Bethe subalgebra $\mathcal{G}(M, N, \mathbf{z}, \boldsymbol{\lambda})$ acting in $\mathbf{L}_n[\mathbf{m}]$ is simple.*

Proof. We claim that for generic values of $\boldsymbol{\lambda}$, the joint spectrum of the Gaudin Hamiltonians $H_a(M, N, \mathbf{z}, \boldsymbol{\lambda})$, $a = 1, \dots, N$, acting in $\mathbf{L}_n[\mathbf{m}]$ is simple. Indeed fix \mathbf{z} and consider $\boldsymbol{\lambda}$ such that $\lambda_1 \gg \lambda_2 \gg \dots \gg \lambda_M \gg 0$. Then the eigenvectors of the Gaudin Hamiltonians in $\mathbf{L}_n[\mathbf{m}]$ will have the form $v_1 \otimes \dots \otimes v_N + o(1)$, where $v_i \in L_{n_i}[\mathbf{m}^{(i)}]$ and $\mathbf{m} = \sum_{i=1}^N \mathbf{m}^{(i)}$. The corresponding eigenvalue of $H_a(M, N, \mathbf{z}, \boldsymbol{\lambda})$ will be $\sum_{j=1}^M \lambda_j m_j^{(a)} + O(1)$.

The weight spaces $L_{n_i}^{(M)}[\mathbf{m}_i]$ all have dimension at most 1 and therefore the joint spectrum is simple in this asymptotic zone of parameters. Therefore it is simple for generic values of $\boldsymbol{\lambda}$. \square

REFERENCES

- [C1] A. Capelli, *Über die Zurückführung der Cayley'schen Operation Ω auf gewöhnliche Polar-Operationen* (German) Math. Ann. **29** (1887), no. 3, 331–338
- [C2] A. Capelli, *Sur les Opérations dans la théorie des formes algébriques* (French) Math. Ann. **37** (1890), no. 1, 1–37
- [FFR] B. Feigin, E. Frenkel, N. Reshetikhin, *Gaudin model, Bethe ansatz and critical level*, Comm. Math. Phys. **166** (1994), no. 1, 27–62
- [HU] R. Howe, T. Umeda, *The Capelli identity, the double commutant theorem, and multiplicity-free actions*, Math. Ann. **290** (1991), no. 3, 565–619
- [MN] A. Molev, M. Nazarov, *Capelli identities for classical Lie algebras*, Math. Ann. **313** (1999), no. 2, 315–357
- [N1] M. Nazarov, *Capelli identities for Lie superalgebras*, Ann. Sci. École Norm. Sup. (4) **30** (1997), no. 6, 847–872

- [N2] M. Nazarov, *Yangians and Capelli identities*, Kirillov's seminar on representation theory, 139–163, Amer. Math. Soc. Transl. Ser. 2, **181**, Amer. Math. Soc., Providence, RI, 1998
- [NUW] M. Noumi, T. Umeda, M. Wakayama, *A quantum analogue of the Capelli identity and an elementary differential calculus on $GL_q(n)$* , Duke Math. J. **76** (1994), no. 2, 567–594
- [MV1] E. Mukhin and A. Varchenko, *Spaces of quasi-polynomials and the Bethe Ansatz*, math.QA/0604048, 1–29
- [MTV1] E. Mukhin, V. Tarasov and A. Varchenko, *Bethe eigenvectors of higher transfer matrices*, J. Stat. Mech. (2006) P08002
- [MTV2] E. Mukhin, V. Tarasov and A. Varchenko, *Bispectral and $(\mathfrak{gl}_N, \mathfrak{gl}_M)$ Dualities*, math.QA/0510364, 1–22
- [MTV3] E. Mukhin, V. Tarasov and A. Varchenko, *The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz*, math.AG/0512299, 1–18
- [MTV4] E. Mukhin, V. Tarasov and A. Varchenko, in preparation
- [O] A. Okounkov, *Quantum immanants and higher Capelli identities*, Transform. Groups 1 (1996), no. 1-2, 99–126
- [R] L. Rybnikov, *Argument Shift Method and Gaudin Model*, math.RT/0606380, 1–15
- [T] D. V. Talalaev, *The quantum Gaudin system* (Russian) Funktsional. Anal. i Prilozhen. 40 (2006), no. 1, 86–91; translation in Funct. Anal. Appl. 40 (2006), no. 1, 73–77
- [TV] V. Tarasov, A. Varchenko, *Duality for Knizhnik-Zamolodchikov and dynamical equations*, The 2000 Twente Conference on Lie Groups (Enschede). Acta Appl. Math. 73 (2002), no. 1-2, 141–154

E.M.: DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY – PURDUE UNIVERSITY
 INDIANAPOLIS, 402 NORTH BLACKFORD ST, INDIANAPOLIS, IN 46202-3216, USA,
 MUKHIN@MATH.IUPUI.EDU

V.T.: DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY – PURDUE UNIVERSITY
 INDIANAPOLIS, 402 NORTH BLACKFORD ST, INDIANAPOLIS, IN 46202-3216, USA,
 VTARASOV@MATH.IUPUI.EDU, AND

ST. PETERSBURG BRANCH OF STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27,
 ST. PETERSBURG, 191023, RUSSIA, VT@PDMI.RAS.RU

A.V.: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL,
 CHAPEL HILL, NC 27599-3250, USA, ANV@EMAIL.UNC.EDU