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Introduction

Ever since it was discovered in 1982 by A. Connes [C1] and B. Tsygan [Ts],
cyclic homology occupies a strange place in the realm of homological algebra.
Normally in homological algebra problems, one expects to start from some
data, such e.g. a topological space X, then construct some abelian category,
such as the category of sheaves on X, and then define the cohomology of X
by computing the derived functors of some natural functor, such as e.g. the
global sections functor Γ(X,−). Admittedly, this is a modern formulation,
but it had certainly been current already in 1982. Cyclic homology starts
with an associative algebra A, and defines its homology groups HC q(A), but
there are absolutely no derived functors in sight. Originally, HC q(A) were
defined as the homology of an explicit complex, – which anyone trained to use
triangulated categories cannot help but take as an insult. Later A. Connes
∗Partially supported by CRDF grant RUM1-2694-MO05.
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[C2] improved on the definition by introducing the abelian category of so-
called cyclic vector spaces. However, the passage from A to its associated
cyclic vector space A# is still done by an explicit ad hoc formula. It is as if
we were to know the bar-complex which computes the homology of a group,
without knowing the definition of the homology of a group.

This situation undoubtably irked many people over the years, but to the
best of my knowledge, no satisfactory solution has been proposed, and it
may not exist – indeed, many relations to the de Rham homology notwith-
standing, it is not clear whether cyclic homology properly forms a part of
homological algebra at all (to the point that e.g. in [FT] the word “homol-
ogy” is not used at all for HC q(A), and it is called instead additive K-theory
of A). In the great codification of homological algebra done in [GM1], cyclic
homology only appears in the exercises. This is not surprising, since the
main unifying idea of [GM1] is the ideology of “linearization”: homological
algebra linearizes geometry, just as functional analysis used to do 50 years
ago; triangulated categories and adjoint functors are modern-day versions
of Banach spaces and adjoint linear operators. This has been an immensely
successful and clarifying point of view, in general, but HC q(A) sticks out on
a complete tangent – there is simply no natural place for it in this framework.

This paper arouse as a one more attempt to propose a solution to the
difficulty – to find a natural triangulated category where HC q(−) would
be able to live with a certain level of comfort (and with all the standard
corollaries such as the notion of cyclic homology with coefficients, the ability
to compute cyclic homology by whatever resolution is convenient, not just
the bar resolution, and so on).

In a sense, our attempt has been successful: we define a triangulated
category which can serve as the natural “category of coefficients” for cyclic
homology of an algebra A, and we prove the comparison theorem that shows
that when the coefficients are trivial, the new definition of cyclic homology is
equivalent to the old one. In fact, the algebra A enters into the construction
only through the category A-bimod of A-bimodules; we also show how to
generalize the construction so that A-bimod is replaced with a more general
tensor abelian category C.

From a different point of view, though, out attempt failed miserably:
the correspondence A 7→ A#, being thrown out of the window, immediately
returns through the door in a new and “higher-level disguise”: it is now
applied not to the algebra A, but to the tensor category C = A-bimod.
Then in practice, the freedom to choose an arbitrary resolution to compute
the derived functors leads, in our approach to HC q(−), to complexes which

2



are even larger than the original complex, and at some point the whole
exercise starts to look pointless.

Still, we believe that, all said and done, some point can be found, and
some things are clarified in our approach; one such thing is, for instance,
the version of Gauss-Manin connection for cyclic homology discovered by E.
Getzler [Ge]. Besides, we do propose a definition of cyclic homology which
makes sense for a general tensor category; and in some particular questions,
even the computations can be simplified in our approach. As for the presence
of the A#-construction, this might be in the nature of things, after all – not
a bug of the theory, but a necessary feature. However, we best leave it to
the reader to be the judge.

The paper is organized as follows. In Section 1 we recall A. Connes’
second definition of cyclic homology which uses the cyclic category Λ; we also
recall some facts about homology of small categories that we will need. We
have tried to give only the absolute minimum – the reader not familiar with
the material will have to consult the references. In Section 2 we introduce
our main object: the notion of a cyclic bimodule over an associative algebra
A, and the derived category of such bimodules. We also introduce cyclic
homology HC q(A,M) with coefficients in a cyclic bimodule M . In Section
3 we give a very short derivation of the Gauss-Manin connection; strictly
speaking, the language of cyclic bimodules is not needed for this, but we
believe that it shows more clearly what is really going on. In Section 4, we
show how to replace the category A-bimod everywhere with a more general
tensor abelian category C. Section 5 is a postface, or a “discussion” (as they
do in medical journals) – we discuss some of the further things one might
(and should) do with cyclic bimodules, and how to correct some deficiencies
of the theory developed in Sections 2 and 4.

Acknowledgements. In the course of this work, I have benefited greatly
from discussions with A. Beilinson, E. Getzler, V. Ginzburg, A. Kuznetsov,
N. Markarian, D. Tamarkin, and B. Tsygan. I am grateful to Northwestern
Univeristy, where part of this work was done, and where some of the results
were presented in seminars, with great indulgence from the audience towards
the unfinished state they were in. And, last but not least, it is a great
pleasure and a great opportunity to dedicate the paper to Yuri Ivanovich
Manin on his birthday. Besides all the usual things, I would like to stress that
it is the book [GM1], – and [GM2], to a lesser extent – which shaped the way
we look at homological algebra today, at least “we” of my generation and
of Moscow school. Without Manin’s decisive influence, this paper certainly
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would not have appeared (as in fact at least a half of the papers I ever
wrote).

1 Recollection on cyclic homology.

We start by recalling, extremely briefly, A. Connes’ approach to cyclic ho-
mology, which was originally introduced in [C2] (for detailed overviews, see
e.g. [L, Section 6] or [FT, Appendix]; a brief but complete exposition using
the same language and notation as in this paper can be found in [Ka, Section
1]).

Connes’ approach relies on the technique of homology of small categories.
Fix a base field k. Recall that for every small category Γ, the category
Fun(Γ, k) of functors from Γ to the category k-Vect of k-vector spaces is an
abelian category with enough projectives and enough injectives, with derived
category D(Γ, k). For any object E ∈ Fun(Γ, k), the homology H q(Γ, E) of
the category Γ with coefficients in E is by definition the derived functor of
the direct limit functor

lim
→
Γ

: Fun(Γ, k) → k-Vect .

Analogously, the cohomology H
q
(Λ, E) is the derived functor of the inverse

limit lim
←
Γ

. Equivalently,

H
q
(Γ, E) = Ext

q
(k, E),

where k ∈ Fun(Γ, k) is the constant functor (all objects in Γ go to k, all
maps go to identity). In particular, H

q
(Γ, k) is an algebra. For any E ∈

Fun(Γ, k), the cohomology H
q
(Γ, E) and the homology H q(Γ, E) are modules

over H
q
(Γ, k).

We also note, although it is not needed for the definition of cyclic homol-
ogy, that for any functor γ : Γ′ → Γ between two small categories, we have
the pullback functor γ∗ : Fun(Γ, k) → Fun(Γ′, k), and for any E ∈ Fun(Γ, k),
we have natural maps

(1.1) H q(Γ′, f∗E) → H q(Γ, E), H
q
(Γ, E) → H

q
(Γ′, f∗E).

Moreover, the pullback functor γ∗ has a left adjoint γ! : Fun(Γ′, k) →
Fun(Γ, k) and a right-adjoint f∗ : Fun(Γ′, k) → Fun(Γ, k), known as the
left and right Kan extensions. In general, f! is right-exact but it need not be
left-exact. We will need one particular case where it is exact. Assume given
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a covariant functor V : Γ → Sets from a small category Γ to the category of
sets, and consider the category Γ′ of pairs 〈[a], v〉 of an object [a] ∈ Γ and
an element v ∈ V ([a]) (maps in Γ′ are those maps γ : [a] → [a′] which send
v ∈ V ([a]) to v′ ∈ V ([a′]). Such a category is known as a discrete cofibration
over Γ associated to V , see [Gr]. Then the Kan extension f! associated to the
forgetful functor f : Γ′ → Γ, 〈[a], v〉 7→ [a] is exact, and is easy to compute:
for any E ∈ Fun(Γ′, k) and [a] ∈ Γ, we have

(1.2) f!E([a]) =
⊕

v∈V ([a])

E(〈[a], v〉).

Moreover, for any E ∈ Fun(Γ, k), this imediately gives the projection for-
mula:

(1.3) f!f
∗E ∼= E ⊗ F!k,

where, as before, k ∈ Fun(Γ′, k) stands for the constant functor.

For applications to cyclic homology, one starts with introducing the
cyclic category Λ. This is a small category whose objects [n] are numbered
by positive integers n ≥ 1. One thinks of an object [n] as a circle S1 with
n distinct marked points; we denote the set of these points by V ([n]). The
set of maps Λ([n′], [n]) from [n′] to [n] is then the set of homotopy classes of
continuous maps f : S1 → S1 such that

• f has degree 1, sends marked points to marked points, and is non-
decreasing with respect to the natural cyclic order on S1 (that is, if
a point a ∈ S1 lies between points b and c when counting clockwise,
then the same is true for f(a), f(b) and f(c)).

In particular, we have Λ([1], [n]) = V ([n]). This topological description
of the cyclic category Λ is easy to visualize, but there are also alternative
combinatorial descriptions (e.g. [GM1, Exercize II.1.6], [L, Section 6], or
[FT, A.2], retold in [Ka, Section 1.4]). All the descriptions are equivalent.
Objects in Fun(Λ, k) are usually called cyclic vector spaces.

The cyclic category Λ is related to the more familiar simplicial category
∆opp, the opposite to the category ∆ of finite non-empty linearly ordered
sets. To understand the relation, consider the discrete cofibration Λ[1]/Λ
associated to the functor V : Λ → Sets – equivalently, Λ[1] is the category of
objects [n] in Λ eqipped with a map [1] → [n]. Then it is easy to check that
Λ[1] is equivalent to the ∆opp. From now on, we will abuse the notation and
identify Λ[1] and ∆opp. We then have a natural projection ∆opp = Λ[1] → Λ,
〈[n], v〉 7→ [n], which we denote by j : ∆opp → Λ.
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For any cyclic k-vector space E ∈ Fun(Λ, k), we have its restriction j∗E ∈
Fun(∆opp, E), a simplicial vector space. One defines the cyclic homology
HC q(E) and the Hochschild homology HH q of E by

HC q(E) def= H q(Λ, E), HH q(E) def= H q(∆opp, j∗E).

By (1.1), we have a natural map HH q(E) → HC q(E) (moreover, since
j : ∆opp → Λ is a discrete cofibration, the Kan extension j! is exact, so that
we have HH q(E) ∼= HC q(j!j

∗E), and the natural map is induced by the
adjunction map j!j

∗E → E). It has been shown by A. Connes that this
map fits into a long exact sequence

(1.4) HH q(E) −−−−→ HC q(E) u−−−−→ HC q−2(E) −−−−→ .

Here the map u is the so-called periodicity map on HC q(E): one shows that
the algebra H

q
(Λ, k) is isomorphic to the polynomial algebra k[u] in one

generator u of degree 2, and the periodicity map on homology is simply the
action of this generator. This allows to define a third homological invariant,
the periodic cyclic homology HP q(E) – to do it, one inverts the periodicity
map.

Definition 1.1. For any cyclic k-vector space E ∈ Fun(Λ, k), the periodic
cyclic homology of E is defined by

HP q(E) = lim
u←

q
HC q(E),

where lim
←

q
denotes the derived functor of the inverse limit lim

←
.

Assume now given an associative unital algebra A over k. To define its
cyclic homology, we associate to A a canonical cyclic vector space A# in the
following way. We set A#([n]) = A⊗V ([n]), the tensor product of n copies of
the vector space A numbered by marked points v ∈ V ([n]). Then for any
map f ∈ Λ([n′], [n]), we define

(1.5) A#(f) =
⊗

v∈V ([n])

mf−1(v) : A⊗V ([n′]) =
⊗

v∈V ([n])

A⊗f−1(v) → A⊗V ([n]),

where for any linearly ordered finite set S, mS : A⊗S → A is the canonical
multiplication map induced by the associative algebra structure on A (and
if S is empty, we set A⊗S = k, and mS is the embedding of the unity). This
is obviously compatible with compositions, and it is well-defined since for
any v ∈ V ([n]), its preimage f−1 ⊂ V ([m]) carries a natural linear order
induced by the orientation of the circle S1.
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Definition 1.2. For any associative unital algebra A over k, its Hochschild,
cyclic and periodic cyclic homology HH q(A), HC q(A), HP q(A) is defined
as the corresponding homology of the cyclic k-vector space A#:

HH q(A) def= HH q(A#), HC q(A) def= HC q(A#), HC q(P ) def= HP q(A#).

2 Cyclic bimodules.

Among all the homology functors introduced in Definition 1.2, Hochschild
homology is the most accesible, and this is because it has another definition:
for any associative unital algebra A over k, we have

(2.1) HH q = Tor
q
Aopp⊗A(A,A),

where Tor
q
is taken over the algebra Aopp ⊗ A (here Aopp denotes A with

the multiplication taken in the opposite direction).
This has a version with coefficients: if M is a left module over Aopp⊗A,

– in other words, an A-bimodule, – one defines Hochschild homology of A
with coefficients in M by

(2.2) HH q(A,M) = Tor
q
Aopp⊗A(M,A).

The category A-bimod of A-bimodules is a unital (non-symmetric) tensor
category, with tensor product − ⊗A − and the unit object A. Hochschild
homology is a homological functor from A-bimod to k-Vect.

To obtain a small category interpretation of HH q(A,M), one notes that
for any n, n′ ≥ 0, the A-bimodule structure on M induces a multiplication
map

A⊗n ⊗M ⊗A⊗n′ → M.

Therefore, if to any 〈[n], v〉 ∈ ∆opp we associate the k-vector space

(2.3) M∆
# ([n]) = M ⊗A⊗(V ([n])\{v}),

with M filling the place corresponding to v ∈ V ([n]), then (1.5) make perfect
sense for those maps f : [n′] → [n] which preserve the distinguished points.
Thus to any M ∈ A-bimod, we can associate a simplicial k-vector space
M∆

# ∈ Fun(∆opp, k). In the particular case M = A, we have A∆
# = j∗A#.

Lemma 2.1. For any M ∈ A-bimod, we have a canonical isomorphism

(2.4) HH q(A,M) ∼= H q(∆opp,M∆
# ).
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Proof. It is well-known that for any simplicial k-vector space E, the homol-
ogy H q(∆opp, E) can be computed by the standard complex of E (that is,
the complex with terms E([n]) and the differential d =

∑
i(−1)idi, where di

are the face maps). In particular, H0(∆opp,M∆
# ) is the cokernel of the map

d : A ⊗ M → M given by d(a ⊗ m) = am − ma. The natural projection
M → M ⊗Aopp⊗A A obviously factors through this cokernel, so that we have
a natural map

ρ0 : H0(∆opp,M∆
# ) → HH0(A,M).

Both sides of (2.4) are homological functors in M , and HH q(A,M) is a
universal homological functor (=the derived functor of HH0(A,M)); there-
fore the map ρ0 extends to a map ρ q : H q(∆opp,M∆

# ) → HH q(A,M). To
prove that ρ q is an isomorphism for any M , it suffices to prove it when M
is free over Aopp ⊗ A, or in fact, when M = Aopp ⊗ A. Then on one hand,
HH0(A,M) = A, and HHi(A,M) = 0 for i ≥ 1. And on the other hand,
the standard complex associated to the simplicial k-vector space (Aopp⊗A)∆#
is just the usual bar resolution of the diagonal A-bimodule A. �

It is more or less obvious that for an arbitrary M ∈ A-bimod, M∆
# does

not extend to a cyclic vector space – in order to be able to define HC q(A,M),
we have to equip the bimodule M with some additional structure. To do
this, we want to use the tensor structure on A-bimod. The slogan is the
following:

• To find a suitable category of coefficients for cyclic homology, we have
to repeat the definition of the cyclic vector space A# ∈ Fun(Λ, k),
but replace the associative algebra A in this definition with the tensor
category A-bimod.

Let us explain what this means.
First, consider an arbitrary associative unital monoidal category C with

unit object I (at this point, not necessarily abelian). For any integer n, we
have the Cartesian product Cn = C × C × · · · × C. Moreover, the product on
C induces a product functor

m : Cn → C,

where if n = 0, we let Cn = pt, the category with one object and one
morphism, and let m : pt → C be the embedding of the unit object. More
generally, for any finite linearly ordered set S with n elements, we have a
product functor mS : CS → C, where CS = Cn with multiples in the product
labeled by elements of S. Then for any [n], [n′] ∈ Λ, and any f : [n′] → [n],
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we can define a functor f! : CV ([n′]) → CV ([n]) by the same formula as in
(1.5):

(2.5) f! =
∏

v∈V ([n])

mf−1(v) : CV ([n′]) =
∏

v∈V ([n])

Cf−1(v) → CV ([n]).

The natural associativity isomorphism for the product on C induces natural
isomorphisms (f◦f ′)! ∼= f!◦f ′! , and one checks easily that they satisfy natural
compatibility conditions. All in all, setting [n] 7→ CV ([n]), f 7→ f! defines a
weak functor (a.k.a. lax functor, a.k.a. 2-functor, a.k.a. pseudofunctor in the
original terminology of Grothendieck) from Λ to the category of categories
– informally, we have a “cyclic category”.

To work with weak functors, it is convenient to follow Grothendieck’s
approach in [Gr]. Namely, instead of considering a weak functor directly, we
define a category C# in the following way: its objects are pairs 〈[n],Mn〉 of
an object [n] of Λ and an object Mn ∈ Cn, and morphisms from 〈[n′],Mn′〉
to 〈[n],Mn〉 are pairs 〈f, ιf 〉 of a map f : [n′] → [n] and a bimodule map ιf :
f!(Mn′) → Mn. A map 〈f, ιf 〉 is called cocartesian if ιf is an isomorphism.
For the details of this construction, – in particular, for the definition of the
composition of morphisms, – we refer the reader to [Gr].

The category C# comes equipped with a natural forgetful projection
τ : C# → Λ, and this projection is a cofibration in the sense of [Gr]. A
section of this projection is a functor σ : Λ → C# such that τ ◦ σ = id (since
Λ is small, there is no harm in requiring that two functors from Λ to itself
are equal, not just isomorphic). These sections obviously form a category
which we denote by Sec(C#). Explicitly, an object M# ∈ Sec(C#) is given
by the following:

(i) a collection of objects Mn = M#([n]) ∈ Cn, and

(ii) a collection of transition maps ιf : f!Mn′ → Mn for any n, n′, and
f ∈ Λ([n′], [n]),

subject to natural compatibility conditions.
A section σ : Λ → C# is called cocartesian if σ(f) is a cocartesian map

for any [n], [n′] ∈ Λ and f : [n′] → [n] – equivalently, a section is cacertesian
if all the transition maps ιf are isomorphisms. Cocartesian sections form a
full subcategory Seccart(C#)

Lemma 2.2. The category Seccart(C#) of cocartesian objects M# ∈ Sec(C#)
is equivalent to the category of the following data:
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(i) an object M = M#([1]) ∈ C, and

(ii) an isomorphism τ : I ×M → M × I in the category C2 = C × C,

such that, if we denote by τij the endomorphism of I × I ×M ∈ C3 obtained
by applying τ to the i-th and j-th multiple, we have τ31 ◦ τ12 ◦ τ23 = id.

Proof. Straghtforward and left to the reader. �

Thus the natural forgetfull functor Seccart(C#) → C, M# 7→ M#([1])
is faithful: an object in Seccart(C#) is given by M#([1]) plus some extra
structure on it, and all the higher components M#([n]), n ≥ 2, together
with the transition maps ιf , can be recovered from M#([1]) and this extra
structure.

Return now to the abelian situation: we are given an associative unital
algebra A over a field k, and our monoidal category is C = A-bimod, with
the natural tensor product. Then for every n, the product A-bimodn has a
fully faithful embedding A-bimodn → A⊗n-bimod, M1 × M2 × · · · × Mn 7→
M1 � M2 � · · ·� Mn, and one checks easily that the multiplication functors
mS actually extend to right-exact functors

mS : A⊗S-bimod → A-bimod;

for instance, one can define mS as

mS(M) = M/{av′m−mav | v ∈ S, a ∈ A,m ∈ M},

where av = 1⊗· · ·⊗a⊗· · ·⊗1 ∈ A⊗S with a at the v-th position, and v′ ∈ S
is the next element after v. We can therefore define the cofibered category
A-bimod# /Λ with fiber A⊗V ([n])-bimod over [n] ∈ Λ, and transition functors
f! as in (2.5). We also have the category of sections Sec(A-bimod#) and the
subcategory of cocartesian sections Seccart(A-bimod#) ⊂ Sec(A-bimod#).

Lemma 2.3. The category Sec(A-bimod#) is a k-linear abelian category.

Sketch of a proof. This is a general fact about cofibered categories; the
proof is straightforward. The kernel Ker φ and cokernel Coker φ of a map φ :
M# → M ′

# between objects M#,M ′
# ∈ Sec(A-bimod#) are taken pointwise:

for every n, we have an exact sequence

0 → (Ker φ)([n]) → M#([n])
φ→ M ′

#([n]) → (Coker φ)([n]) → 0.

The transtition maps ιf for Ker φ are obtained by restriction from those for
M#; for Coker φ, one uses the fact that the functors f! are right-exact. �
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Definition 2.4. A cyclic bimodule M over a unital associative algebra A is a
cocartesian section M# ∈ Seccart(A-bimod#). A complex of cyclic bimodules
M q over A is an object in the derived category D(Sec(A-bimod#)).

Complexes of cyclic bimodules obviously form a full triangulated sub-
category in D(Sec(A-bimod#)); consistent notation for this category would
be Dcart(Sec(A-bimod#)), but for simplicity we will denote it DΛ(A-bimod).
We have to define complexes separately for the following reasons:

(i) The category Seccart(A-bimod#) ⊂ Sec(A-bimod#) need not be abelian
– since the transition functors f! are only right-exact, the condition of
being cocartesian need not be preserved when passing to kernels.

(ii) Even if Seccart(A-bimod#) is abelian, its derived category might be
much smaller than DΛ(A-bimod).

Example 2.5. An extreme example of (ii) is the case A = k: in this case
Sec(A-bimod#) is just the category of cyclic vector spaces, Fun(Λ, k), and
E ∈ Fun(Λ, k) is cocartesian if and only if E(f) is invertible for any map
f : [n′] → [n]. One deduces easily that E must be a constant functor, so
that Seccart(k-bimod#) = k-Vect. Then DΛ(k-bimod) is the full subcategory
Dconst(Λ, k) ⊂ D(Λ, k) of complexes whose homology is constant. If we were
to consider ∆opp instead of Λ, we would have Dconst(∆opp, k) ∼= D(k-Vect)
– since H

q
(∆opp, k) = k, the embedding D(k-Vect) → D(∆opp, k) is fully

faithful, and Dconst(∆opp, k) is its essential image. However, H
q
(Λ, k) is

k[u], not k. Therefore there are maps between constant functors in D(Λ, k)
which do not come from maps in D(k-Vect), and the cones of these maps
give objects in Dconst(Λ, k) which do not come from D(k-Vect).

This phenomenon is quite common in homological algebra – examples
are, for instance, the triangulated category of complexes of étale sheaves with
constructible homology, the category of complex of D-modules with holo-
nomic homology, or the so-called “equivariant derived category” of sheaves
on a topological space X acted upon by a topological group G (which is
not in fact the derived category of anything useful). The upshot is that it
is the triangulated category DΛ(A-bimod) which should be treated as the
basic object, wherever categories are discussed.

Remark 2.6. We note one interesting property of the categoryDconst(Λ, k).
Fix an integer n ≥ 1, and consider the full subcategory Λ≤n ⊂ Λ of objects
[n′] ∈ Λ with n′ ≤ n. Then one can show that H

q
(Λ≤n, k) = k[u]/un, so
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that we have a natural exact triangle

(2.6) H q(Λ≤n, E
q
) −−−−→ HC q(E q

) un

−−−−→ HC q+2n(E) −−−−→ ,

for every E
q ∈ Dconst(Λ, k). We note that for any E

q ∈ D(Λ, k), (1.4)
extends to a spectral sequence

(2.7) HH q(E q
)[u−1] ⇒ HC q(E),

where the expression on the left-hand side reads as “polynomials in one
formal variable u−1 of homological degree 2 with coefficients in HH q(E q

)”.
Then (2.6) shows that for E

q ∈ Dconst(Λ, k), the first n differentials in (2.7)
depend only on the restriction of E

q
to Λ≤(n+1) ⊂ Λ. This is useful because

in practice, one is often interested only in the first differential in the spectral
sequence.

As in Lemma 2.2, a cyclic A-bimodule M# essentially consists of an A-
bimodule M = M#([1]) equipped with an extra structure. Explicitly, this is
structure is a map τ : A⊗k M → M ⊗k A which respects the A⊗2-bimodule
structure on both sides, and satisfies the condition τ31 ◦ τ12 ◦ τ23 = id, as in
Lemma 2.2.

Another way to view this structure is the following. One checks easily
that for any cyclic A-bimodule M#, the restriction j∗M# ∈ Fun(∆opp, k)
is canonically isomorphic to the simplicial k-vector space M∆

# associated to
the underlying A-bimodule M as in (2.3). By adjunction, we have a natural
map

τ# : j!M
∆
# → M#.

Then j!M
∆
# in this formula only depends on M ∈ A-bimod, and all the

structure maps which turn M into the cyclic bimodule M# are collected in
the map τ#.

We can now define cyclic homology with coefficients. The definition is
rather tautological. We note that for any cyclic A-bimodule M# – or in fact,
for any M# ∈ Sec(A-bimod#) – we can treat M# as a cyclic vector space by
forgetting the bimodule structure on its components Mn.

Definition 2.7. The cyclic homology HC q(A,M#) with coefficients in a
cyclic A-bimodule M is equal to H q(Λ,M#).

Of course, (1.4), being valid for any cyclic k-vector space, also applies to
HC q(A,M#), so that we automatically get the whole package – the Connes’
exact sequence, the periodicity endomorphism, and the periodic cyclic ho-
mology HP q(A,M). By Lemma 2.1, HH q(M#) coincides with HH q(A,M)
as defined in (2.2).
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3 Gauss-Manin connection.

To illustate the usefulness of the notion of a cyclic bimodule, let us study
the behavior of cyclic homology under deformations.

There are two types of deformation theory objects that one can study for
an associative algebra A. The first is the notion of a square-zero extension
of the algebra A by a A-bimodule M . This is an associative algebra Ã which
fits into a short exact sequence

0 −−−−→ M
i−−−−→ Ã

p−−−−→ A −−−−→ 0,

where p is an algebra map, and i is an Ã-bimodule map, under the Ã-
bimodule structure on M induced from the given A-bimodule structure by
means of the map p. In other words, the multiplication on the ideal Ker p ⊂
Ã is trivial, so that the Ã-bimodule structure on Ker p is induced by an A-
bimodule structure, and i identifies the A-bimodule Ker p with M . Square-
zero extensions are classfied up to an isomorphism by elements in the second
Hochschild cohomology group HH2(A,M), defined as

HH
q
(A,M) = Ext

q
Aopp⊗A(A,M).

In this setting, we can consider the cyclic homology of the algebra Ã and
compare with the cyclic homology of A; Th. Goodwillie’s theorem [Go]
claims that if the base field k has characteristic 0, the the natural map

HP q(Ã) → HP q(A)

is an isomorphism, and there is also some information on the behaviour of
HC q(A).

A second type of deformation theory data includes a commutative k-
algebra R with a maximal ideal m ⊂ R. A deformation AR of the algebra
A over R is a flat associative unital algebra AR over R equipped with an
isomorphism AR/m ∼= A. In this case, one can form the relative cyclic R-
module AR# by taking the tensor products over R; thus we have relative
homology HH q(AR/R), HC q(AR/R), HP q(AR/R). The fundamental fact
discovered by E. Getzler [Ge] is that we have an analog of the Gauss-Manin
connection: if Spec R is smooth, the R-module HPi(AR/R) carries a canon-
ical flat connection for every i.

Consider now the case when R is not smooth but, on the contrary, local
Artin. Moreover, assume that m2 = 0, so that R is itself a (commutative)
square-zero extension of k. Then a deformation AR of A over R is also a
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square-zero extension of A, by the bimodule A ⊗ m (m here is taken as a
k-vector space). But this square-zero extension is special – for a general
square-zero extension Ã of A by some M ∈ A-bimod, there does not exist
any analog of the relative cyclic R-module AR# ∈ Fun(Λ, R).

We observe the following: the data needed to define such an analog is
precisely a cyclic bimodule structure on the bimodule M .

Namely, assume given a square-zero extension Ã of the algebra A by some
A-bimodule M , and consider the cyclic k-vector space Ã# ∈ Fun(Λ, k). Let
us equip Ã with a descreasing two-step filtration F

q
by setting F 1Ã = M .

Then this induces a decreasing filtration F
q
on tensor powers Ã⊗n. Since Ã

is square-zero, F
q
is compatible with the multiplication maps; therefore we

also have a filtration F
q
on Ã#. Consider the quotient

A# = Ã#/F 2Ã#.

One checks easily that gr0F Ã#
∼= A# and gr1F Ã#

∼= j!M
∆
# in a canonical

way, so that A# fits into a canonical short exact sequence

(3.1) 0 −−−−→ j!M
∆
# −−−−→ A# −−−−→ A# −−−−→ 0

of cyclic k-vector spaces.
Now assume in addition that M is equipped with a structure of a cyclic

A-bimodule M#, so that M∆
#

∼= j∗M#, and we have the structure map
τ# : j!M

∆
# → M#. Then we can compose the extension (3.1) with the map

τ#, to obtain a commutative diagram

(3.2)

0 −−−−→ j!M
∆
# −−−−→ A# −−−−→ A# −−−−→ 0

τ#

y y ∥∥∥
0 −−−−→ M# −−−−→ Â# −−−−→ A# −−−−→ 0

of short exact sequences in Fun(Λ, k), with cartesian left square. It is easy
to check that when Ã = AR for some square-zero R, so that M = A ⊗ m,
and we take the cyclic A-bimodule structure on M induced by the tauto-
logical structure on A, then Â# coincides precisely with the relative cyclic
object AR# (which we consider as a k-vector space, forgetting the R-module
structure).

We believe that this is the proper generality for the Getzler connection;
in this setting, the main result reads as follows.
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Proposition 3.1. Assume given a square-zero extension Ã of an associative
algebra A by an A-bimodule M , and assume that M is equipped with a
structure of a cyclic A-bimodule. Then the long exact sequence

HP q(A,M) −−−−→ HP q(Â#) −−−−→ HP q(A) −−−−→

of periodic cyclic homology induced by the second row in (3.2) admits a
canonical splitting HP q(A) → HP q(Â#).

Proof. By definition, we have two natural maps

(3.3)
HP q(A#) → HP q(A#) = HP q(A),

HP q(A#) → HP q(Â#),

and the cone of the first map is isomorphic to HP q(j!M
∆
# ). Since j! is

exact, we have HC q(j!M
∆
# ) ∼= HH q(M#), and the periodicity map u :

HC q(j!M
∆
# ) → HC q−2(j!M

∆
# ) is equal to 0, so that HP q(j!M

∆
# ) = 0. Thus

the first map in (3.3) is an isomorphism, and the second map is then the
required splitting. �

Corollary 3.2. Assume given a commutative k-algebra R with a maximal
ideal m ⊂ R, and a deformation AR of the algebra A over R. Then if Spec R
is smooth, the R-modules HP q(AR/R) carry a natural connection.

Sketch of a proof. Consider the R ⊗ R-algebras AR ⊗ R and R ⊗ AR, and
their restrictions to the first infinitesemal neighborhood of the diagonal in
Spec(R⊗R) = Spec R×Spec R. Then Proposition 3.1, suitably generalized,
shows that HP q(−) of these two restrictions are canonically isomorphic. It
is well-known that giving such an isomorphism is equivalent to giving a
connection on HP q(AR/R). �

We note that we do not claim that the connection is flat. It certainly
is, at least in characteristic 0; but our present method does not allow one
to go beyond square-zero extensions. Thus we cannot analyse the second
infinitesemal neighborhood of the diagonal in Spec(R ⊗ R), and we cannot
prove flatness.

Unfortunately, at present, we do not understand what is the proper
cyclic bimodule context for higher-level infinitesemal extensions. Of course,
if one is only interested in an R-deformation Ã = AR over an Artin local
base R, not in its cyclic bimodule generalizations, one can use Goodwillie’s
Theorem: using the full cyclic object Ã# instead of its quotient A# in
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Proposition 3.1 immediately gives a splitting HP q(A) → HP q(AR/R) of the
augmentation map HP q(AR/R) → HP q(A), and this extends by R-linearity
to an isomorphism HP q(AR/R) ∼= HP q(A) ⊗ R. However, this is not quite
satisfactory from the conceptual point of view, and it does not work in
positive characteristic (where Goodwillie’s Theorem is simply not true). If
char k 6= 2, the latter can be cured by using Ã#/F 3Ã#, but the former
remains. We plan to return to this elsewhere.

4 Categorical approach.

Let us now try to define cyclic homology in a more general setting – we will
attempt to replace A-bimod with an arbitrary associative unital k-linear
tensor category C with a unit object I ∈ C. We do not assume that C is
symmetric in any way. However, we will assume that the tensor product
−⊗− is right-exact in each variable, and we will need to impose additional
technical assumptions later on.

The first thing to do is to try to define Hochschild homology; so, let
us look more closely at (2.1). The formula in the right-hand side looks
symmetric, but this is an optical illusion – the two copies of A are completely
different objects: one is a left module over Aopp⊗A, and the other is a right
module (A just happens to have both structures at the same time). It is
better to separate them and introduce the functor

tr : A-bimod → k-Vect

by tr(M) = M ⊗Aopp⊗A A – or, equivalently, by

(4.1) tr(M) = M/{am−ma | a ∈ A,m ∈ M}.

Then tr is a right-exact functor, and we have HH q(A,M) = L
q
tr(M).

We want to emphasize that the functor tr can not be recovered from the
tensor structure on A-bimod – this really is an extra piece of data. For a
general tensor category C, it does not exist a priori; we have to impose it as
an additional structure.

Let us axiomatize the situation. First, forget for the moment about the
k-linear and abelian structure on C – let us treat it simply as a monoidal
category. Assume given some other category B and a functor T : C → B.

Definition 4.1. The functor T : C → B is a trace functor if it is extended
to a functor C# → B which sends any cocartesian map f : M → M ′ in C#

to an invertible map.
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Another way to say the same thing is the following: the categories
Fun(Cn,B) of functors from Cn to B form a fibered category over Λ, and
a trace functor is a cartesian section of this fibration. Explicitly, a trace
functor is defined by T : C → B and a collection of isomorphisms

T (M ⊗M ′) → T (M ′ ⊗M)

for any M,M ′ ∈ C which are functorial in M and M ′ and satisfy some
compatibility conditions analogous to those in Lemma 2.2; we leave it to
the reader to write down these conditions precisely. Thus T has a trace-like
property with respect to the product in C, and this motivates our terminol-
ogy.

Recall now that C is a k-linear abelian category. To define Hochschild
homology, we have to assume that it is equipped with a right-exact trace
functor tr : C → k-Vect; then for any M ∈ C, we set

(4.2) HH q(M) = L
q
tr(M).

Lemma 4.2. The functor tr : A-bimod → k-Vect canonically extends to a
right-exact trace functor in the sense of Definition 4.1.

Proof. For any object 〈[n],Mn〉 ∈ A-bimod#, [n] ∈ Λ, Mn ∈ A⊗n-bimod, let

tr(〈[n],Mn〉) = Mn/{av′m−mav | v ∈ V ([n]),m ∈ Mn, a ∈ A},

where av = 1 ⊗ 1 ⊗ · · · ⊗ a ⊗ · · · ⊗ 1 ∈ A⊗V ([n]) has a in the multiple
corresponding to v ∈ V ([n]), and v′ ∈ V ([n]) is the next marked point
after v counting clockwise. The compatibility with maps in the category
A-bimod# is obvious. �

We note that here, in the case C = A-bimod, the category A-bimod#

is actually larger than what we would have had purely from the monoidal
structure on C: Mn is allowed to be an arbitrary A⊗n-bimodule, not a
collection of n A-bimodules. To do the same for general k-linear C, we need
to replace A⊗n-bimod with some version of the tensor product C⊗n. Here we
have a difficulty: for various technical reasons, it is not clear how to define
tensors products for sufficiently general abelian categories.

One way around it is the following. For any (small) k-linear abelian
category B, a k-linear functor Bopp → k-Vect is left-exact if and only if it
is a sheaf for for the canonical Grothendieck topology on B ([BD, 5, §10]);
the category Shv(B) of such functors is abelian and k-linear, and B itself
is naturally embedded into Shv(B) by Yoneda. The embedding is a fully
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faithfull exact functor. Every functor in Shv(B) is in fact a direct limit
of representable functors, so that Shv(B) is an inductive completion of the
abelian category B. Now, if are given two (small) k-linear abelian categories
B1, B2, then their product B1 × B2 is no longer abelian. However, we still
have the abelian category Shv(B1 × B2) of bilinear functors Bopp

1 × Bopp
2 →

k-Vect which are left-exact in each variable, and the same goes for polylinear
functors.

Moreover, for any right-exact functor F : B1 → B2 between small abelian
categories, we have the restriction functor F ∗ : Shv(B2) → Shv(B1), which
is left-exact, and its left-adjoint F! : Shv(B1) → Shv(B2), which is right-
exact. The functor F! is an extension of the functor F : on Yoneda images
Bi ⊂ Shv(Bi), we have F! = F . And, again, the same works for polylinear
functors.

In particular, given our k-linear abelian tensor category C, we can form
the category Shv(C)# of pairs 〈E, [n]〉, [n] ∈ Λ, E ∈ Shv(Cn), with a map
from 〈E′, [n′]〉 to 〈E, [n]〉 given by a pair of a map f : [n′] → [n] and either
a map E′ → (f!)∗E, or map (f!)!E′ → E – this is equivalent by adjunction.
Then Shv(C)# is bifibered category over Λ in the sense of [Gr].

The category of sections Λ → Shv(C)# of this bifibration can also be
described as the full subcategory Shv(C#) ⊂ Fun(Copp

# , k) spanned by those
functors E# : Copp

# → k-Vect whose restriction to (Copp)n ⊂ Copp
# is a sheaf –

that is, an object in Shv(Cn) ⊂ Fun((Copp)n, k). Since the transition functors
(f!)! are right-exact, Shv(C#) is an abelian category (this is proved in exactly
the same way as Lemma 2.3).

We denote by Shvcart(C#) ⊂ Shv(C#) the full subcategory of sections E :
Λ → Shv(C)# which are cocartesian, and moreover, are such that E([1]) ∈
Shv(C) actually lies in the Yoneda image C ⊂ Shv(C). We also denote
by DΛ(C) ⊂ D(Shv(C#)) the full triangulated subcategory of complexes
E

q
# ∈ D(Shv(C#)) with homology in Shvcart(C#).

If C is the category of A-bimodules for some algebra A – or better yet, of
A-bimodules of cardinality not more than that of A× N, so that C is small
– then Shv(C) is equivalent to A-bimod (one shows easily that every sheaf
E ∈ Shv(C) is completely determined by its value at Aopp ⊗A ∈ C). In this
case, DΛ(C) is our old category DΛ(A-bimod).

Now, we assume that C is equipped with a right-exact trace functor
tr : C → k-Vect, we would like to define cyclic homology HC q(M q) for any
M q ∈ DΛ(C), and we immediately notice a problem: for a general C, we do
not have a forgetful functor to vector spaces. However, it turns out that the
forgetful functor is not needed for the definition – it can be replaced with
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the trace functor tr.
We proceed as follows. By definition, tr is extended to a functor C# →

k-Vect; we extend it canonically to a functor Shv(C)# → k-Vect, and con-
sider the product

tr×τ : Shv(C)# → k-Vect×Λ,

where τ : Shv(C)# → Λ is the projection. This is a functor compatible with
the projections to Λ, and therefore, it induces a functor of the categories
of sections. The category of sections of the projection k-Vect×Λ → Λ is
tautologically the same as Fun(Λ, k-Vect), so that we have a functor

tr# : Shv(C#) → Fun(Λ, k).

One checks easily that this functor is right-exact.

Definition 4.3. For any M# ∈ Sec(C#), its cyclic homology HC q(M#) is
defined by

HC q(M#) def= HC q(L q
tr#(M#)) = H q(Λ, L

q
tr#(M#)).

Definition 4.4. The pair 〈C, tr〉 is called homologically clean if for any n,
the category Shv(Cn) has enough objects E such that

(i) E is acyclic both for functors (f!)! : Shv(Cn) → Shv(Cn′), for any
f : [n] → [n′], and for the trace functor tr : Shv(Cn) → k-Vect, and

(ii) for any f : [n] → [n′], (f!)!E ∈ Shv(Cn′) is acyclic for tr : Shv(Cn′) →
k-Vect.

Example 4.5. Assume that the category C has enough projectives, and
moreover, P1⊗P2 is projective for any projective P1, P2 ∈ C (this is satisfied,
for instance, for C = A-bimod). Then the pair 〈C, tr〉 is homologically clean,
for any trace functor tr. Indeed, Shv(Cn) then also has enough projectives,
say sums of objects

(4.3) P = P1 � P2 � · · ·� Pn ∈ Shv(Cn)

for projective P1, . . . , Pn ∈ C ⊂ Shv(C), and these projectives automatically
satisfy the condition (i). To check (ii), one decomposes f : [n] → [n′] into
a surjection p : [n] → [n′′] and an injection i : [n′′] → [n′]. Since the tensor
product of projective objects is projective, (p!)!(P ) ∈ Shv(Cn′′) is also an
object of the type (4.3), so we may as well assume that f is injective. Then
one can find a left-inverse map f ′ : [n′] → [n], f ′ ◦f = id; since P ′ = (f!)!(P )
is obviously acyclic for (f ′! )!, and (f ′! )!(P

′) = ((f ′ ◦ f)!)!(P ) = P is acyclic
for tr, P ′ itself is acyclic for tr = tr ◦(f ′! )!.
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Lemma 4.6. Assume that 〈C, tr〉 is homologically clean. Then for any ob-
ject [n] ∈ Λ and any M# ∈ Shv(C#), we have

(4.4) L
q
tr#(M#)([n]) ∼= L

q
tr(M#([n])).

For any M
q

# ∈ DΛ(C), we have L
q
tr#(M#) ∈ Dconst(Λ, k) ⊂ D(Λ, k).

Proof. The natural restriction functor Shv(C#) → Shv(Cn), M# 7→ M#([m])
has a left-adjoint functor In! : Shv(Cn) → Shv(C#); explicitly, it is given by

(4.5) In!(E)([n′]) =
⊕

f :[n]→[n′]

(f!)!(E).

Let us say that an object E ∈ Shv(Cn) is admissible if it satisfies the condi-
tions (i), (ii) of Definition 4.4. By assumption, Shv(Cn) has enough admis-
sible objects for any n. Then Shv(C#) has enough objects of the form In!E,
[n] ∈ Λ, E ∈ Shv(Cn) admissible, and to prove the first claim, it suffices
to consider M# = In!E of this form. In degree 0, (4.4) is the definition of
the functor tr#, and the higher degree terms in the right-hand side vanish
by Definition 4.4 (ii). Therefore it suffices to prove that M# = In!E is
acyclic for the functor tr#. This is obvious: applying tr# to any short exact
sequence

0 −−−−→ M ′
# −−−−→ M ′′

# −−−−→ M# −−−−→ 0

in Shv(C#), we see that, since M#([n′]) is acyclic for any [n′] ∈ Λ, the
sequence

0 −−−−→ tr M ′
#([n′]) −−−−→ tr M ′′

#([n′]) −−−−→ tr M#([n′]) −−−−→ 0

is exact; this means that

0 −−−−→ tr M ′
# −−−−→ tr M ′′

# −−−−→ tr M# −−−−→ 0

is an exact sequence in Fun(Λ, k), and this means that M# is indeed acyclic
for tr#.

With the first claim proved, the second amounts to showing that the
natural map

L
q
tr ◦L

q
(f!)!(E) → L

q
tr(E)

is a quasiismorphism for any f : [n] → [n′] and any E ∈ Shv(Cn). It suffices
to prove it for admissible M ; then the higher derived functors vanish, and
the isomorphism tr ◦(f!)! ∼= tr is Definition 4.1. �
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Lemma 4.7. In the assumptions of Lemma 4.6, for any complex M
q

# ∈
DΛ(C) with the first component M

q
= M

q
#([1]) we have

HH q(M q
) ∼= HH q(L q

tr#(M
q

#)).

Proof. By Lemma 4.6, the left-hand side, HH q(M q
), is canonically iso-

morphic to the complex L
q
tr#(M

q
#) ∈ D(Λ, k) evaluated at [1] ∈ Λ, and

moreover, L
q
tr#(M

q
#) lies in the subcategory Dconst(Λ, k) ⊂ D(Λ, k). It

remains to apply the general fact: for any E
q ∈ Dconst(Λ, k), we have a

natural isomorphism HH q(E q
) ∼= E

q
([1]). Indeed, by definition we have

HH q(E q
) = H q(∆opp, j∗E

q
),

and j∗E
q
lies in the categoryDconst(∆opp, k) which is equivalent toD(k-Vect)

(see Example 2.5, and also Remark 2.6: the isomorphism we constructed
here is a special case of (2.6) for n = 1). �

The Lemma shows that if the pair 〈C, tr〉 is homologically clean, Defini-
tion 4.3 is consistent with (4.2), and we get the whole periodicity package
of (1.4) – the periodicity map u, the Connes’ exact sequence

HH q(M q
) −−−−→ HC q(M q

) u−−−−→ HC q−2(M
q
) −−−−→ ,

and the periodic cyclic homology HP q(M q
).

In general, objects in DΛ(C) may be hard to construct, but we always
have at least one – the identity section I# : Λ → Shv(C)#, given by

I#([n]) = I�n ∈ C⊗n,

where I ∈ C is the unit object. Thus we can define cyclic homology of a
tensor category equipped with a trace functor.

Definition 4.8. For any k-linear abelian unital tensor category C equipped
with a trace functor tr : C → k-Vect, its Hochschild and cyclic homology is
given by

HH q(C, tr) def= HH q(I), HC q(C, tr) def= HC q(I#),

where I ∈ C is the unit object, and I# ∈ DΛ(C) is the identity section.

We now have to check that in the case C = A-bimod, Definition 4.3 is
compatible with our earlier Definition 2.7 – in other words, that the cyclic
homology computed by means of the forgetfull functor is the same as the
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cyclic homology computed by means of the trace. This is not at all trivial.
Indeed, if for instance M# ∈ Shv(C#) is cocartesian, then, while L

q
tr# M#

lies in the subcategory Dconst(Λ, k) ⊂ D(Λ, k), the same is certainly not
true for the object M# ∈ Fun(Λ, k) obtained by forgetting the bimodule
structure on Mn.

Thus these two objects are different. However, they do become equal
after taking cyclic (or Hochschild, or periodic cyclic) homology. Namely, for
any M# ∈ Sec(A-bimod#) we have a natural map

(4.6) M# → L
q
tr# M#

in the derived category D(Λ, k), and we have the following result.

Proposition 4.9. For every M# ∈ Sec(A-bimod#), the natural map (4.6)
induces isomorphisms

HH q(M#) ∼= HH q(L q
tr M#),

HC q(M#) ∼= HC q(L q
tr M#),

HP q(M#) ∼= HP q(L q
tr M#).

Proof. By (1.4), it suffices to consider HC q(−); as in the proof of Lemma 4.6,
it suffices to consider M# = In!E given in (4.5), with E being the free
bimodule

E = (Aopp ⊗A)⊗n ∈ Shv(Cn) = A⊗n-bimod

for some fixed n. Explicitly, we have

(4.7) In!E([n′]) =
⊕

f :[n]→[n′]

⊗
v′∈V ([n′])

Aopp ⊗A⊗f−1(v′)

for any [n′] ∈ Λ. Then Lp tr# In!E = 0 for p ≥ 1, and one checks easily that

tr# In!E = in! tr E = in!A
⊗n ∈ Fun(Λ, k),

where in : pt → Λ is the embedding of the object [n] ∈ Λ (pt is the category
with one object and one morphism). Therefore

HC0(L
q
tr# In!E) = H q(Λ, in!A

⊗n) = A⊗n,

and HCp(L
q
tr# in!E) = 0 for p ≥ 1. We have to compare it with HC q(in!E).
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To do this, consider the category Λ[n] of objects [n′] ∈ Λ equipped with
a map [n] → [n′], and let jn : Λ[n] → Λ be the forgetful functor. Then jn is
obviously a discrete cofibration. Comparing (1.2) and (4.7), we see that

In!E = jn!E
[n]
#

for some E
[n]
# ∈ Fun(Λ[n]). Moreover, fix once and for all a map [1] → [n].

Then we see that the discrete cofibration jn : Λ[n] → Λ factors through the
discrete cofibration j : Λ[1] = ∆opp → Λ by means of a discrete cobifbration
γn : Λ[n] → Λ[1], and we observe that

E
[n]
# ([n′]) = (Aopp)⊗n′ ⊗A⊗n

only depends on γn([n′]) ∈ ∆opp. More precisely, we have E
[n]
# = γ∗nE∆

n ,
where E∆

n ∈ Fun(∆opp, k) is as in (2.3), and En is the free A-bimodule

En = Aopp ⊗A⊗(n−1) ⊗A.

The conclusion: we have

HC q(In!E) = H q(Λ[n], E
[n]
# ) = H q(∆opp, γn!γ

∗
nE∆

n ) = H q(∆opp, E∆
n ⊗ γn!k),

where we have used the projection formula (1.3) in the right-hand side. The
homology of the category ∆opp can be computed by the standard complex;
then by the Künneth formula, the right-hand side is isomorphic to

H q(∆opp, E∆
n )⊗H q(∆opp, γn!k) ∼= H q(∆opp, E∆

n )⊗H q(Λ[n], k).

By Lemma 2.1,

H q(∆opp, E∆
n ) ∼= HH q(A,En) ∼= A⊗n.

Since the category Λ[n] has an initial object [n] ∈ Λ[n], we have k = in!k, so
that the second multiple H q(Λ[n], k) is just k in degree 0. �

The essential point of Proposition 4.9 is the following: the cyclic object
A# associated to an algebra A inconveniently contains two things at the
same time – the cyclic structure, which seems to be essential to the problem,
and the bar resolution, which is needed only to compute the Hochschild
homology HH q(A). Replacing A# with the cyclic complex L

q
tr# A# ∈

D(Λ, k) disentagles these two. We note that while one still has to prove that
this does not change the final answer, the construction itself looks pretty
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straightforward – if one wants to remove the non-essential bar resolution
from the definition of the cyclic homology, Definition 4.8 seems to be the
obvious thing to try. However, it was actually arrived at by a sort of a
reverse engeneering process. To finish the section, perhaps it would be
useful to show the reader the first stage of this process.

Assume given an associative algebra A, and fix a projective resolution
P q of the diagonal A-module A. Then HH q(A,M) can be computed by the
complex

tr(P q) = P q ⊗Aopp⊗A A.

How can one see the cyclic homology in terms of this complex? Or even
simpler – what is the first differential in the spectral sequence (2.7), the
Connes’ differential B : HH q(A) → HH q+1(A)?

There is the following recepy which gives the answer. Let τ : P q → A be
the augmentation map. Consider the tensor product P q ⊗A P q. This is also
a projective resotuion of A, and we actually have two natural quasiisomor-
phisms

τ1, τ2 : P q ⊗A P q → P q,
given by τ1 = τ ⊗ id, τ2 = id⊗τ . These quasiisomorphisms are different.
However, since both are maps between projective resolutions of the same ob-
ject, there should be a chain homotopy between them. Fix such a homotopy
ι : P q ⊗A P q → P q+1.

Now we apply the trace functor tr, and obtain two maps τ1, τ2 : tr(P q ⊗
P q) → tr(P q), and a homotopy ι : tr(P q ⊗ P q) → tr(P q+1) between them.

However, by the trace property of τ , we also have an involution σ :
tr(P q⊗AP q) which interchanges the two multiples. This involution obviously
also interchages τ1 and τ2, but there is no reason why it should fix the
homotopy ι – in fact, it sends ι to a second homotopy ι′ : tr(P q ⊗A P q) →
tr(P q+1) between τ1 and τ2.

The difference ι′ − ι is then a well-defined map of complexes

(4.8) ι′ − ι : tr(P q ⊗A P q) → tr(P q+1).

On the level of homology, both sides are HH q(A); the map ι′−ι then induces
exactly the Connes’ differential B : HH q(A) → HH q+1(A).

To justify this recepy, we use Proposition 4.9 and identify HC q(A) with
HC q(L q

tr#(A#)) rather than HC q(A#). Then L
q
tr#(A#) is an object in

Dconst(Λ, k). Therefore, as noted in Remark 2.6, the Connes’ differential
B only depends on the restriction of L

q
tr#(A#) to Λ≤2 ⊂ Λ. In other
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words, we do not need to compute the full L
q
tr#(A#) and to construct

a full resolution P#q of the cyclic A-bimodule A#; it suffices to construct
P iq = P#q ([i]) for i = 1, 2 (and then apply the functor tr).

With the choices made above, we set P 1q = P q, and we let P 2q be the cone
of the map

P q � P q (τ�id)⊕(id �τ)−−−−−−−−−→ (A � P q)⊕ (P q � A).

The involution σ : [2] → [2] acts on P 2q in the obvious way. We also need to
define the transition maps ιf for the two injections d, d′ : [1] → [2] and the
two surjections s, s′ : [2] → [1]. For d1, the transition map ιd : A � P q → P 2q
is the obvious embedding, and so is the transition map ιd′ . For the surjection
s, we need a map ιs from the cone of the map

P q ⊗A P q (τ⊗id)⊕(id⊗τ)−−−−−−−−−→ P q ⊕ P q
to P q. On P q ⊕ P q, the map ιs is just the difference map a⊕ b 7→ a− b; on
P q ⊗A P q, ιs is our fixed homotopy ι : P q ⊗A P q → P q+1. And similarly for
the other surjection s′.

We leave it to the reader to check that if one computes L
q
tr#(A#) |Λ≤2

using this resolution P#q , then one obtains exactly (4.8) for the Connes’
differential B.

5 Discussion

One of the most unpleasant features of the construction presented in Sec-
tion 4 is the strong assumptions we need to impose on the tensor category
C. In fact, the category one would really like to apply the construction to is
the category EndB of endofunctors – whatever that means – of the category
B of coherent sheaves on an algebraic variety X. But if X is not affine,
EndB certainly does not have enough projectives, so that Example 4.5 does
not apply, and it is unlikely that EndB can be made homologically clean in
the sense of Definition 4.4. We note that Definition 4.4 has been arranged
so as not impose anything more than strictly necessary for the proofs; but
in practice, we do not know any examples which are not covered by Exam-
ple 4.5.

As for the category EndB, there is an even bigger problem with it: while
there are ways to define endofunctors so that EndB is an abelian category
with a right-exact tensor product, it cannot be equipped with a right-exact
trace functor tr. Indeed, it immediately follows from Definition 4.8 that the
Hochschild homology groups HH q(C) of a tensor category C are trivial in
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negative homological degrees. If C = EndB, one of course expects HH q(C) =
HH q(X), the Hochschild homology HH q(X) of the variety X, which by now
is well-understood (see e.g. [W]). And if X is not affine, HH q(X) typically
is non-trivial both in positive and in negative degrees. If X is smooth and
proper, HH q(X) in fact carries a non-degenerate pairing, so that it is just
as non-trivial in degrees > 0 as in degrees < 0. Thus the case of a non-affine
algebraic variety is far beyond the methods developed in this paper.

The real reason for these difficulties is that we are dealing with abelian
categories, while the theory emphatically wants to live in the triangulated
world; as we explained in Example 2.5, even our main topic, cyclic bimod-
ules, are best understood as objects of a triangulated category DΛ(C). Un-
fortunately, we cannot develop the theory from scratch in the triangulated
context, since we do not have a strong and natural enough notion of an
enhanced triangulated category (and working with the usual triangulated
categories is out of the question because, for instance, the category of tri-
angulated functors between triangulated categories is usually not a trian-
gulated category itself). A well-developed theory would probably require a
certain compromise between the abelian and the triangulated approach. We
will return to it elsewhere.

Another thing which is very conspicously not done in the present paper
is the combination of Section 4 and Section 3. Indeed, in Section 3, we are
dealing with cyclic homology in the straightforward naive way of Section 2,
and while we define the cyclic object Â# associated to a square-zero exten-
sion Ã, we make no attempt to find an appropriate category ̂Sec(A-bimod#)
where it should live. This is essentially the reason why we cannot go further
than square-zero extensions. At present, sadly, we do not really understand
this hypothetical category ̂Sec(A-bimod#).

One suspects that treating this properly would require studying defor-
mations in a much more general context – instead of considering square-zero
extensions of an algebra, we should look at the deformations of the abelian
category of its modules, or at the deformations of the tensor category of
its bimodules. This brings us to another topic completely untouched in the
paper: the Hochschild cohomology HH

q
(A).

Merely defining Hochschild cohomology for an arbitrary tensor category
C is in fact much simpler than the definition of HH q(C), and one does
not need a trace functor for this – we just set HH

q
(C) = Ext

q
(I, I), where

I ∈ C is the unit object. However, it is well understood by now that just
as Hochschild homology always comes equipped with the Connes’ differ-
ential, the spectral sequence (2.7), and the whole cyclic homology package,
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Hochschild cohomology should be considered not as an algebra but as the so-
called Gerstenhaber algebra; in fact, the pair HH q(−),HH

q
(−) should form

a version of “non-commutative calculus”, as proposed for instance in [TT].
Deformations of the tensor category C should be controlled by HH

q
(C),

and the behaviour of HH q(C) and HC q(C) under these deformations reflects
various natural actions of HH

q
(−) on HH q(−).

We believe that a convenient development of the “non-commutative cal-
culus” for a tensor category C might be possible along the same lines as our
Section 4. Just as our category DΛ(C) is defined as the category of sections
of the cofibration C#/Λ, whose definition imitates the usual cyclic object A#,
one can construct a cofibration C#/∆ which imitates the standard cosimpli-
cial object computing HH

q
(A) – for any [n] ∈ ∆, C#([n]) is the category of

polylinear right-exact functors from Cn−1 to C, and the transition functors
between various C#([n]) are induced by the tensor product on C. Then one
can define a triangulated category D∆(C), the subcategory in D(Sec(C#))
of complexes with cocartesian homology; the higher structures on HH

q
(C)

should be encoded in the structure of the category D∆(C), and relations be-
tween HH q(C) and HH

q
(C) should be reflected in a relation between DΛ(C)

and D∆(C). We will proceed in this direction elsewhere. At present, the
best we can do is to make the following hopeful observation:

• the category Seccart(C#) is naturally a braided tensor category over k.

The reason for this is very simple: if one writes out explicitly the definition
of Seccart(C#) along the lines of Lemma 2.2, one finds out that it coincides
on the nose with the Drinfeld double of the tensor category C.
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