
UNIVERSAL KZB EQUATIONS: THE ELLIPTIC CASE

DAMIEN CALAQUE, BENJAMIN ENRIQUEZ, AND PAVEL ETINGOF

To Yuri Ivanovich Manin on his 70th birthday

Abstract. We define a universal version of the Knizhnik-Zamolodchikov-Bernard (KZB)
connection in genus 1. This is a flat connection over a principal bundle on the moduli space
of elliptic curves with marked points. It restricts to a flat connection on configuration
spaces of points on elliptic curves, which can be used for proving the formality of the
pure braid groups on genus 1 surfaces. We study the monodromy of this connection and
show that it gives rise to a relation between the KZ associator and a generating series
for iterated integrals of Eisenstein forms. We show that the universal KZB connection
realizes as the usual KZB connection for simple Lie algebras, and that in the sln case
this realization factors through the Cherednik algebras. This leads us to define a functor
from the category of equivariant D-modules on sln to that of modules over the Cherednik
algebra, and to compute the character of irreducible equivariant D-modules over sln

which are supported on the nilpotent cone.
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Introduction

The KZ system was introduced in [KZ] as a system of equations satisfied by correlation
functions in conformal field theory. It was then realized that this system has a universal
version ([Dr3]). The monodromy of this system leads to representations of the braid groups,
which can be used for proving the formality of the configuration spaces of C, i.e., the fact
that the fundamental groups of these spaces are formal (i.e., their Lie algebras are isomorphic
with their associated graded, which is the holonomy Lie algebra and thus has an explicit
presentation). This fact was first proved in the framework of minimal model theory ([Su,
Ko]). These results gave rise to Drinfeld’s theory of associators and quasi-Hopf algebras
([Dr2, Dr3]); one of the purposes of this work was to give an algebraic construction of the
formality isomorphisms, and indeed one of its by-products is the fact that these isomorphisms
can be defined over Q.
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In the case of configuration spaces over surfaces of genus ≥ 1, similar Lie algebra iso-
morphisms were constructed by Bezrukavnikov ([Bez]), using results of Kriz ([Kr]). In this
series of papers, we will show that this result can be reproved using a suitable flat connec-
tion over configuration spaces. This connection is a universal version of the KZB connection
([Be1, Be2]), which is the higher genus analogue of the KZ connection.

In this paper, we focus on the case of genus 1. We define the universal KZB connection
(Section 1), and rederive from there the formality result (Section 2). As in the integrable
case of the KZB connection, the universal KZB connection extends from the configuration
spaces C̄(Eτ , n)/Sn to the moduli space M1,[n] of elliptic curves with n unordered marked
points (Section 3). This means that: (a) the connection can be extended to the directions
of variation of moduli, and (b) it is modular invariant.

This connection then gives rise to a monodromy morphism γn : Γ1,[n] → Gn o Sn, which
we analyze in Section 4. The images of most generators can be expressed using the KZ
associator, but the image Θ̃ of the S-transformation expresses using iterated integrals of
Eisenstein series. The relations between generators give rise to relations between Θ̃ and the
KZ associator, identities (28). This identity may be viewed as an elliptic analogue of the
pentagon identity, as it is a “de Rham” analogue of the relation 6AS in [HLS] (in [Ma], the
question was asked of the existence of this kind of identity).

In Section 5, we investigate how to algebraically construct a morphism Γ1,[n] → Gn oSn.

We show that a morphism B1,n → exp(̂̄t1,n) o Sn can be constructed using an associator

only (here B1,n is the reduced braid group of n points on the torus). [Dr3] then implies
that the formality isomorphism can be defined over Q. In the last part of Section 5, we
develop the analogue of the theory of quasitriangular quasibialgebras (QTQBA’s), namely
elliptic structures over QTQBA’s. These structures give rise to representations of B1,n, and
they can be modified by twist. We hope that in the case of a simple Lie algebra, and using
suitable twists, the elliptic structure given in Section 5.4 will give rise to elliptic structures
over the quantum group Uq(g) (where q ∈ C×) or over the Lusztig quantum group (when q

is a root of unity), yielding back the representations of B1,n from conformal field theory.
In Section 6, we show that the universal KZB connection indeed specializes to the ordinary

KZB connection.
Sections 7-9 are dedicated applications of the ideas of the preceding sections (in particular,

Section 6) to representation theory of Cherednik algebras.
More precisely, In Section 7, we construct a homomorphism from the Lie algebra t̄1,n o d

to the rational Cherednik algebra Hn(k) of type An−1. This allows us to consider the
elliptic KZB connection with values in representations of the rational Cherednik algebra.
The monodromy of this connection then gives representations of the true Cherednik algebra
(i.e. the double affine Hecke algebra). In particular, this gives a simple way of constructing
an isomorphism between the rational Cherednik algebra and the double affine Hecke algebra,
with formal deformation parameters.

In Section 8, we consider the special representation VN of the rational Cherednik algebra
Hn(k), k = N/n, for which the elliptic KZB connection is the KZB connection for (holo-
morphic) n-point correlation functions of the WZW model for SLN (C) on the elliptic curve,
when the marked points are labeled by the vector representation CN . This representation is
realized in the space of equivariant polynomial functions on slN with values in (CN )⊗n, and
we show that it is irreducible, and calculate its character.

In Section 9, we generalize the construction of Section 8, by replacing, in the construction
of VN , the space of polynomial functions on slN with an arbitrary D-module on slN . This
gives rise to an exact functor from the category of (equivariant) D-modules on slN to the
category of representations of Hn(N/n). We study this functor in detail. In particular, we
show that this functor maps D-modules concentrated on the nilpotent cone to modules from
category O− of highest weight modules over the Cherednik algebra, and is closely related
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to the Gan-Ginzburg functor, [GG1]. Using these facts, we show that it maps irreducible
D-modules on the nilpotent cone to irreducible representations of the Cherednik algebra,
and determine their highest weights. As an application, we compute the decomposition
of cuspidal D-modules into irreducible representations of SLN (C). Finally, we describe
the generalization of the above result to the trigonometric case (which involves D-modules
on the group and trigonometric Cherednik algebras), and point out several directions for
generalization.

1. Bundles with flat connections on (reduced) configuration spaces

1.1. The Lie algebras t1,n and t̄1,n. Let n ≥ 1 be an integer and k be a field of charac-
teristic zero. We define tk1,n as the Lie algebra with generators xi, yi (i = 1, ..., n) and tij
(i 6= j ∈ {1, ..., n}) and relations

tij = tji, [tij , tik + tjk] = 0, [tij , tkl] = 0, (1)

[xi, yj ] = tij , [xi, xj ] = [yi, yj ] = 0, [xi, yi] = −
∑

j|j 6=i

tij ,

[xi, tjk ] = [yi, tjk] = 0, [xi + xj , tij ] = [yi + yj , tij ] = 0.

(i, j, k, l are distinct). In this Lie algebra,
∑

i xi and
∑

i yi are central; we then define t̄k1,n :=

tk1,n/(
∑
i xi,

∑
i yi). Both tk1,n and t̄k1,n are positively graded, where deg(xi) = deg(yi) = 1.

The symmetric group Sn acts by automorphisms of tk1,n by σ(xi) := xσ(i), σ(yi) := yσ(i),

σ(tij) := tσ(i)σ(j) ; this induces an action of Sn by automorphisms of t̄k1,n.

We will set t1,n := tC1,n, t̄1,n := t̄C1,n in Sections 1 to 4.

1.2. Bundles with flat connections over C(E, n) and C̄(E, n). Let E be an ellip-
tic curve, C(E, n) be the configuration space En − {diagonals} (n ≥ 1) and C̄(E, n) :=

C(E, n)/E be the reduced configuration space. We will define a1 exp(̂̄t1,n)-principal bundle

with a flat (holomorphic) connection (P̄E,n, ∇̄E,n) → C̄(E, n). For this, we define a exp(̂t1,n)-
principal bundle with a flat connection (PE,n,∇E,n) → C(E, n). Its image under the natural

morphism exp(̂tn) → exp(̂̄tn) is a exp(̂̄t1,n)-bundle with connection (P̃E,n, ∇̃E,n) → C(E, n),

and we then prove that (P̃E,n, ∇̃E,n) is the pull-back of a pair (P̄E,n, ∇̄E,n) under the canon-
ical projection C(E, n) → C̄(E, n).

For this, we fix a uniformization E ' Eτ , where for τ ∈ H, H := {τ ∈ C|=(τ) > 0},
Eτ := C/Λτ and Λτ := Z + Zτ .

We then have C(Eτ , n) = (Cn − Diagn,τ )/Λ
n
τ , where Diagn,τ := {z = (z1, ..., zn) ∈

Cn|zij := zi − zj ∈ Λτ for some i 6= j}. We define Pτ,n as the restriction to C(Eτ , n) of
the bundle over Cn/Λnτ for which a section on U ⊂ Cn/Λnτ is a regular map f : π−1(U) →
exp(̂t1,n), such that2 f(z + δi) = f(z), f(z + τδi) = e−2π ixif(z) (here π : Cn → Cn/Λnτ is
the canonical projection and δi is the ith vector of the canonical basis of Cn).

The bundle P̃τ,n → C(Eτ , n) derived from Pτ,n is the pull-back of a bundle P̄τ,n →
C̄(Eτ , n) since the e−2π i x̄i ∈ exp(̂̄t1,n) commute pairwise and their product is 1. Here x 7→ x̄

is the map t̂1,n → ˆ̄t1,n.
A flat connection ∇τ,n on Pτ,n is then the same as an equivariant flat connection over the

trivial bundle over Cn − Diagn,τ , i.e., a connection of the form

∇τ,n := d−
n∑

i=1

Ki(z|τ) d zi,

where Ki(−|τ) : Cn → t̂1,n is holomorphic on Cn − Diagn,τ , such that:

1We will denote by ĝ or g∧ the degree completion of a positively graded Lie algebra g.
2We set i :=

√
−1, leaving i for indices.
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(a) Ki(z + δj |τ) = Ki(z|τ), Ki(z + τδj |τ) = e−2π i ad(xj)(Ki(z|τ)),
(b) [∂/∂zi −Ki(z|τ), ∂/∂zj −Kj(z|τ)] = 0 for any i, j.

∇τ,n then induces a flat connection ∇̃τ,n on P̃τ,n. Then ∇̃τ,n is the pull-back of a (neces-
sarily flat) connection on P̄τ,n iff:

(c) K̄i(z|τ) = K̄i(z + u(
∑
i δi)|τ) and

∑
i K̄i(z|τ) = 0 for z ∈ Cn − Diagn,τ , u ∈ C.

In order to define the Ki(z|τ), we first recall some facts on theta-functions. There is a
unique holomorphic function C × H → C, (z, τ) 7→ θ(z|τ), such that {z|θ(z|τ) = 0} = Λτ ,
θ(z + 1|τ) = −θ(z|τ) = θ(−z|τ) and θ(z + τ |τ) = −e−π i τe−2π i zθ(z|τ), and θz(0|τ) = 1.

We have θ(z|τ + 1) = θ(z|τ), while θ(−z/τ | − 1/τ) = −(1/τ)e(π i /τ)z2θ(z|τ). If η(τ) =
q1/24

∏
n≥1(1 − qn) where q = e2π i τ , and if we set ϑ(z|τ) := η(τ)3θ(z|τ), then ∂τϑ =

(1/4π i)∂2
zϑ.

Let us set

k(z, x|τ) :=
θ(z + x|τ)
θ(z|τ)θ(x|τ) − 1

x
.

When τ is fixed, k(z, x|τ) belongs to Hol(C−Λτ )[[x]]. Substituting x = adxi, we get a linear
map t1,n → (t1,n ⊗ Hol(C − Λτ ))

∧, and taking the image of tij , we define

Kij(z|τ) := k(z, adxi|τ)(tij ) =
(θ(z + ad(xi)|τ)

θ(z|τ)
ad(xi)

θ(ad(xi)|τ)
− 1

)
(yj);

it is a holomorphic function on C − Λτ with values in t̂1,n.
Now set z := (z1, . . . , zn), zij := zi − zj and define

Ki(z|τ) := −yi +
∑

j|j 6=i

Kij(zij |τ).

Let us check that the Ki(z|τ) satisfy condition (c). We have clearly Ki(z + u(
∑
i δi)) =

Ki(z). We have k(z, x|τ)+k(−z,−x|τ) = 0, soKij(z|τ)+Kji(−z|τ) = 0, so that
∑
iKi(z|τ) =

−∑
i yi, which implies

∑
i K̄i(z|τ) = 0.

Lemma 1.1. Ki(z + δj |τ) = Ki(z|τ) and Ki(z + τδj |τ) = e−2π i adxj (Ki(z|τ)), i.e., the
Ki(z|τ) satisfy condition (a).

Proof. We have k(z±1, x|τ) = k(z, x|τ) so for any j, Ki(z+δj |τ) = Ki(z|τ). We have k(z±
τ, x|τ) = e∓2π ixk(z, x|τ)+ (e∓2π i x− 1)/x, so if j 6= i, Ki(z+ τδj |τ) =

∑
j′ 6=i,j Kij′ (zij′ |τ)+

e2π i adxiKij(zij |τ) + e2π i ad xi−1
adxi

(tij) − yi. Then

e2π i adxi − 1

adxi
(tij) =

1 − e−2π i ad xj

adxj
(tij) = (1 − e−2π i adxj )(yi),

e2π i adxi(Kij(zij |τ)) = e−2π i adxj (Kij(zij |τ)) and for j′ 6= i, j,Kij′ (zij′ |τ) = e−2π i adxj (Kij′ (zij′ |τ)),
so Ki(z + τδj |τ) = e−2π i adxj (Ki(z|τ)).

NowKi(z+τδi|τ) = −∑
i yi−

∑
j|j 6=iKj(z+τδi|τ) = −∑

i yi−e−2π i adxi(
∑

j|j 6=iKj(z|τ)) =

e−2π i adxi(−∑
i yi −

∑
j|j 6=iKj(z|τ)) = e−2π i adxiKi(z|τ) (the first and last equality follow

from the proof of (c), the second equality has just been proved, the third equality follows
from the centrality of

∑
i yi). �

Proposition 1.2. [∂/∂zi−Ki(z|τ), ∂/∂zj−Kj(z|τ)] = 0, i.e., the Ki(z|τ) satisfy condition
(b).

Proof. For i 6= j, let us set Kij := Kij(zij |τ). Recall that Kij + Kji = 0, therefore if
∂i := ∂/∂zi

∂iKij − ∂jKji = 0, [yi −Kij , yj −Kji] = −[Kij , yi + yj ].
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Moreover, if i, j, k, l are distinct, then [Kik,Kjl] = 0. It follows that if i 6= j,

[∂i −Ki(z|τ), ∂j −Kj(z|τ)]
= [yi + yj ,Kij ] +

∑

k|k 6=i,j

(
[Kik,Kjk] + [Kij ,Kjk] + [Kij ,Kik] + [yj ,Kik] − [yi,Kjk]

)
.

Let us assume for a while that if k /∈ {i, j}, then

− [yi,Kjk] − [yj ,Kki] − [yk,Kij ] + [Kji,Kki] + [Kkj ,Kij ] + [Kik,Kjk] = 0 (2)

(this is the universal version of the classical dynamical Yang-Baxter equation).
Then (2) implies that

[∂i −Ki(z|τ), ∂j −Kj(z|τ)] = [yi + yj ,Kij ] +
∑

k|k 6=i,j

[yk,Kij ] = [
∑

k

yk,Kij ] = 0

(as
∑

k yk is central), which proves the proposition.
Let us now prove (2). If f(x) ∈ C[[x]], then

[yk, f(adxi)(tij)] =
f(adxi) − f(−adxj)

adxi + adxj
[−tki, tij ],

[yi, f(adxj)(tjk)] =
f(adxj) − f(−adxk)

adxj + adxk
[−tij , tjk ] =

f(adxj) − f(adxi + adxj)

−adxi
[−tij , tjk],

[yj , f(adxk)(tki)] =
f(adxk) − f(−adxi)

adxk + adxi
[−tjk , tki] =

f(−adxi − adxj) − f(−adxi)

−adxj
[−tjk , tki].

The first identity is proved as follows:

[yk, (adxi)
n(tij)] = −

n−1∑

s=0

(adxi)
s(adtki)(adxi)

n−1−s(tij) = −
n−1∑

s=0

(adxi)
s(adtki)(−adxj)

n−1−s(tij)

= −
n−1∑

s=0

(adxi)
s(−adxj)

n−1−s(adtki)(tij) = f(adxi,−adxj)([−tki, tij ]),

where f(u, v) = (un − vn)/(u − v). The two next identities follow from this one and from
the fact that xi + xj + xk commutes with tij , tik, tjk.

Then, if we write k(z, x) instead of k(z, x|τ), the l.h.s. of (2) is equal to
(
k(zij ,−adxj)k(zik , adxi + adxj) − k(zij , adxi)k(zjk , adxi + adxj) + k(zik, adxi)k(zjk, adxj)

+
k(zjk , adxj) − k(zjk, adxi + adxj)

adxi
+
k(zik, adxi) − k(zij , adxi + adxj)

adxj

− k(zij , adxi) − k(zij ,−adxj)

adxi + adxj

)
[tij , tik].

So (2) follows from the identity

k(z,−v)k(z′, u+ v) − k(z, u)k(z′ − z, u+ v) + k(z′, u)k(z′ − z, v)

+
k(z′ − z, v) − k(z′ − z, u+ v)

u
+
k(z′, u) − k(z′, u+ v)

v
− k(z, u)− k(z,−v)

u+ v
= 0,

where u, v are formal variables, which is a consequence of the theta-functions identity

(
k(z,−v) − 1

v

)(
k(z′, u+ v) +

1

u+ v

)
−

(
k(z, u) +

1

u

)(
k(z′ − z, u+ v) +

1

u+ v

)

+
(
k(z′, u) +

1

u

)(
k(z′ − z, v) +

1

v

)
= 0. (3)

�

We have therefore proved:
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Theorem 1.3. (Pτ,n,∇τ,n) is a flat connection on C(Eτ , n), and the induced flat connection

(P̃τ,n, ∇̃τ,n) is the pull-back of a unique flat connection (P̄τ,n, ∇̄τ,n) on C̄(Eτ , n).

1.3. Bundles with flat connections on C(E, n)/Sn and C̄(E, n)/Sn. The group Sn acts
freely by automorphisms of C(E, n) by σ(z1, ..., zn) := (zσ−1(1), ..., zσ−1(n)). This descends

to a free action of Sn on C̄(E, n). We set C(E, [n]) := C(E, n)/Sn, C̄(E, [n]) := C̄(E, n)/Sn.
We will show that (Pτ,n,∇τ,n) induces a bundle with flat connection (Pτ,[n],∇τ,[n]) on

C(Eτ , [n]) with group exp(̂t1,n) o Sn, and similarly (P̄τ,n, ∇̄τ,n) induces (P̄τ,[n], ∇̄τ,[n]) on

C̄(Eτ , [n]) with group exp(̂̄t1,n) o Sn.
We define Pτ,[n] → C(Eτ , [n]) by the condition that a section of U ⊂ C(Eτ , [n]) is a regular

map π−1(U) → exp(̂t1,n) o Sn, satisfying again f(z + δi) = f(z), f(z + τδi) = e−2π ixif(z)
and the additional requirement f(σz) = σf(z) (where π̃ : Cn − Diagτ,n → C(Eτ , [n]) is the
canonical projection). It is clear that ∇τ,n is Sn-invariant, which implies that it defines a
flat connection ∇τ,[n] on C(Eτ , [n]).

The bundle P̄ (Eτ , [n]) → C̄(Eτ , [n]) is defined by the additional requirement f(z +
u(

∑
i δi)) = f(z) and ∇̄τ,n then induces a flat connection ∇̄τ,[n] on C̄(Eτ , [n]).

2. Formality of pure braid groups on the torus

2.1. Reminders on Malcev Lie algebras. Let k be a field of characteristic 0 and let g be
a pronilpotent k-Lie algebra. Set g1 = g, gk+1 = [g, gk]; then g = g1 ⊃ g2... is a decreasing
filtration of g. The associated graded Lie algebra is gr(g) := ⊕k≥1g

k/gk+1; we also consider
its completion ĝr(g) := ⊕̂k≥1g

k/gk+1 (here ⊕̂ is the direct product). We say that g is formal
iff there exists an isomorphism of filtered Lie algebras g ' ĝr(g), whose associated graded
morphism is the identity. We will use the following fact: if g is a pronilpotent Lie algebra,
t is a positively graded Lie algebra, and there exists an isomorphism g ' t̂ of filtered Lie
algebras, then g is formal, and the associated graded morphism gr(g) → t is an isomorphism
of graded Lie algebras.

If Γ is a finitely generated group, there exists a unique pair (Γ(k), iΓ) of a prounipotent
algebraic group Γ(k) and a group morphism iΓ : Γ → Γ(k), which is initial in the category
of all pairs (U, j), where U is prounipotent k-algebraic group and j : Γ → U is a group
morphism.

We denote by Lie(Γ)k the Lie algebra of Γ(k). Then we have Γ(k) = exp(Lie(Γ)k); Lie(Γ)k
is a pronilpotent Lie algebra. We have Lie(Γ)k = Lie(Γ)Q ⊗ k. We say that Γ is formal iff
Lie(Γ)C is formal (one can show that this implies that Lie(Γ)Q is formal).

When Γ is presented by generators g1, ..., gn and relations Ri(g1, ..., gn) (i = 1, ..., p),

Lie(Γ)Q is the quotient of the topologically free Lie algebra f̂n generated by γ1, ..., γn by the
topological ideal generated by log(Ri(e

γ1 , ..., eγn)) (i = 1, ..., p).

The decreasing filtration of f̂n is f̂n = (̂fn)1 ⊃ (̂fn)2 ⊃ ..., where (̂fn)k is the part of f̂n of
degree ≥ k in the generators γ1, ..., γn. The image of this filtration by the projection is map
is the decreasing filtration Lie(Γ)Q = Lie(Γ)1Q ⊃ Lie(Γ)2Q ⊃ ... of Lie(Γ)Q.

2.2. Presentation of PB1,n. For τ ∈ H, let Uτ ⊂ Cn − Diagn,τ be the open subset of all
z = (z1, ..., zn), of the form zi = ai + τbi, where 0 < a1 < ... < an < 1 and 0 < b1 < ... <
bn < 1. If z0 = (z0

1 , ..., z
0
n) ∈ Uτ , its image z0 in Enτ actually belongs to the configuration

space C(Eτ , n).
The pure braid group of n points on the torus PB1,n may be viewed as PB1,n = π1(C(Eτ , n), z0).

Denote by Xi, Yi ∈ PB1,n the classes of the projection of the paths [0, 1] 3 t 7→ z0 − tδi and
[0, 1] 3 t 7→ z0 − tτδi.

Set Ai := Xi...Xn, Bi := Yi...Yn for i = 1, ..., n. According to [Bi1], Ai, Bi (i = 1, ..., n)
generate PB1,n and a presentation of PB1,n is, in terms of these generators:

(Ai, Aj) = (Bi, Bj) = 1 (any i, j), (A1, Bj) = (B1, Aj) = 1 (any j),
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(Bk, AkA
−1
j ) = (BkB

−1
j , Ak) = Cjk (j ≤ k), (Ai, Cjk) = (Bi, Cjk) = 1 (i ≤ j ≤ k),

where (g, h) = ghg−1h−1.

2.3. Alternative presentations of t1,n. We now give two variants of the defining presen-
tation of t1,n. Presentation (A) below is the original presentation in [Bez], and presentation
(B) will be suited to the comparison with the above presentation of PB1,n.

Lemma 2.1. t1,n admits the following presentations:
(A) generators are xi, yi (i = 1, ..., n), relations are [xi, yj ] = [xj , yi] (i 6= j), [xi, xj ] =

[yi, yj ] = 0 (any i, j), [
∑
j xj , yi] = [

∑
j yj , xi] = 0 (any i), [xi, [xj , yk]] = [yi, [yj , xk ]] = 0

(i, j, k are distinct);
(B) generators are ai, bi (i = 1, ..., n), relations are [ai, aj ] = [bi, bj ] = 0 (any i, j),

[a1, bj ] = [b1, aj ] = 0 (any j), [aj , bk] = [ak, bj ] (any i, j), [ai, cjk ] = [bi, cjk] = 0 (i ≤ j ≤ k),
where cjk = [bk, ak − aj ].

The isomorphism of presentations (A) and (B) is ai =
∑n
j=i xj , bi =

∑n
j=i yj .

Proof. Let us prove that the initial relations for xi, yi, tij imply the relations (A) for
xi, yi. Let us assume the initial relations. If i 6= j, since [xi, yj ] = tij and tij = tji, we get
[xi, yj ] = [xj , yi]. The relations [xi, xj ] = [yi, yj ] = 0 (any i, j) are contained in the initial
relations. For any i, since [xi, yi] = −∑

j|j 6=i tij and [xj , yi] = tji = tij (j 6= i), we get

[
∑

j xj , yi] = 0. Similarly, [
∑

j yj , xi] = 0 (for any i). If i, j, k are distinct, since [xj , yk] = tjk
and [xi, tjk] = 0, we get [xi, [xj , yk]] = 0 and similarly we prove [xi, [yj , xk]] = 0.

Let us now prove that the relations (A) for xi, yi imply the initial relations for xi, yi and
tij := [xi, yj ] (i 6= j). Assume the relations (A). If i 6= j, since [xi, yj ] = [xj , yi], we have
tij = tji. The relation tij = [xi, yj ] (i 6= j) is clear and [xi, xj ] = [yi, yj ] = 0 (any i, j) are
already in relations (A). Since for any i, [

∑
j xj , yi] = 0, we get [xi, yi] = −∑

j|j 6=i[xj , yi] =

−∑
j|j 6=i tji = −∑

j|j 6=i tij . If i, j, k are distinct, the relations [xi, [xj , yk]] = [yi, [yj , xk]] =

0 imply [xi, tjk] = [yi, tjk ] = 0. If i 6= j, since [
∑
k xk, xi] = [

∑
k xk, yj ] = 0, we get

[
∑

k xk , tij ] = 0 and [xk, tij ] = 0 for k /∈ {i, j} then implies [xi + xj , tij ] = 0. One proves
similarly [yi + yj , tij ] = 0. We have already shown that [xi, tkl] = [yj , tkl] = 0 for i, j, k, l
distinct, which implies [[xi, yj ], tkl] = 0, i.e., [tij , tkl] = 0. If i, j, k are distinct, we have
shown that [tij , yk] = 0 and [tij , xi + xj ] = 0, which implies [tij , [xi + xj , yk]] = 0, i.e.,
[tij , tik + tjk ] = 0.

Let us prove that the relations (A) for xi, yi imply relations (B) for ai :=
∑n
j=i xj ,

bi :=
∑n
j=i yj . Summing up the relations [xi′ , xj′ ] = [yi′ , yj′ ] = 0 and [xi′ , yj′ ] = [xj′ , yi′ ] for

i′ = i, ..., n and j′ = j, ..., n, we get [ai, aj ] = [bi, bj ] = 0 and [ai, bj ] = [aj , bi] (for any i, j).
Summing up [

∑
j xj , yi′ ] = [

∑
j yj , xi′ ] = 0 for i′ = i, ..., n, we get [a1, bi] = [ai, b1] = 0 (for

any i). Finally, cjk =
∑k−1
α=j

∑n
β=k tαβ (in terms of the initial presentation) so the relations

[xi′ , tαβ] = 0 for i′ 6= α, β and [xα + xβ , tαβ ] = 0 imply [ai, cjk ] = 0 for i ≤ j ≤ k. Similarly,
one shows [bi, cjk] = 0 for i ≤ j ≤ k.

Let us prove that the relations (B) for ai, bi imply relations (A) for xi := ai − ai+1,
yi := bi − bi+1 (with the convention an+1 = bn+1 = 0). As before, [ai, aj ] = [bi, bj ] = 0,
[ai, bj ] = [aj , bi] imply [xi, xj ] = [yi, yj ] = 0, [xi, yj ] = [xj , yi] (for any i, j). We set tij :=
[xi, yj ] for i 6= j, then we have tij = tji. We have for j < k, tjk = cjk−cj,k+1−cj+1,k+cj+1,k+1

(we set ci,n+1 := 0), so [ai, cjk ] = 0 implies [
∑n
i′=i xi′ , tjk ] = 0 for i ≤ j < k. When

i < j < k, the difference between this relation and its analogue of (i+1, j, k) gives [xi, tjk ] = 0
for i < j < k. This can be rewritten [xi, [xj , yk]] = 0 and since [xi, xj ] = 0, we get
[xj , [xi, yk]] = 0, so [xj , tik] = 0 and by changing indices, [xi, tjk] = 0 for j < i < k.
Rewriting again [xi, tjk] = 0 for i < j < k as [xi, [yj , xk]] = 0 and using [xi, xk] = 0, we
get [xk, [xi, yj ]] = 0. i.e., [xk , tij ] = 0, which we rewrite [xi, tjk ] = 0 for j < k < i. Finally,
[xi, tjk ] = 0 for j < k and i /∈ {j, k}, which implies [xi, tjk] = 0 for i, j, k different. One
proves similarly [yi, tjk] = 0 for i, j, k different. �
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2.4. The formality of PB1,n. The flat connection d−∑n
i=1Ki(z|τ) d zi gives rise to a

monodromy representation µz0,τ : PB1,n = π1(C, z0) → exp(̂t1,n), which factors through

a morphism µz0,τ (C) : PB1,n(C) → exp(̂t1,n). Let Lie(µz0 ,τ ) : Lie(PB1,n)C → t̂1,n be the
corresponding morphism between pronilpotent Lie algebras.

Proposition 2.2. Lie(µz0,τ ) is an isomorphism of filtered Lie algebras, so that PB1,n is
formal.

Proof. As we have seen, Lie(PB1,n)C (denoted Lie(PB1,n) in this proof) is the quotient
of the topologically free Lie algebra generated by αi, βi (i = 1, ..., n) by the topological ideal
generated by [αi, αj ], [βi, βj ], [α1, βj ], [β1, αj ], log(eβk , eαk−αj ) − log(eβk−βj , eαk), [αi, γjk ],
[βi, γjk] where γjk = log(eβk , eαk−αj ).

This presentation and the above presentation (B) of t1,n imply that there is a morphism of
graded Lie algebras pn : t1,n → grLie(PB1,n) defined by ai 7→ [αi], bi 7→ [βi], where α 7→ [α]
is the projection map Lie(PB1,n) → gr1 Lie(PB1,n).
pn is surjective because grLieΓ is generated in degree 1 (as the associated graded of any

quotient of a topologically free Lie algebra).

There is a unique derivation ∆̃0 ∈ Der(t1,n), such that ∆̃0(xi) = yi and ∆̃0(yi) = 0. This
derivation gives rise to a one-parameter group of automorphisms of Der(t1,n), defined by

exp(s∆̃0)(xi) := xi + syi, exp(s∆̃0)(yi) = yi.
Lie(µz0,τ ) induces a morphism grLie(µz0,τ ) : gr Lie(PB1,n) → t1,n. We will now prove

that

grLie(µz0 ,τ ) ◦ pn = exp(− τ

2π i
∆̃0) ◦ w, (4)

where w is the automorphism of t1,n defined by w(ai) = −bi, w(bi) = 2π i ai.
µz0,τ is defined as follows. Let Fz0 (z) be the solution of (∂/∂zi)Fz0 (z) = Ki(z|τ)Fz0 (z),

Fz0(z0) = 1 on Uτ ; let Hτ := {z = (z1, ..., zn)|zi = ai + τbi, 0 < a1 < ... < an < 1} and
Vτ := {z = (z1, ..., zn)|zi = ai + τbi, 0 < b1 < ... < bn < 1}; let FH

z0
and F V

z0
be the analytic

prolongations of Fz0 to Hτ and Vτ ; then

FHz0
(z + δi) = FHz0

(z)µz0 ,τ (Xi), e2π ixiF Vz0
(z + τδi) = F Vz0

(z)µz0 ,τ (Yi).

We have logFz0 (z) = −∑
i(zi − z0

i )yi + terms of degree ≥ 2, where t1,n is graded by
deg(xi) = deg(yi) = 1, which implies that logµz0,τ (Xi) = −yi + terms of degree ≥ 2,
logµz0,τ (Yi) = 2π ixi−τyi + terms of degree ≥ 2. Therefore Lie(µz0,τ )(αi) = logµz0,τ (Ai) =
−bi + terms of degree ≥ 2, Lie(µz0,τ )(βi) = logµz0,τ (Bi) = 2π i ai − τbi + terms of degree
≥ 2. So grLie(µz0,τ )([αi]) = −bi, grLie(µz0,τ )([βi]) = 2π iai − τbi.

It follows that grLie(µz0 ,τ ) ◦ pn is the endomorphism ai 7→ −bi, bi 7→ 2π i ai − τbi of t1,n,

which is the automorphism exp(− τ
2π i∆̃0) ◦ w; this proves (4).

Since we already proved that pn is surjective, it follows that grLie(µz0,τ ) and pn are

both isomorphisms. As Lie(PB1,n) and t̂1,n are both complete and separated, Lie(µz0,τ ) is
bijective, and since it is a morphism, it is an isomorphism of filtered Lie algebras. �

2.5. The formality of PB1,n. Let z0 ∈ Uτ and [z0] ∈ C̄(Eτ , n) be its image. We set

PB1,n := π1(C̄(Eτ , n), [z0]). Then PB1,n is the quotient of PB1,n by its central subgroup

(isomorphic to Z2) generated by A1 and B1. We have µz0,τ (A1) = e−
P

i
yi and µz0,τ (B1) =

e2π i
P

i xi−τ
P

i yi , so Lie(µz0,τ )(α1) = −a1, Lie(µz0,τ )(β1) = 2π i a1 − τb1, which implies that

Lie(µz0,τ ) induces an isomorphism between Lie(PB1,n)C and t̄1,n. In particular, PB1,n is
formal.

Remark 2.3. Let Diagn := {(z, τ) ∈ Cn×H|z ∈ Diagn,τ} and let U ⊂ (Cn×H)−Diagn be the
set of all (z, τ) such that z ∈ Uτ . Each element of U gives rise to a Lie algebra isomorphism
µz,τ : Lie(PB1,n) ' t̂1,n. For an infinitesimal (d z, d τ), the composition µz+d z,τ+d τ ◦ µ−1

z,τ

is then an infinitesimal automorphism of t̂1,n. This defines a flat connection over U with
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values in the trivial Lie algebra bundle with Lie algebra Der(̂t1,n). When d τ = 0, the
infinitesimal automorphism has the form exp(

∑
iKi(z|τ) d zi), so the connection has the form

d−∑
i ad(Ki(z|τ)) d zi − ∆̃(z|τ) d τ , where ∆̃ : U → Der(̂t1,n) is a meromorphic map with

poles at Diagn. In the next section, we determine a map ∆ : (Cn × H) − Diagn → Der(̂t1,n)

with the same flatness properties as ∆̃(z|τ).

2.6. The isomorphisms B1,n(C) ' exp(̂t1,n) oSn, B1,n(C) ' exp(̂̄t1,n) oSn. Let z0 be as

above; we define B1,n := π1(C(Eτ , [n]), [z0]) and B1,n := π1(C̄(Eτ , [n]), [z0]), where x 7→ [x]
is the canonical projection C(Eτ , n) → C(Eτ , [n]) or C̄(Eτ , n) → C̄(Eτ , [n]).

We have an exact sequence 1 → PB1,n → B1,n → Sn → 1, We then define groups
B1,n(C) fitting in an exact sequence 1 → PB1,n(C) → B1,n(C) → Sn → 1 as follows: the
morphism B1,n → Aut(PB1,n) extends to B1,n → Aut(PB1,n(C)); we then construct the
semidirect product PB1,n(C)oB1,n; then PB1,n embeds diagonally as a normal subgroup of
this semidirect product, and B1,n(C) is defined as the quotient (PB1,n(C) o B1,n)/PB1,n.

The monodromy of ∇τ,[n] then gives rise to a group morphism B1,n → exp(̂t1,n) o Sn,

which factors through B1,n(C) → exp(̂t1,n)oSn. Since this map commutes with the natural

morphisms to Sn and using the isomorphism PB1,n(C) ' exp(̂t1,n), we obtain that B1,n(C) →
exp(̂t1,n) o Sn is an isomorphism.

Similarly, starting from the exact sequence 1 → PB1,n → B1,n → Sn → 1 one defines a

group B1,n(C) fitting in an exact sequence 1 → PB1,n → B1,n(C) → Sn → 1 together with

an isomorphism B1,n(C) → exp(̂̄t1,n) o Sn.

3. Bundles with flat connection on M1,n and M1,[n]

We first define Lie algebras of derivations of t̄1,n and a related group Gn. We then define
a principal Gn-bundle with flat connection of M1,n and a principal GnoSn-bundle with flat
connection on the moduli space M1,[n] of elliptic curves with n unordered marked points.

3.1. Derivations of the Lie algebras t1,n and t̄1,n and associated groups. Let d be
the Lie algebra with generators ∆0, d,X and δ2m (m ≥ 1), and relations:

[d,X ] = 2X, [d,∆0] = −2∆0, [X,∆0] = d,

[δ2m, X ] = 0, [d, δ2m] = 2mδ2m, ad(∆0)
2m+1(δ2m) = 0.

Proposition 3.1. We have a Lie algebra morphism d → Der(t1,n), denoted by ξ 7→ ξ̃, such
that

d̃(xi) = xi, d̃(yi) = −yi, d̃(tij) = 0, X̃(xi) = 0, X̃(yi) = xi, X̃(tij) = 0,

∆̃0(xi) = yi, ∆̃0(yi) = 0, ∆̃0(tij) = 0,

δ̃2m(xi) = 0, δ̃2m(tij) = [tij , (adxi)
2m(tij)], δ̃2m(yi) =

∑

j|j 6=i

1

2

∑

p+q=2m−1

[(adxi)
p(tij), (− adxi)

q(tij)].

This induces a Lie algebra morphism d → Der(̄t1,n).

Proof. The fact that ∆̃0, d̃, X̃ are derivations and commute according to the Lie bracket
of sl2 is clear.

Let us prove that δ̃2m is a derivation. We have δ̃2m(tij) = [tij ,
∑
i<j(adxi)

2m(tij)], which

implies that δ̃2m preserves the infinitesimal pure braid identities. It clearly preserves the
relations [xi, xj ] = 0, [xi, yj ] = tij , [xk , tij ] = 0, [xi + xj , tij ] = 0.
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Let us prove that δ̃2m preserves the relation [yk, tij ] = 0, i.e., that [δ̃ϕ(yk), tij ]+[yk, δ̃ϕ(tij)] =
0.

[δ̃2m(yk), tij ] =
1

2

∑

p+q=2m−1

(−1)q [[(adxk)
p(tki), (adxk)

q(tki)] + [(adxk)
p(tkj), (adxk)

q(tkj)], tij ]

=
1

2

∑

p+q=2m−1

(−1)q+1[[(adxk)
p(tki), (adxk)

q(tkj)] + [(adxk)
p(tkj), (adxk)

q(tki)], tij ]

=
∑

p+q=2m−1

(−1)q+1[[(adxk)
p(tki), (adxk)

q(tkj)], tij ] = [tij ,
∑

p+q=2m−1

(−1)p(adxi)
p(adxj)

q([tki, tkj ])].

On the other hand, [yk, δ̃2m(tij)] = [yk, [tij , (adxi)
2m(tij)]] = [tij , [yk, (adxi)

2m(tij)]]. Now

[yk, (adxi)
2m(tij)] = −

∑

α+β=2m−1

(adxi)
α
(
[tki, (adxi)

β(tij)]
)

= −
∑

α+β=2m−1

(adxi)
α[tki, (−adxj)

β(tij)] = −
∑

α+β=2m−1

(adxi)
α(−adxj)

β([tki, tij ])

=
∑

p+q=2m−1

(−1)p+1(adxi)
p(adxj)

q([tki, tkj ]).

Hence [δ̃2m(yk), tij ] + [yk, δ̃2m(tij)] = 0.

Let us prove that δ̃2m preserves the relation [yi, yj ] = 0, i.e., that [δ̃2m(yi), yj ]+[yi, δ̃2m(yj)] =
0.

We have

[yi, δ̃2m(yj)] =
1

2
[yi,

∑

p+q=2m−1

(−1)q[(adxj)
p(tji), (adxj)

q(tji)]]

+
1

2

∑

k 6=i,j

[yi,
∑

p+q=2m−1

(−1)q[(adxj)
p(tjk), (adxj)

q(tjk)]].

Now

1

2
[yi,

∑

p+q=2m−1

(−1)q[(adxj)
p(tji), (adxj)

q(tji)]] − (i↔ j) (5)

= −1

2
[yi + yj ,

∑

p+q=2m−1

(−1)q [(adxi)
p(tij), (adxi)

q(tij)]]

=
∑

p+q=2m−1

(−1)q+1[[yi + yj , (adxi)
p(tij)], (adxi)

q(tij)].

A computation similar to the above computation of [yk, (adxi)
2m(tij)] yields

[yi + yj , (adxi)
p(tij)] = (−1)p

∑

α+β=p−1

[(adxk)
α(tik), (adxj)

β(tjk)],

so

(5) =
∑

α+β+γ=2m−2

[(adxi)
α(tij), [(adxk)

β(tik), (adxj)
γ(tjk)]].

If now k 6= i, j, then

[yi,
1

2

∑

p+q=2m−1

(−1)q [(adxj)
p(tjk), (adxj)

q(tjk)]] =
∑

p+q=2m−1

(−1)q[[yi, (adxj)
p(tjk)], (adxj)

q(tjk)].
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As we have seen,

[yj , (adxi)
p(tik)] = (−1)p

∑

α+β=p−1

(−adxi)
α(adxk)

β [tij , tik]

= (−1)p+1
∑

α+β=p−1

[(−adxi)
α(tij), (adxk)

β(tjk)]

So we get

[yi,
1

2

∑

p+q=2m−1

(−1)q[(adxj)
p(tjk), (adxj)

q(tjk)]]

=
∑

α+β+γ=2m−2

[[(adxi)
α(tij), (adxk)

β(tik)], (adxj)
γ(tjk)]

therefore

[yi,
1

2

∑

p+q=2m−1

(−1)q[(adxj)
p(tjk), (adxj)

q(tjk)]] − (i↔ j)

=
∑

α+β+γ=2m−2

[(adxi)
α(tij), [(adxk)

β(tik), (adxj)
γ(tjk)]].

Therefore [yi, δ̃2m(yj)] + [δ̃2m(yi), yj ] = 0.

Since δ̃2m(
∑
i xi) = δ̃2m(

∑
i yi) = 0 and

∑
i xi and

∑
i yi are central, δ̃2m preserves the

relations [
∑

i xi, yj ] = 0 and [
∑

k xk , tij ] = [
∑
k yk, tij ] = 0. It follows that δ̃2m preserves the

relations [xi + xj , tij ] = [yi + yj , tij ] = 0 and [xi, yi] = −∑
j|j 6=i tij . All this proves that δ̃2m

is a derivation.
Let us show that ad(∆̃0)

2m+1(δ̃2m) = 0 for m ≥ 1. We have

ad(∆̃0)
2m+1(δ̃2m)(xi) = −(2m+ 1)∆̃2m

0 ◦ δ̃2m ◦ ∆̃0(xi) = −(2m+ 1)∆̃2m
0 ◦ δ̃2m(yi)

= −(2m+ 1)∆̃2m
0 (

∑

j|j 6=i

1

2

∑

p+q=2m−1

[(adxi)
p(tij), (− adxi)

q(tij)]) = 0;

the last part of this computation implies that ad(∆̃0)
2m+1(δ̃2m)(yi) = 0, therefore ad(∆̃0)

2m+1(δ̃2m) =
0.

We have clearly [X̃, δ̃2m] = 0 and [d̃, δ̃2m] = 2mδ̃2m. It follows that we have a Lie algebra

morphism d → Der(t1,n). Since d̃, ∆̃0, X̃ and δ̃2m all map C(
∑

i xi)⊕C(
∑
i yi) to itself, this

induces a Lie algebra morphism d → Der(̄t1,n). �

Let e, f, h be the standard basis of sl2. Then we have a Lie algebra morphism d → sl2,
defined by δ2n 7→ 0, d 7→ h, X 7→ e, ∆0 7→ f . We denote by d+ ⊂ d its kernel.

Since the morphism d → sl2 has a section (given by e, f, h 7→ X,∆0, d), we have a
semidirect product decomposition d = d+ o sl2.

We then have
t̄1,n o d = (̄t1,n o d+) o sl2.

Lemma 3.2. t̄1,n o d+ is positively graded.

Proof. We define compatible Z2-gradings of d and t̄1,n by deg(∆0) = (−1, 1), deg(d) =
(0, 0), deg(X) = (1,−1), deg(δ2m) = (2m+1, 1), deg(xi) = (1, 0), deg(yi) = (0, 1), deg(tij) =
(1, 1).

We define the support of d (resp., t̄1,n) as the subset of Z2 of indices for which the
corresponding component of d (resp., t̄1,n) is nonzero.

Since the x̄i on one hand, the ȳi on the other hand generate abelian Lie subalgebras of
t̄1,n, the support of t̄1,n is contained in N2

>0 ∪ {(1, 0), (0, 1)}.
On the other hand, d+ is generated by the ad(∆0)

p(δ2m), which all have degrees in N2
>0.

It follows that the support of d+ is contained in N2
>0.
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Therefore the support of t̄1,no d+ is contained in N2
>0 ∪{(1, 0), (0, 1)}, so this Lie algebra

is positively graded. �

Lemma 3.3. t̄1,nod+ is a sum of finite dimensional sl2-modules; d+ is a sum of irreducible
odd dimensional sl2-modules.

Proof. A generating space for t̄1,n is
∑

i(Cx̄i ⊕ Cȳi), which is a sum of finite dimensional
sl2-modules, so t̄1,n is a sum of finite dimensional sl2-modules.

A generating space for d+ is the sum over m ≥ 1 of its sl2-submodules generated by the
δ2m, which are zero or irreducible odd dimensional, therefore d+ is a sum of odd dimensional
sl2-modules. (In fact, the sl2-submodule generated by δ2m is nonzero, as it follows from the
construction of the above morphism d+ → Der(̄t1,n) that δ2m 6= 0.) �

It follows that t̄1,n, d̄+ and t̄1,nod+ integrate to SL2(C)-modules (while d̄+ even integrates
to a PSL2(C)-module).

We can form in particular the semidirect products

Gn := exp((̄t1,n o d+)∧) o SL2(C)

and exp(d̂+) o PSL2(C); we have morphisms Gn → exp(d̂+) o PSL2(C) (this is a 2-covering
if n = 1 since t̄1,1 = 0).

Observe that the action of Sn by automorphisms of t̄1,n extends to an action on t̄1,n o d,
where the action on d is trivial. This gives rise to an action of Sn by automorphisms of Gn.

3.2. Bundle with flat connection on M1,n. The semidirect product ((Zn)2×C)oSL2(Z)
acts on (Cn×H)−Diagn by (n,m, u)∗(z, τ) := (n+τm+u(

∑
i δi), τ) for (n,m, u) ∈ (Zn)2×C

and
( α β
γ δ

)
∗(z, τ) := ( z

γτ+δ ,
ατ+β
γτ+δ ) for

( α β
γ δ

)
∈ SL2(Z) (here Diagn := {(z, τ) ∈ Cn × H| for

some i 6= j, zij ∈ Λτ}). The quotient then identifies with the moduli space M1,n of elliptic
curves with n marked points.

Set Gn := exp((̄t1,n o d+)∧) o SL2(C). We will define a principal Gn-bundle with flat
connection (Pn,∇Pn

) over M1,n.

For u ∈ C×, ud :=
(
u 0
0 u−1

)
∈ SL2(C) ⊂ Gn and for v ∈ C, evX :=

(
1 v
0 1

)
∈ SL2(C) ⊂ Gn.

Since [X, x̄i] = 0, we consistently set exp(aX +
∑

i bix̄i) := exp(aX) exp(
∑

i bix̄i).

Proposition 3.4. There exists a unique principal Gn-bundle Pn over M1,n, such that a
section of U ⊂ M1,n is a function f : π−1(U) → Gn (where π : (Cn×H)−Diagn → M1,n is
the canonical projection), such that f(z+ δi|τ) = f(z +u(

∑
i δi)|τ) = f(z|τ), f(z + τδi|τ) =

e−2π i x̄if(z|τ), f(z|τ + 1) = f(z|τ) and f( z

τ | − 1
τ ) = τd exp( 2π i

τ (
∑

i zix̄i +X))f(z|τ).

Proof. Let cg̃ : Cn × H → Gn be a family of holomorphic functions (where g̃ ∈ ((Zn)2 ×
C) o SL2(Z)) satisfying the cocycle condition cg̃g̃′(z|τ) = cg̃(g̃

′ ∗ (z|τ))cg̃′ (z|τ). Then there
exists a unique principal Gn-bundle over M1,n such that a section of U ⊂ M1,n is a function
f : π−1(U) → Gn such that f(g̃ ∗ (z|τ)) = cg̃(z|τ)f(z|τ).

We will now prove that there is a unique cocycle such that c(u,0,0) = c(0,δi,0) = 1, c(0,0,δi) =

e−2π i x̄i , cS = 1 and cT (z|τ) = τd exp( 2π i
τ (

∑
i zix̄i +X)), where S =

(
1 1
0 1

)
, T =

(
0 −1
1 0

)
.

Such a cocycle is the same as a family of functions cg : Cn×H → Gn (where g ∈ SL2(Z)),
satisfying the cocycle conditions cgg′(z|τ) = cg(g

′ ∗ (z|τ))cg′ (z|τ) for g, g′ ∈ SL2(Z), and
cg(z+δi|τ) = e2π i γx̄icg(z|τ), cg(z+ τδi|τ) = e−2π i δx̄icg(z|τ)e2π i x̄i and cg(z+u(

∑
i δi)|τ) =

cg(z|τ) for g =
( α β
γ δ

)
∈ SL2(Z).

Lemma 3.5. There exists a unique family of functions cg : Cn × H → Gn such that
cgg′ (z|τ) = cg(g

′ ∗ (z|τ))cg′ (z|τ) for g, g′ ∈ SL2(Z), with

cS(z|τ) = 1, cT (z|τ) = τde(2π i /τ)(
P

j zj x̄j+X).
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Proof. SL2(Z) is the group generated by S̃, T̃ and relations T̃ 4 = 1, (S̃T̃ )3 = T̃ 2,

S̃T̃ 2 = T̃ 2S̃. Let 〈S̃, T̃ 〉 be the free group with generators S̃, T̃ ; then there is a unique family

of maps cg̃ : Cn ×H → Gn, g̃ ∈ 〈S̃, T̃ 〉 satisfying the cocycle conditions (w.r.t. the action of

〈S̃, T̃ 〉 on Cn × H through its quotient SL2(Z)) and cS̃ = cS , cT̃ = cT . It remains to show
that cT̃ 4 = 1, c(S̃T̃ )3 = cT̃ 2 and cS̃T̃ 2 = cT̃ 2S̃ .

For this, we show that cT̃ 2(z|τ) = (−1)d. We have cT̃ 2(z|τ) = cT (z/τ | − 1/τ)cT (z|τ) =

(−τ)−d exp(−2π i τ(
∑

j(zj/τ)x̄j + X))τd exp( 2π i
τ (

∑
j zj x̄j + X)) = (−1)d since τdXτ−d =

τ2X , τdx̄iτ
−d = τ x̄i.

Since ((−1)d)2 = 1d = 1, we get cT̃ 4 = 1. Since cS̃ and cT̃ 2 are both constant and
commute, we also get cS̃T̃ 2 = cT̃ 2S̃ .

We finally have cS̃T̃ (z|τ) = cT (z|τ) while S̃T̃ =
(

1 −1
1 0

)
, (S̃T̃ )2 =

(
0 −1
1 −1

)
so

c(S̃T̃ )3(z|τ) = cT (
z

τ − 1
| 1

1 − τ
)cT (

z

τ
|τ − 1

τ
)cT (z|τ) = (

1

1 − τ
)d exp(−2π i

∑
zjx̄j + 2π i(1 − τ)X)

(
τ − 1

τ
)d exp(

2π i

τ − 1

∑

j

zj x̄j + 2π i
τ

τ − 1
X)τd exp(

2π i

τ
(
∑

j

zj x̄j +X))

= (−1)d exp(
2π i

1 − τ
(
∑

j

zjx̄j +X)) exp(
2π i

τ(τ − 1)
(
∑

j

zj x̄j +X)) exp(
2π i

τ
(
∑

j

zj x̄j +X)) = (−1)d,

so c(S̃T̃ )3 = cT̃ 2 . �

End of proof of Proposition 3.4. We now check that the maps cg satisfy the remaining
conditions, i.e., c(z + u(

∑
i δi)|τ) = cg(z|τ), cg(z + δi|τ) = e2π i γx̄icg(z|τ), cg(z + τδi|τ) =

e−2π i δx̄icg(z|τ)e2π i x̄i . The cocycle identity cgg′(z|τ) = cg(g
′ ∗ (z|τ))cg′ (z|τ) implies that it

suffices to prove these identities for g = S and g = T . They are trivially satisfied if g = S.
When g = T , the first identity follows from

∑
i x̄i = 0, the third identity follows from the

fact that (X, x̄1, ..., x̄n) is a commutative family, the second identity follows from the same
fact together with τdx̄iτ

−d = τ x̄i. �

Set

g(z, x|τ) :=
θ(z + x|τ)
θ(z|τ)θ(x|τ)

(θ′
θ

(z + x|τ) − θ′

θ
(x|τ)

)
+

1

x2
= kx(z, x|τ),

(we set f ′(z|τ) := (∂/∂z)f(z|τ)).
We have g(z, x|τ) ∈ Hol((C × H) − Diag1)[[x]], therefore g(z, ad x̄i|τ) is a linear map

t̄1,n → (Hol((C×H)−Diag1)⊗ t̄1,n)
∧, so g(z, ad x̄i|τ)(t̄ij ) ∈ (Hol((C×H)−Diag1)⊗ t̄1,n)

∧.
Therefore

g(z|τ) :=
∑

i<j

g(zij , ad x̄i|τ)(t̄ij )

is a meromorphic function Cn × H → ˆ̄t1,n with only poles at Diagn.
We set

∆̄(z|τ) := − 1

2π i
∆0 −

1

2π i

∑

n≥1

a2nE2n+2(τ)δ2n +
1

2π i
g(z|τ),

where a2n = −(2n+1)B2n+2(2 iπ)2n+2/(2n+2)! and Bn are the Bernoulli numbers given by
x/(ex−1) =

∑
r≥0(Br/r!)x

r . This is a meromorphic function Cn×H → (̄t1,nod+)∧ on+ ⊂
Lie(G1,n) (where n+ = C∆0 ⊂ sl2) with only poles at Diagn.

For ψ(x) =
∑

n≥1 b2nx
2n, we set δψ :=

∑
n≥1 b2nδ2n, ∆ψ := ∆0 +

∑
n≥1 b2nδ2n. If we set

ϕ(x|τ) = −x−2 − (θ′/θ)′(x|τ) + (x−2 + (θ′/θ)′(x|τ))|x=0 = g(0, 0|τ) − g(0, x|τ),
then ϕ(x|τ) =

∑
n≥1 a2nE2n+2(τ)x

2n, so that

∆̄(z|τ) = − 1

2π i
∆ϕ(∗|τ) +

1

2π i
g(z|τ).
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Theorem 3.6. There is a unique flat connection ∇Pn
on Pn, whose pull-back to (Cn×H)−

Diagn is the connection

d−∆̄(z|τ) d τ −
∑

i

K̄i(z|τ) d zi

on the trivial Gn-bundle.

Proof. We should check that the connection d−∆̄(z|τ) d τ −∑
i K̄i(z|τ) d zi is equivariant

and flat, which is expressed as follows (taking into account that we already checked the
equivariance and flatness of d−∑

i K̄i(z|τ) d zi for any τ):

(equivariance) for g =
( α β
γ δ

)
∈ SL2(Z)

1

γτ + δ
K̄i(

z

γτ + δ
|ατ + β

γτ + δ
) = Ad(cg(z|τ))(K̄i(z|τ)) + [(∂/∂zi)cg(z|τ)]cg(z|τ)−1, (6)

∆̄(z + δi|τ) = ∆̄(z + u(
∑

i

δi)|τ) = ∆̄(z|τ), ∆̄(z + τδi|τ) = e−2π i adxi(∆̄(z|τ) − K̄i(z|τ)),
(7)

1

(γτ + δ)2
∆̄(

z

γτ + δ
|ατ + β

γτ + δ
) = Ad(cg(z|τ))(∆̄(z|τ)) +

γ

γz + δ

n∑

i=1

zi Ad(cg(z|τ))(K̄i(z|τ))

+ [(
∂

∂τ
+

γ

γτ + δ

n∑

i=1

zi
∂

∂zi
)cg(z|τ)]cg(z|τ)−1, (8)

(flatness) [∂/∂τ − ∆̄(z|τ), ∂/∂zi − K̄i(z|τ)] = 0.
Let us now check the equivariance identity (6) for K̄i(z|τ). The cocycle identity cgg′ (z|τ) =

cg(g
′ ∗ (z|τ))cg′ (z|τ) implies that it suffices to check it when g = S and g = T . When g = S,

this is the identity K̄i(z|τ+1) = K̄i(z|τ), which follows from the identity θ(z|τ+1) = θ(z|τ).
When g = T , we have to check the identity

1

τ
K̄i(

z

τ
| − 1

τ
) = Ad(τde

2π i
τ

(
P

i
zix̄i+X))(K̄i(z|τ)) + 2π i x̄i. (9)

We have

2π i x̄i − Ad(e2π i(
P

i
zix̄i+X))(ȳi/τ)

= −Ad(e2π i(
P

i
zix̄i))(ȳi/τ) (as Ad(e2π i τX)(ȳi/τ) = ȳi/τ + 2π i x̄i)

= − ȳi
τ

− e2π i ad(
P

k zkx̄k) − 1

ad(
∑

k zkx̄k)
([
∑

j

zj x̄j ,
ȳi
τ

]) = − ȳi
τ

− e2π i ad(
P

k zkx̄k) − 1

ad(
∑

k zkx̄k)
(
∑

j|j 6=i

zji
τ
t̄ij)

= − ȳi
τ

−
∑

j|j 6=i

e2π i ad(
P

k zk x̄k) − 1

ad(
∑

k zkx̄k)
(
zji
τ
t̄ij) = − ȳi

τ
−

∑

j|j 6=i

e2π i ad(zij x̄i) − 1

ad(zij x̄i)
(
zji
τ
t̄ij)

= − ȳi
τ

+
∑

j|j 6=i

e2π i ad(zij x̄i) − 1

ad(x̄i)
(
t̄ij
τ

),

therefore

1

τ
(
∑

j

e2π i zij ad x̄i − 1

ad x̄i
(t̄ij) − ȳi) = −Ad(τde

2π i
τ

(
P

i
zix̄i+X))(ȳi) + 2π i x̄i. (10)

We have θ(z/τ | − 1/τ) = (1/τ)e(π i /τ)z2θ(z|τ), therefore

1

τ
k(
z

τ
, x| − 1

τ
) = e2π i zxk(z, τx|τ) +

e2π i zx − 1

xτ
. (11)
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Substituting (z, x) = (zij , ad x̄i) (j 6= i), applying to t̄ij , summing over j and adding up
identity (10), we get

1

τ
(
∑

j|j 6=i

k(
zij
τ
, ad x̄i| −

1

τ
)(t̄ij) − ȳi)

=
∑

j|j 6=i

e2π i zij ad x̄ik(zij , τ ad x̄i|τ)(t̄ij ) − Ad(τde
2π i

τ
(
P

i
zix̄i+X))(ȳi) + 2π i x̄i.

Since e2π i zij ad x̄ik(zij , τ ad x̄i|τ)(t̄ij ) = Ad(τde(2π i /τ)(
P

i
zix̄i+X))

(
k(zij , ad x̄i)(t̄ij)

)
, this im-

plies (9). This ends the proof of (6).
Let us now check the shift identities (7) in ∆̄(z|τ). The first part is immediate; let

us check the last identity. We have k(z + τ, x|τ) = e−2π i xg(z, x|τ) + (e−2π ix − 1)/x,

therefore g(z + τ, x|τ) = e−2π ixg(z, x|τ) − 2π i e−2π ixk(z, x|τ) + 1
x( 1−e−2π i x

x − 2π i e−2π ix).
Substituting (z, x) = (zij , ad x̄i) (j 6= i), applying to t̄ij , summing up and adding up∑

k,l|k,l6=j g(zkl, ad x̄k|τ)(t̄kl), we get

g(z + τδi|τ)

= e−2π i ad x̄i(g(z|τ)) − 2π i e−2π i ad x̄i(K̄i(z|τ) + ȳi) +
∑

j|j 6=i

1

ad x̄i
(
1 − e−2π i ad x̄i

ad x̄i
− 2π i e−2π i ad x̄i)(t̄ij)

= e−2π i ad x̄i(g(z|τ)) − 2π i e−2π i ad x̄i(K̄i(z|τ) + ȳi) − (
1 − e−2π i ad x̄i

ad x̄i
− 2π i e−2π i ad x̄i)(ȳi)

= e−2π i ad x̄i(g(z|τ)) − 2π i e−2π i ad x̄i(K̄i(z|τ)) −
1 − e−2π i ad x̄i

ad x̄i
(ȳi);

on the other hand, we have e−2π i ad x̄i(∆0) = ∆0+
1−e−2π i ad x̄i

ad x̄i
(ȳi) (as [∆0, x̄i] = ȳi), therefore

g(z + δi|τ) − ∆0 = e−2π i ad x̄i(g(z|τ) − ∆0 − 2π i K̄i(z|τ)). Since the δ2n commute with x̄i,
we get ∆̄(z + τδi|τ) = e−2π i ad x̄i(∆̄(z|τ) − K̄i(z|τ)), as wanted.

Let us now check the equivariance identities (8) for ∆̄(z|τ). As above, the cocycle identities
imply that it suffices to check (8) for g = S, T . When g = S, this identity follows from∑

i K̄i(z|τ) = 0. When g = T , it is written

1

τ2
∆̄(

z

τ
| − 1

τ
) = Ad(cT (z|τ))

(
∆̄(z|τ) +

1

τ

∑

i

ziK̄i(z|τ)
)

+
d

τ
− 2π iX. (12)

The modularity identity (11) for k(z, x|τ) implies that

1

τ2
g(
z

τ
, x| − 1

τ
) = e2π i zxg(z, τx|τ) +

2π i z

τ
e2π i zxk(z, τx|τ) +

1 − e2π i zx

τ2x2
+

2π i z

τ2

e2π i zx

x
.

This implies

1

τ2

∑

i<j

g(
zij
τ
, ad x̄i| −

1

τ
)(t̄ij) =

∑

i<j

e2π i zij ad x̄ig(zij , τ ad x̄i|τ)(t̄ij )

+
∑

i<j

2π i

τ
zije

2π i zij ad x̄ik(zij , τ ad x̄i|τ)(t̄ij ) +
∑

i<j

(
1 − e2π i zij ad x̄i

τ2(ad x̄i)2
+

2π i zij
τ2

e2π i zij ad x̄i

ad x̄i
)(t̄ij).

We compute as above
∑

i<j

e2π i zij ad x̄ig(zij , τ ad x̄i|τ)(t̄ij ) = Ad(τde
2πi
τ

(
P

i zix̄i+X))(g(z|τ)),

∑

i<j

2π i

τ
zije

2π i zij ad x̄ik(zij , τ ad x̄i|τ)(t̄ij ) =
∑

i

2π i

τ
zi(

∑

j|j 6=i

e2π i zij ad x̄ik(zij , τ ad x̄i|τ)(t̄ij ))
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(using k(z, x|τ) + k(−z,−x|τ) = 0) and

∑

i<j

e2π i zij ad x̄ik(zij , τ ad x̄i|τ)(t̄ij ) = Ad(τde
2πi
τ

(
P

i
zix̄i+X))(K̄i(z|τ) + ȳi).

Therefore

1

τ2
g(

z

τ
| − 1

τ
) = Ad(cT (z|τ))

(
g(z|τ) +

2π i

τ

∑

i

ziK̄i(z|τ) +
2π i

τ

∑

i

ziȳi

)

+
∑

i<j

(
1 − e2π i zij ad x̄i

τ2(ad x̄i)2
+

2π i zij
τ2

e2π i zij ad x̄i

ad x̄i
)(t̄ij),

which implies

1

τ2
∆̄(

z

τ
| − 1

τ
) = Ad(cT (z|τ))

(
∆̄(z|τ) +

1

τ

∑

i

K̄i(z|τ)
)

+ Ad(cT (z|τ))( 1

τ

∑

i

ziȳi) +
1

2π i

∑

i<j

(
1 − e2π i zij ad x̄i

τ2(ad x̄i)2
+

2π i zij
τ2

e2π i zij ad x̄i

ad x̄i
)(t̄ij)

+
1

2π i

(
Ad(cT (z|τ))(∆ϕ(∗|τ)) −

1

τ2
∆ϕ(∗|−1/τ)

)
.

To prove (12), it then suffices to prove

Ad(cT (z|τ))( 1

τ

∑

i

ziȳi) +
1

2π i

∑

i<j

(
1 − e2π i zij ad x̄i

τ2(ad x̄i)2
+

2π i zij
τ2

e2π i zij ad x̄i

ad x̄i
)(t̄ij)

+
1

2π i

(
Ad(cT (z|τ))(∆ϕ(∗|τ)) −

1

τ2
∆ϕ(∗|−1/τ)

)
=
d

τ
− 2π iX. (13)

We compute

Ad(cT (z|τ))( 1

τ

∑

i

ziȳi) =
1

τ2

∑

i

ziȳi +
2π i

τ

∑

i

zix̄i +
∑

i<j

(− 1

τ2
)zij

e2π i zij ad x̄i − 1

ad x̄i
(t̄ij).

We also have Ad(cT (z|τ))(E2n+2(τ)δ2n) = 1
τ2E2n+2(− 1

τ )δ2n since [δ2n, x̄i] = [δ2n, X ] = 0

and [d, δ2n] = 2nδ2n, and since E2n+2(−1/τ) = τ2n+2E2n+2(τ). This implies

Ad(cT (z|τ))(δϕ(∗|τ)) = δϕ(∗|−1/τ).

We now compute Ad(cT (z|τ))(∆0)−(1/τ2)∆0. We have Ad(cT (z|τ))(∆0) = Ad(e2π i
P

i
zix̄i)◦

Ad(τde(2π i /τ)X)(∆0), and Ad(τde(2π i /τ)X)(∆0) = (1/τ2)∆0 + (2π i /τ)d − (2π i)2X . Now
Ad(e2π i

P

i
zix̄i)(X) = X , Ad(e2π i

P

i
zix̄i)(d) = d− 2π i

∑
i zix̄i. We now compute

Ad(e2π i
P

i
zix̄i)(∆0) = ∆0 +

e2π i
P

i
zi ad x̄i − 1

2π i ad(
∑

i zix̄i)
([2π i

∑

i

zix̄i,∆0])

= ∆0 −
e2π i

P

i zi ad x̄i − 1

ad(
∑

i zix̄i)
(
∑

i

ziȳi) = ∆0 −
∑

i

e2π i
P

j|j 6=i zji ad x̄j − 1

ad(
∑

j|j 6=i zjix̄j)
(ziȳi)

= ∆0 −
∑

i

(
2π i ziȳi +

1

ad(
∑

j|j 6=i zjix̄j)
(
e2π i

P

j|j 6=i
zji ad x̄j − 1

ad(
∑

j|j 6=i zjix̄j)
− 2π i)([

∑

j|j 6=i

zjix̄j , ziȳi])
)

= ∆0 −
∑

i

2π i ziȳi −
∑

i6=j

( 1

ad(x̄j)
(
e2π i zji ad x̄j − 1

ad(zjix̄j)
− 2π i)(zi t̄ij)

)
;
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the last sum decomposes as

∑

i<j

1

ad(x̄j)
(
e2π i zji ad x̄j − 1

ad(zjix̄j)
− 2π i)(zi t̄ij) +

∑

i>j

1

ad(x̄j)
(
e2π i zji ad x̄j − 1

ad(zjix̄j)
− 2π i)(zi t̄ij)

=
∑

i<j

1

ad(x̄j)
(
e2π i zji ad x̄j − 1

ad(zjix̄j)
− 2π i)(zi t̄ij) +

1

ad(x̄i)
(
e2π i zij ad x̄i − 1

ad(zij x̄i)
− 2π i)(zj t̄ij)

=
∑

i<j

1

ad(x̄i)
(
e2π i zij ad x̄i − 1

ad(zij x̄i)
− 2π i)(zji t̄ij),

so

Ad(e2π i
P

i
zix̄i)(∆0) = ∆0 − 2π i

∑

i

ziȳi −
∑

i<j

1

ad(x̄i)
(
e2π i zij ad x̄i − 1

ad(zij x̄i)
− 2π i)(zji t̄ij),

and finally

Ad(cT (z|τ))(∆ϕ(∗|τ)) −
1

τ2
∆ϕ(∗|−1/τ)

= −2π i

τ2

∑

i

ziȳi −
1

τ2

∑

i<j

1

ad(x̄i)
(
e2π i zij ad x̄i − 1

ad(zij x̄i)
− 2π i)(zji t̄ij) +

2π i

τ
(d− 2π i

∑

i

zix̄i) − (2π i)2X,

which implies (13). This proves (12) and therefore (8).
We then prove that flatness identity [∂/∂τ − ∆̄(z|τ), ∂/∂zi − K̄i(z|τ)] = 0. For this, we

will prove that (∂/∂τ)K̄i(z|τ) = (∂/∂τ)∆̄(z|τ), and that [∆̄(z|τ), K̄i(z|τ)] = 0.
Let us first prove

(∂/∂τ)K̄i(z|τ) = (∂/∂zi)∆̄(z|τ). (14)

We have (∂/∂τ)K̄i(z|τ) =
∑
j|j 6=i(∂τk)(zij , ad x̄i|τ)(t̄ij ) and (∂/∂zi)∆̄(z|τ) = (2π i)−1

∑
j|j 6=i

(∂zg)(zij , ad x̄i)(t̄ij) (where ∂τ := ∂/∂τ , ∂z = ∂/∂z) so it suffices to prove the identity
(∂τk)(z, x|τ) = (2π i)−1(∂zg)(z, x|τ), i.e., (∂τk)(z, x|τ) = (2π i)−1(∂z∂xk)(z, x|τ). In this

identity, k(z, x|τ) may be replaced by k̃(z, x|τ) := k(z, x|τ)+1/x = θ(z+x|τ)/(θ(z|τ)θ(x|τ)).
Dividing by k̃(z, x|τ), the wanted identity is rewritten as

2π i
(∂τθ
θ

(z+x|τ)−∂τθ
θ

(z|τ)−∂τθ
θ

(x|τ)
)

= (
θ′

θ
)′(z+x|τ)+

(θ′
θ

(z+x|τ)−θ
′

θ
(z|τ)

)(θ′
θ

(z+x|τ)−θ
′

θ
(x|τ)

)

(recall that f ′(z|τ) = ∂zf(z|τ)), or taking into account the heat equation 4π i(∂τθ/θ)(z|τ) =
(θ′′/θ)(z|τ) − 12π i(∂τη/η)(τ), as follows

2
(θ′
θ

(z|τ)θ
′

θ
(x|τ) − θ′

θ
(x|τ)θ

′

θ
(z + x|τ) − θ′

θ
(z|τ)θ

′

θ
(z + x|τ)

)
(15)

+
θ′′

θ
(z|τ) +

θ′′

θ
(x|τ) +

θ′′

θ
(z + x|τ) − 12π i

∂τη

η
(τ) = 0

Let us prove (15). Denote its l.h.s. by F (z, x|τ). Since θ(z|τ) is odd w.r.t. z, F (z, x|τ) is
invariant under the permutation of z, x,−z−x. The identities (θ′/θ)(z+τ |τ) = (θ′/θ)(z|τ)−
2π i and (θ′′/θ)(z+τ |τ) = (θ′′/θ)(z|τ)−4π i(θ′/θ)(z|τ)+(2π i)2 imply that F (z, x|τ) is elliptic
in z, x (w.r.t. the lattice Λτ ). The possible poles of F (z, x|τ) as a function of z are simple
at z = 0 and z = −x (mod Λτ ), but one checks that F (z, x|τ) is regular at these points, so
it is constant in z. By the S3-symmetry, it is also constant in x, hence it is a function of τ
only: F (z, x|τ) = F (τ).

To compute this function, we compute F (z, 0|τ) = [−2(θ′/θ)′ − 2(θ′/θ)2 + 2θ′′/θ](z|τ) +
(θ′′/θ)(0|τ) − 12π i(∂τη/θ)(τ), hence F (τ) = (θ′′/θ)(0|τ) − 12π i(∂τη/η)(τ). The above heat
equation then implies that F (τ) = 4π i(∂τθ/θ)(0|τ). Now θ′(0|τ) = 1 implies that θ(z|τ) has
the expansion θ(z|τ) = z +

∑
n≥2 an(τ)z

n as z → 0, which implies (∂τθ/θ)(0|τ) = 0. So

F (τ) = 0, which implies (15) and therefore (14).
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We now prove

[∆̄(z|τ), K̄i(z|τ)] = 0. (16)

Since τ is constant in what follows, we will write k(z, x), g(z, x), ϕ instead of k(z, x|τ),
g(z, x|τ), ϕ(∗|τ). For i 6= j, let us set gij := g(zij , ad x̄i)(t̄ij ). Since g(z, x|τ) = g(−z,−x|τ),
we have gij = gji. Recall that K̄ij = k(zij , ad x̄i)(tij).

We have

2π i[∆̄(z|τ), K̄i(z|τ)] = [−∆ϕ +
∑

i,j|i<j

gij ,−ȳi +
∑

j|j 6=i

K̄ij ] (17)

= [∆ϕ, ȳi] +
∑

j|j 6=i

(
− [∆ϕ, K̄ij ] + [ȳi, gij ] + [gij , K̄ij ]

)

+
∑

j,k|j 6=i,k 6=i,j<k

(
[ȳi, gjk] + [gik + gjk, K̄ij ] + [gij + gjk , K̄ik]

)
.

One computes

[∆ϕ, ȳi] =
∑

α

[fα(ad x̄i)(t̄ij), gα(− ad x̄i)(t̄ij)], where
∑

α

fα(u)gα(v) =
1

2

ϕ(u) − ϕ(v)

u− v
.

(18)

If f(x) ∈ C[[x]], then

[∆0, f(ad x̄i)(t̄ij)] − [ȳi, f
′(ad x̄i)(t̄ij)] =

∑

α

[hα(ad x̄i)(t̄ij), kα(ad x̄i)(t̄ij)]

+
∑

k|k 6=i,j

f(ad x̄i) − f(− ad x̄j) − f ′(− ad x̄j)(ad x̄i + ad x̄j)

(ad x̄i + ad x̄j)2
([t̄ij , t̄ik]),

where
∑

α

hα(u)kα(v) =
1

2

( 1

v2

(
f(u+ v) − f(u) − vf ′(u)

)
− 1

u2

(
f(u+ v) − f(v) − uf ′(v)

))
.

Since g(z, x) = kx(z, x), we get

− [∆0, K̄ij ] + [ȳi, gij ] = −
∑

α

[f ijα (ad x̄i)(t̄ij), g
ij
α (ad x̄i)(t̄ij)] (19)

+
∑

k|k 6=i,j

k(zij , ad x̄i) − k(zij ,− ad x̄j) − (ad x̄i + ad x̄j)kx(zij ,− ad x̄j)

(ad x̄i + ad x̄j)2
([t̄ij , t̄jk ]),

where
∑

α

f ijα (u)gijα (v) =
1

2

( 1

v2

(
k(zij , u+v)−k(zij , u)−vkx(zij , u)

)
− 1

u2

(
k(zij , u+v)−k(zij , v)−ukx(zij , v)

))
.

For f(x) ∈ C[[x]], we have

[δϕ, f(ad x̄i)(t̄ij)] =
∑

α

[lα(ad x̄i)(t̄ij),mα(ad x̄i)(t̄ij)], where
∑

α

lα(u)mα(v) = f(u+v)ϕ(v),

therefore

− [δϕ, K̄ij ] = −
∑

α

[lijα (ad x̄i)(t̄ij),m
ij
α (ad x̄i)(t̄ij)], where

∑

α

lijα (u)mij
α (v) = k(zij , u+ v)ϕ(v).

(20)

For j, k 6= i and j < k, we have

[ȳi, gjk ]+[gik+gjk , K̄ij ]+[gij+gjk, K̄ik] = [ȳi, gjk]−[gki, K̄ji]−[gji, K̄ki]+[gjk, K̄ij ]+[gjk , K̄ik],



20 DAMIEN CALAQUE, BENJAMIN ENRIQUEZ, AND PAVEL ETINGOF

and since for any f(x) ∈ C[[x]], [ȳi, f(ad x̄i)(t̄jk)] = − f(ad x̄j)−f(− ad x̄k)
ad x̄j+ad x̄k

([t̄ij , t̄jk]), we get

[ȳi, gjk ] + [gik + gjk, K̄ij ] + [gij + gjk, K̄ik] (21)

=
(
− g(zjk, ad x̄j) − g(zjk ,− ad x̄k)

ad x̄j + ad x̄k
− g(zki, ad x̄k)k(zji, ad x̄j) + g(zji, ad x̄j)k(zki, ad x̄k)

− g(zkj , ad x̄k)k(zij , ad x̄i) + g(zjk, ad x̄j)k(zik, ad x̄i)
)
([t̄ij , t̄jk ]).

Summing up (18), (19), (20) and (21), (17) gives

2π i[∆̄(z|τ), K̄i(z|τ)]
=

∑

j|j 6=i

∑

α

[F ijα (ad x̄i)(t̄ij), G
ij
α (ad x̄i)(t̄ij)] +

∑

j,k|j 6=i,k 6=i

H(zij , zik,− ad x̄j ,− ad x̄k)([tij , tjk ]),

where
∑

α F
ij
α (u)Gijα (v) = L(zij , u, v),

L(z, u, v) =
1

2

ϕ(u) − ϕ(v)

u+ v
+

1

2
k(z, u+ v)(ϕ(u) − ϕ(v)) +

1

2
(g(z, u)k(z, v)− k(z, u)g(z, v))

− 1

2

( 1

v2

(
k(z, u+ v) − k(z, u) − vkx(z, u)

)
− 1

u2

(
k(z, u+ v) − k(z, v) − ukx(z, v)

))

and

H(z, z′, u, v) =
1

v2

(
k(z, u+ v) − k(z, u) − vkx(z, u)

)
− 1

u2

(
k(z′, u+ v) − k(z′, v) − ukx(z

′, v)
)

+
1

u+ v

(
g(z′ − z,−u)− g(z′ − z, v)

)
− g(−z′,−v)k(−z,−u) + g(−z,−u)k(−z′,−v)

− g(z − z′,−v)k(z, u+ v) + g(z′ − z,−u)k(z′, u+ v).

Explicit computation shows that H(z, z′, u, v) = 0, which implies that L(z, u, v) = 0 since
L(z, u, v) = − 1

2H(z, z, u, v). This proves (16). �

Remark 3.7. Define ∆(z|τ) by the same formula as ∆̄(z|τ), replacing x̄i, ȳi by xi, yi. Then
d−∆(z|τ) d τ − ∑

iKi(z|τ) d zi is flat. This can be interpreted as follows.

LetN+ ⊂ SL2(C) be the connected subgroup with Lie algebra C∆0. Set Ñn := exp((t1,no
d+)∧) o N+, Nn := exp((̄t1,n o d+)∧) oN+ and G̃n := exp((t1,n o d+)∧) o SL2(C). Then
we have a diagram of groups

Ñn → Nn

↓ ↓
G̃n → Gn

The trivial Nn-bundle on (H×Cn)−Diagn with flat connection d−∆̄(z|τ) d τ−∑
i K̄i(z|τ) d zi

admits a reduction to Ñn, where the bundle is again trivial and the connection is d−∆(z|τ) d τ−∑
iKi(z|τ) d zi.
((Z2)2 × C) o SL2(Z) contains the subgroups (Zn)2, (Zn)2 × C, (Zn)2 o SL2(Z). We

denote the corresponding quotients of (Cn × H) − Diagn by C(n), C̄(n), M̃1,n. These fit in
the diagram

C̃(n) → C(n)
↓ ↓

M̃1,n → M1,n

The pair (Pn,∇Pn
) can be pulled back to Gn-bundles over these covers of M1,n. These

pull-backs admit G-structures, where G is the corresponding group in the above diagram of
groups.

We have natural projections C(n) → H, C̄(n) → H. The fibers of τ ∈ H are respectively
C(Eτ , n) and C̄(Eτ , n). The pair (Pn,∇n) can be pulled back to C(Eτ , n) and C̄(Eτ , n);
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these pull-backs admit G-structures, where G = exp(t1,n) and exp(̄t1,n), which coincide with
(Pn,τ ,∇n,τ ) and (P̄n,τ , ∇̄n,τ ).

3.3. Bundle with flat connection over M1,[n]. The semidirect product ((Zn)2 × C) o
(SL2(C)×Sn) acts on (Cn×H)−Diagn as follows: the action of ((Zn)2 ×C) o SL2(C) is as
above and the action of Sn is σ ∗ (z1, ..., zn, τ) := (zσ−1(1), ..., zσ−1(n), τ). The quotient then
identifies with M1,[n].

We will define a principal GnoSn-bundle with a flat connection (P[n],∇P[n]
) over M1,[n].

Proposition 3.8. There exists a unique principal Gn o Sn-bundle P[n] over M1,[n], such

that a section of U ⊂ M1,[n] is a function f : π̃−1(U) → GnoSn, satisfying the conditions of
Proposition 3.4 as well as f(σz|τ) = σf(z|τ) for σ ∈ Sn (here π̃ : (Cn×H)−Diagn → M1,[n]

is the canonical projection).

Proof. One checks that σcg̃(z|τ)σ−1 = cσg̃σ−1 (σ−1
z), where g̃ ∈ ((Zn)2 × C) o SL2(Z),

σ ∈ Sn. It follows that there is a unique cocycle c(g̃,σ) : Cn × H → Gn o Sn such that
c(g̃,1) = cg̃ and c(1,σ)(z|τ) = σ. �

Theorem 3.9. There is a unique flat connection ∇P[n]
on P[n], whose pull-back to (Cn ×

H)−Diagn is the connection d−∆̄(z|τ) d τ −∑
i K̄i(z|τ) d zi on the trivial Gn oSn-bundle.

Proof. Taking into account Theorem 3.6, it remains to show that this connection is Sn-
equivariant. We have already mentioned that

∑
i K̄i(z|τ) d zi is equivariant; ∆̄(z|τ) is also

checked to be equivariant. �

4. The monodromy morphisms Γ1,[n] → Gn o Sn

Let Γ1,[n] be the mapping class group of genus 1 surfaces with n unordered marked points.
It can be viewed as the fundamental group π1(M1,[n], ∗), where ∗ is a base point at infinity
which will be specified later. The flat connection on M1,[n] introduced above gives rise to
morphisms γn : Γ1,[n] → Gn o Sn, which we now study. This study in divided in two parts:
in the first, analytic part, we show that γn can be obtained from γ1 and γ2, and show that
the restriction of γn to B1,n can be expressed in terms of the KZ associator only. In the

second part, we show that morphisms B1,n → exp(̂̄t1,n)oSn can be constructed algebraically
using an arbitrary associator. Finally, we introduce the notion of an elliptic structure over
a quasi-bialgebra.

4.1. The solution F (n)(z|τ). The elliptic KZB system is now

(∂/∂zi)F (z|τ) = K̄i(z|τ)F (z|τ), (∂/∂τ)F (z|τ) = ∆̄(z|τ)F (z|τ),
where F (z|τ) is a function (Cn × H) − Diagn ⊃ U → Gn o Sn invariant under translation
by C(

∑
i δi). Let Dn := {(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 < ... < an <

a1 + 1, b1 < b2 < ... < bn < b1 + 1}. Then Dn ⊂ (Cn × H) − Diagn is simply connected
and invariant under C(

∑
i δi). A solution of the elliptic KZB system on this domain is then

unique, up to right multiplication by a constant. We now determine a particular solution
F (n)(z|τ).

Let us study the elliptic KZB system in the region zij � 1, τ → i∞. Then K̄i(z|τ) =∑
j|j 6=i t̄ij/(zi − zj) +O(1).

We now compute the expansion of ∆̄(z|τ). The heat equation for ϑ implies the expansion
ϑ(x|τ) = η(τ)3

(
x + 2π i∂τ log η(τ)x3 + O(x5)

)
, so θ(x|τ) = x + 2π i∂τ log η(τ)x3 + O(x5),

hence

g(0, x|τ) = (
θ′

θ
)′(x|τ) +

1

x2
= 4π i ∂τ log η(τ) +O(x) = −(π2/3)E2(τ) +O(x)
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since E2(τ) = 24
2π i∂τ log η(τ). We have g(0, x|τ) = g(0, 0|τ) − ϕ(x|τ), so

g(0, x|τ) = −
∑

k≥0

a2kx
2kE2k+2(τ),

where a0 = π2/3. Then

∆̄(z|τ) = − 1

2π i

(
∆0 +

∑

k≥0

a2kE2k+2(τ)
(
δ2k +

∑

i,j|i<j

(ad x̄i)
2k(t̄ij)

))
+ o(1)

for zij � 1 and any τ ∈ H. Since we have an expansion E2k(τ) = 1 +
∑

l>0 akle
2π i lτ as

τ → i∞, and using Proposition A.3 with un = zn1, un−1 = zn−1,1/zn1,..., u2 = z21/z31,

u1 = q = e2π i τ , there is a unique solution F (n)(z|τ) with the expansion

F (n)(z|τ) ' z t̄1221 z
t̄13+t̄23
31 ...z

t̄1n+...+t̄n−1,n

n1 exp
(
− τ

2π i

(
∆0 +

∑

k≥0

a2k

(
δ2k +

∑

i<j

(ad x̄i)
2k(t̄ij)

)))

in the region z21 � z31 � ...� zn1 � 1, τ → i∞, (z, τ) ∈ Dn (here zij = zi − zj); here the

sign ' means that any of the ratios of both sides has the form 1+
∑
k>0

∑
i,a1,...,an

ri,a1,...,an

k (u1, ..., un),

where the second sum is finite with ai ≥ 0, i ∈ {1, ..., n}, ri,a1 ,...,an

k (u1, ..., un) has degree k,
and is O(ui(logu1)

a1 ...(log un)
an).

4.2. Presentation of Γ1,[n]. According to [Bi2], Γ1,[n] = {B1,n o S̃L2(Z)}/Z, where S̃L2(Z)

is a central extension 1 → Z → S̃L2(Z) → SL2(Z) → 1; the action α : S̃L2(Z) → Aut(B1,n)

is such that for Z the central element 1 ∈ Z ⊂ S̃L2(Z), αZ(x) = Z ′x(Z ′)−1, where Z ′ is
the image of a generator of the center of PBn (the pure braid group of n points on the

plane) under the natural morphism PBn → B1,n; B1,n o S̃L2(Z) is then B1,n × S̃L2(Z) with
the product (p,A)(p′, A′) = (pαA(p′), AA′); this semidirect product is then factored by its
central subgroup (isomorphic to Z) generated by ((Z ′)−1, Z).

Γ1,[n] is presented explicitly as follows. Generators are σi (i = 1, ..., n − 1), Ai, Bi (i =
1, ..., n), Cjk (1 ≤ j < k ≤ n), Θ and Ψ, and relations are:

σiσi+1σi = σi+1σiσi+1 (i = 1, ..., n− 2), σiσj = σjσi (1 ≤ i < j ≤ n),

σ−1
i Xiσ

−1
i = Xi+1, σiYiσi = Yi+1 (i = 1, ..., n− 1),

(σi, Xj) = (σi, Yj) = 1 (i ∈ {1, ..., n− 1}, j ∈ {1, ..., n}, j 6= i, i+ 1),

σ2
i = Ci,i+1Ci+1,i+2C

−1
i,i+2 (i = 1, ..., n− 1),

(Ai, Aj) = (Bi, Bj) = 1 (any i, j), A1 = B1 = 1,

(Bk, AkA
−1
j ) = (BkB

−1
j , Ak) = Cjk (1 ≤ j < k ≤ n),

(Ai, Cjk) = (Bi, Cjk) = 1 (1 ≤ i ≤ j < k ≤ n),

ΘAiΘ
−1 = B−1

i , ΘBiΘ
−1 = BiAiB

−1
i ,

ΨAiΨ
−1 = Ai, ΨBiΨ

−1 = BiAi, (Θ, σi) = (Ψ, σi) = 1,

(Ψ,Θ2) = 1, (ΘΨ)3 = Θ4 = C12...Cn−1,n.

Here Xi = AiA
−1
i+1, Yi = BiB

−1
i+1 for i = 1, ..., n (with the convention An+1 = Bn+1 =

Ci,n+1 = 1). The relations imply

Cjk = σj,j+1...k...σj+n−k,j+n−k+1...nσj,j+1...n−k+j+1...σk−1,k...n,

where σi,i+1...j = σj−1...σi. Observe that C12, ..., Cn−1,n commute with each other.

The group S̃L2(Z) is presented by generators Θ,Ψ and Z, and relations: Z is central,

Θ4 = (ΘΨ)3 = Z and (Ψ,Θ2) = 1. The morphism S̃L2(Z) → SL2(Z) is Θ 7→
(

0 1
−1 0

)
, Ψ 7→(

1 1
0 1

)
, and the morphism Γ1,[n] → SL2(Z) is given by the same formulas and Ai, Bi, σi 7→ 1.
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The elliptic braid group B1,n is the kernel of Γ1,[n] → SL2(Z); it has the same presentation
as Γ1,[n], except for the omission of the generators Θ,Ψ and the relations involving them.
The “pure” mapping class group Γ1,n is the kernel of Γ1,[n] → Sn, Ai, Bi, Cjk 7→ 1, σi 7→ σi;
it has the same presentation as Γ1,[n], except for the omission of the σi. Finally, recall that

PB1,n is the kernel of Γ1,[n] → SL2(Z) × Sn.

Remark 4.1. The extended mapping class group Γ̃1,n of classes of non necessarily orientation-
preserving self-homeomorphisms of a surface of type (1, n) fits in a split exact sequence

1 → Γ1,n → Γ̃1,n → Z/2Z → 1; it may be viewed as {PB1,n o G̃L2(Z)}/Z; it has the same
presentation as Γ1,n with the additional generator Σ subject to

Σ2 = 1, ΣΘΣ−1 = Θ−1, ΣΨΣ−1 = Ψ−1, ΣAiΣ
−1 = A−1

i , ΣBiΣ
−1 = AiBiA

−1
i .

4.3. The monodromy morphisms γn : Γ1,[n] → GnoSn. Let F (z|τ) be a solution of the
elliptic KZB system defined on Dn.

Recall thatDn := {(z, τ) ∈ Cn×H|zi = ai+biτ, ai, bi ∈ R, a1 < a2 < ... < an < a1+1, b1 <
b2 < ... < bn < b1 + 1}. The domains Hn := {(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 <
a2 < ... < an < a1 + 1} and Dn := {(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, b1 < b2 <
... < bn < b1 + 1} are also simply connected and invariant, and we denote by FH(z|τ) and
F V (z|τ) the prolongations of F (z|τ) to these domains.

Then (z, τ) 7→ FH(z +
∑n

j=i δi|τ) and (z, τ) 7→ e2π i(x̄i+...+x̄n)F V (z + τ(
∑n

j=i δi)|τ) are

solutions of the elliptic KZB system on Hn and Dn respectively. We define AFi , B
F
i ∈ Gn

by

FH(z +

n∑

j=i

δi|τ) = FH(z|τ)AFi , e2π i(x̄i+...+x̄n)F V (z + τ(

n∑

j=i

δi)|τ) = F V (z|τ)BFi .

The action of T−1 =
(

0 1
−1 0

)
is (z, τ) 7→ (−z/τ,−1/τ); this transformation takes Hn to

Vn. Then (z, τ) 7→ cT−1(z|τ)−1F V (−z/τ | − 1/τ) is a solution of the elliptic KZB system
on Hn (recall that cT−1(z|τ)−1 = e2π i(−

P

i zix̄i+τX)(−τ)d = (−τ)de(2π i /τ)(
P

i zix̄i+X)). We
define ΘF by

cT−1(z|τ)−1F V (−z/τ | − 1/τ) = FH(z|τ)ΘF .

The action of S =
(

1 1
0 1

)
is (z, τ) 7→ (z, τ + 1). This transformation takes Hn to itself.

Since cS(z|τ) = 1, the function (z, τ) 7→ FH(z, τ +1) is a solution of the elliptic KZB system
on Hn. We define ΨF by

FH(z|τ + 1) = FH(z|τ)ΨF .

Finally, define σFi by

σiF (σ−1
i z|τ) = F (z|τ)σFi ,

where on the l.h.s. F is extended to the universal cover of (Cn × H) − Diagn (σi exchanges
zi and zi+1, zi+1 passing to the right of zi).

Lemma 4.2. There is a unique morphism Γ1,[n] → G1,n o Sn, taking X to XF , where
X = Ai, Bi,Θ or Ψ.

Proof. This follows from the geometric description of generators of Γ1,[n]: if (z0, τ0) ∈ Dn,

then Ai is the class of the projection of the path [0, 1] 3 t 7→ (z0 + t
∑n

j=i δj , τ0), Bi is the

class of the projection of [0, 1] 3 t 7→ (z0 + tτ
∑n

j=i δj , τ0), Θ is the class of the projection of

any path connecting (z0, τ0) to (−z0/τ0,−1/τ0) contained in Hn, and Ψ is the class of the
projection of any path connecting (z0, τ0) to (z0, τ0 + 1) contained in Hn. �

We will denote by γn : Γ1,[n] → GnoSn the morphism induced by the solution F (n)(z|τ).
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4.4. Expression of γn : Γ1,[n] → Gn o Sn using γ1 and γ2.

Lemma 4.3. There exists a unique Lie algebra morphism d → t̄1,n o d, x 7→ [x], such that
[δ2n] = δ2n +

∑
i<j(ad x̄i)

2n(t̄ij), [X ] = X, [∆0] = ∆0, [d] = d.

It induces a group morphism G1 → Gn, also denoted g 7→ [g].

Lemma 4.4. For each map φ : {1, ...,m} → {1, ..., n}, there exists a Lie algebra morphism
t̄1,n → t̄1,m, x 7→ xφ, defined by (x̄i)

φ :=
∑

i′∈φ−1(i) x̄i′ , (ȳi)
φ :=

∑
i′∈φ−1(i) ȳi′ , (t̄ij)

φ :=∑
i′∈φ−1(i),j′∈φ−1(j) t̄i′j′ .

It induces a group morphism exp(̂̄t1,n) → exp(̂̄t1,m), also denoted g 7→ gφ.

The proofs are immediate. We now recall the definition and properties of the KZ associator
([Dr3]).

If k is a field with char(k) = 0, we let tkn be the k-Lie algebra generated by tij , where
i 6= j ∈ {1, ..., n}, with relations

tji = tij , [tij + tik, tjk ] = 0, [tij , tkl] = 0

for i, j, k, l distinct (in this section, we set tn := tCn). For each partially defined map

{1, ...,m} ⊃ Dφ
φ→ {1, ..., n}, we have a Lie algebra morphism tn → tm, x 7→ xφ, de-

fined by3 (tij)
φ :=

∑
i′∈φ−1(i),j′∈φ−1(j) ti′j′ . We also have morphisms tn → t1,n, tij 7→ t̄ij ,

compatible with the maps x 7→ xφ on both sides.
The KZ associator Φ = Φ(t12, t23) ∈ exp(̂t3) is defined by G0(z) = G1(z)Φ, where Gi :

]0, 1[→ exp(̂t3) are the solutions of G′(z)G(z)−1 = t12/z + t23/(z − 1) with G0(z) ∼ zt12 as
z → 0 and G1(z) ∼ (1− z)t23 as z → 1. The KZ associator satisfies the duality, hexagon and
pentagon equation (37), (38) below (where λ = 2π i).

Lemma 4.5. γ2(A2) and γ2(B2) belong to exp(̂̄t1,2) ⊂ G2.

Proof. If F (z|τ) : H2 → G2 is a solution of the KZB equation for n = 2, then AF2 =
FH(z + δ2|τ)FH (z|τ)−1 is expressed as the iterated integral, from z0 ∈ Dn to z0 + δ2, of

K̄2(z|τ) ∈ ˆ̄t1,2, hence AF2 ∈ exp(̂̄t1,2). Since γ2(A2) is a conjugate of AF2 , it belongs to

exp(̂̄t1,2) as exp(̂̄t1,2) ⊂ G2 o S2 is normal. One proves similarly that γ2(B2) ∈ exp(̂̄t1,2).
�

Set

Φi := Φ1...i−1,i,i+1...n...Φ1...n−2,n−1,n ∈ exp(̂tn).

We denote by x 7→ {x} the morphism exp(̂tn) → exp(̂̄t1,n) induced by tij 7→ t̄ij .

Proposition 4.6. If n ≥ 2, then

γn(Θ) = [γ1(Θ)]ei
π
2

P

i<j t̄ij , γn(Ψ) = [γ1(Ψ)]ei
π
6

P

i<j t̄ij ,

and if n ≥ 3, then

γn(Ai) = {Φi}−1γ2(A2)
1...i−1,i...n{Φi}, γn(Bi) = {Φi}−1γ2(B2)

1...i−1,i...n{Φi}, (i = 1, ..., n),

γn(σi) = {Φ1...i−1,i,i+1}−1eiπt̄i,i+1{Φ1...i−1,i,i+1}, (i = 1, ..., n− 1).

Proof. In the region z21 � z31 � ... � zn1 � 1, (z, τ) ∈ Dn, we have

F (n)(z|τ) ' z t̄1221 ...z
t̄1n+...+t̄n−1,n

n1 exp(− a0

2π i
(

∫ τ

i

E2 + C)(
∑

i<j

t̄ij))[F (τ)],

where F (τ) = F (1)(z|τ) for any z. Here C is the constant such that
∫ τ
i E2 + C = τ + o(1)

as τ → i∞.

3We will also use the notation xI1,...,In for xφ, where Ii = φ−1(i).
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We have F (τ + 1) = F (τ)γ1(Ψ), F (−1/τ) = F (τ)γ1(Θ). Since
∑
i<j t̄ij commutes with

the image of x 7→ [x], we get F (n)(z|τ + 1) = F (n)(z|τ) exp(− a0

2π i (
∑
i<j t̄ij))[γ1(Ψ)], so

γn(Ψ) = exp(i
π

6

∑

i<j

t̄ij)[γ1(Ψ)].

In the same region,

cT−1(z|τ)−1F (n)V (−z

τ
| − 1

τ
) '(−τ)de 2π i

τ
(
P

i
zix̄i+X)(−z21/τ)t̄12 ...(−zn1/τ)

t̄1n+...+t̄n−1,n

exp(− a0

2π i
(

∫ −1/τ

i

E2 + C)(
∑

i<j

t̄ij))[F (−1/τ)].

Now E2(−1/τ) = τ2E2(τ) + (6 i /π)τ , so
∫ −1/τ

i E2 −
∫ τ
i E2 = (6 i /π)[log(−1/τ) − log i]

(where log(reiθ) = log r + i θ for θ ∈] − π, π[).
It follows that

cT−1(z|τ)−1F (n)V (−z

τ
| − 1

τ
) ' e2π i(

P

i
zix̄i)z t̄1221 ...z

t̄1n+...+t̄n−1,n

n1 exp(− a0

2π i
(

∫ τ

i

E2 + C)(
∑

i<j

t̄ij))

(exp− a0

2π i

−6 i

π
(log i)(

∑

i<j

t̄ij))[(−τ)de(2π i /τ)XF (−1/τ)]

' z t̄1221 ...z
t̄1n+...+t̄n−1,n

n1 exp(− a0

2π i
(

∫ τ

i

E2 + C)(
∑

i<j

t̄ij))[F (τ)γ1(Θ)] exp(
iπ

2

∑

i<j

t̄ij)

' F (n)H(z|τ)[γ1(Θ)] exp(
i π

2

∑

i<j

t̄ij)

(the second ' follows from
∑

i zix̄i =
∑

i>1 zi1x̄i and zi1 → 0), so

γn(Θ) = [γ1(Θ)] exp(i
π

2

∑

i<j

t̄ij).

Let Gi(z|τ) be the solution of the elliptic KZB system, such that

Gi(z|τ)

= z t̄1221 ...z
t̄12+...+t̄1,i−1

i−1,1 z
t̄i,n+...+t̄n−1,n

n,i ...z
t̄n−1,n

n,n−1 exp
(
− τ

2π i

(
∆0 +

∑

n≥0

a2n

(
δ2n +

∑

i<j

(ad x̄i)
2n(t̄ij)

)))

when z21 � ... � zi−1,1 � 1, zn,n−1 � ... � zn,i � 1, τ → i∞ and (z, τ) ∈ Dn. Then
Gi(z +

∑n
j=i δi|τ) = Gi(z|τ)γ2(A2)

1...i−1,i...n, because in the domain considered K̄i(z|τ) is

close to K̄2(z1, zn|τ)1...i−1,i...n (where K̄2(...) corresponds to the 2-point system); on the
other hand, F (z|τ) = Gi(z|τ){Φi}, which implies the formula for γn(Ai). The formula for
γn(Bi) is proved in the same way. Finally, the behavior of F (n)(z|τ) for z21 � ...� zn1 � 1
is similar to that of a solution of the KZ equations, which implies the formula for γn(σi).

�

Remark 4.7. One checks that the composition SL2(Z) ' Γ1,1 → G1 → SL2(C) is a conju-

gation of the canonical inclusion. It follows that the composition S̃L2(Z) ⊂ Γ1,n → G1 →
SL2(C) is a conjugation of the canonical projection for any n ≥ 1. �

Let us set Ã := γ2(A2), B̃ := γ2(B2). The image of A2A
−1
3 = σ−1

1 A−1
2 σ−1

1 by γ3 yields

Ã12,3 = eiπt̄12{Φ}3,1,2Ã2,13{Φ}2,1,3eiπt̄12 · {Φ}3,2,1Ã1,23{Φ}1,2,3 (22)
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and the image of B2B
−1
3 = σ1B

−1
2 σ1 yields

B̃12,3 = e− iπt̄12{Φ}3,1,2B̃2,13{Φ}2,1,3e− iπt̄12 · {Φ}3,2,1B̃1,23{Φ}1,2,3. (23)

Since (γ3(A2), γ3(A3)) = (γ3(B2), γ3(B3)) = 1, we get

({Φ}3,2,1Ã1,23{Φ}, Ã12,3) = ({Φ}3,2,1B̃1,23{Φ}, B̃12,3) = 1 (24)

(this equation can also be directly derived from (22) and (23) by noting that the l.h.s. is
invariant x 7→ x2,1,3 and commutes with e± iπt̄12). We have for n = 2, C12 = (B2, A2),

so (Ã, B̃) = γ2(C12)
−1. Also γ1(Θ)4 = 1, so γ2(C12) = γ2(Θ)4 = (eiπt̄12/2[γ1(Θ)])4 =

e2π i t̄12 [γ1(Θ)4] = e2π i t̄12 , so

(Ã, B̃) = e−2π i t̄12 . (25)

For n = 3, we have γ3(Θ)4 = e2π i(t̄12+t̄13+t̄23) = γ3(C12C23); since γ3(C12) = (γ3(B2), γ3(A2)) =

{Φ}−1(B̃, Ã)1,23{Φ} = {Φ}−1e2π i(t̄12+t̄13){Φ}, we get γ3(C23) = {Φ}−1e2π i t̄23{Φ}. The im-
age by γ3 of (B3, A3A

−1
2 ) = (B3B

−1
2 , A3) = C23 then gives

(B̃12,3, Ã12,3{Φ}−1(Ã1,23)−1{Φ}) = (B̃12,3{Φ}−1(B̃1,23)−1{Φ}, Ã12,3) = {Φ}−1e2π i t̄23{Φ}
(26)

(applying x 7→ x∅,1,2, this identity implies (25)).

Let us set Θ̃ := γ1(Θ), Ψ̃ := γ1(Θ). Since γ1, γ2 are group morphisms, we have

Θ̃4 = (Θ̃Ψ̃)3 = (Θ̃2, Ψ̃) = 1, (27)

[Θ̃]ei
π
2 t̄12Ã([Θ̃]ei

π
2 t̄12)−1 = B̃−1, [Θ̃]ei

π
2 t̄12B̃([Θ̃]ei

π
2 t̄12)−1 = B̃ÃB̃−1, (28)

[Ψ̃]ei
π
6 t̄12Ã([Ψ̃]ei

π
6 t̄12)−1 = Ã, [Ψ̃]ei

π
6 t̄12B̃([Ψ̃]ei

π
6 t̄12)−1 = B̃Ã. (29)

(27) (resp., (28), (29)) are identities in G1 (resp., G2); in (28), (29), x 7→ [x] is induced by
the map d → d o t̄1,2 defined above.

4.5. Expression of Ψ̃ and of Ã and B̃ in terms of Φ. In this section, we compute Ã
and B̃ in terms of the KZ associator Φ. We also compute Ψ̃.

Recall the definition of Ψ̃. The elliptic KZB system for n = 1 is

2π i ∂τF (τ) +
(
∆0 +

∑

k≥1

a2kE2k+2(τ)δ2k
)
F (τ) = 0.

The solution F (τ) := F (1)(z|τ) (for any z) is determined by F (τ) ' exp(− τ
2π i(∆0 +∑

k≥1 a2kδ2k)). Then Ψ̃ is determined by F (τ + 1) = F (τ)Ψ̃. We have therefore:

Lemma 4.8. Ψ̃ = exp(− 1
2π i (∆0 +

∑
k≥1 a2kδ2k)).

Recall the definition of Ã and B̃. The elliptic KZB system for n = 2 is

∂zF (z|τ) = −
(θ(z + adx|τ) ad x

θ(z|τ)θ(adx|τ)
)
(y) · F (z|τ), (30)

2π i ∂τF (z|τ) +
(
∆0 +

∑

k≥1

a2kE2k+2(τ)δ2k − g(z, adx|τ)(t)
)
F (z|τ) = 0, (31)

where z = z21, x = x̄2 = −x̄1, y = ȳ2 = −ȳ1, t = t̄12 = −[x, y].
The solution F (z|τ) := F (2)(z1, z2|τ) is determined by its behavior F (z|τ) ' zt exp(− τ

2π i

(
∆0+∑

k≥0 a2k(δ2k + (adx)2k)(t)
)
) when z → 0+, τ → i∞. We then have FH(z + 1|τ) =

FH(z|τ)Ã, e2π ixF V (z + τ |τ) = F V (z|τ)B̃.
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Proposition 4.9. We have4

Ã = (2π/ i)tΦ(ỹ, t)e2π i ỹΦ(ỹ, t)−1(i /2π)t = (2π)t i−3t Φ(−ỹ−t, t)e2π i(ỹ+t)Φ(−ỹ−t, t)−1(2π i)−t,

where ỹ = − adx
e2π i ad x−1

(y).

Proof. Ã = FH(z|τ)−1FH(z + 1|τ), which we will compute in the limit τ → i∞. For
this, we will compute F (z|τ) in the limit τ → i∞. In this limit, θ(z|τ) = (1/π) sin(πz)[1 +
O(e2π i τ )] so the system becomes

∂zF (z|τ) =
(
π cotg(πz)t− π cotg(π adx) adx(y) +O(e2π i τ )

)
F (z|τ) (32)

2π i ∂τF (z|τ) +
(
∆0 +

∑

k≥1

a2kδ2k + (
π2

sin2(π adx)
− 1

(adx)2
)(t) +O(e2π i τ )

)
F (z|τ) = 0

where the last equation is

2π i ∂τF (z|τ) +
(
∆0 + a0t+

∑

k≥1

a2k(δ2k + (adx)2k(t)) +O(e2π i τ )
)
F (z|τ) = 0.

We set

∆ := ∆0 +
∑

k≥1

a2kδ2k, so ∆0 + a0t+
∑

k≥1

a2k(δ2k + (adx)2k(t)) = [∆] + a0t.

The compatibility of this system implies that [∆]+a0t commutes with t and (π adx) cotg(π adx)(y) =
iπ(−t− 2ỹ), hence with t and ỹ; actually t commutes with each [δ2k] = δ2k + (adx)2k(t).

Equation (30) can be written ∂zF (z|τ) = (t/z+O(1))F (z|τ). We then let F0(z|τ) be the
solution of (30) in V := {(z, τ)|τ ∈ H, z = a+bτ, a ∈]0, 1[, b ∈ R} such that F0(z|τ) ' zt when
z → 0+, for any τ . This means that the left (equivalently, right) ratio of these quantities
has the form 1 +

∑
k>0(degree k)O(z(log z)f(k)) where f(k) ≥ 0.

We now relate F (z|τ) and F0(z|τ). Let F (τ) = F (1)(z|τ) for any z be the solution of the
KZB system for n = 1, such that F (τ) ' exp(− τ

2π i∆) as τ → i∞ (meaning that the left, or

equivalently right, ratio of these quantities has the form 1 +
∑

k>0(degree k)O(τ f(k)e2π i τ ),
where f(k) ≥ 0).

Lemma 4.10. We have F (z|τ) = F0(z|τ) exp(− a0

2π i(
∫ τ
i
E2 + C)t)[F (τ)], where C is such

that
∫ τ
i E2 + C = τ +O(e2π i τ ).

Proof of Lemma. F (z|τ) = F0(z|τ)X(τ), where X : H → G2 is a map. We have
g(z, adx|τ)(t) = a0E2(τ)t +

∑
k>0 a2kE2k+2(τ)(ad x)2k(t) +O(z) when z → 0+ and for any

τ , so (31) is written as

2π i ∂τF (z|τ) +
(
∆0 + a0E2(τ)t +

∑

k>0

a2kE2k+2(τ)[δ2k ] +O(z)
)
F (z|τ) = 0

where O(z) has degree > 0. Since ∆0, t and the [δ2k] all commute with t, the ratio
F0(z|τ)−1F (z|τ) satisfies

2π i ∂τ (F
−1
0 F (z|τ))+

(
∆0+a0E2(τ)t+

∑

k>0

a2kE2k+2(τ)[δ2k ]+
∑

k>0

(degree k)O(z(log z)h(k))
)
(F−1

0 F (z|τ)) = 0

where h(k) ≥ 0. Since F0(z|τ)−1F (z|τ) = X(τ) is in fact independent on z, we have

2π i ∂τ (X(τ)) +
(
∆0 + a0E2(τ)t+

∑

k>0

a2kE2k+2(τ)[δ2k ]
)
(X(τ)) = 0,

which implies that X(τ) = exp(− a0

2π i (
∫ τ
i
E2 +C)t)[F (τ)]X0 , where X0 is a suitable element

in G2. The asymptotic behavior of F (z|τ) when τ → i∞ and z → 0+ then implies X0 = 1.
�

4By convention, if z ∈ C \ R− and x ∈ n, where n is a pronilpotent Lie algebra, then zx is exp(x log z) ∈
exp(n), where log z is chosen with imaginary part in ] − π, π[.
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End of proof of Proposition. We then have F (z|τ) = F0(z|τ)X(τ), where X(τ) '
exp(− τ

2π i ([∆]+a0t)) as τ → i∞, where this means that the left ratio (equivalently, the right

ratio) of these quantities has the form 1 +
∑

k>0(degree k)O(τx(k)e2π i τ ), where x(k) ≥ 0.

If we set u := e2π i z, then (30) is rewritten as

∂uF̄ (u|τ) = (ỹ/u+ t/(u− 1) +O(e2π i τ ))F̄ (u|τ), (33)

where F̄ (u|τ) = F (z|τ).
Let D′ := {u||u| ≤ 1} − [0, 1] be the complement of the unit interval in the unit disc.

Then we have a bijection {(z, τ)|τ ∈ iR×
+, z = a + τb, a ∈ [0, 1], b ≥ 0} → D′ × i R×

+, given

by (z, τ) 7→ (u, τ) := (e2π i z, τ).
Let F̄a, F̄f be the solutions of (33) in D′ × i R+, such that F̄a(u|τ) ' ((u − 1)/(2π i))t

when u = 1 + i 0+, and for any τ , and F̄f (u|τ) ' eiπt((1− u)/(2π i))t when u = 1− i 0+, for
any τ .

Then one checks that F0(z|τ) = F̄a(e
2π i z|τ), F0(z − 1|τ) = F̄f (e

2π i z |τ) when (z, τ) ∈
{(z, τ)|τ ∈ i R×

+, z = a+ τb|a ∈ [0, 1], b ≥ 0}.
We then define F̄b, ..., F̄e as the solutions of (33) in D′× iR×

+, such that: F̄b(u|τ) ' (1−u)t
as u = 1−0+, =(u) > 0 for any τ , F̄c(u|τ) ' uỹ as u→ 0+, =(u) > 0 for any τ , F̄d(u|τ) ' uỹ

as u→ 0+, =(u) < 0 for any τ , F̄e(u|τ) ' (1 − u)t as u = 1 − 0+, =(u) < 0 for any τ .
Then F̄b = F̄a(−2π i)t, F̄c(−|τ) = F̄b(−|τ)[Φ(ỹ, t)+O(e2π i τ )], F̄d(−|τ) = F̄c(−|τ)e−2π i ỹ,

F̄e(−|τ) = F̄d(−|τ)[Φ(ỹ, t)−1 +O(e2π i τ )], F̄f = F̄e(i /2π)t.
So F̄f (−|τ) = F̄a(−|τ)

(
(−2π i)tΦ(ỹ, t)e−2π i ỹΦ(ỹ, t)−1(i /2π)t+O(e2π i τ )

)
. It follows that

F0(z + 1|τ) = F0(z|τ)A(τ), where

A(τ) = (−2π i)tΦ(ỹ, t)e2π i ỹΦ(ỹ, t)−1(i /2π)t +O(e2π i τ ).

Now

Ã = F (z|τ)−1F (z + 1|τ) = X(τ)−1A(τ)X(τ) =
(
1 +

∑

k>0

(degree k)O(τx(k)e2π i τ )
)−1

exp(
τ

2π i
([∆] + a0t))

(
(−2π i)tΦ(ỹ, t)e2π i ỹΦ(ỹ, t)−1(i /2π)t +O(e2π i τ )

)

exp(− τ

2π i
([∆] + a0t))

(
1 +

∑

k>0

(degree k)O(τx(k)e2π i τ )
)
.

As we have seen, [∆] + a0t commutes with ỹ and t; on the other hand,

exp(
τ

2π i
([∆] + a0t))O(e2π i τ ) exp(− τ

2π i
([∆] + a0t))

= exp(τ ad(
[∆] + a0t

2π i
))(O(e2π i τ )) =

∑

k≥0

(degree k)O(τn1(k))e2π i τ )

where n1(k) ≥ 0, as [∆]+a0t is a sum of terms of positive degree and of ∆0, which is locally
ad-nilpotent.

Then

Ã =
(
1 +

∑

k>0

(degree k)O(τx(k)e2π i τ )
)−1(

(−2π i)tΦ(ỹ, t)e2π i ỹΦ(ỹ, t)−1(i /2π)t

+
∑

k≥0

(degree k)O(τn1(k)e2π i τ )
)(

1 +
∑

k>0

(degree k)O(τx(k)e2π i τ )
)
.

It follows that

Ã = (−2π i)tΦ(ỹ, t)e2π i ỹΦ(ỹ, t)−1(i /2π)t +
∑

k≥0

(degree k)O(τn2(k)e2π i τ ),
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where n2(k) ≥ 0, which implies the first formula for Ã. The second formula either follows
from the first one by using the hexagon identity, or can be obtained repeating the above
argument using a path 1 → +∞ → 1, winding around 1 and ∞. �

We now prove:

Theorem 4.11.

B̃ = (2π i)tΦ(−ỹ − t, t)e2π ixΦ(ỹ, t)−1(2π/ i)−t.

Proof. We first define F0(z|τ) as the solution in V := {a + bτ |a ∈]0, 1[, b ∈ R} of (30)
such that F0(z|τ) ∼ zt as z → 0+. Then there exists B(τ) such that e2π ixF0(z + τ |τ) =
F0(z|τ)B(τ). We compute the asymptotics of B(τ) as τ → i∞.

We define four asymptotic zones (z is assumed to remain on the segment [0, τ ], and τ in
the line i R+): (1) z � 1 � τ , (2) 1 � z � τ , (3) 1 � τ − z � τ , (4) τ − z � 1 � τ .

In the transition (1)-(2), the system takes the form (32), or if we set u := e2π i z, (33).
In the transition (3)-(4), G(z′|τ) := e2π ixF (τ+z′|τ) satisfies (30), so Ḡ(u′|τ) = e2π ixF (τ+

z′|τ) satisfies (33), where u′ = e2π i z′ .
We now compute the form of the system in the transition (2)-(3). We first prove:

Lemma 4.12. Set u := e2π i z, v := e2π i(τ−z). When 0 < =(z) < =(τ), we have |u| < 1,

|v| < 1. When k ≥ 0, (θ(k)/θ)(z|τ) = (− iπ)k +
∑

s,t≥0,s+t>0 a
(k)
st u

svt, where the sum in the

r.h.s. is convergent in the domain |u| < 1, |v| < 1.

Proof. This is clear if k = 0. Set q = uv = e2π i τ . We have θ(z|τ) = u1/2
∏
s>0(1 −

qsu)
∏
s≥0(1 − qsu−1) · (2π i)−1

∏
s>0(1 − qs)−2, so

(θ′/θ)(z|τ) = iπ − 2π i
∑

s>0

qsu/(1 − qsu) + 2π i
∑

s≥0

qsu−1/(1 − qsu−1)

= − iπ − 2π i
∑

s≥0

us+1vs

1 − us+1vs
+ 2π i

∑

s≥0

usvs+1

1 − usvs+1
= − iπ +

∑

s+t>0

astu
svt,

where ast = 2π i if (s, t) = k(r, r + 1), k > 0, r ≥ 0, and ast = −2π i if (s, t) = k(r + 1, r),
k > 0, r ≥ 0. One checks that this series is convergent in the domain |u| < 1, |v| < 1. This
proves the lemma for k = 1.

We then prove the remaining cases by induction, using

θ(k+1)

θ
(z|τ) =

θ(k)

θ
(z|τ)θ

′

θ
(z|τ) +

∂

∂z

θ(k)

θ
(z|τ).

�

Using the expansion

θ(z + x|τ)x
θ(z|τ)θ(x|τ) =

x

θ(x|τ)
∑

k≥0

(θ(k)/θ)(z|τ)x
k

k!

=
πx

sin(πx)
(1 +

∑

n>0

qnPn(x))
( ∑

k≥0

((− iπ)k +
∑

s+t>0

a
(k)
st u

svt)
xk

k!

)

=
πx

sin(πx)
e− iπx +

∑

s+t>0

ast(x)u
svt =

2 iπx

e2 iπx − 1
+

∑

s+t>0

ast(x)u
svt,

the form of the system in the transition (2)-(3) is

∂zF (z|τ) =
(
− 2 iπ adx

e2 iπ adx − 1
(y) +

∑

s,t|s+t>0

astu
svt

)
F (z|τ)

=
(
2 iπỹ +

∑

s,t|s+t>0

astu
svt

)
F (z|τ), (34)
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where each homogeneous part of
∑

s,t astu
svt converges for |u| < 1, |v| < 1.

Lemma 4.13. There exists a solution Fc(z|τ) of (34) defined for 0 < =(z) < =(τ), such
that

Fc(z|τ) = uỹ(1 +
∑

k>0

∑

s≤s(k)

log(u)sfks(u, v))

(logu = iπz, uỹ = e2π i zỹ), where fks(u, v) is an analytic function taking its values in the
homogeneous part of the algebra of degree k, convergent for |u| < 1 and |v| < 1, and vanishing
at (0, 0). This function is uniquely defined up to right multiplication by an analytic function
of the form 1 +

∑
k>0 ak(q) (recall that q = uv), where ak(q) is an analytic function on

{q||q| < 1}, vanishing at q = 0, with values in the degree k part of the algebra.

Proof of Lemma. We set G(z|τ) := u−ỹF (z|τ), so G(z|τ) should satisfy

∂zG(z|τ) = exp(− ad(ỹ) logu){
∑

s+t>0

astu
svt}G(z|τ),

which has the general form

∂zG(z|τ) =
( ∑

k>0

∑

s≤a(k)

log(u)saks(u, v)
)
G(z|τ),

where aks(u, v) is analytic in |u| < 1, |v| < 1 and vanishes at (0, 0). We show that this system
admits a solution of the form 1 +

∑
k>0

∑
s≤s(k) log(u)sfks(u, v), with fks(u, v) analytic in

|u| < 1, |v| < 1, in the degree k part of the algebra, vanishing at (0, 0) for s 6= 0. For this,
we solve inductively (in k) the system of equations

∂z
( ∑

s

(logu)sfks(u, v)
)

=
∑

s′,s′′,k′,k′′|k′+k′′=k

(logu)s
′+s′′ak′s′(u, v)fk′′s′′(u, v).

(35)

Let O be the ring of analytic functions on {(u, v)||u| < 1, |v| < 1} (with values in a finite
dimensional vector space) and m ⊂ O be the subset of functions vanishing at (0, 0). We
have an injection O[X ] → {analytic functions in (u, v), |u| < 1, |v| < 1, u /∈ R−}, given by
f(u, v)Xk 7→ (log u)kf(u, v). The endomorphism ∂

∂z = 2π i(u ∂
∂u − v ∂

∂v ) then corresponds to

the endomorphism of O[X ] given by 2π i( ∂
∂X + u ∂

∂u − v ∂
∂v ). It is surjective, and restricts to

a surjective endomorphism of m[X ]. The latter surjectivity implies that equation (35) can
be solved.

Let us show that the solution G(z|τ) is unique up to right multiplication by functions of q
like in the lemma. The ratio of two solutions is of the form 1+

∑
k>0

∑
s≤s(k) log(u)sfks(u, v)

and is killed by ∂z. Now the kernel of the endomorphism of m[X ] given by 2π i( ∂
∂X + u ∂

∂u −
v ∂
∂v ) is m∗(m1), where m∗(m1) ⊂ m is the set of all functions of the form a(uv), where a is an

analytic function on {q||q| < 1} vanishing at 0. This implies that the ratio of two solutions
is as above. �

End of proof of Theorem. Similarly, there exists a solution Fd(z|τ) of (34) defined in the
same domain, such that

Fd(z|τ) = v−ỹ(1 +
∑

k>0

∑

s≤t(k)

log(v)tgks(u, v)),

where bks(u, v) is as above (and log v = iπ(τ − z), v−ỹ = exp(2π i(z − τ)ỹ)). Fd(z|τ) is
defined up to right multiplication by a function of q as above.

We now study the ratio Fc(z|τ)−1Fd(z|τ). This is a function of τ only, and it has the
form

q−ỹ
(
1 +

∑

k>0

∑

s≤s(k),t≤t(k)

(log u)s(log v)takst(u, v)
)
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where akst(u, v) ∈ m (as v−ỹ(1+
∑
k>0

∑
s≤s(k)(log u)scks(u, v))v

ỹ has the form 1+
∑
k>0

∑
s,t≤t(k)

(logu)s(log v)tdks(u, v), where dks(u, v) ∈ m if cks(u, v) ∈ m). Set log q := logu + log v =
2π i τ , then this ratio can be rewritten q−ỹ{1+

∑
k>0

∑
s≤s(k),t≤t(k)(logu)s(log q)tbkst(u, v)}

where bkst(u, v) ∈ m, and since the product of this ratio with qỹ is killed by ∂z (which
identifies with the endomorphism 2π i( ∂

∂X + u ∂
∂u − v ∂

∂v ) of O[X ]), the ratio is in fact of the
form

F−1
c Fd(z|τ) = qỹ(1 +

∑

k>0

∑

s≤s(k)

(log q)saks(q)),

where aks is analytic in {q||q| < 1}, vanishing at q = 0.
It follows that

F−1
c Fd(z|τ) = e−2π i τỹ(1 +

∑

k>0

(degree k)O(τke−2π i τ )). (36)

In addition to Fc and Fd, which have prescribed behaviors in zones (2) and (3), we define
solutions of (30) in V by prescribing behaviors in the remaining asymptotic zones: Fa(z|τ) '
zt when z → 0+ for any τ ; Fb(z|τ) ' (2πz/ i)t when z → i 0+ for any τ (in particular in zone
(1)); e2π ixFe(z|τ) ' (2π(τ − z)/ i)t when z = τ − i 0+ for any τ ; e2π ixFf (z|τ) ' (z − τ)t

when z = τ + 0+ for any τ (in particular in zone (4)).
Then F0(z|τ) = Fa(z|τ), and e−2π ixF0(z − τ |τ) = Ff (z|τ). We have Fb = Fa(2π/ i)t,

Ff = Fe(2π i)−t.

Let us now compute the ratio between Fb and Fc. Recall that u = e2π i z, v = e2π i(τ−z).
Set F̄ (u, v) := F (z|τ). Using the expansion of θ(z|τ), one shows that (30) has the form

∂uF̄ (u, v) = (
A(u, v)

u
+
B(u, v)

u− 1
)F̄ (u, v),

where A(u, v) is holomorphic in the region |v| < 1/2, |u| < 2, and A(u, 0) = ỹ, B(u, 0) = t.

We have F̄b(u, v) = (1 − u)t(1 +
∑
k

∑
s≤s(k) log(1 − u)kbks(u, v)) and F̄b(u, v) = ut̃(1 +∑

k

∑
s≤s(k) log(u)kaks(u, v)), with aks, bks analytic, and aks(0, v) = bks(1, v) = 0. The ratio

F̄−1
b F̄c is an analytic function of q only, which coincides with Φ(ỹ, t) for q = 0, so it has

the form Φ(ỹ, t) +
∑

k>0 ak(q), where ak(q) has degree k, is analytic in the neighborhood of
q = 0 and vanishes at q = 0. Therefore

Fc(z|τ) = Fb(z|τ)
(
Φ(ỹ, t) +O(e2π i τ )

)
.

In the same way, one proves that

Fe(z|τ) = Fd
(
e−2π ixΦ(−ỹ − t, t)−1 +O(e2π i τ )

)
.

Indeed, let us set Ḡd(u
′, v′) := e2π ixFd(τ + z′|τ), Ḡe(u′, v′) := e2π ixFe(τ + z′|τ), where

u′ = e2π i(τ+z′), v′ = e−2π i z′ , then Ḡd(u
′, v′) ' (v′)−ỹ−te2π ix as (u′, v′) → (0+, 0+) and

Ḡe(u
′, v′) ' (1−v′)t as v′ → 1− for any u′, and both Ḡd and Ḡe are solutions of ∂v′Ḡ(u′, v′) =

[−(ỹ + t)/v′ + t/(v′ − 1) +O(u′)]Ḡ(v′). Therefore Ḡd = Ḡe[Φ(−ỹ − t, t)e2π i x +O(u′)].
Combining these results, we get:

Lemma 4.14.

B(τ) ' (2π i)tΦ(−ỹ − t, t)e2π ixe2 iπτỹΦ(ỹ, t)−1(2π/ i)−t,

in the sense that the left (equivalently, right) ratio of these quantities has the form 1 +∑
k>0(degree k)O(τn(k)e2π i τ ) for n(k) ≥ 0.

Recall that we have proved:

F (z|τ) = F0(z|τ) exp(− a0

2π i
(

∫ τ

i

E2 + C)t)[F (τ)],

where C is such that
∫ τ
i E2 + C = τ +O(e2π i τ ).

Set X(τ) := exp(− a0

2π i (
∫ τ
i
E2 + C)t)[F (τ)].
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When τ → i∞, X(τ) = exp(− τ
2π i([∆] + a0t))(1 +

∑
k>0(degree k)O(τ f(k)e2π i τ )).

Then

B̃ = F (z|τ)−1e2π ixF (z + τ |τ) = X(τ)−1B(τ)X(τ)

= Ad
(
(1 +

∑

k>0

(degree k)O(τ f(k)e2π i τ ))−1 exp(
τ

2π i
([∆] + a0t))

)

((
(2π i)tΦ(−ỹ − t, t)e2π ixe2π i τỹΦ(ỹ, t)−1(2π/ i)−t

)(
1 +

∑

k>0

(degree k)O(τn(k)e2π i τ )
))
,

where Ad(u)(x) = uxu−1.
[∆]+a0t commutes with ỹ and t; assume for a moment that Ad(exp( τ

2π i ([∆]+a0t)))(e
2π ixe2π i τỹ) =

e2π ix (Lemma 4.15 below), then

Ad(exp(
τ

2π i
([∆] + a0t)))

(
(2π i)tΦ(−ỹ − t, t)e2π ixe2π i τỹΦ(ỹ, t)−1(2π/ i)−t

)

= (2π i)tΦ(−ỹ − t, t)e2π ixΦ(ỹ, t)−1(2π/ i)−t.

On the other hand, Ad(exp( τ
2π i ([∆]+a0t)))(1+

∑
k>0(degree k)O(τn(k)e2π i τ )) has the form

1 +
∑

k>0(degree k)O(τn
′(k)e2π i τ ), where n′(k) ≥ 0. It follows that

B̃ =Ad
(
1 +

∑

k>0

(degree k)O(τ f(k)e2π i τ )
)

((
(2π i)tΦ(−ỹ − t, t)e2π i xΦ(ỹ, t)−1(2π/ i)−t

)(
1 +

∑

k>0

(degree k)O(τn
′(k)e2π i τ )

))
;

now

Ad
(
(2π i)tΦ(−ỹ − t, t)e2π ixΦ(ỹ, t)−1(2π/ i)−t

)−1

(1 +
∑

k>0

(degree k)O(τ f(k)e2π i τ ))

= 1 +
∑

k>0

(degree k)O(τ f(k)e2π i τ ),

so

B̃ =
(
(2π i)tΦ(−ỹ − t, t)e2π ixΦ(ỹ, t)−1(2π/ i)−t

)
(1 +

∑

k>0

(degree k)O(τ f(k)e2π i τ ))

(1 +
∑

k>0

(degree k)O(τn
′(k)e2π i τ ))

=
(
(2π i)tΦ(−ỹ − t, t)e2π ixΦ(ỹ, t)−1(2π/ i)−t

)
(1 +

∑

k>0

(degree k)O(τn
′′(k)e2π i τ ))

for n′′(k) ≥ 0. Since B̃ is constant w.r.t. τ , this implies

B̃ = (2π i)tΦ(−ỹ − t, t)e2π ixΦ(ỹ, t)−1(2π/ i)−t,

as claimed.
We now prove the conjugation used above.

Lemma 4.15. For any τ ∈ C, we have

e
τ

2π i ([∆]+a0t)e2π ixe−
τ

2π i ([∆]+a0t)e2 iπτỹ = e2π ix.

Proof. We have [∆] + a0t = ∆0 +
∑
k≥0 a2k(δ2k + (adx)2k(t)) (where δ0 = 0), so [[∆] +

a0t, x] = y − ∑
k≥0 a2k(adx)2k+1(t). Recall that

∑

k≥0

a2ku
2k =

π2

sin2(πu)
− 1

u2
,
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then [[∆] + a0t, x] = y − (adx)( π2

sin2(π ad x) − 1
(adx)2 )(t). So

e−2π ix(
1

2π i
([∆] + a0t))e

2π ix =
1

2π i
([∆] + a0t) +

e−2π i adx − 1

adx
([x,

1

2π i
([∆] + a0t)])

=
1

2π i
([∆] + a0t) −

1

2π i

e−2π i adx − 1

adx

(
y − (adx)(

π2

sin2(π adx)
− 1

(adx)2
)(t)

)
.

We have

− 1

2π i

e−2π i adx − 1

adx

(
y − (adx)(

π2

sin2(π adx)
− 1

(adx)2
)(t)

)
= −2π i ỹ,

therefore we get

e−2π i x(
1

2π i
([∆] + a0t))e

2π ix =
1

2π i
([∆] + a0t) − 2π i ỹ.

Multiplying by τ , taking the exponential, and using the fact that [∆] + a0t commutes with
ỹ, we get e−2π ixe

τ
2π i ([∆]+a0t)e2π ix = e

τ
2π i ([∆]+a0t)e−2π i τỹ, which proves the lemma. �

This ends the proof of Theorem 4.11. �

5. Construction of morphisms Γ1,[n] → Gn o Sn

In this section, we fix a field k of characteristic zero. We denote the algebras t̄k1,n, tkn
simply by t̄1,n, tn. The above group Gn is the set of C-points of a group scheme defined over
Q, and we now again denote by Gn the set of its k-points.

5.1. Construction of morphisms Γ1,[n] → GnoSn from a 5-uple (Φλ, Ã, B̃, Θ̃, Ψ̃). Let

Φλ be a λ-associator defined over k. This means that Φλ ∈ exp(̂t3) (the Lie algebras are
now over k),

Φ3,2,1
λ = Φ−1

λ , Φ2,3,4
λ Φ1,23,4

λ Φ1,2,3
λ = Φ1,2,34

λ Φ12,3,4
λ , (37)

eλt31/2Φ2,3,1
λ eλt23/2Φλe

λt12/2Φ3,1,2
λ = eλ(t12+t23+t13)/2. (38)

E.g., the KZ associator is a 2π i-associator over C.

Proposition 5.1. If Θ̃, Ψ̃ ∈ G1 and Ã, B̃ ∈ exp(̂̄t1,2) satisfy: the “Γ1,1 identities” (27), the
“Γ1,2 identities” (28), (29), and the “Γ1,[3] identities” (23), (22), (26) (with 2π i replaced by

λ), as well as Ã∅,1 = Ã1,∅ = B̃∅,1 = B̃1,∅ = 1, then one defines a morphism Γ1,[n] → GnoSn
by

Θ 7→ [Θ̃]ei
π
2

P

i<j
t̄ij , Ψ 7→ [Ψ̃]ei

π
6

P

i<j
t̄ij , σi 7→ {Φ1...i−1,i,i+1

λ }−1eλt̄i,i+1/2(i, i+1){Φ1...i−1,i,i+1
λ },

Cjk 7→ {Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ (eλt12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j},

Ai 7→ {Φλ,i}−1Ã1...i−1,i...n{Φλ,i}, Bi 7→ {Φλ,i}−1B̃1...i−1,i...n{Φλ,i},
where Φλ,i = Φ1...i−1,i,i+1...n

λ ...Φ1...n−2,n−1,n
λ .

According to Section 4.4, the representations γn are obtained by the procedure described
in this proposition from the KZ associator, Θ̃, Ψ̃ arising from γ1, and Ã, B̃ arising from γ2.

Note also that the analogue of (22) is equivalent to the pair of equations

eλt̄12/2Ã2,1eλt̄12/2Ã = 1, (eλt̄12/2Ã)3,12Φ3,1,2
λ (eλt̄12/2Ã)2,31Φ2,3,1

λ (eλt̄12/2Ã)1,23Φ1,2,3
λ = 1,

and similarly (23) is equivalent to the same equations, with Ã, λ replaced by B̃,−λ.
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Remark 5.2. One can prove that it Φλ satisfies only the pentagon equation and Θ̃, Ψ̃, Ã, B̃
satisfy the the “Γ1,1 identities” (27), the “Γ1,2 identities” (28), (29), and the “Γ1,3 identities”
(24), (26), then the above formulas (removing σi) define a morphism Γ1,n → Gn. In the same

way, if Φλ satisfies all the associator conditions and Ã, B̃ satisfy the Γ1,[3] identities (22), (23),

(26), then the above formulas (removing Θ,Ψ) define a morphism B1,n → exp(̂̄t1,n) o Sn.

Proof. Let us prove that the identity (Ai, Aj) = 1 (i < j) is preserved. Applying
x 7→ x1...i−1,i...j−1,j...n to the first identity of (24), we get

(Ã1...i−1,i...n,Φ1...,i...j−1,...n
λ Ã1...j−1,j...n(Φ−1

λ )1...,i...j−1,...n) = 1.

The pentagon identity implies

Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ = (Φi,i+1,...n
λ ...Φi...,j−1,..,n

λ )Φ1...,i...j−1,...n
λ (Φ1...,i,...j−1

λ ...Φ1...,j−2,j−1
λ ),

(39)

so the above identity is rewritten
(
Φi,i+1,...n
λ ...Φi...,j−1,..,n

λ Ã1...i−1,i...n(Φi,i+1,...n
λ ...Φi...,j−1,..,n

λ )−1,Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ

(Φ1...,i,...j−1
λ ...Φ1...,j−2,...j−1

λ )−1Ã1...j−1,j...nΦ1...,i,...j−1
λ ...Φ1...,j−2,...j−1

λ (Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ )−1
)

= 1.

Now Φi,i+1,...n
λ , ...,Φi...,j−1,..,n

λ commute with Ã1...i−1,i...n, and Φ1...,i,...j−1
λ , ...,Φ1...,j−2,...j−1

λ

commute with Φ1...,i,...j−1
λ ...Φ1...,j−2,...j−1

λ , which implies

(Ã1...i−1,i...n,Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ Ã1...j−1,j...n(Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ )−1) = 1,

so that (Ai, Aj) = 1 is preserved. In the same way, one shows that (Bi, Bj) = 1 is preserved.

Let us show that (Bk , AkA
−1
j ) = Cjk is preserved (if j ≤ k).

(Φ−1
λ,kB̃

1...k−1,k...nΦλ,k,Φ
−1
λ,kÃ

1...k−1,k...nΦλ,kΦ
−1
λ,j(Ã

1...j−1,j...n)−1Φλ,j)

= Φ−1
λ,j

(
(Φ1...,j,...n

λ ...Φ1...,k−1,...n
λ )B̃1...k−1,k...n(Φ1...,j,...n

λ ...Φ1...,k−1,...n
λ )−1,

(Φ1...,j,...n
λ ...Φ1...,k−1,...n

λ )Ã1...k−1,k...n(Φ1...,j,...n
λ ...Φ1...,k−1,...n

λ )−1(Ã1...j−1,j...n)−1
)
Φλ,j

= Φ−1
λ,j

(
Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,j...k−1,...n
λ B̃1...k−1,k...n(Φj,j+1,...n

λ ...Φj...,k−1,...n
λ Φ1...,j...k−1,...n

λ )−1,

Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,j...k−1,...n
λ Ã1...k−1,k...n(Φj,j+1,...n

λ ...Φj...,k−1,...n
λ Φ1...,j...k−1,...n

λ )−1

(Ã1...j−1,j...n)−1
)
Φλ,j = Φ−1

λ,jΦ
j,j+1,...n
λ ...Φj...,k−1,...n

λ

(
Φ1...,j...k−1,...n
λ B̃1...k−1,k...n(Φ1...,j...k−1,...n

λ )−1,

Φ1...,j...k−1,...n
λ Ã1...k−1,k...n(Φ1...,j...k−1,...n

λ )−1(Ã1...j−1,j...n)−1
)
(Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1Φλ,j

= Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ {Φ(B̃12,3, Ã12,3Φ−1
λ (Ã1,23)−1Φλ)Φ

−1
λ }1...,j...k−1,...n

(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j

= Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ (e2π i t̄12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j ,

where the second identity uses (39) and the invariance of Φλ, the third identity uses the fact

that Φj,j+1,...n
λ , ...,Φj...,k−1,...n

λ commute with Ã1...j−1,j..n (again by the invariance of Φλ),

and the last identity uses (26). So (Bk, AkA
−1
j ) = Cjk is preserved. One shows similarly

that
(
Φ−1
λ,kB̃

1...k−1,k...nΦλ,kΦ
−1
λ,j(B̃

1...j−1,j...n)−1Φλ,j ,Φ
−1
λ,kÃ

1...k−1,k...nΦλ,k
)

= Φ−1
j Φj,j+1,...n...Φj...,k−1,...n(e2π i t̄12)j...k−1,k...n(Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1Φλ,j ,

so that (BkB
−1
j , Ak) = Cjk is preserved.
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Let us show that (Ai, Cjk) = 1 (i ≤ j ≤ k) is preserved. We have

(
Φ−1
λ,iÃ

1...i−1,i...nΦλ,i,Φ
−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ (e2π i t̄12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j
)

= Φ−1
λ,i

(
Ã1...i−1,i...n,Φ1...,i,...n

λ ...Φ1...,j−1,...n
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ (e2π i t̄12)j...k−1,k...n

(Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1
)
Φλ,i

= Φ−1
λ,i

(
Ã1...i−1,i...n,Φi,i+1,...n

λ ...Φi...,j−1,...n
λ Φ1...,i...j−1,...n

λ Φ1...,i,...j−1
λ ...Φ1...,j−2,j−1

λ

Φj,j+1,...n
λ ...Φj...,k−1,...n

λ (e2π i t̄12)j...k−1,k...n

(Φi,i+1,...n
λ ...Φi...,j−1,...n

λ Φ1...,i...j−1,...n
λ Φ1...,i,...j−1

λ ...Φ1...,j−2,j−1
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ

)−1
)Φλ,i

= Φ−1
λ,i

(
Ã1...i−1,i...n,Φi,i+1,...n

λ ...Φi...,j−1,...n
λ Φ1...,i...j−1,...n

λ Φj,j+1,...n
λ ...Φj...,k−1,...n

λ

(e2π i t̄12)j...k−1,k...n(Φi,i+1,...n
λ ...Φi...,j−1,...n

λ Φ1...,i...j−1,...n
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1

)
Φλ,i

= Φ−1
λ,iΦ

i,i+1,...n
λ ...Φi...,j−1,...n

λ

(
Ã1...i−1,i...n,Φ1...,i...j−1,...n

λ Φj,j+1,...n
λ ...Φj...,k−1,...n

λ

(e2π i t̄12)j...k−1,k...n(Φ1...,i...j−1,...n
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1

)
(Φi,i+1,...n

λ ...Φi...,j−1,...n
λ )−1Φλ,i

= Φ−1
λ,iΦ

i,i+1,...n
λ ...Φi...,j−1,...n

λ (Ã1...i−1,i...n,Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,i...j−1,...n
λ

(e2π i t̄12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,i...j−1,...n
λ )−1)(Φi,i+1,...n

λ ...Φi...,j−1,...n
λ )−1Φλ,i

= 1,

where the second equality follows from the generalized pentagon identity (39), the third

equality follows from the fact that Φ1...,i,...j−1
λ , ..., Φ1...,j−2,j−1

λ commute with (e2π i t̄12)j...k−1,k...n,

Φj,j+1,...n
λ , ..., Φj...,k−1,...n

λ , the fourth equality follows from the fact that Φi,i+1,...n
λ , ...,

Φi...,j−1,...n
λ commute with Ã1...i−1,i...n (as Φλ is invariant), the last equality follows from

the fact that Φ1...,i...j−1,j...n
λ commutes with Φj,j+1,...n

λ , ..., Φj...,k−1,...n
λ (again as Φλ is invari-

ant) and with (e2π i t̄12)j...k−1,k...n (as t34 commutes with the image of t3 → t4, x 7→ x1,2,34).
Therefore (Ai, Cjk) = 1 is preserved. One shows similarly that (Bi, Cjk) = 1 (i ≤ j ≤ k),

Xi+1 = σiXiσi and Yi+1 = σ−1
i Yiσ

−1
i are preserved.

The fact that the relations ΘAiΘ
−1 = B−1

i , ΘBiΘ
−1 = BiAiB

−1
i , ΨAiΨ

−1 = Ai,
ΨBiΨ

−1 = BiAi, are preserved follows from the identities (28), (29) and that if we de-
note by x 7→ [x]n the morphism d → d o t̄1,n defined above, then: (a) Φi commutes with∑

i,j|i<j t̄ij and with the image of d → d o t̄1,n, x 7→ [x]n; (b) for x ∈ d, y ∈ t̄1,2, we have

[[x]n, y
1...i−1,i...n] = [[x]2, y]

1...i−1,i...n. Let us prove (a): the first part follows from the fact
that Φ commutes with t12 + t13 + t23; the second part follows from the fact that X, d,∆0 and
δ2n+

∑
k<l(ad x̄k)

2n(t̄kl) commute with t̄ij for any i < j. Let us prove (b): the identity holds
for [x, x′] whenever it holds for x and for x′, so it suffices to check it for x a generator of d;
x being such a generator, both sides are (as functions of y) derivations t̄1,2 → t̄1,n w.r.t. the
morphism t̄1,2 → t̄1,n, y 7→ y1...i−1,i...n, so it suffices to check the identity for y a generator
of t̄1,2. The identity is obvious if x ∈ {∆0, d,X} and y ∈ {x̄1, ȳ1, x̄2, ȳ2}. If x = δ2s and
y = x̄1, then the identity holds because we have

[δ2s + (ad x̄1)
2s(t̄12), x̄1]

1...i−1,i...n = −
(
(ad x̄1)

2s+1(t̄12)
)1...i−1,i...n

= −(ad(

i−1∑

u′=1

x̄u′))2s+1(
∑

1≤u<i≤v≤n

t̄uv) = −
∑

1≤u<i≤v≤n

(ad x̄u)
2s+1(t̄uv),
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while

[δ2s +
∑

1≤u<v≤n

(ad x̄u)
2s(t̄uv),

i−1∑

u′=1

x̄u′ ] = [
∑

1≤u<i≤v≤n

(ad x̄u)
2s(t̄uv),

i−1∑

u′=1

x̄u′ ]

= −
∑

1≤u<i≤v≤n

(ad x̄u)
2s+1(t̄uv)

where the first equality follows from the fact that (ad x̄u)
2s(t̄uv) commutes with

∑i−1
u′=1 x̄u′

whenever u < v < i or i ≤ u < v. If x = δ2s and y = x̄2, then the identity follows because
[δ2s + (ad x̄1)

2s(t̄12), x̄1 + x̄2] = 0 and [δ2s +
∑

1≤u<v≤n(ad x̄u)
2s(t̄uv),

∑n
u′=1 x̄u′ ] = 0.

If x = δ2s and y = ȳ1, then

[δ2s + (ad x̄1)
2s(t̄12), ȳ1]

1...i−1,i...n

= {1

2

∑

p+q=2s−1

[(ad x̄1)
p(t̄12), (− ad x̄1)

q(t̄12)] + [(ad x̄1)
2s(t̄12), ȳ1]}1...i−1,i...n

=
1

2

∑

p+q=2s−1

[
∑

1≤u<i≤v≤n

(ad x̄u)
p(t̄uv),

∑

1≤u′<i≤v′≤n

(ad x̄u′ )q(t̄u′v′)]

+ [
∑

1≤u<i≤v≤n

(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1];

on the other hand,

[δ2s +
∑

1≤u<v≤n

(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1]

=
∑

1≤u<v≤n

[(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1] +

i−1∑

u=1

∑

v|v 6=u

∑

p+q=2s−1

1

2
[(ad x̄u)

p(t̄uv), (− ad x̄u)
q(t̄uv)]

=
∑

1≤u<v≤n

[(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1] +

∑

1≤u<i≤v≤n

∑

p+q=2s−1

1

2
[(ad x̄u)

p(t̄uv), (− ad x̄u)
q(t̄uv)],

where the second equality follows from the fact that [(ad x̄u)
p(t̄uv), (−x̄u)q(t̄uv)]+[(ad x̄v)

p(t̄uv),
(− ad x̄v)

q(t̄uv)] = 0 as p+ q is odd.
Then

[δ2s + (ad x̄1)
2s(t̄12), ȳ1]

1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1]

= −
∑

1≤u<v<i

[(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1] −

∑

i≤u<v≤n

[(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1]

1

2

∑

p+q=2s−1

∑

1≤u<i≤v≤n

1≤u′<i≤v′≤n,(u,v)6=(u′,v′)

[(ad x̄u)
p(t̄uv), (− ad x̄u′)q(t̄u′v′)]

=
∑

1≤u<v<i

[(ad x̄u)
2s(t̄uv), ȳi + ...+ ȳn] −

∑

i≤u<v≤n

[(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
1

2

∑

p+q=2s−1

∑

1≤u<i≤v≤n

1≤u<i≤v′≤n,v 6=v′

[(ad x̄u)
p(t̄uv), (− ad x̄u)

q(t̄uv′ )]

+
1

2

∑

p+q=2s−1

∑

1≤u<i≤v≤n

1≤u′<i≤v≤n,u6=u′

[(ad x̄u)
p(t̄uv), (− ad x̄u′ )q(t̄u′v)]
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where the second equality follows from the centrality of ȳ1 + ...+ ȳn, the last equality follows
for the fact that (ad x̄u)

p(t̄uv) and (− ad x̄u′)q(t̄u′v′) commute for u, v, u′, v′ all distinct. Since
p+ q is odd, it follows that

[δ2s + (ad x̄1)
2s(t̄12), ȳ1]

1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1]

=
∑

1≤u<v<i

[(ad x̄u)
2s(t̄uv), ȳi + ...+ ȳn] −

∑

i≤u<v≤n

[(ad x̄u)
2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
∑

p+q=2s−1

∑

1≤u<i≤v<v′≤n

[(ad x̄u)
p(t̄uv), (− ad x̄u)

q(t̄uv′)]

+
∑

p+q=2s−1

∑

1≤u<u′<i≤v≤n

[(ad x̄u)
p(t̄uv), (− ad x̄u′)q(t̄u′v)].

Now if 1 ≤ u < v < i, we have

[(ad x̄u)
2s(t̄uv), ȳi + ...+ ȳn] =

∑

p+q=2s−1

(ad x̄u)
p ad(t̄ui + ...+ t̄un)(ad x̄u)

q(t̄uv)

=
n∑

w=i

∑

p+q=2s−1

(ad x̄u)
p[t̄uw, (− ad x̄v)

q(t̄uv)] =
n∑

w=i

∑

p+q=2s−1

(ad x̄u)
p(− ad x̄v)

q([t̄uw , t̄uv])

= −
n∑

w=i

∑

p+q=2s−1

(ad x̄u)
p(− ad x̄v)

q([t̄uw , t̄vw]) = −
n∑

w=i

∑

p+q=2s−1

[(ad x̄u)
p(t̄uw), (− ad x̄v)

q(t̄vw)];

one shows in the same way that if i ≤ u < v ≤ n, then [(ad x̄u)
2s(t̄uv), ȳ1 + ... + ȳi−1] =∑i−1

w=1

∑
p+q=2s−1[(ad x̄u)

p(t̄uw), (− ad x̄v)
q(t̄vw)]; all this implies that

[δ2s + (ad x̄1)
2s(t̄12), ȳ1]

1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(ad x̄u)
2s(t̄uv), (ȳ1)

1...i−1].

Since [δ2s+(ad x̄1)
2s(t̄12), ȳ1 + ȳ2] = 0 and [δ2s+

∑
1≤u<v≤n(ad x̄u)

2s(t̄uv), ȳ1 + ...+ ȳn] = 0,
this equality implies

[δ2s + (ad x̄1)
2s(t̄12), ȳ2]

1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(ad x̄u)
2s(t̄uv), (ȳ2)

1...i−1],

which ends the proof of (b) above, and therefore of the fact that the identities ΘAiΘ
−1 =

B−1
i , ..., ΨBiΨ

−1 = BiAi are preserved.
The relation (Θ,Ψ2) = 1 is preserved because

([Θ̃]ei
π
2

P

i<j
t̄ij , ([Ψ̃]ei

π
6

P

i<j
t̄ij )2) = ([Θ̃]ei

π
2

P

i<j
t̄ij , [Ψ̃]2ei

π
3

P

i<j
t̄ij ) = ([Θ̃], [Ψ̃]2) = [(Θ̃, Ψ̃2)] = 1,

where the two first identities follow from the fact that
∑

i<j t̄ij commutes with the image of

d → d o t̄1,n, x 7→ [x], the third identity follows from the fact that G1 → Gn, g 7→ [g] is a
group morphism, and the last identity follows from (27).

The image of Ci,i+1 is Φ−1
λ,i(e

2π i t̄12)i,i+1...nΦλ,i, to the product of the images of C12, ..., Cn−1,n

is

Φ−1
λ,1(e

2π i t̄12)1,2...n(Φλ,1Φ
−1
λ,2)(e

2π i t̄12)2,3...n(Φλ,2Φ
−1
λ,3)(e

2π i t̄12)3,4...n...(Φλ,n−1Φ
−1
λ,n)e

2π i t̄n−1,nΦλ,n

= Φ−1
λ,1(e

2π i t̄12)1,2...n(e2π i t̄12)2,3...nΦ1,2,3...n
λ (e2π i t̄12)3,4...n...Φ1...,i−1,...n

λ (e2π i t̄12)i,i+1...n

...Φ1...,n−2,n−1 n
λ e2π i t̄n−1,n

= Φ−1
λ,1(e

2π i t̄12)1,2...n(e2π i t̄12)2,3...n(e2π i t̄12)3,4...n...(e2π i t̄12)i,i+1...n...e2π i t̄n−1,n

Φ1,2,3...n
λ ...Φ1...,i−1,...n

λ ...Φ1...,n−2,n−1 n
λ = Φ−1

λ,1e
2π i

P

i<j
t̄ij Φλ,1 = e2π i

P

i<j
t̄ij ,

where the second equality follows from the fact that Φ1...,i,...n commutes with (e2π i t̄12)j,j+1...n

whenever j > i, and the last equality follows from the fact that
∑

i<j tij is central is tn.
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So the product of the images of C12...Cn−1,n is e2π i
P

i<j t̄ij .

The relation (ΘΨ)3 = C12...Cn−1,n is then preserved because ([Θ̃]ei
π
2

P

i<j t̄ij [Ψ̃]ei
π
6

P

i<j t̄ij )3 =

([Θ̃][Ψ̃])3e2π i
P

i<j
t̄ij = [(Θ̃Ψ̃)3]e2π i

P

i<j
t̄ij = e2π i

P

i<j
t̄ij , where the first equality follows

from the fact that
∑

i<j t̄ij commutes with the image of G1 → Gn, g 7→ [g], the second

equality follows from the fact that g 7→ [g] is a group morphism and the last equality follows
from (27). In the same way, one proves that Θ4 = C12...Cn−1,n, σ2

i = Ci,i+1Ci+1,i+2C
−1
i,i+1

and (Θ, σi) = (Ψ, σi) = 1 are preserved. �

5.2. Construction of morphisms B1,n → exp(̂̄tk1,n) o Sn using an associator Φλ. Let

us keep the notation of the previous section. Set a2n(λ) := −(2n+ 1)B2n+2λ
2n+2/(2n+ 2)!,

ỹλ := − adx
eλ ad x−1 (y),

Ãλ := Φλ(ỹλ, t)e
λỹλΦλ(ỹλ, t)

−1 = e−λt/2Φλ(−ỹλ − t, t)eλ(ỹλ+t)Φλ(−ỹλ − t, t)−1e−λt/2,

B̃λ := eλt/2Φλ(−ỹλ − t, t)eλxΦλ(ỹλ, t)
−1

(the identity in the definition of Aλ follows from the hexagon relation).

Proposition 5.3. We have

Ã12,3
λ = eλt̄12/2{Φλ}3,1,2Ã2,13

λ {Φλ}2,1,3eλt̄12/2 · {Φλ}3,2,1Ã1,23
λ {Φλ}1,2,3,

B̃12,3
λ = e−λt̄12/2{Φλ}3,1,2B̃2,13

λ {Φλ}2,1,3e−λt̄12/2 · {Φλ}3,2,1B̃1,23
λ {Φλ}1,2,3,

(B̃12,3
λ , eλt̄12/2{Φλ}3,1,2Ã2,13

λ {Φλ}2,1,3eλt̄12/2) = (e−λt̄12/2{Φλ}3,1,2B̃2,13
λ {Φλ}2,1,3e−λt̄12/2, Ã12,3

λ )

= {Φλ}3,2,1eλt̄23{Φλ}1,2,3,

so the formulas of Proposition 5.1 (restricted to the generators Ai, Bi, σi, Cjk) induce a mor-

phism B1,n → exp(̂̄tk1,n) o Sn (here ̂̄tk1,n is the degree completion of t̄k1,n).

Proof. In this proof, we shift the indices of the generators of tn+1 by 1, so these generators
are now tij , i 6= j ∈ {0, ..., n} (recall that tn+1 = tkn+1, t̄1,n = t̄k1,n).

We have a morphism αn : tn+1 → t̄1,n, defined by tij 7→ t̄ij if 1 ≤ i < j ≤ n and

t0i 7→ ỹi := − ad x̄i

eλ ad x̄i−1
(ȳi) if 1 ≤ i ≤ n (it takes the central element

∑
0≤i<j≤n tij to 0).

Let φ : {1, ...,m} → {1, ..., n} be a map and φ′ : {0, ...,m} → {0, ..., n} be given by
φ′(1) = 1, φ′(i) = φ(i) for i = 1, ...,m. The diagram

tn+1
x7→xφ′

→ tm+1

αn ↓ ↓αm

t̄1,n
x7→xφ

→ t̄1,m

is not commutative, we have instead the identity

αm(xφ
′

) = αn(x)φ −
n∑

i=1

ξi(x)(
∑

i′ ,j′∈φ−1(i)|i′<j′

t̄i′j′ ),

where ξi : t̄1,n → k is the linear form defined by ξi(t0i) = 1, ξi(any other homogeneous Lie
polynomial in the tkl) = 0.

Since the various
∑

i′,j′∈φ−1(i)|i′<j′ t̄i′j′ commute with each other and with the image of

x 7→ xφ, this implies

αm(gφ
′

) = αn(g)
φ

n∏

i=1

e−ξi(log g)(
P

i′,j′∈φ−1(i),i′<j′ t̄i′j′ )

for g ∈ exp(̂tn+1).
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Set Āλ := Φ0,1,2
λ eλt01(Φ0,1,2

λ )−1 ∈ exp(̂t3). One proves that

Ā0,12,3
λ eλt12 = eλt12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt12/2 · Φ3,2,1
λ Ā0,1,23

λ Φ1,2,3
λ

(relation in exp(̂t4)). We then have α2(Āλ) = Ãλ, α3(Φ
1,2,3
λ ) = Φ1,2,3

λ , and the relation

between the αi and coproducts implies α3(Ā
0,1,23
λ ) = Ã1,23

λ and α3(Ā
0,12,3
λ eλt12) = Ã12,3

λ .
Taking the image by α3, we get the first identity.

As we have already mentioned, this identity implies (Φ−1
λ Ã1,23

λ Φλ, Ã
12,3
λ ) = 1.

Let exp(̂tn+1)∗Zn/In be the quotient of the free product of exp(̂tn+1) with Zn = ⊕ni=1ZXi

by the normal subgroup generated by the rations of the exponentials of the sides of each of
the equations

Xit0iX
−1
i =

∑

0≤α≤n,α6=i

tαi, Xi(t0j+tij)X
−1
i = t0j , XitjkX

−1
i = tjk, XjXktjk(XjXk)

−1 = tjk

where i, j, k are distinct in {1, ..., n}. Then the morphism αn : tn+1 → t̄1,n extends to

α̃n : exp(̂tn+1) ∗ Zn/In → exp(̂̄t1,n) by Xi 7→ eλxi .
If φ : {1, ...,m} → {1, ..., n} is a map, then the Lie algebra morphism tn+1 → tm+1, x 7→

xφ
′

extends to a group morphism exp(̂tn)∗Zn/In → exp(̂tm)∗Zm/Im byXi 7→
∏
i′∈φ−1(i)Xi′ .

Let
B̄λ := eλt12/2Φ0,2,1

λ X1Φ
2,1,0
λ ∈ exp(̂t3) ∗ Z2/I2,

then α2(B̄λ) = B̃λ.
We will prove that

B̄0,12,3
λ = e−λt12/2Φ3,1,2

λ B̄0,2,13
λ Φ2,1,3

λ e−λt12/2 · Φ3,2,1B̄0,1,23
λ Φ1,2,3

λ . (40)

The l.h.s. is
B̄0,12,3
λ = eλt3,12/2Φ0,3,12

λ X1X2Φ
3,21,0
λ

and the r.h.s. is

e−λt12/2Φ3,1,2
λ eλt31,2/2Φ0,13,2

λ X2Φ
13,2,0
λ Φ2,1,3

λ e−λt12/2Φ3,2,1
λ eλt23,1/2Φ0,23,1

λ X1Φ
32,1,0
λ Φ1,2,3

λ .

The equality between these terms is rewritten as

X1X2 = Φ03,1,2
λ Φ1,3,0

λ e−λt13/2X2Φ
13,2,0
λ eλt13/2Φ2,3,1

λ Φ0,23,1
λ X1Φ

01,2,3
λ Φ2,1,0

λ ,

or, using the fact that Xi commutes with tjk (i, j, k distinct), as

X1X2 = Φ03,1,2
λ Φ1,3,0

λ X2Φ
02,3,1
λ Φ3,2,0

λ X1Φ
01,2,3
λ Φ2,1,0

λ .

Now X2Φ
02,3,1
λ = Φ0,3,1

λ X2, X1Φ
01,2,3
λ = Φ0,2,3

λ X1 and X1X2Φ
2,1,0
λ = Φ2,1,03

λ X1X2, so the

r.h.s. is rewritten as Φ03,1,2
λ Φ1,3,0

λ Φ0,3,1
λ X2Φ

3,2,0
λ Φ0,2,3

λ X1Φ
2,1,0
λ = X1X2. This ends the proof

of (40). Taking the image by α4, we then get the second identity of the Proposition.
Let us prove the next identity. We have

(B̄0,12,3
λ , eλt̄12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt̄12/2)

= eλt12,3/2Φ0,3,12
λ X1X2Φ

3,12,0
λ eλt̄12/2Φ3,1,2

λ Φ0,2,13
λ eλt0,2Φ13,2,0

λ Φ2,1,3
λ eλt̄12/2Φ0,12,3

λ (X1X2)
−1

Φ12,3,0
λ e−λt12,3/2e−λt̄12/2Φ3,1,2

λ Φ0,2,13
λ e−λt0,2Φ13,2,0

λ Φ2,1,3
λ e−λt̄12/2.

Now

X1X2Φ
3,12,0
λ eλt̄12/2Φ3,1,2

λ Φ0,2,13
λ eλt0,2Φ13,2,0

λ Φ2,1,3
λ eλt̄12/2Φ0,12,3

λ (X1X2)
−1

= eλt̄12/2X1X2Φ
3,12,0
λ Φ3,1,2

λ Φ0,2,13
λ eλt0,2Φ13,2,0

λ Φ2,1,3
λ Φ0,12,3

λ (X1X2)
−1eλt̄12/2

= eλt̄12/2X1X2Φ
0,2,1
λ Φ3,1,02

λ eλt0,2Φ02,1,3
λ Φ0,2,1

λ (X1X2)
−1eλt̄12/2

= eλt̄12/2X1X2Φ
0,2,1
λ eλt0,2Φ0,2,1

λ (X1X2)
−1eλt̄12/2

= eλt̄12/2Φ03,2,1
λ X1X2e

λt0,2(X1X2)
−1Φ03,2,1

λ eλt̄12/2

= eλt̄12/2Φ03,2,1
λ eλt03,2Φ03,2,1

λ eλt̄12/2.
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Plugging this in the above expression for (B̄0,12,3
λ , eλt̄12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt12/2), one then

finds (B̄0,12,3
λ , eλt̄12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt̄12/2) == Φ3,2,1
λ eλt23Φ1,2,3

λ . Taking the image by α4,

we then obtain (B̃12,3
λ , eλt̄12/2Φ3,1,2

λ Ã2,13
λ Φ2,1,3

λ eλt̄12/2) = Φ3,2,1
λ eλt̄23Φ1,2,3

λ .
Let us prove that last identity. For this, we will show

(e−λt12/2Φ3,1,2
λ B̄0,2,13

λ Φ2,1,3
λ e−λt12/2, Ā0,12,3

λ eλt12) = Φ3,2,1
λ eλt23Φ1,2,3

λ

and take the image by α4.
We have

(e−λt12/2Φ3,1,2
λ B̄0,2,13

λ Φ2,1,3
λ e−λt12/2, Ā0,12,3

λ eλt12)

= e−λt12/2Φ3,1,2
λ eλt2,13/2Φ0,13,2

λ X2Φ
13,2,0
λ Φ2,1,3

λ e−λt12/2Φ0,12,3
λ eλt0,12Φ3,12,0

λ eλt12eλt12/2Φ3,1,2
λ Φ0,2,13

λ X−1
2

Φ2,13,0
λ e−λt2,13/2Φ2,1,3

λ eλt12/2Φ0,12,3
λ e−λt0,12Φ3,12,0

λ e−λt12

= e−λt12/2Φ3,1,2
λ eλt2,13/2Φ0,13,2

λ X2Φ
13,2,0
λ Φ2,1,3

λ Φ0,12,3
λ eλt0,12+λt12Φ3,12,0

λ Φ3,1,2
λ Φ0,2,13

λ X−1
2

Φ2,13,0
λ e−λt2,13/2Φ2,1,3

λ e−λt12/2Φ0,12,3
λ e−λt0,12Φ3,12,0

λ .

Now

X2Φ
13,2,0
λ Φ2,1,3

λ Φ0,12,3
λ eλt0,12+λt12Φ3,12,0

λ Φ3,1,2
λ Φ0,2,13

λ X−1
2

= X2Φ
02,1,3
λ Φ1,2,0

λ eλt0,12+λt12Φ0,2,1
λ Φ3,1,02

λ X−1
2 = Φ0,1,3

λ X2Φ
1,2,0
λ eλt0,12+λt12Φ0,2,1

λ X−1
2 Φ3,1,0

λ

= Φ0,1,3
λ X2e

λ(t01+t02+t12)X−1
2 Φ3,1,0

λ = Φ0,1,3
λ eλ(t01+t02+t12+t23)Φ3,1,0

λ .

So

(e−λt12/2Φ3,1,2
λ B̄0,2,13

λ Φ2,1,3
λ e−λt12/2, Ā0,12,3

λ eλt12)

= e−λt12/2Φ3,1,2
λ eλt2,13/2Φ0,13,2

λ Φ0,1,3
λ eλ(t01+t02+t12+t23)

Φ3,1,0
λ Φ2,13,0

λ e−λt2,13/2Φ2,1,3
λ e−λt12/2Φ0,12,3

λ e−λt0,12Φ3,12,0
λ ;

after some computation, we find that this equals Φ3,2,1
λ eλt23Φ1,2,3

λ . �

In particular, (Φλ, Ãλ, B̃λ) give rise to a morphism B1,n → exp(̂̄tk1,n) o Sn; one proves

as in Section 2 that it induces an isomorphism of filtered Lie algebras Lie(PB1,n)k ' ̂̄tk1,n.
Taking Φλ to be a rational associator ([Dr3]), we then obtain:

Corollary 5.4. We have a filtered isomorphism Lie(PB1,n)Q ' ̂̄
t
Q
1,n, which can be extended

to an isomorphism B1,n(Q) ' exp(
̂̄
t
Q
1,n) o Sn.

5.3. Construction of morphisms Γ1,[n] → G1,n o Sn using a pair (Φλ, Θ̃λ). Keep the
notation of the previous section and set

Ψ̃λ := exp(− 1

λ
(∆0 +

∑

k≥1

a2k(λ)δ2k)).

Proposition 5.5. We have

[Ψ̃λ]e
λt̄12/12Ãλ([Ψ̃λ]e

λt̄12/12)−1 = Ãλ, [Ψ̃λ]e
λt̄12/12B̃λ([Ψ̃λ]e

λt̄12/12)−1 = B̃λÃλ.

Proof. The first identity follows from the fact that ∆0 +
∑

k≥1 a2k(λ)[δ2k ] − λ2t/12 com-
mutes with t and ỹλ; the second identity follows from these facts and the analogue of Lemma
4.15, where 2π i is replaced by λ. �

Assume that Θ̃λ ∈ G1 satisfies

Θ̃4
λ = (Θ̃λΨ̃λ)

3 = (Θ̃2
λ, Ψ̃λ) = 1,

[Θ̃λ]e
λt̄12/4Ãλ([Θ̃λ]e

λt̄12/4)−1 = B̃−1
λ , [Θ̃λ]e

λt̄12/4B̃λ([Θ̃λ]e
λt̄12/4)−1 = B̃λÃλB̃

−1
λ
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(one can show that the two last equations are equivalent), then Θ 7→ [Θ̃λ]e
λ(

P

i<j t̄ij )/4,

Ψ 7→ [Ψ̃λ]e
λ(

P

i<j
t̄ij)/12 extends the morphism defined in Proposition 5.3 to a morphism

Γ1,[n] → Gn o Sn.

We do not know whether for each Φλ defined over k, there exists a Θ̃λ defined over k,
satisfying the above conditions.

5.4. Elliptic structures over QTQBA’s. Let (H,∆H , RH ,ΦH) be a quasitriangular qua-
sibialgebra (QTQBA). Recall that this means that ([Dr2]): (H,mH) is an algebra, ∆H : H →
H⊗2 is an algebra morphism, RH ∈ H⊗2 and ΦH ∈ H⊗3 are invertible, and

∆H(x)2,1 = RH∆H(x)R−1
H , (id⊗∆H) ◦ ∆H(x) = ΦH(∆H ⊗ id) ◦ ∆H (x)Φ−1

H ,

R12,3
H = Φ3,1,2

H R1,3
H (Φ1,3,2

H )−1R2,3
H Φ1,2,3

H , R1,23
H = (Φ2,3,1

H )−1R1,3
H Φ2,1,3

H R1,2
H (Φ1,2,3

H )−1,

Φ1,2,34
H Φ12,3,4

H = Φ2,3,4
H Φ1,23,4

H Φ1,2,3
H .

One also assumes the existence of a unit 1H and a counit εH .
If A is an algebra and J1, J2 ⊂ A are left ideals, define the Hecke bimodule H(A|J1, J2)

or H(J1, J2) as HomA(A/J1,A/J2) = (A/J2)
J1 where J1 acts on the quotient from the

left; we have thus H(J1, J2) = {x ∈ A|J1x ⊂ J2}/J2. The product of A induces a product
H(J1, J2) ⊗ H(J2, J3) → H(J1, J3). When J1 = J2 = J , H(J) := H(J, J) is the usual
Hecke algebra, and H(J1, J2) is a (H(J1),H(J2))-bimodule. Recall that we have a functor
A -mod → H(J) -mod, V 7→ V J := {v ∈ V |Jv = 0}.

If H is an algebra with unit equipped with a morphism ∆H : H → H⊗2 and a : H → D
is a morphism of algebras with unit, we define for each n ≥ 1 and each pair of words w,w′

in the free magma generated by 1, ..., n containing 1, ..., n exactly once (recall that a magma
is a set with a non-necessarily associative binary operation) the Hecke bimodule

Hw,w′

(D,H) := H(D ⊗H⊗n|Jw, Jw′),

(or simply Hw,w′

) where Jw ⊂ D ⊗ H⊗n is the left ideal generated by the image of (a ⊗
∆w
H) ◦ ∆H : H+ → D ⊗H⊗n. Here H+ = Ker(H

εH→ k) and for example ∆
(21)3
H = (213) ◦

(∆H ⊗ idH) ◦ ∆H , etc. We have products Hw,w′ ⊗Hw′,w′′ → Hw,w′′

. We denote the Hecke

algebra Hw,w by Hw(D,H) or Hw; we denote by 1w its unit. We denote by (Hw,w′

)× the

set of invertible elements of Hw,w′

, i.e., the set of elements X such that for some X ′ ∈
Hw′,w, X ′X = 1w′ , XX ′ = 1w. The symmetric group Sn acts on the system of bimodules
Hw,w′

by permuting the factors, so we get maps Ad(σ) : Hw,w′ → Hσ(w),σ(w′) (where
σ(w) is the word w, where i is replaced by σ(i)). If w0 = ((12)...)n, we define an algebra
structure on ⊕σ∈Sn

Hw0,σ(w0)σ by (
∑

σ∈Sn
hσσ)(

∑
τ∈Sn

h′τ τ) :=
∑

σ,τ∈Sn
hσ Ad(σ)(h′τ )στ .

Then tσ∈Sn
(Hw0,σ(w0))×σ ⊂ ⊕σ∈Sn

Hw0,σ(w0)σ is a group with unit 1w0 . We have an exact
sequence 1 → (Hw0)× → tσ∈Sn

(Hw0,σ(w0))×σ → Sn, but the last map is not necessarily
surjective (and if it is, does not necessarily split).

If H is a quasibialgebra, then ΦH gives rise to an element of H1(23),(12)3(D,H), which
we also denote ΦH ; similarly Φ−1

H gives rise to the inverse (w.r.t. composition of Hecke

bimodules) element Φ−1
H ∈ H(12)3,1(23)(D,H). We have algebra morphisms H12(D,H) →

H(12)3(D,H) induced by X 7→ X0,12,3 := (idH ⊗(∆H ⊗ idH) ◦ ∆H)(X) (0 is the index
of D) and similarly morphisms H12(D,H) → H2(13)(D,H), X 7→ X0,2,13, H12(D,H) →
H1(D,H), X 7→ X0,1,∅ and X0,∅,1, etc. If moreover H is quasitriangular, then RH ∈
H21,12(D,H), R−1

H ∈ H12,21(D,H), so in that case tσ∈Sn
Hw0,σ(w0)σ → Sn is surjec-

tive, and we have a morphism Bn → tσ∈Sn
Hw0,σ(w0)σ such that the composition Bn →

tσ∈Sn
Hw0,σ(w0)σ → Sn is the canonical projection.

Definition 5.6. If H is a QTQBA, an elliptic structure on H is a triple (D,A,B), where
D is an algebra with unit, equipped with an algebra morphism a : H → D, and A,B ∈
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H12(D,H) are invertible such that A0,1,∅ = A0,∅,1 = B0,1,∅ = B0,∅,1 = 1D ⊗ 1H ,

A0,12,3 = R2,1
H (Φ2,1,3

H )−1A0,2,13Φ2,1,3
H R1,2

H (Φ1,2,3
H )−1A0,1,23Φ1,2,3

H , (41)

B0,12,3 = (R1,2
H )−1(Φ2,1,3

H )−1B0,2,13Φ2,1,3
H (R2,1

H )−1(Φ1,2,3
H )−1B0,1,23Φ1,2,3

H (42)

and

(B0,12,3, R2,1
H (Φ2,1,3

H )−1A0,2,13Φ2,1,3
H R1,2

H )

= ((R1,2
H )−1(Φ2,1,3

H )−1B0,2,13Φ2,1,3
H (R2,1

H )−1, A0,12,3) = (Φ1,2,3
H )−1R3,2

H R2,3
H Φ1,2,3

H

(identities in H(12)3(D,H)).

The pair of identities (41), (42) is equivalent to

R2,1
H A0,2,1R1,2

H A0,1,2 = 1, R3,12
H A0,3,12Φ3,1,2

H R2,31
H A0,2,31Φ2,3,1

H R1,23
H A0,1,23Φ1,2,3

H = 1,

and

(R1,2
H )−1B0,2,1(R2,1

H )−1B0,1,2 = 1, (R−1
H )12,3B0,3,12Φ3,1,2

H (R−1
H )31,2B0,2,31Φ2,3,1

H (R−1
H )23,1B0,1,23Φ1,2,3

H = 1,

so the invertibility conditions on A,B follow from (41), (42).
If F ∈ H⊗2 is invertible with (εH ⊗ idH)(F ) = (idH ⊗εH)(F ) = 1H , then the twist of

H by F is the quasi-Hopf algebra FH with product mH , coproduct ∆̃H(x) = F∆H(x)F−1,

R-matrix R̃H = F 2,1RHF
−1 and associator Φ̃H = F 2,3F 1,23ΦH(F 1,2F 12,3)−1. If a : H → D

is an algebra morphism, it can be viewed as a morphism FH → D, and we have an algebra
isomorphism H(12)3(D,H) → H(12)3(D, FH), induced by X 7→ F 1,2F 0,12X(F 1,2F 0,12)−1

(more generally, we have an isomorphism of the systems of bimodules Hw,w′

(D,H) →
Hw,w′

(D, FH) induced by X 7→ FwXF
−1
w′ for suitable Fw).

If (D,A,B) is an elliptic structure on H , then an elliptic structure FH is (D, Ã, B̃), where

Ã = F 1,2F 0,12A(F 1,2F 0,12)−1 and B̃ = F 1,2F 0,12B(F 1,2F 0,12)−1.
An elliptic structure (D,A,B) over H gives rise to a unique group morphism

B1,n → tσ∈Sn
Hw0,σ(w0)(D,H)×σ,

such that

σi 7→
(
Φ

(((12)3)...i−1),i,i+1
H

)−1

Ri,i+1
H (i, i+ 1)Φ

(((12)3)...i−1),i,i+1
H ,

Ai 7→ Φ−1
H,iA

0,(((12)3)...i−1),(i...(n−1,n))ΦH,i, Bi 7→ Φ−1
H,iB

0,(((12)3)...i−1),(i...(n−1,n))ΦH,i,

where
ΦH,i = Φ

((12)...i−1),i,(i+1(...(n−1,n)))
H ...Φ

((12)...n−2),n−1,n
H ;

here we have for example x((12)3) = (∆H ⊗ idH) ◦ ∆H(x) for x ∈ H .
If g is a Lie algebra and tg ∈ S2(g)g is nondegenerate, then H = U(g)[[~]] is a QTQBA,

withmH ,∆H are the undeformed product and coproduct, RH = e~tg/2 and ΦH = Φ(~t1,2g , ~t2,3g ),
where Φ is an 1-associator. The results of next Section then imply that (D,A,B) is an el-
liptic structure over H , where D = D(g)[[~]] (D(g) is the algebra of algebraic differential

operators on g) and A,B are given by the formulas for Ãλ, B̃λ with t replaced by ~t1,2g , x
replaced by ~

∑
α xα⊗(e1α + e2α), y replaced by ~

∑
α ∂α ⊗ (e1α + e2α).

Remark 5.7. If H is a Hopf algebra, we have an isomorphism

Hw0(D,H) ' (D ⊗H⊗n−1)H ,

where the right side is the commutant of the diagonal map H → D ⊗ H⊗n−1, h 7→ (a ⊗
id⊗n−1
H )◦∆(n)

H (h). This map takes the class of d⊗h1⊗...⊗hn to da(SH (h
(n)
n ))⊗h1SH(h

(n−1)
n )⊗

...⊗hn−1SH(h
(1)
n ) (SH is the antipode ofH). SoA,B identify with elements A,B ∈ (D⊗H)H ;

the conditions are then

A0,12 = R2,1
H A0,2R1,2

H A0,1, B0,12 = (R1,2
H )−1B0,2(R2,1

H )−1B0,1,
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(B0,12, R2,1
H A0,2R1,2

H ) = ((R1,2
H )−1B0,2(R2,1

H )−1,A0,12) = (R3,2
H R1,2

H R0,2
H R2,0

H R2,1
H R2,3

H )0̃,1̃,2·3̃

(conditions in (D ⊗ H⊗2)H), where the superscript B′
n oZn−1 → Bn−1 oZn−1 is the map

x0 ⊗ ...⊗ x3 7→ SH(x0) ⊗ SH(x1) ⊗ x2SH(x3).
Moreover, the morphism PBn → (Hw0)× ' (D ⊗ H⊗n−1)H factors through PBn →

PBn−1 ×Zn−1 → (D⊗H⊗n−1)H , where: (a) the first morphism is induced by Zn−1 o B′
n →

Zn−1 o Bn−1 (where B′
n = Bn×Sn

Sn−1 is the group of braids leaving the last strand fixed),
constructed as follows: we have a composition B′

n+1 → π1((P1)n+1 − diagonals/Sn) →
π1(Cn − diagonals/Sn) = Bn, where the first map is induced by C ⊂ P1, and the middle
map comes from the fibration Cn − diagonals → (P1)n+1 − diagonals → P1, (z1, ..., zn) →
(z1, ..., zn,∞) and (z1, ..., zn+1) → zn+1 [the second projection has a section so the map
between π1’s is an isomorphism]; viewing Zn−1 o B′

n, Zn−1 o Bn−1 as fundamental groups
of configuration spaces of points equipped with a nonzero tangent vector, we then get the
morphism Zn−1 o B′

n → Zn−1 o Bn−1 (which does not restrict to a morphism B′
n → Bn−1);

(b) the second map is induced by the standard map PBn−1 ×Zn−1 → (H⊗n−1)× induced by
RH =

∑
α r

′
α⊗ r′′α and the map taking the ith generator of Zn−1 to 1⊗ ...⊗uSH(u)⊗ ...⊗ 1,

where u =
∑

i SH(r′′α)r′α (see [Dr1]). The morphism Bn → Aut((Hw0)×) = Aut((D ⊗
H⊗n−1)H) extends the inner action of PBn by

σn−1 ·X := {Rn−1,n...2n−1
H X0,1,...,n−2,n...2n−1Rn...2n−1,n−1

H }0·2̃n−1,...,n−1·ñ

(where the superscript means that x0⊗ ...⊗x2n−1 maps to x0SH(x2n−1)⊗ ...⊗xn−1SH(xn)).
We have then tσ∈Sn

(Hw0,σ(w0))×σ ' ((D ⊗H⊗n−1)×)H oPBn
Bn (the index means that

PBn ⊂ Bn is identified with its image in ((D ⊗H⊗n−1)×)H).
Then if (A,B) is an elliptic structure over a : H → D, the morphism Bn → ((D ⊗

H⊗n−1)×)H oPBn
Bn extends to a morphism

B1,n → ((D ⊗H⊗n−1)×)H oPBn
Bn

via Ai 7→ A0,1...i−1, Bi 7→ B0,1...i−1.
This interpretation of Hw0 and of the relations between A,B can be extended to the case

when H is a quasi-Hopf algebra.

Remark 5.8. Let C be a rigid braided monoidal category. We define an elliptic structure on
C as a quadruple (E , A,B, F ), where E is a category, F : E → C is a functor, and A,B are
functorial automorphisms of F (?)⊗?, which reduce to the identity if the second factor is the
neutral object 1, and such that the following equalities of automorphisms of F (M)⊗(X⊗Y )
hold (we write them omitting associativity maps, as they can be put in automatically):

AM,X⊗Y = βY,XAM,Y βX,Y AM,X ,

BM,X⊗Y = β−1
X,YBM,Y β

−1
Y,XBM,X ,

(BM,X⊗Y , βY,XAM,Y βX,Y ) = (β−1
Y,XBM,Y β

−1
X,Y , AM,X⊗Y )

= β(M⊗X⊗Y )∗,Y βY,(M⊗X⊗Y )∗ ◦ canM⊗X⊗Y ,

where canX ∈ HomC(1, X ⊗X∗) is the canonical map and the r.h.s. of the last identity is
viewed as an element of EndC(M ⊗X ⊗ Y ) using its identification with HomC(1, (M ⊗X ⊗
Y )⊗ (M ⊗X ⊗ Y )∗). An elliptic structure on a quasitriangular quasi-Hopf algebra H gives
rise to an elliptic structure on H-mod. An elliptic structure over a rigid braided monoidal
category C gives rise to representations of B1,n by C-automorphisms of F (M) ⊗X⊗n−1.

6. The KZB connection as a realization of the universal KZB connection

6.1. Realizations of t̄1,n. Let g be a Lie algebra and tg ∈ S2(g)g be nondegenerate. We
denote by (a, b) 7→ 〈a, b〉 the corresponding invariant pairing.

Let D(g) be the algebra of algebraic differential operators on g. It has generators xa, ∂a,
a ∈ g, and relations: a 7→ xa, a 7→ ∂a are linear, [xa, xb] = [∂a, ∂b] = 0, [∂a, xb] = 〈a, b〉.
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There is a unique Lie algebra morphism g → D(g), a 7→ Xa, where Xa :=
∑
α x[a,eα] ∂eα

,
and tg =

∑
α eα⊗eα (it is the infinitesimal of the adjoint action). We also have a Lie algebra

morphism g → An := D(g) ⊗ U(g)⊗n, a 7→ Ya := Xa ⊗ 1 + 1 ⊗ (
∑n

i=1 a
(i)). We denote by

gdiag the image of this morphism. We denote by Hn(g) the Hecke algebra of (An, g
diag). It is

defined as the quotient {x ∈ An|∀a ∈ g, Yax ∈ Ang
diag}/Angdiag. We have a natural action

of Sn on An, which induces an action of Sn on Hn(g).
If (Vi)i=1,... ,n are g-modules, then (S(g)⊗(⊗n

i=1Vi))
g is a module over Hn(g). If moreover

V1 = ... = Vn, this is a module over Hn(g) o Sn.

Proposition 6.1. There is a unique Lie algebra morphism ρg : t̄1,n → Hn(g), x̄i 7→∑
α xα⊗e(i)α , ȳi 7→ −∑

α ∂α ⊗ e
(i)
α , t̄ij 7→ 1 ⊗ t

(ij)
g (we set xα := xeα

, ∂α := ∂eα
).

Proof. The images of all the generators of t̄1,n are contained in the commutant of gdiag

in An, therefore also in its normalizer. According to Lemma 2.1, we will use the following
presentation of t̄1,n. Generators are x̄i, ȳi, t̄ij , relations are [x̄i, x̄j ] = [ȳi, ȳj ] = 0, [x̄i, ȳj ] = t̄ij
(i 6= j), t̄ij = t̄ji,

∑
i x̄i =

∑
i ȳi = 0, [x̄i, t̄jk ] = [ȳi, t̄jk ] = 0 (i, j, k distinct).

The relations [x̄i, x̄j ] = [ȳi, ȳj ] = 0, [x̄i, ȳj ] = t̄ij (i 6= j), t̄ij = t̄ji and [x̄i, t̄jk ] = [ȳi, t̄jk] =
0 are obviously preserved. Let us check that

∑
i x̄i =

∑
i ȳi = 0 are preserved.

We have
∑

i

ρg(x̄i) =
∑

α

xα⊗(
∑

i

e(i)α ) =
∑

α

(xα⊗1)(Yα −Xα ⊗ 1)

≡ −
∑

α

xαXα ⊗ 1 =
∑

α,β

xeα
x[eα,eβ ] ∂eβ

⊗ 1 = 0

since xα commutes with x[eα,eβ ] and
∑

β eβ ⊗ eβ = tg is invariant. We also have
∑

i

ρg(ȳi) = −
∑

α

∂α ⊗ (
∑

i

e(i)α ) = −
∑

α

(∂α ⊗ 1)(Yα −Xα ⊗ 1) ≡
∑

α

∂αXα ⊗ 1

= −
∑

α,β

∂eα
x[eα,eβ ] ∂eβ

= −
∑

α,β

〈eα, [eα, eβ]〉∂eβ
−

∑

α,β

x[eα,eβ ] ∂eα
∂eβ

;

since tg is invariant and 〈−,−〉 is symmetric, we have
∑
α〈eα, [eα, eβ]〉 = 0 for any β, and

since [∂eα
, ∂eβ

] = 0, we have
∑
α,β x[eα,eβ ] ∂eα

∂eβ
, so

∑
i ρg(ȳi) = 0. �

6.2. Realizations of t̄1,n o d. Let (g, tg) be as in Subsection 6.1. We keep the same nota-
tions.

Proposition 6.2. The Lie algebra morphism ρg : t̄1,n → Hn(g) of Proposition 6.1 extends
to a Lie algebra morphism t̄1,n o d → Hn(g), defined by ∆0 7→ − 1

2 (
∑

α ∂
2
α) ⊗ 1, X 7→

1
2 (

∑
α x2

α) ⊗ 1, d 7→ 1
2 (

∑
α xα ∂α + ∂α xα) ⊗ 1, and

δ2m → 1

2

∑

α1,... ,α2m,α

xα1 · · ·xα2m
⊗(

n∑

i=1

(ad(eα1) · · · ad(eα2m
)(eα) · eα)(i))

for m ≥ 1. This morphism further extends to a morphism U (̄t1,n o d) o Sn → Hn(g) o Sn
by σ 7→ σ.

Proof. We have

[ρg(δ2m), ρg(x̄i)] =
1

2

∑

α1,... ,α2m,α,β

xα1 · · · xα2m
xβ ⊗[eβ, ad(eα1) · · · ad(eα2m

)(eα)eα](i)

=
1

2

∑

α1,... ,α2m,α,β

xα1 · · · xα2m
xβ ⊗

2m∑

`=1

(
ad(eα1) · · · ad([eβ , eα`

]) · · · ad(eα2m
)(eα)eα

)(i)
= 0
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the second equality follows from the invariance of tg, and the last equality follows from the
fact that the first factor is symmetric in (β, α`) while the second is antisymmetric in (β, αl).
ρg preserves the relation [δ2m, t̄ij ] = [t̄ij , ad(x̄i)

2m(t̄ij)], because ρg(δ2m+
∑

i<j ad(x̄i)
2m(t̄ij))

belongs to D(g) ⊗ Im(∆(n) : U(g) → U(g)⊗n), where ∆(n) is the n-fold coproduct and U(g)
is equipped with its standard bialgebra structure.

Now

[ρg(δ2m), ρg(ȳi)] =
1

2

∑

α1,... ,α2m,α,β

( ∑

j

[∂β , xα1 · · · xα2m
] ⊗ e

(i)
β ad(eα1) · · · ad(eα2m

)(eα)(j)e(j)α

+ xα1 · · · xα2m
∂β ⊗ [eβ, ad(eα1) · · · ad(eα2m

)(eα) · eα](i)
)

=
1

2

2m∑

l=1

∑

α1,... ,α2m,α

(∑

j

xα1 · · · x̌αl
· · · xα2m

⊗e(i)αl
ad(eα1) · · · ad(eα2m

)(eα)(j)e(j)α

+ xα1 · · · xα2m
∂β ⊗ ad(eα1) · · · ad([eβ , eαl

]) · · · ad(eα2m
)(eα)(i)e(i)α

)

≡ 1

2

2m∑

l=1

∑

α1,... ,α2m,α

∑

j

(
xα1 · · · x̌αl

· · · xα2m
⊗e(i)αl

ad(eα1) · · · ad(eα2m
)(eα)(j)e(j)α

− xα1 · · · x̌αl
· · · xα2m

⊗ad(eα1) · · · ad(eα2m
)(eα)(i)e(i)α e(j)αl

)
.

The term corresponding to j = i is

1

2

2m∑

l=1

∑

α1,... ,α2m,α

xα1 · · · x̌αl
· · · xα2m

⊗[eαl
, ad(eα1) · · · ad(eα2m

)(eα) · eα](i)

It corresponds to the linear map S2m−1(g) → U(g), such that for x ∈ g,

x2m−1 7→ 1

2

∑

p+q=2m−1

∑

α,β

[eβ , ad(x)pad(eβ)ad(x)q(eα) · eα]

=
1

2

∑

α,β

∑

p+q+r=2m−2

ad(x)pad([eβ , x])ad(x)qad(eβ)ad(x)r(eα) · eα

+ ad(x)pad(eβ)ad(x)qad([eβ, x])ad(x)r(eα) · eα
since µ(tg) = 0 (µ : g⊗2 → g is the Lie bracket) and tg is g-invariant. Now this is zero since
tg =

∑
β eβ ⊗ eβ is invariant.

The term corresponding to j 6= i corresponds to the map S2m−1(g) → U(g)⊗n, such that
for x ∈ g

x2m−1 7→ −1

2

2m∑

l=1

∑

α,β

(
(adx)l−1(adeβ)(adx)2m−l(eα) · eα

)(i)
e
(j)
β − (i↔ j)

=
1

2

2m∑

l=1

(−1)l+1
∑

α,β

(
(adx)l−1([eβ , eα]) · (adx)2m−l(eα)

)(i)
e
(j)
β − (i↔ j)

=
1

2

2m∑

l=1

(−1)l−1
∑

α,β

(
(adx)l−1(eβ) · (adx)2m−l(eα)

)(i)
[eα, eβ ]

(j) − (i↔ j)

=
1

2

2m∑

l=1

(−1)l
[∑

α

(
(adx)l−1(eα)

)(i)
e(j)α ,

∑

β

(
(adx)2m−l(eβ)

)(i)
e
(j)
β

]
,

which coincides with the image of 1
2

∑
p+q=2m−1(−1)q[(adx̄i)

p(t̄ij), (adx̄i)
q(t̄ij)].

It is then clear that ρg preserves the commutation relations of ∆0, X and d with δ2m. �
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6.3. Reductions. Assume that g is finite dimensional and we have a reductive decompo-
sition g = h ⊕ n, i.e., h ⊂ g is a Lie subalgebra and n ⊂ g is a vector subspace such that
[h, n] ⊂ n; assume also that tg = th + tn, where th ∈ S2(h)h and tn ∈ S2(n)h.

We assume that for a generic h ∈ h, ad(h)|n ∈ End(n) is invertible. This condition is

equivalent to the nonvanishing of P (λ) := det(ad(λ∨)|n) ∈ Sdimn(h), where λ 7→ λ∨ is the
map h∗ → h, with λ∨ := (λ ⊗ id)(th). If G is a Lie group with Lie algebra g, an equivalent
condition is that a generic element of g∗ is conjugate to some element in h∗ (see [EE]).

Let us set, for λ ∈ h∗,
r(λ) := (id⊗(adλ∨)−1

|n )(tn),

Then r : h∗reg → ∧2(n) is an h-equivariant map (here h∗
reg = {λ ∈ h∗|P (λ) 6= 0}), satisfying

the classical dynamical Yang-Baxter (CDYB) equation

CYB(r) − Alt(d r) = 0

(see [EE]). Here for r =
∑

α aα ⊗ bα ⊗ `α ∈ (n⊗2 ⊗ S(h)[1/P ])h, we set CYB(r) =∑
α,α′([aα, aα′ ] ⊗ bα ⊗ bα′ + aα ⊗ [bα, aα′ ] ⊗ bα′ + aα ⊗ aα′ ⊗ [bα, bα′ ]) ⊗ `α`α′ , d r :=∑
α aα ⊗ bα ⊗ d `α, where d extends S(h) → h ⊗ S(h), xk 7→ kx ⊗ xk−1 and Alt(X ⊗ `) =

(X +X2,3,1 +X3,1,2) ⊗ `.
We also set

ψ(λ) := (id⊗(adλ∨)−2
|n )(tn).

We write ψ(λ) =
∑

αAα ⊗Bα ⊗ Lα.
Let D(h)[1/P ] be the localization at P of the algebra D(h) of differential operators on

h; the latter algebra is generated by x̄h, ∂̄h, h ∈ h, with relations h 7→ x̄h, h 7→ ∂̄h linear,
[x̄h, x̄h′ ] = [∂̄h, ∂̄h′ ] = 0, and [∂̄h, x̄h′ ] = 〈h, h′〉.

Set Bn := D(h)[1/P ] ⊗ U(g)⊗n. For h ∈ h, we define X̄h :=
∑
ν x̄[h,hν ]∂̄hν

∈ D(h), where

th =
∑
ν hν ⊗ hν . We then set Ȳh := X̄h +

∑n
i=1 h

(i). The map h → Bn is a Lie algebra
morphism; we denote by hdiag its image.

We denote by Hn(g, h) the Hecke algebra of Bn relative to hdiag. Explicitly, Hn(g, h) =
{x ∈ Bn|∀h ∈ h, Ȳhx ∈ Bnhdiag}/Bnhdiag.

Proposition 6.3. There is a unique Lie algebra morphism

ρg,h : t̄1,n → Hn(g, h),

such that x̄i 7→
∑
ν x̄ν ⊗ h

(i)
ν , ȳi 7→ −∑

ν ∂̄ν ⊗ h
(i)
ν +

∑
j

∑
α `α ⊗ a

(i)
α b

(j)
α , t̄ij 7→ t

(ij)
g . Here

r(λ) =
∑
α `α(λ)(aα ⊗ bα).

If V1, ..., Vn are g-modules, then S(h)[1/P ]⊗ (⊗iVi) is a module over D(h)[1/P ]⊗U(g)⊗n,
and (S(h)[1/P ] ⊗ (⊗iVi))

h is a module over Hn(g, h).
Moreover, we have a restriction morphism (S(g)⊗(⊗iVi))

g → (S(h)[1/P ]⊗(⊗Vi))h. Note
that (S(g)⊗ (⊗iVi))

g is a t̄1,n-module using the morphism t̄1,n → Hn(g), while (S(h)[1/P ]⊗
(⊗Vi))h is a t̄1,n-module using the morphism t̄1,n → Hn(g, h). Then one checks that the
restriction morphism (S(g) ⊗ (⊗iVi))

g → (S(h)[1/P ] ⊗ (⊗Vi))h is a t̄1,n-modules morphism.

Proof. The images of the above elements are all h-invariant. To lighten the notation, we
will imply summation over repeated indices and denote elements of Bn as follows: ∂̄ν ⊗ 1 by
∂̄ν , x̄ν ⊗ 1 by 〈λ, hν〉, 1⊗ x(i) by xi. Then ρg,h(x̄i) = (λ∨)i, ρg,h(ȳi) = −hiν ∂̄ν +

∑n
j=1 r(λ)

ij

(here for x⊗ y ∈ g⊗2, (x⊗ y)ii := xiyi).
We will use the same presentation of t̄1,n as in Proposition 6.1. The relations [x̄i, x̄j ] = 0

and t̄ij = t̄ji are obviously preserved.
Let us check that [x̄i, ȳj ] = t̄ij is preserved. We have for i 6= j, [ρg,h(x̄i), ρg,h(ȳj)] =

[x̄νh
i
ν ,−hjν ∂̄ν +

∑
k r(λ)

jk ] = tijh + [λi, r(λ)ji ] = tijh + tijn = tijg = ρg,h(t̄ij).

Let us check that
∑

i x̄i =
∑

i ȳi = 0 are preserved. We have
∑

i ρg,h(x̄i) = 0 by the
same argument as above and

∑
i ρg,h(ȳi) =

∑
i(λ

∨)i (by the antisymmetry of r(λ)), which
vanishes by the same argument as above.
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Let us check that [ȳi, ȳj ] = 0 is preserved, for i 6= j. We have

[ρg,h(ȳi), ρg,h(ȳj)]

=
∑

k|k 6=i,j

(
− hiν(∂νr(λ))

jk + hjν(∂νr(λ))
ik + [r(λ)ij , r(λ)jk ] + [r(λ)ik , r(λ)jk ] + [r(λ)ik , r(λ)ji ]

)

+ [(hiν + hjν)∂̄ν , r(λ)
ij ] − [hiν ∂̄ν , r(λ)

jj ] + [hjν ∂̄ν , r(λ)
ii ] + [r(λ)ij , r(λ)ii + r(λ)jj ]

=
( ∑

k|k 6=i,j

hkν(∂νr(λ))
ij

)
+ [(hiν + hjν)∂̄ν , r(λ)

ij ] − [hiν ∂̄ν , r(λ)
jj ] + [hjν ∂̄ν , r(λ)

ii ] + [r(λ)ij , r(λ)ii + r(λ)jj ]

≡ (∂νr(λ))
ij (−hiν − hjν − X̄ν) + [(hiν + hjν)∂̄ν , r(λ)

ij ] − hiν(∂νr(λ))
jj + hjν(∂νr(λ))

ii

+ [r(λ)ij , r(λ)ii + r(λ)jj ] = [hiν + hjν , r(λ)
ij ]∂̄ν − (∂νr

ij(λ))X̄ν

+ [hiν + hjν , ∂νr(λ)
ij ] − hiν(∂νr(λ))

jj + hjν(∂νr(λ))
ii + [r(λ)ij , r(λ)ii + r(λ)jj ].

The second equality follows from the CDYBE and the antisymmetry on r(λ). Then

[hiν + hjν , r(λ)
ij ]∂̄ν − (∂νr

ij(λ))X̄ν =
(
[hiν′ + hjν′ , r(λ)

ij ] − ∂νr
ij (λ)〈λ, [hν , hν′ ]〉

)
∂̄ν′ = 0

using the h-invariance of r(λ). Applying xiyjzk 7→ xi(yz)i to the CDYB identity

[r(λ)ij , r(λ)ik ]+[r(λ)ij , r(λ)jk ]+[r(λ)ik , r(λ)jk ]−hiν∂νr(λ)jk +hjν∂νr(λ)
ik−hjν∂νr(λ)ij = 0,

we get

(1/2)
∑

α,β

`α`
′
β(λ)[aα, aβ ]

i[bα, bβ ]
j + [r(λ)ij , r(λ)ii] − hiν(∂νr(λ))

jj + [hjν , ∂νr(λ)
ij ] = 0.

Since r(λ) is antisymmetric, the sum (1/2)
∑
α,β ... is symmetric in (i, j); antisymmetrizing

in (i, j), we get

[hiν + hjν , ∂νr(λ)
ij ] − hiν(∂νr(λ))

jj + hjν(∂νr(λ))
ii + [r(λ)ij , r(λ)ii + r(λ)jj ] = 0.

All this implies that [ρg,h(ȳi), ρg,h(ȳj)] = 0.
Let us check that [x̄i, t̄jk ] = 0 is preserved (i, j, k distinct). We have [ρg,h(x̄i), ρg,h(t̄jk)] =

[(λ∨)i, tjkg ] = 0.
Let us prove that [ȳi, t̄jk] = 0 is preserved (i, j, k distinct). We have [ρg,h(ȳi), ρg,h(t̄jk)] =

[−hiν ∂̄ν +
∑
l r(λ)

il, tjkg ] = [r(λ)ij + r(λ)ik , tjkg ] = 0 because tg is g-invariant. �

Proposition 6.4. If V1, ..., Vn are g-modules, then (S(h)[1/P ]⊗(⊗iVi))
h is a t̄1,nod-module.

The t̄1,n-module structure is induced by the morphism t̄1,n → Hn(g, h) of Proposition 6.3, so

ρ(Vi)(x̄i)(f(λ) ⊗ (⊗ivi)) = (λ∨)i(f(λ) ⊗ (⊗ivi)),

ρ(Vi)(ȳi)(f(λ) ⊗ (⊗ivi)) = (−hiν∂ν +
∑

j

r(λ)ij )(f(λ) ⊗ (⊗ivi)),

ρ(Vi)(t̄ij)(f(λ) ⊗ (⊗ivi)) = tijg (f(λ) ⊗ (⊗ivi)),
and the d-module structure is given by

ρ(Vi)(δ2m)(f(λ) ⊗ (⊗ivi)) =
1

2
(
∑

i

{(adλ∨)2m(eα) · eα}i)(f(λ) ⊗ (⊗ivi)),

ρ(Vi)(∆0)(f(λ) ⊗ (⊗ivi))

=
(
− 1

2
∂2
ν +

1

2
〈µ(r(λ)), hν 〉∂ν + {1

2
ψ(λ)11 − 1

2
(adλ∨)−1

|n (µ(r(λ))n)}12...n
)
(f(λ) ⊗ (⊗ivi)),

ρ(Vi)(d)(f(λ) ⊗ (⊗ivi)) =
1

2
(〈λ, hν〉∂ν + ∂ν〈λ, hν〉 + 〈µ(r(λ)), λ∨〉)(f(λ) ⊗ (⊗ivi)),

ρ(Vi)(X)(f(λ) ⊗ (⊗ivi)) = (1/2)〈λ∨, λ∨〉(f(λ) ⊗ (⊗ivi)).
Here xn is the projection of x ∈ g on n along h.
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To summarize, we have a diagram

t̄1,n → Hn(g, h) → End((S(h)[1/P ] ⊗ (⊗iVi))
h)

⊂↘ (1)↑ ↗
t̄1,n o d

As before, the restriction morphism (S(g) ⊗ (⊗iVi))
g → (S(h)[1/P ] ⊗ (⊗iVi))

h extends to a
t̄1,n o d-modules morphism.

The action of t̄1,n o d factors through a morphism ρ̃g,h : t̄1,n o d → Hn(g, h) extending
ρg,h : t̄1,n → Hn(g, h) (denoted by (1) in the diagram).

Proof. Let λ ∈ h∗
reg. Then if V is a g-module, we have (Ôg∗,λ ⊗ V )g = (Ôh∗,λ ⊗ V )h

(where ÔX,x is the completed local ring of a variety X at the point x). We then have a

morphism t̄1,n o d → Hn(g) → End((Ôg∗,λ ⊗ (⊗iVi))g) for any λ ∈ g∗, so when λ ∈ h∗
reg we

get a morphism t̄1,n o d → End((Ôh∗,λ ⊗ (⊗iVi))h).
Let show that the images of the generators of t̄1,n o d under this morphism are given by

the above formulas.
Since the actions of x̄i, t̄ij and X on (Ôg∗,λ ⊗ (⊗iVi))g are given by multiplication by

elements of (Ôg∗,λ⊗U(g)⊗n)g, their actions on (Ôh∗,λ⊗ (⊗iVi))h are given by multiplication
by restrictions of these elements to h∗.

Let us compute the action of ȳi. Let f̃(λ) ∈ (Ôh∗,λ⊗(⊗iVi))h and F̃ (λ) ∈ (Ôg∗,λ⊗(⊗iVi))g

be its equivariant extension to a formal map g∗ → ⊗iVi. Then for x ∈ n, we have (∂x∧ +∑
i(adλ∨)−1(x)i)(F̃ (λ))|h∗ = 0 (the map x 7→ x∧ is the inverse of g∗ → g, λ 7→ λ∨). Then

ρ(Vi)(ȳi)(f̃(λ)) =
(
− hiν∂ν +

∑
j e

i
β

(
(adλ∨)−1(eβ)

)j)
f̃(λ) = (−hiν∂ν +

∑
j r(λ)

ij )(f̃(λ)).

Let us now compute the action of ∆0. Let λ0 ∈ h∗ be such that λ∨0 ∈ U and λ ∈ g∗ be
close to λ0. We set δλ := λ − λ0. We then have λ = eadx(λ0 + h∧), where x ∈ n and h ∈ h

are close to 0. We have the expansions

h = (δλ)∨h +
1

2
[(adλ∨0 )−1

|n ((δλ)∨n ), (δλ)∨n ]h,

x = −(adλ∨0 )−1
|n

(
(δλ)∨n + [(adλ∨0 )−1

|n ((δλ)∨n ), (δλ)∨h ] +
1

2
[(adλ∨0 )−1

|n ((δλ)∨n ), (δλ)∨n ]n

)

up to terms of order > 2; here the indices un and uh mean the projections of u ∈ g to n and

h. If now f̃(λ) : h∗ ⊃ V (λ0, h
∗) → ⊗iVi is an h-equivariant function defined at the vicinity

of λ0 and F̃ (λ) : g∗ ⊃ V (λ0, g
∗) → ⊗iVi it its g-equivariant extension to a neighborhood of

λ0 in g∗, then F̃ (λ) = (ex)1...nf̃(λ0 + h), which implies the expansion

F̃ (λ) = f̃(λ0) +
(
(δλ)ν +

1

2
〈[(adλ∨0 )−1

|n (eβ), eβ′ ], hν〉(δλ)β(δλ)β′

)
∂ν f̃(λ0) +

1

2
(δλ)ν(δλ)ν′∂2

νν′ f̃(λ0)

+
(
− (adλ∨0 )−1

|n (eβ)(δλ)β − (adλ∨0 )−1([(adλ∨0 )−1
|n (eβ), hν ])(δλ)ν(δλ)β

− 1

2
(adλ∨0 )−1

|n ([(ad λ∨0 )−1
|n (eβ), eβ′ ]n)(δλ)β(δλ)β′ +

1

2
(adλ∨0 )−1

|n (eβ)(adλ∨0 )−1
|n (eβ′)(δλ)β(δλ)β′

)1...n

f̃(λ0)

− (adλ∨0 )−1
|n (eβ)

1...n(δλ)β(δλ)ν∂ν f̃(λ0)

up to terms of order > 2.
Then

(∂2
αF )(λ0) = (∂2

ν f̃)(λ0) + 〈[(adλ∨0 )−1
|n (eβ), eβ ], hν〉∂ν f̃(λ0)

+
(
− (adλ∨0 )−1

|n ([(adλ∨0 )−1
|n (eβ), eβ]n) + ((adλ∨0 )−1

|n (eβ))
2
)1...n

f̃(λ0),

which implies the formula for the action of ∆0.
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Then (S(h)[1/P ]⊗ (⊗iVi))
h ⊂ ∏

λ∈h∗
reg

(Ôh∗,λ ⊗ (⊗iVi))h is preserved by the action of the

generators of t̄1,n o d-module, hence it is a sub-(̄t1,n o d)-module, with action given by the
above formulas. �

6.4. Realization of the universal KZB system. The realization of the flat connection
d−∑

i K̄i(z|τ) d zi−∆̄(z|τ) d τ on (H×Cn)−Diagn is a flat connection on the trivial bundle
with fiber (Oh∗

reg
⊗ (⊗iVi))h.

We now compute this realization, under the assumption that h ⊂ g is a maximal abelian
subalgebra. In this case, two simplifications occur:

(a) (adλ∨)(hν) = 0 since h is abelian,
(b) [(adλ∨)−1

|n (eβ), eβ ]n = 0 since [(adλ∨)−1
|n (eβ), eβ ] commutes with any element in h, so

that it belongs to h.
The image of K̄i(z|τ) is then the operator

K
(Vi)
i (z|τ) = hiν∂ν −

∑

j

r(λ)ij +
∑

j|j 6=i

k(zij , (adλ∨)i|τ)(tijn + tijh )

= hiν∂ν − r(λ)ii +
∑

j|j 6=i

θ(zij + (adλ∨)i|τ)
θ(zij |τ)θ((ad λ∨)i|τ) (tijn ) +

∑

j|j 6=i

θ′

θ
(zij |τ)tijh

The image of 2π i ∆̄(z|τ) is the operator

2π i ∆(Vi)(z|τ) =
1

2
∂2
ν +

1

2
〈[(adλ∨)−1(eβ), eβ], hν〉∂ν − g(0, 0|τ)

∑

i

1

2
tiig

+
∑

i,j

1

2

(
[g(zij , adλ∨|τ) − (adλ∨)−2](eβ)

)i
ejβ +

∑

i,j

1

2
g(zij , 0|τ)hiνhjν

and the connection is now

∇(Vi) = d−
∑

i

K
(Vi)
i (z|τ) − ∆(Vi)(z|τ).

Recall that P (λ) = det((adλ∨)|n). We compute the conjugation P 1/2∇(Vi)P−1/2, where

P±1/2 is the operator of multiplication by (inverse branches of) P±1/2 on Oh∗
reg

⊗ (⊗iVi)h.

Lemma 6.5. ∂ν logP (λ) = −〈hν , µ(r(λ))〉, P 1/2[hiν∂ν − r(λ)ii ]P−1/2 = hiν∂ν , P
1/2[∂2

ν +
〈[(adλ∨)−1

|n (eβ), eβ], hν〉∂ν ]P−1/2 = ∂2
ν + ∂ν

(
〈hν , 1

2µ(r(λ))〉
)
− 〈hν , 1

2µ(r(λ))〉2.

Proof. ∂ν logP (λ) = (d/dt)|t=0 det[(ad(λ∨+thν)|n)(ad λ∨)−1
|n ] = tr[(adhν)|n◦(adλ∨)−1

|n ] =

〈eβ , (adhν) ◦ (adλ∨)−1
|n (eβ)〉 = 〈[(ad λ∨)−1

|n (eβ), eβ ], hν〉 = −〈hν , µ(r(λ))〉. The next equality

follows from µ(r(λ))i = 2r(λ)ii . The last equality is a direct consequence. �

We then get:

Proposition 6.6. P 1/2∇(Vi)P−1/2 = d−∑
i K̃i(z|τ) d zi − ∆̃(z|τ) d τ , where

K̃i(z|τ) = hiν∂ν +
∑

j|j 6=i

θ(zij + (adλ∨)i|τ)
θ(zij |τ)θ((ad λ∨)i|τ) (tijn ) +

∑

j|j 6=i

θ′

θ
(zij |τ)tijh

2π i ∆̃(z|τ) =
1

2
∂2
ν + ∂ν

(
〈hν ,

1

2
µ(r(λ))〉

)
− 〈hν ,

1

2
µ(r(λ))〉2 − g(0, 0|τ)

∑

i

1

2
tiig

+
∑

i,j

1

2

((
g(zij , adλ∨|τ) − (adλ∨)−2

)
(eβ)

)i
ejβ +

∑

i,j

1

2
g(zij , 0|τ)hiνhjν ,

where

g(z, 0|τ) =
1

2

θ′′

θ
(z|τ) − 2π i

∂τη

η
(τ)
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and

g(z, α|τ) − α−2 =
1

2

θ(z + α|τ)
θ(x|τ)θ(α|τ) (

θ′

θ
(z + α|τ) − θ′

θ
(α|τ))

The term in
∑
i(1/2)tiig is central and can be absorbed by a suitable further conjugation.

Rescaling tg into κ−1tg, where κ ∈ C×, K̃i(z|τ) and ∆̃(z|τ) get multiplied by κ. Moreover,
we have:

Lemma 6.7. When g is simple and h ⊂ g is the Cartan subalgebra, ∂ν{〈hν , 1
2µ(r(λ))〉} =

〈hν , 1
2µ(r(λ))〉2.

Proof. Let D(λ) :=
∏
α∈∆+(α, λ), where ∆+ is the set of positive roots of g. Then D(λ)

is W -antiinvariant, where W is the Weyl group. Therefore ∂2
νD(λ) is also W -antiinvariant,

so it is divisible (as a polynomial on h∗) by all the (α, λ), where α ∈ ∆+, so it is divisible by
D(λ); since ∂2

νD(λ) has degree strictly lower than D(λ), we get ∂2
νD(λ) = 0.

Now if (eα, fα, hα) is a basis of the sl2-triple associated with α, we have r(λ) =
∑

α∈∆+ −(eα⊗
fα−fα⊗eα)/(α, λ), so 1

2µ(r(λ)) = −∑
α∈∆+ hα/(α, λ). Therefore 1

2µ(r(λ)) = −∂ν logD(λ)hν .

Then ∂2
νD(λ) = 0 implies that ∂2

ν logD + (∂ν logD)2 = 0, which implies the lemma. �

The resulting flat connection then coincides with that of [Be1, FW].

7. The universal KZB connection and representations of Cherednik algebras

7.1. The rational Cherednik algebra of type An−1. Let k be a complex number, and
n ≥ 1 an integer. The rational Cherednik algebra Hn(k) of type An−1 is the quotient of the
algebra C[Sn] n C[x1, ..., xn, y1, ..., yn] by the relations

∑

i

xi = 0,
∑

i

yi = 0, [xi, xj ] = 0 = [yi, yj ],

[xi, yj ] =
1

n
− ksij , i 6= j,

where sij ∈ Sn is the permutation of i and j (see e.g. [EG]). 5

Let e := 1
n!

∑
σ∈Sn

σ ∈ C[Sn] be the Young symmetrizer. The spherical subalgebra Bn(k)

(often called the spherical Cherednik algebra) is defined to be the algebra eHn(k)e.
We define an important element

h :=
1

2

∑

i

(xiyi + yixi).

We recall that category O is the category of Hn(k)-modules which are locally nilpotent under
the action of the operators yi and decompose into a direct sum of finite dimensional gener-
alized eigenspaces of h. Similarly, one defines category O over Bn(k) to be the category of
Bn(k)-modules which are locally nilpotent under the action of C[y1, ..., yn]

Sn and decompose
into a direct sum of finite dimensional generalized eigenspaces of h.

7.2. The homorphism from t̄1,n to the rational Cherednik algebra.

Proposition 7.1. For each k, a, b ∈ C, we have a homomorphism of Lie algebras ξa,b :
t̄1,n → Hn(k), defined by the formula

x̄i 7→ axi, ȳi 7→ byi, t̄ij 7→ ab

(
1

n
− ksij

)
.

Proof. Straightforward. �

5The generators xα, ∂α of Section 6.1 will be henceforth renamed qα, pα.
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Remark 7.2. Obviously, a, b can be rescaled independently, by rescaling the generators x̄i
and ȳi of the source algebra t̄1,n. On the other hand, if we are only allowed to apply
automorphisms of the target algebra Hn(k), then a, b can only be rescaled in such a way
that the product ab is preserved. �

This shows that any representation V of the rational Cherednik algebra Hn(k) yields a
family of realizations for t̄1,n parametrized by a, b ∈ C, and gives rise to a family of flat
connections ∇a,b over the configuration space C̄(Eτ , n).

7.3. Monodromy representations of double affine Hecke algebras. Let Hn(q, t) be
Cherednik’s double affine Hecke algebra of type An−1. By definition, Hn(q, t) is the quotient
of the group algebra of the orbifold fundamental group B1,n of C̄(Eτ , n)/Sn by the additional
relations

(T − q−1t)(T + q−1t−1) = 0,

where T is any element of B1,n homotopic (as a free loop) to a small loop around the divisor
of diagonals in the counterclockwise direction.

Let V be a representation of Hn(k), and let ∇a,b(V ) be the universal connection ∇a,b

evaluated in V . In some cases, for example if a, b are formal, or if V is finite dimensional,
we can consider the monodromy of this connection, which obviously gives a representation
of Hn(q, t) on V , with

q = e−2πiab/n, t = e−2πikab.

In particular, taking a = b, V = Hn(k), this monodromy representation defines an homo-
morphism θa : Hn(q, t) → Hn(k)[[a]], where

q = e−2πia2/n, t = e−2πika2

.

It is easy to check that this homomorphism becomes an isomorphism upon inverting a. The
existence of such an isomorphism was pointed out by Cherednik (see [Ch2], end of Section
6, and the end of [Ch1]), but his proof is different.

Example 7.3. Let k = r/n, where r is an integer relatively prime to n. In this case, it
is known (see e.g. [BEG1]) that the algebra Hn(k) admits an irreducible finite dimensional
representation Y (r, n) of dimension rn−1. By virtue of the above construction, the space
Y (r, n) carries an action of Hn(q, t) with any nonzero q, t such that qr = t. This finite
dimensional representation of Hn(q, t) is irreducible for generic q, and is called a perfect
representation; it was first constructed in [E], p. 500, and later in [Ch2], Theorem 6.5, in a
greater generality.

7.4. The modular extension of ξa,b. Assume that a, b 6= 0.

Proposition 7.4. The homomorphism ξa,b can be extended to the algebra U (̄t1,n o d) o Sn
by the formulas

ξa,b(sij) = sij ,

ξa,b(d) = h =
1

2

∑

i

(xiyi + yixi), ξa,b(X) = −1

2
ab−1

∑

i

x2
i ,

ξa,b(∆0) =
1

2
ba−1

∑

i

y2
i , ξa,b(δ2m) = −1

2
a2m−1b−1

∑

i<j

(xi − xj)
2m.

Proof. Direct computation. �

Thus, the flat connections ∇a,b extend to flat connections on M1,[n].
This shows that the monodromy representation of the connection ∇a,b(V ), when it can

be defined, is a representation of the double affine Hecke algebra Hn(q, t) with a compatible

action of the extended modular group S̃L2(Z). In particular, this is the case if V = Y (r, n).
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Such representations of S̃L2(Z) were considered by Cherednik, [Ch2]. The element T of

S̃L2(Z) acts in this representation by “the Gaussian”, and the element S by the “Fourier-

Cherednik transform”. They are generalizations of the S̃L2(Z)-action on Verlinde algebras.

8. Explicit realizations of certain highest weight representations of the
rational Cherednik algebra of type An−1

8.1. The representation VN . Let N be a divisor of n, and g = slN (C), G = SLN (C). Let
VN = (C[g] ⊗ (CN )⊗n)g (the divisor condition is needed for this space to be nonzero). It
turns out that VN has a natural structure of a representation of Hn(k) for k = N/n.

Proposition 8.1. We have a homomorphism ζN : Hn(N/n) → End(VN ), defined by the
formulas

ζN (sij) = sij , ζN (xi) = Xi, ζN (yi) = Yi, (i = 1, ..., n)

where for f ∈ VN , A ∈ g we have

(Xif)(A) = Aif(A),

(Yif)(A) =
N

n

∑

p

(bp)i
∂f

∂bp
(A),

where {bp} is an orthonormal basis of g with respect to the trace form.

Proof. Straightforward verification. �

The relationship of the representation VN to other results in this paper is described by
the following proposition.

Proposition 8.2. The connection ∇a,1(VN ) corresponding to the representation VN is the
usual KZB connection for the n-point correlation functions on the elliptic curve for the Lie
algebra slN and n copies of the vector representation CN , at level K = − n

aN −N .

Proof. We have a sequence of maps

U (̄t1,n o d) o Sn → Hn(N/n) → Hn(g) o Sn → End(VN ),

where the first map is ξa,b, the second map sends sij to sij , xi to the class of
∑
α qα ⊗ eiα,

and yi to the class of
∑

α pα ⊗ eiα (recall that the xa, ∂a of Section 6.1 have been renamed
qa, pa), and the last map is explained in Section 6.1. The composition of the two first maps
is then that of Proposition 6.2, and the composition of the two last maps is the map ζN of
Proposition 8.1. This implies the statement. �

Remark 8.3. Suppose that K is a nonnegative integer, i.e. a = − n
N(K+N) , where K ∈ Z+.

Then the connection ∇a,1 on the infinite dimensional vector bundle with fiber VN preserves
a finite dimensional subbundle of conformal blocks for the WZW model at level K. Th
subbundle gives rise to a finite dimensional monodromy representation V K

N of the Cherednik
algebra Hn(q, t) with

q = e
2πi

N(K+N) , t = qN ,

(so both parameters are roots of unity). The dimension of V K
N is given by the Verlinde

formula, and it carries a compatible action of S̃L2(Z) to the action of the Cherednik algebra.
Representations of this type were studied by Cherednik in [Ch2].
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8.2. The spherical part of VN . Note that

((

n∑

i=1

Xp
i )f)(A) =

n

N
(trAp)f(A), (43)

((

n∑

i=1

Y pi )f)(A) =

(
N

n

)p−1

(tr ∂pA)f(A) (44)

Consider the space UN = eVN = (C[g]⊗SnCN )g as a module over the spherical subalgebra
Bn(k). It is known (see e.g. [BEG2]) that the spherical subalgebra is generated by the
elements (

∑
xpi )e and (

∑
ypi )e. Thus formulas (43,44) determine the action of Bn(k) on UN .

We note that by restriction to the set h of diagonal matrices diag(λ1, ..., λN ), and dividing
by ∆n/N , where ∆ =

∏
i<j(λi−λj), one identifies UN with C[h]SN . Moreover, it follows from

[EG] that formulas (43,44) can be viewed as defining an action of another spherical Cherednik
algebra, namely BN (1/k), on C[h]SN . Moreover, this representation is the symmetric part
W of the standard polynomial representation of HN (1/k), which is faithful and irreducible
since 1/k = n/N is an integer ([GGOR]). In other words, we have the following proposition.

Proposition 8.4. There exists a surjective homomorphism φ : Bn(N/n) → BN (n/N), such
that φ∗W = UN . In particular, UN is an irreducible representation of Bn(N/n).

Proposition 8.4 can be generalized as follows. Let 0 ≤ p ≤ n/N be an integer. Consider
the partition µ(p) = (n− p(N − 1), p, ..., p) of n. The representation of g attached to µ(p) is
Sn−pNCN .

Let e(p) be a primitive idempotent of the representation of Sn attached to µ(p). Let
UpN = e(p)VN = (C[g] ⊗ Sn−pNCN )g. Then the algebra e(p)Hn(N/n)e(p) acts on UpN , and
the above situation of UN is the special case p = 0.

Proposition 8.5. There exists a surjective homomorphism φp : e(p)Hn(N/n)e(p) → BN (n/N−
p), such that φ∗pW = UpN . In particular, UpN is an irreducible representation of Bn(N/n−p).

Proof. Similar to the proof of Proposition 8.4. �

Example 8.6. p = 1, n = N . In this case e(p) = e− = 1
n!

∑
σ∈Sn

ε(σ)σ, the antisym-

metrizer, and the map φp is the shift isomorphism e−HN (1)e− → eHN (0)e.

8.3. Coincidence of the two sl2 actions. As before, let {bp} be an orthonormal basis of
g (under some invariant inner product). Consider the sl2-triple

H =
∑

bp
∂

∂bp
+

dim g

2
(45)

(the shifted Euler field),

F =
1

2

∑

p

b2p, E =
1

2
∆g, (46)

where ∆g is the Laplace operator on g. Recall also (see e.g. [BEG2]) that the rational
Cherednik algebra contains the sl2-triple h = 1

2

∑
i(xiyi + yixi), e = 1

2

∑
i y

2
i , f = 1

2

∑
i x

2
i .

The following proposition shows that the actions of these two sl2 algebras on VN essentially
coincide.

Proposition 8.7. On VN , one has

h = H, e =
N

n
E, f =

n

N
F.

Proof. The last two equations follow from formulas (43,44), and the first one follows from
the last two by taking commutators. �
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8.4. The irreducibility of VN . Let ∆(n,N) be the representation of the symmetric group
Sn corresponding to the rectangular Young diagram with N rows (and correspondingly n/N
columns), i.e. to the partition ( nN , ...,

n
N ); e.g., ∆(n, 1) is the trivial representation.

For a representation π of Sn, let L(π) denote the irreducible lowest weight representation
of Hn(k) with lowest weight π.

Theorem 8.8. The representation VN is isomorphic to L(∆(n,N)).

Proof. The representation VN is graded by the degree of polynomials, and in degree zero
we have VN [0] = ((CN )⊗n)g = ∆(n,N) by the Weyl duality.

Let us show that the module VN is semisimple. It is sufficient to show that VN is a unitary
representation, i.e. admits a positive definite contravariant Hermitian form. Such a form
can be defined by the formula

(f, g) = 〈f(∂A), g(A)〉|A=0,

where 〈−,−〉 is the Hermitian form on (CN )⊗n obtained by tensoring the standard forms
on the factors. This form is obviously positive definite, and satisfies the contravariance
properties:

(Yif, g) =
N

n
(f,Xig), (f, Yig) =

N

n
(Xif, g).

The existence of the form (−,−) implies the semisimplicity of VN . In particular, we have a
natural inclusion L(∆(n,N)) ⊂ VN .

Next, formula (43) implies that VN is a torsion-free module over R := C[x1, ..., xN ]SN =

C[
∑N

i=1 xpi , 2 ≤ p ≤ N ]. Since VN is semisimple, this implies that VN/L(∆(n,N)) is torsion-
free as well.

On the other hand, we will now show that the quotient VN/L(∆(n,N)) is a torsion module
over R. This will imply that the quotient is zero, as desired.

Let v1, ..., vN be the standard basis of CN , and for each sequence J = (j1, ..., jn), ji ∈
{1, ..., N}, let vJ := vj1 ⊗ ... ⊗ vjn . Let us say that a sequence J is balanced if it contains
each of its members exactly n/N times. Let B be the set of balanced sequences. The set B
has commuting left and right actions SN and Sn, σ ∗ (j1, ..., jn) ∗ τ = (σ(jτ(1)), ..., σ(jτ(n))).
Let J0 = (1...1, 2...2, ..., N...N), then any J ∈ B has the form J = J0 ∗ τ for some τ ∈ Sn.

Let f ∈ VN . Then f is a function h → ((CN )⊗n)h, equivariant under the action of SN
(here h ⊂ g is the Cartan subalgebra, so h = {(λ1, ..., λN )|∑i λi = 0}), so

f(λ) =
∑

J∈B

fJ(λ)vJ , (47)

where λ = (λ1, ..., λN ), and fJ are scalar functions (the summation is over B since f(λ) must
have zero weight). By the SN -invariance, we have fσ∗J (σ(λ)) = fJ(λ). We then decompose
f(λ) =

∑
o∈SN\B fo(λ), where fo(λ) =

∑
J∈o fJ (λ)vJ .

For each o ∈ SN \ B, we construct a nonzero φo ∈ C[x1, ...., xn] such that φo · fo(λ) ∈
L(∆(n,N)). Then φ :=

∏
o∈SN\B

∏
σ∈SN

σ(φo) ∈ R is nonzero and such that φ · f(λ) ∈
L(∆(n,N)).

We first construct φo when o = o0, the class of J0. By SN -invariance, fo0(λ) has the form

fo0(λ) =
∑

σ∈SN

g(λσ(1), ..., λσ(N))v
⊗n/N
σ(1) ⊗ ...⊗ v

⊗n/N
σ(N) , where g(λ, ..., λN ) ∈ C[λ1, ..., λN ].

For φo0 ∈ C[x1, ..., xN ], we have

φo0 · fo0(λ) =
∑

σ∈SN

(φo0g)(λσ(1), ..., λσ(N))v
⊗n/N
σ(1) ⊗ ...⊗ v

⊗n/N
σ(N) . (48)

On the other hand, let v ∈ ∆(n,N); expand v =
∑

J∈B cJvJ . One checks that v can be
chosen such that cJ0 6= 0 (one starts with a nonzero vector v′ and J ′ ∈ B such that the
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coordinate of v′ along J ′ is nonzero, and then acts on v′ by an element of Sn bringing J ′ to
J0). Then since v is g-invariant (and therefore SN -invariant), we have

cσ(1)...σ(1)...σ(N)...σ(N) = cJ0 (49)

for any σ ∈ SN .
If Q ∈ C[x1, ..., xn], then

(Q · v)(λ) =
∑

(j1,...,jn)∈B

cj1...jnQ(λj1 , ..., λjn)vj1 ⊗ ...⊗ vjn ∈ L(∆(n,N)). (50)

Set Q0(λ1, ..., λn) :=
∏

1≤a<b≤n,j0a 6=j
0
b
(λa−λb), where J0 = (1...1, ..., N...N) = (j01 , ..., j

0
n),

q0(λ1, ..., λN ) := Q0(λ1...λ1, ..., λN ...λN ), so q0(λ1, ..., λN ) =
( ∏

1≤i<j≤N (λi − λj)
)(n/N)2

.

Set φo0(λ1, ..., λN ) := q0(λ1, ...., λN ) and

Q(λ1, ..., λn) := Q0(λ1, ..., λn)q(λ1, λ(n/N)+1, ..., λ(N−1) n
N

+1).

Then (48) and (50) coincide, as: (a) for J /∈ o0, Q0(λj1 , ..., λjn) = 0 so the coefficient of
vJ in both expressions is zero, (b) the coefficients of vJ0 in both expressions coincide, (c)
for J ∈ o0, the coefficients of vJ coincide because of (b) and of (49). The functions φo are
constructed in the same way for a general o ∈ SN \B. This ends the proof of the theorem.

�

Remark 8.9. Theorem 8.8 is a special case of a much more general (but much less elementary)
Theorem 9.8, which is proved below.

8.5. The character formula for VN . For each partition µ of n, let V (µ) be the represen-
tation of g, and π(µ) the representation of Sn corresponding to µ.

Let Pµ(q) be the q-analogue of the weight multiplicity of the zero weight in V (µ). Namely,
we have a filtration F • on V (µ)[0] such that F i is the space of vectors in V (µ)[0] killed by the
i+1-th power of the principal nilpotent element

∑
ei of g. Then Pµ(q) =

∑
j≥0 dim(F j/F j−1)qj .

The coefficients of Pµ(q) are called the generalized exponents of V (µ) (see [K, He, Lu1] for
more details).

We have VN = ⊕µπ(µ) ⊗ (C[g] ⊗ V (µ))g. This together with Theorem 8.8 implies the
following.

Corollary 8.10. The character of L(∆(n,N)) is given by the formula

Tr|L(∆(n,N))(w · qh) = q(N
2−1)/2

∑
µ χπ(µ)(w)Pµ(q)

(1 − q2)...(1 − qN )
,

where w ∈ Sn, and χπ(µ) is the character of π(µ). Here the summation is over partitions µ
of n with at most N parts.

Proof. The formula follows, using Proposition 8.7, from Kostant’s result ([K]) that (C[g]⊗
V (µ))g is a free module over C[g]g, and the fact that the Hilbert polynomial of the space of
generators for this module is the q-weight multiplicity of the zero weight, Pµ(q) ([K, Lu1, He]).

�

Remark 8.11. It would be interesting to compare this formula with the character formula of
[Ro] for the same module.

9. Equivariant D-modules and representations of the rational Cherednik
algebra

9.1. The category of equivariant D-modules on the nilpotent cone. The theory of
equivariant D-modules on the nilpotent cone arose from Harish-Chandra’s work on invariant
distributions on nilpotent orbits of real groups, and was developed further in many papers,
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see e.g. [HK, LS, L, Mi] and references therein. Let us recall some of the basics of this
theory.

Let G be a simply connected simple algebraic group over C, and g its Lie algebra. Let
N ⊂ g be the nilpotent cone of g. We denote by D(g) the category of finitely generated
D-modules on g, by DG(g) the subcategory of G-equivariant D-modules, and by DG(N ) the
category of G-equivariant D-modules which are set-theoretically supported on N (here we
do not make a distinction between a D-module on an affine space and the space of its global
sections). Since G acts on N with finitely many orbits, it is well known that any object in
DG(N ) is regular and holonomic.

Moreover, the category DG(N ) has finitely many simple objects, and every object of this
category has finite length (so this category is equivalent to the category of modules over a
finite dimensional algebra).

9.2. Simple objects in DG(N ). Recall (see e.g. [Mi] and references) that irreducible ob-
jects in the category DG(N ) are parametrized by pairs (O,χ), where O is a nilpotent orbit
of G in g, and χ is an irreducible representation of the fundamental group π1(O), which is
clearly isomorphic to the component group A(O) of the centralizer Gx of a point x ∈ O.
Namely, χ defines a local system Lχ on O, and the simple object M(O,χ) ∈ DG(N ) is the
direct image of the Goresky-Macpherson extension of Lχ to the closure Ō of O, under the
inclusion of Ō into g.

9.3. Semisimplicity of DG(N ). The proof of the following theorem was explained to us
by G. Lusztig.

Theorem 9.1. The category DG(N ) is semisimple.

Proof. We may replace the category DG(N ) by the category of G-equivariant perverse
sheaves (of complex vector spaces) on g supported on N , PervG(N ), as these two categories
are known to be equivalent. We must show that Ext1(P,Q) = 0 for every two simple objects
P,Q ∈ PervG(N ).

Let P ′, Q′ be the Fourier transforms of P,Q. Then P ′, Q′ are character sheaves on g, and
it suffices to show that Ext1(P ′, Q′) = 0.

Recall that to each character sheaf S one can naturally attach a conjugacy class of pairs
(L, θ), where L is a Levi subgroup of G, and θ is a cuspidal local system on a nilpotent orbit
for L. It is shown by arguments parallel to those in [Lu3] (which treats the more difficult case
of character sheaves on the group) that if (Li, θi) corresponds to Si, i = 1, 2, and (L1, θ1) is
not conjugate to (L2, θ2) then Ext∗(S1, S2) = 0. Thus it is sufficient to assume that the pair
(L, θ) attached to P ′ and Q′ is the same.

Using standard properties of constructible sheaves (in particular, Poincaré duality), we
have

Ext1(P ′, Q′) = H1(g,Hom(P ′, Q′)) =

H2 dim g−1
c (g,Hom(P ′, Q′)∗)∗ = H2 dimg−1

c (g, (Q′)∗ ⊗ P ′)∗,

where ∗ for sheaves denotes the Verdier duality functor.
Recall that to each character sheaf one can attach an irreducible representation of a

certain Weyl group, via the generalized Springer correspondence. Let R be the direct sum
of all character sheaves corresponding to a given pair (L, θ) with multiplicities given by
the dimensions of the corresponding representations. Then it is sufficient to show that
H2 dim g−1
c (g, (R′)∗ ⊗R′) = 0.
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This fact is essentially proved in [Lu2]. Namely, it follows from the computations of [Lu2]
that H i

c(g, (R
′)∗⊗R′) is the cohomology with compact support of a certain generalized Stein-

berg variety with twisted coefficients, and it is shown that this cohomology is concentrated
in even degrees.6 The theorem is proved. �

9.4. Monodromicity. We will need the following lemma.

Lemma 9.2. Let Q ∈ DG(N ). Then for any finite dimensional representation U of g, the
action of the shifted Euler operator H defined by (45) on (Q⊗U)g is locally finite (so Q is a
monodromic D-module), and has finite dimensional generalized eigenspaces. Moreover, the
eigenvalues of H on (Q ⊗ U)g are bounded from above. In particular, (Q ⊗ U)g belongs to
category O for the sl2-algebra spanned by H and the elements E,F given by (46).

Proof. Since Q has finite length, it is sufficient to assume that Q is irreducible. We
may further assume that Q is generated by an irreducible G-submodule V , annihilated by
multiplication by any invariant polynomial on g of positive degree. Indeed, let V0 be an
irreductible G-submodule of Q, let JV0 := {f ∈ C[g]g|fV0 = 0} and for any v ∈ V0, let
Jv := {f ∈ C[g]g|fv = 0}. Then if v ∈ V0 is nonzero, Jv = JV0 as Gv = V0. Moreover, the
support condition implies that Jv ⊂ mk for some k ≥ 0, where m = C[g]g+. So JV0 ⊂ mk and
is an ideal of C[g]g. Let f ∈ C[g]g be such that f /∈ JV0 and fm ⊂ JV0 ; we set V := fV0.

Then Q is a quotient of the D-module Q̃⊗ V by a G-stable submodule, where

Q̃ := D(g)/(D(g)ad(Ann(V )) +D(g)I),

Ann(V ) is the annihilator of V in U(g), and I is the ideal in C[g] generated by invariant
polynomials on g of positive degree. Thus, it suffices to show that the lemma holds for the
module Q̃ (which is only weakly G-equivariant, i.e. the group action and the Lie algebra
action coming from differential operators do not agree, in general).

The algebra D(g) has a grading in which deg(g∗) = −1, deg(g) = 1. This grading

descends to a grading on Q̃. We will show that for each U , this grading on (Q̃ ⊗ U)g has
finite dimensional pieces, and is bounded from above. This implies the lemma, since the
Euler operator preserves the grading.

Consider the associated graded module Q̃0 of Q̃ under the Bernstein filtration. This is
a bigraded module over C[g ⊕ g] (where we identify g and g∗ using the trace form). We

have to show that the homogeneous subspaces of (Q̃0 ⊗ U)g under the grading defined by
deg(g ⊕ 0) = −1, deg(0 ⊕ g) = 1 are finite dimensional.

The associated graded of the ideal Ann(V ) ⊂ U(g) is such that C[g]k+ ⊂ grAnn(V ) ⊂ C[g]+
for some k ≥ 1, therefore

Q̃0 = C[g ⊕ g]/J,

where J is a (not necessarily radical) ideal whose zero set is the variety Z of pairs (u, v) ∈
N × g such that [u, v] = 0. Let

Q′
0 = C[g ⊕ g]/

√
J.

Because of the Hilbert basis theorem, it suffices to prove that the homogeneous subspaces of
(Q′

0 ⊗U)g are finite dimensional, and the degree is bounded above. But Q′
0 is the algebra of

regular functions on Z . By the result of [J], one has C[Z ]g = C[g]g, the algebra of invariant
polynomials of Y . But it follows from the Hilbert’s theorem on invariants that every isotypic
component of C[Z ] is a finitely generated module over C[Z ]g. This implies the result. �

6More precisely, in the arguments of [Lu2] the vanishing of odd cohomology is proved for G-equivariant
cohomology with compact supports, and in the non-equivariant case one should use parallel arguments,
rather than exactly the same arguments.
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9.5. Characters. Lemma 9.2 allows one to define the character of an object M ∈ DG(N ).
Namely, let µ = (µ1, ..., µN ) be a dominant integral weight for g, and V (µ) the irreducible
representation of g with highest weight µ. Let KM (µ) = (M ⊗ V (µ))g. Then the character
of M is defined by the formula

ChM (t, g) = Tr|M (gt−H) =
∑

µ

Tr|KM (µ)(t
−H)χµ(g), g ∈ G,

where χµ denotes the character of µ. It can be viewed as a linear functional from C[G]G to
F := ⊕β∈Ct

βC[[t]], via the integration pairing.
In other words, the multiplicity spaces KM (µ) are representations from category O of the

Lie algebra sl2 spanned by E,F,H , and the character of M carries the information about
the characters of these representations.

The problem of computing characters of simple objects in DG(N ) is interesting and, to
our knowledge, open. Below we will show how these characters for G = SLN (C) can be
expressed via characters of irreducible representations of the rational Cherednik algebra.

Example 9.3. Recall (see e.g. [Mi]) that an object M ∈ DG(N ) is cuspidal iff F(M) ∈
DG(N ), where F is the Fourier transform (Lusztig’s criterion). If follows that in the case
of cuspidal objects M , the spaces KM (µ) are also in the category O for the opposite Borel
subalgebra of sl2, hence are finite dimensional representations of sl2, and, in particular, their
dimensions are of interest.

9.6. The functors Fn, F
∗
n . The representation VN is a special case of representations of

the rational Cherednik algebra which can be constructed via a functor similar to the one
defined in [GG1]. Namely, the construction of VN can be generalized as follows.

Let n and N be positive integers (we no longer assume that N is a divisor of n), and
k = N/n. We again consider the special case G = SLN (C), g = slN (C). Then we have a
functor Fn : D(g) → Hn(k)-mod defined by the formula

Fn(M) = (M ⊗ (CN )⊗n)g,

where g acts on M by adjoint vector fields. The action of Hn(k) on Fn(M) is defined by the
same formulas as in Proposition 8.1, and Proposition 8.7 remains valid.

Note that Fn(M) = Fn(Mfin), where Mfin is the set of g-finite vectors in M . Clearly Mfin

is a G-equivariant D-module. Thus, it is sufficient to consider the restriction of Fn to the
subcategory DG(g), which we will do from now on.

In general, Fn(M) does not belong to category O. However, we have the following lemma.

Lemma 9.4. If the Fourier transform F(M) of M is set-theoretically supported on the
nilpotent cone N of g, then Fn(M) belongs to the category O.

Proof. Since F(M) is supported on N , invariant polynomials on g act locally nilpotently
on F(M). Hence invariant differential operators on g with constant coefficients act locally
nilpotently on M . Thus, it follows from formula (44) that the algebra C[y1, ..., yn]

Sn acts lo-
cally nilpotently on Fn(M). Also, by Lemma 9.2, the operator h acts with finite dimensional
generalized eigenspaces on Fn(M). This implies the statement. �

Thus we obtain an exact functor F ∗
n = Fn ◦ F : DG(N ) → O(Hn(k)).

9.7. The symmetric part of Fn. Consider the symmetric part eFn(M) of Fn(M). We
have eFn(M) = (M ⊗ SnCN )g, and we have an action of the spherical subalgebra Bn(k) on
eFn(M), given by formulas (43,44).

This allows us to relate the functor Fn with the functor defined in [GG1]. Namely, recall
from [GG1] that for any c ∈ Z, one may define the category Dc(g × PN−1) of coherent D-
modules on g×PN−1 which are twisted by the c-th power of the tautological line bundle on
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the second factor (this makes sense for all complex c even though the c-th power is defined
only for integer c). Then the paper [GG1]7 defines a functor

H : Dc(g × PN−1) → BN (c/N) -mod,

given by H(M) = Mg.

Proposition 9.5. (i) If n is divisible by N then one has a functorial isomorphism eFn(M) '
φ∗H(M ⊗ SnCN ), where SnCN is regarded as a twisted D-module on PN−1 (with c = n).

(ii) For any n, the actions of Bn(N/n) and BN (n/N) on the space eFn(M) = H(M ⊗
SnCN ) have the same image in the algebra of endomorphisms of this space.

Proof. This follows from the definition of H and formulas (43,44). �

Corollary 9.6. The functor eF ∗
n on the category DG(N ) maps irreducible objects into irre-

ducible ones.

Proof. This follows from Proposition 9.5, (ii) and Proposition 7.4.3 of [GG1], which states
that the functor H maps irreducible objects to irreducible ones. �

Formulas 43,44 can also be used to study the support of F ∗
n(M) for M ∈ DG(N ), as a

C[x1, ..., xn]-module. Namely, we have the following proposition.

Proposition 9.7. Let q = GCD(n,N) be the greatest common divisor of n and N . Then
the support S of F ∗

n(M) is contained in the union of the Sn-translates of the subspace Eq of

Cn defined by the equations
∑n

i=1 xi = 0 and xi = xj if n
q (l − 1) + 1 ≤ i, j ≤ nl

q for some

1 ≤ l ≤ q.

Proof. It follows from equation (44) that for any (x1, ..., xn) ∈ S there exists a point
(z1, ..., zN ) ∈ CN such that one has

1

n

n∑

i=1

xpi =
1

N

N∑

j=1

zpj

for all positive integer p. In particular, writing generating functions, we find that

N
n∑

i=1

1

1 − txi
= n

N∑

j=1

1

1 − tzj
.

In particular, every fraction occurs on both sides at least LCM(n,N) times, and hence the
numbers xi fall into n/q-tuples of equal numbers (and the numbers zj into N/q-tuples of
equal numbers). The proposition is proved. �

9.8. Irreducible equivariant D-modules on the nilpotent cone for G = SLN (C).
Nilpotent orbits for SLN (C) are labelled by Young diagrams, or partitions. Namely, if
x ∈ slN (C) is a nilpotent element, then we let µi be the sizes of its Jordan blocks enumerated
in the decreasing order. The partition µ = (µ1, ..., µm) and the corresponding Young diagram
whose rows have lengths µi are attached to x. If O is the orbit of x then we will denote µ
by µ(O). For instance, if O = {0} then µ = (1N ) and if O is the open orbit then µ = (N).

It is known (and easy to show) that the groupA(O) is naturally isomorphic to Z/dZ, where
d is the greatest common divisor of the µi. Namely, let Z = Z/NZ be the center of G (we
identify Z/NZ with Z by p→ e2πip/N Id). Then we have a natural surjective homomorphism
θ : Z → A(O) induced by the inclusion Z → Gx, x ∈ O. This homomorphism sends d to 0,
and thus A(O) gets identified with Z/dZ.

Thus, any character χ : A(O) → C∗ is defined by the formula χ(p) = e−2πips/d, where
0 ≤ s < d. We will denote this character by χs.

7There seems to be a misprint in [GG1]: in the definition of H, c should be replaced by c/N .
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9.9. The action of F ∗
n on irreducible objects. Obviously, the center Z of G acts on

F ∗
n(M) by z → z−sN/d. Thus, a necessary condition for F ∗

n(M(O,χs)) to be nonzero is

n = N
(
p+

s

d

)
, (51)

where p is a nonnegative integer.
Our main result in this section is the following theorem.

Theorem 9.8. The functor F ∗
n maps irreducible objects into irreducible ones or zero. Specif-

ically, if condition (51) holds, then we have

F ∗
n(M(O,χs)) = L(π(nµ(O)/N)),

the irreducible representation of Hn(k) whose lowest weight is the representation of Sn cor-
responding to the partition nµ(O)/N .

Remark 9.9. Here if µ is a partition and c ∈ Q is a rational number, then we denote by cµ
the partition whose parts are cµi, provided that these numbers are all integers. In our case,
this integrality condition holds since all parts of µ(O) are divisible by d. �

Corollary 9.10. Let λ be a partition of n into at most N parts. Let M = M(Oµ, χs), and
assume that condition (51) is satisfied. Then

(M ⊗ V (λ))g = HomSn
(π(λ), L(π(nµ/N)))

as graded vector spaces.

This corollary allows us to express the characters of the irreducible D-modules M(O,χ)
in terms of characters of certain special lowest weight irreducible representations of Hn(k).
We note that characters of lowest weight irreducible representations of rational Cherednik
algebras of type A have been computed by Rouquier, [Ro].

Remark 9.11. Note that Theorem 8.8 is the special case of Theorem 9.8 for O = {0}.
9.10. Proof of Theorem 9.8. Our proof of Theorem 9.8 is based on the following result
of [GS].

Theorem 9.12. Let k > 0. Then the functor V 7→ eV is an equivalence of categories
between Hn(k)-modules and Bn(k)-modules.

Remark 9.13. We note that Theorem 9.12 is proved in [GS] under the technical assumption
k /∈ Z + 1/2. It was noticed by V. Ginzburg that this assumption is really unnecessary.
Indeed, the only place where this assumption is used is in the proof of Lemma 3.5. Namely,
it is used in the proof of this lemma that Hom between Verma modules over Hn(k) is
isomorphic to Hom between the corresponding dual Specht modules, which is known, from
[GGOR], only for k /∈ Z + 1/2. However, it is sufficient for the proof of Lemma 3.5 of [GS]
to know just that the first Hom injects into the second one, which is known for all positive
k thanks to a lemma by Opdam and Rouquier (Lemma 2.10 of [BEG2]).

Theorem 9.12 implies the first statement of the theorem, i.e. that if (51) holds then
F ∗
n(M(Oµ, χs)) is irreducible. Indeed, it follows from Corollary 9.6 that eF ∗

n(M(Oµ, χs)) is
irreducible over Bn(k). Thus, it remains to find the lowest weight of F ∗

n(M(Oµ, χs)).
Let µ = (µ1, ..., µN ) be a partition of N (µi ≥ 0). Let Oµ be the nilpotent orbit of g

corresponding to the partition µ. Denote by d the greatest common divisor of µi, and by m
a divisor of d. Define the following function f on Oµ with values in ⊗N

i=1S
µiCN :

f(X, ξ1, ..., ξN ) =

N∧

i=1

µi−1∧

j=0

ξiX
j ,

ξi ∈ (CN )∗ (here Xj ∈ MN (C) is the jth power of X , so ξiX
j ∈ CN ).
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Lemma 9.14. (i) For any X ∈ Oµ, f(X, . . . )1/m is a polynomial in ξ1, ..., ξN . Thus, f1/m

is a regular function on the universal cover Õµ of Oµ with values in ⊗N
i=1S

µi/mCN .

(ii) For any X ∈ Oµ, the function f(X, . . . )1/m generates a copy of the representation

V (µ/m) inside ⊗N
i=1S

µi/mCN .
(iii) Specifically, let the standard basis u1, ..., uN of (CN )∗ be filled into the squares of the

Young diagram of µ (filling the first column top to bottom, then the second one, etc.), and let
X be the matrix J acting by the horizontal shift to the right on this basis. Then f(J, . . . )1/m

is a highest weight vector of the representation V (µ/m).

Proof. It is sufficient to prove (iii). Let µ∗ = (µ∗
1, ..., µ

∗
N ) be the conjugate partition. Let

pj be the number of times the part j occurs in this partition. Clearly, pj is divisible by m.
By looking at the matrix whose determinant is f , we see that we have, up to sign:

f(J, ξ1, ..., ξN ) =
∏

j

∆j(ξ1, ..., ξN )pj ,

where ∆j is the left upper j-by-j minor of the matrix (ξ1, ..., ξN ). Thus f1/m =
∏
j ∆

pj/m
j is

clearly a highest weight vector of weight
∑

j pj$j/m, where $j are the fundamental weights.

But
∑
pj$j = µ, so we are done. �

Corollary 9.15. The function f gives rise to a G-equivariant regular map f : Õµ → V (µ/d),
whose image is the orbit of the highest weight vector. In particular, we have a G-equivariant
inclusion of commutative algebras

f∗ : ⊕`≥0V (`µ/d)∗ → C[Õµ].

Now let 0 ≤ s ≤ d − 1, and denote by C[Õµ]s the subspace of C[Õµ], on which central
elements z ∈ G act by z → z−s. Then we have an inclusion

f∗ : ⊕`:d−1(`−s)∈ZV (`µ/d)∗ → C[Õµ]s.

Now recall that by construction, C[Õµ]s sits insideM = M(Oµ, χs) as a C[Oµ]-submodule.

In particular, the operators Xi act on the space (C[Õµ]s ⊗ (CN )⊗n)g.
Let π(µ) be the representation of Sn corresponding to µ, and regard V (λ)⊗π(λ), for any

partition λ of n, as a subspace of (CN )⊗n using the Weyl duality. Then for any u ∈ π(nµ/N),

we can define the element a(u) ∈ F ∗
n(M) by a(u) = f∗

n ⊗ u, where f∗
n ∈ C[Õµ]s ⊗ V (nµ/N)

is the homogeneous part of f∗ of degree n.

Lemma 9.16. a(u) is annihilated by the elements yi of Hn(k).

Proof. We need to show that the operators Xi (or, equivalently, the elements xi ∈ Hn(k))
annihilate a(u) ∈ Fn(M). Since a(u) is G-invariant, it is sufficient to prove the statement
at the point X = J . This boils down to showing that for any j not exceeding the number
of parts of µ (i.e. j ≤ µ∗

1), the application of J in any component annihilates the element
∆j(ξ1, ..., ξN ) ∈ ∧jCN ⊂ (CN )⊗j . This is clear, since the first µ∗

1 columns of J are zero. �

This implies that the lowest weight of F ∗
n(M(Oµ, χs)) is π(nµ/N), as desired. The theorem

is proved.

Remark 9.17. Here is another, short proof of Theorem 9.8 for n = N . We have

e−F
∗
N (M(O, 1)) = F(M(O, 1))G.

According to [L, LS],

F(M(O, 1))G = (C[h] ⊗ π(µ(O)))SN

as a module overD(h)W = e−HN (1)e−. Thus, e−F
∗
N (M(O, 1)) = e−L(π(µ(O))) as e−HN (1)e−-

modules. But the functor V → e−V is an equivalence of categoriesHN (1)-mod → e−HN (1)e−-
mod (see [BEG2]). Thus, F ∗

N (M(O, 1)) = L(π(µ(O))) as HN (1)-modules, as desired.
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9.11. The support of L(π(nµ/N)).

Corollary 9.18. Let µ be a partition of N such that nµi/N are integers. Then the support
of the representation L(π(nµ/N)) of Hn(N/n) as a module over C[x1, ..., xn] is contained in
the union of Sn-translates of Eq, q = GCD(n,N).

Proof. This follows from Theorem 9.8 and Proposition 9.7. �

We note that in the case when µ = (N), Corollary 9.18 follows from Theorem 3.2 from
[CE].

9.12. The cuspidal case. An interesting special case of Theorem 9.8 is the cuspidal case.
In this case N and n are relatively prime, d = N (i.e., O is the open orbit), and s is relatively
prime to N .

Here is a short proof of Theorem 9.8 in the cuspidal case.
Since the Fourier transform of M(O,χs) in the cuspidal case is supported on the nilpotent

cone, F ∗
n(M(O,χs)) belongs not only to the category O generated by lowest weight modules,

but also to the “dual” categoryO− generated by highest weight modules overHn(k). Thus, by
the results of [BEG1], F ∗

n(M(O,χs)) is a multiple of the unique finite dimensional irreducible
Hn(k)-module L(C) = Y (N,n), of dimension Nn−1. But this multiple must be a single copy
by Corollary 9.6, so the theorem is proved.

Theorem 9.8 implies the following formula for the characters of the cuspidal D-modules
M(O,χs).

Let µ be a dominant integral weight for g, such that the center Z of G acts on V (µ) via
z → zs = zn. Let ρ be the half-sum of positive roots of g. Let Ks(µ) = (M(O,χs)⊗ V (µ))g

be the isotypic components of M(O,χs).

Theorem 9.19. We have

Tr|Ks(µ)(q
2H) =

q − q−1

qN − q−N
ϕµ(q),

where

ϕµ(q) :=
∏

1≤p<r≤N

qµr−µp+r−p − qµp−µr+p−r

qr−p − qp−r
= χV (µ)(q

2ρ),

where χV (µ) is the character of V (µ). In particular,

dimKs(µ) =
1

N

∏

1≤p<r≤N

µr − µp + r − p

r − p
=

1

N
dim V (µ).

Proof. We extend the representation V (µ) to GLN (C) by setting z → zn for all scalar
matrices z, so that its GLN (C)-highest weight is

µ̃ := (µ1 + n/N, ..., µN + n/N).

Note that we automatically have µi+n/N ∈ Z. Assume that n is so big that µ̃ is a partition
of n (i.e., µi + n/N ≥ 0).

It follows from the results of [BEG1] that the character of the irreducible representation
L(C) of the rational Cherednik algebra Hn(k), k = N/n, is given by the formula

Tr|L(C)(gq
2h) =

q − q−1

qN − q−N
det(q−N − qNg)

det(q−1 − qg)
, g ∈ Sn, (52)

where the determinants are taken in Cn.
Let us equip CN with the structure of an irreducible representation of sl2 with basis e, f, h.

Let g ∈ Sn. Then

Tr|HomSn(π(µ̃),(CN )⊗n)(q
h) = Tr|V (µ)(q

2ρ) = ϕµ(q),
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by the Weyl character formula. On the other hand, it is easy to show that

Tr|(CN )⊗n(gqh) =
det(q−N − qNg)

det(q−1 − qg)
.

Thus,

Tr|HomSn (π(µ̃),L(C))(q
2h) =

q − q−1

qN − q−N
Tr|HomSn(π(µ̃),(CN )⊗n)(q

h)

=
q − q−1

qN − q−N
ϕµ(q).

By Theorem 9.8 and Weyl duality, this implies that

Tr|(M(O,χs)⊗V (µ))g(q2H ) =
q − q−1

qN − q−N
ϕµ(q),

as desired. �

Example 9.20. Let N = 2, s = 1. In this case Theorem 9.19 gives us the following
decomposition of M(O,χs):

M(O,χs) = ⊕j≥1Nj ⊗ V2j−1,

where Vj is the irreducible representation of sl2 of dimension j+1, and the spaces Nj satisfy
the equation

Tr|Nj
(q2H) =

q2j − q−2j

q2 − q−2
.

This shows that Nj = Vj−1 as a representation of the sl2-subalgebra spanned by E,F,H,
which commutes with g.

9.13. The case of general orbits. Let W = SN the Weyl group of G, λ ∈ h/W , and Nλ

be the closure in g of the adjoint orbit of a regular element of g whose semisimple part is λ.
Denote by DG(Nλ) the category of G-equivariant D-modules on G which are concentrated
on Nλ. We also let Oλ be the category of finitely generated Hn(k)-modules in which the
subalgebra C[y1, ..., yn]

Sn acts through the character λ. Then one can show, similarly to
the above, that the functor F ∗

n restricts to a functor F ∗
n,λ : DG(Nλ) → Oλ. The functor

considered above is F ∗
n,0. We plan to study the functor F ∗

n,λ for general λ in a future work.

9.14. The trigonometric case. Our results about rational Cherednik algebras can be ex-
tended to the trigonometric case. For this purpose, D-modules on the Lie algebra g should
be replaced with D-modules on the group G. Let us describe this generalization.

First, let us introduce some notation. As above, we let G = SLN (C). For b ∈ g, let Lb be
the right invariant vector field on G equal to b at the identity element; that is, Lb generates
the group of left translations by etb. As before, we let k = N/n.

Now let M be a D-module on G. Similarly to the above, we define Fn(M) to be the space

Fn(M) = (M ⊗ (CN )⊗n)G,

where G acts on itself by conjugation.
Consider the operators Xi, Yi, i = 1, ..., n, on Fn(M), defined by the formulas similar to

the rational case:

Xi =
∑

j,l

Ajl ⊗ (Elj)i, Yi =
N

n

∑

p

Lbp
⊗ (bp)i,

where Ajl is the jl-th matrix element of A ∈ G regarded as the multiplication operator in
M by a regular function on G.
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Proposition 9.21. The operators Xi, Yi satisfy the following relations:
∏

i

Xi = 1,
∑

i

Yi + k
∑

i<j

sij = 0,

sijXi = Xjsij , sijYi = Yjsij , [sij , Xl] = [sij , Yl] = 0,

[Xi, Xj ] = 0, [Yi, Yj ] = ksij(Yi − Yj),

[Yi, Xj ] =

(
ksij −

1

n

)
Xj ,

where i, j, l denote distinct indices.

Proof. Straightforward computation. �

Corollary 9.22. The operators Ȳi = Yi + k
∑
j<i sij pairwise commute.

The relations of Proposition 9.21 are nothing but the defining relations of the degenerate
double affine Hecke algebra of type An−1, which we will denote Htr

n (k) (where “tr” stands for
trigonometric, to illustrate the fact that this algebra is a trigonometric deformation of the
rational Cherednik algebra Hn(k)). Thus we have defined an exact functor Fn : D(G) →
Htr
n (k)-mod. As before, it is sufficient to consider the restriction of this functor to the

category of equivariant finitely generated D-modules, DG(G).
This allows us to generalize much of our story for rational Cherednik algebras to the

trigonometric case. In particular, let U be the unipotent variety on G, and DG(U) be the
category of finitely generated G-equivariant D-modules on G concentrated on U . If we
restrict the functor Fn to this category, we get a situation identical to that in the rational
case. Indeed, one can show that for any M in this category, Fn(M) belongs to the category
Otr

− of finitely generated modules over H tr
n (k) which are locally unipotent with respect to the

action ofXi. The latter category is equivalent to the category O− over the rational Cherednik
algebraHn(k), because the completion ofH tr

n (k) with respect to the ideal generated byXi−1
is isomorphic to the completion of Hn(k) with respect to the ideal generated by xi. On the
other hand, the exponential map identifies the categories DG(U) and DG(N ). It is clear
that after we make these two identifications, the functor Fn becomes the functor Fn in the
rational case that we considered above.

On the other hand, because of the absence of Fourier transform on the group (as opposed
to Lie algebra), the trigonometric story is richer than the rational one. Namely, we can
consider another subcategory of DG(G), the category of character sheaves. By definition,
a character sheaf on G is an object M in DG(G) which is locally finite with respect to the
action of the algebra of biinvariant differential operators, U(g)G. This category is denoted
by Char(G). It is known that one has a decomposition

Char(G) = ⊕λ∈T∨/WCharλ(G),

where T∨ is dual torus, and Charλ(G) the category of those M ∈ DG(G) for which the
generalized eigenvalues of U(g)G (which we identify with U(h)W via the Harish-Chandra
homomorphism) project to λ under the natural projection h∗ → T∨.

On the other hand, one can define the category RepY−fin(H
tr
n (k)) of modules over Htr

n (k)

on which the commuting elements Ȳi act in a locally finite manner. We have a similar
decomposition

RepY−fin(H
tr
n (k)) = ⊕λ∈T∨/WRepY−fin(H

tr
n (k))λ,

where RepY−fin(H
tr
n (k))λ is the subcategory of all objects where the generalized eigenvalues

of Ȳi project to λ ∈ T∨/W . Then one can show, similarly to the rational case, that the
functor Fn gives rise to the functors

Fn,λ : Charλ(G) → RepY−fin(Htr
n (k))λ

for each λ ∈ T∨/W . The most interesting case is λ = 0 (unipotent character sheaves). We
plan to study these functors in subsequent works.
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9.15. Relation with the Arakawa-Suzuki functor. Note that the elements Yi and sij
generate the degenerate affine Hecke algebra Hn of Drinfeld and Lusztig (of type An−1). To
define the action of this algebra on Fn(M) = (M ⊗ (CN )⊗n)g by the formula of Proposition
9.21, we only need the action of the operators Lb, b ∈ g in M . So M can be taken to be
an arbitrary g-bimodule which is locally finite with respect to the diagonal action of g (in
this case,

∑
i Yi +

∑
i<j sij is a central element which does not necessarily act by zero, so

we get a representation of a central extension H̃n of Hn). In particular, we have an exact

functor Fn : HC(g) → H̃n-mod from the category of Harish-Chandra bimodules over g to

the category of finite dimensional representations of the degenerate affine Hecke algebra H̃n.
This functor was essentially considered in [AS] (where it was applied to the Harish-Chandra
modules of the formM = Homg−finite(M1,M2), whereM1 andM2 are modules from category
O over g). We note that the paper [AST] describes the extension of this construction to
affine Lie algebras, which yields representations of degenerate double affine Hecke algebras.

9.16. Directions of further study. In conclusion we would like to discuss (in a fairly
speculative manner) several directions of further study and generalizations (we note that
these generalizations can be combined with each other).

1. The q-case: the group G is replaced with the corresponding quantum group, D-
modules with q-D-modules, and degenerate double affine Hecke algebras with the usual
double affine Hecke algebras (defined by Cherednik). It is especially interesting to consider
this generalization if q is a root of unity.

2. The quiver case. This generalization was suggested by Ginzburg, and will be studied in
his subsequent work with the third author. In this case, one has a finite subgroup Γ ⊂ SL2(C),
and one should consider equivariant D-modules on the representation space of the affine
quiver attached to Γ (with some orientation). Then there should exist an analog of the
functor Fn, which takes values in the category of representations of an appropriate symplectic
reflection algebra for the wreath product Sn n Γn, [EG] (or, equivalently, the Gan-Ginzburg
algebra, [GG2]). This generalization should be especially nice in the case when Γ is a cyclic
group, when the symplectic reflection algebra is a Cherednik algebra for a complex reflection
group, and one has the notion of category O for it.

3. The symmetric space case. This is the trigonometric version of the previous gen-
eralization for Γ = Z/2. In this generalization one considers (monodromic) equivariant
D-modules on the symmetric space GLp+q(C)/(GLp×GLq)(C) (see [Gin]), and one expects
a functor from this category to the category of representations of an appropriate degenerate
double affine Hecke algebra of type C∨Cn. This functor should be related, similarly to the
previous subsection, to an analog of the Arakawa-Suzuki functor, which would attach to
a Harish-Chandra module for the pair (GLp+q(C),GLp(C) × GLq(C)), a finite dimensional
representation of the degenerate double affine Hecke algebra of type BCn.

Appendix A

Let O be the ring C[[u1, ..., un]][`1, ..., `n]. Define commuting derivations Di of O by
Di(uj) = δijui, Di(`j) = δij (we will later think of `i and Di as logui and ui

∂
∂ui

).

We set O+ := m[`1, ..., `n], where m = Ker(C[[u1, ..., un]] → C) is the augmentation ideal.
Let A = ⊕k≥0Ak be a graded ring with finite dimensional homogeneous components.

Proposition A.1. Let Xi(u1, ..., `n) ∈ ⊕̂k>0(Ak⊗O+) be such that Di(Xj) = Dj(Xi). Then
there exists a unique F (u1, ..., `n) ∈ ⊕̂k>0(Ak ⊗O+) such that Di(F ) = Xi for i = 1, ..., n.

Let us say that f ∈ O has radius of convergence R > 0 if f =
∑
k1,...,kn≥0 fk1,...,kn

(u1, ..., un)`
k1
1 ...`

kn
n ,

where each fk1,...,kn
(u1, ..., un) converges for |u1|, ..., |un| ≤ R. Then if X1, ..., Xn have radius

of convergence R, so does F .

Proof. For each i, Di restricts to an endomorphism of O+; one checks that ∩ni=1 Ker(Di :
O+ → O+) = 0 which implies the uniqueness. To prove the existence, we work by induction.
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One proves that Dn : O+ → O+ is surjective, and its kernel is mn−1[`1, ..., `n−1], where
mn−1 = Ker(C[[u1, ..., un−1]] → C). Let G be a solution of Dn(G) = Xn, then the system
Di(F

′) = Xi −Di(G) (i = 1, ..., n) is compatible, which implies Dn(X
′
i) = 0, where X ′

i :=

Xi−Di(G), so X ′
i ∈ ⊕k>0(Ak⊗O(n−1)

+ ), where O(n−1)
+ is the analogue of O+ at order n−1.

Hence the system Di(F
′) = Xi−Di(G) (i = 1, ..., n− 1) is compatible and we may apply to

it the result at order n−1 to obtain a solution F ′. Then a solution of Di(F ) = Xi is F ′ +G.
Let D : uC[[u]] → uC[[u]] be the map u ∂

∂u and let I := D−1. The map D1 : uC[[u]][`] →
uC[[u]][`] is bijective and its inverse is given by D−1

1 (F (u)`a) =
∑a

k=0(−1)ka(a − 1)...(a −
k + 1)(Ik+1(F ))(u)`a−k .

We have O+ = O(n−1)⊗̂unC[[un]][`n]⊕m(n−1)⊗̂C[`n] (where O(n−1),m(n−1) are the ana-
logues of O,m at order n − 1, ⊗̂ is the completed tensor product). The endomorphism Dn

preserves this decomposition and a section of Dn is given by (id⊗D−1
1 ) ⊕ (id⊗J), where

J ∈ End(C[`]) is a section of ∂/∂`.
It follows from the fact that I preserves the radius of convergence of a series that the

same holds for the section of Dn defined above. One then follows the above construction of a
solution X of Di(X) = Xi and uses the fact that Di also preserves the radius of convergence
to show by induction that X has radius R if the Xi do. �

Proposition A.2. Let Xi(u1, ..., `n) ∈ ⊕̂k>0(Ak ⊗ O+) be such that Di(Xj) − Dj(Xi) =
[Xi, Xj ]. Then there exists a unique F (u1, ..., `n) ∈ 1 + ⊕̂k>0(Ak ⊗O+) such that Di(F ) =
XiF for i = 1, ..., n. If the Xi have radius R, then so does F .

Proof. Let us prove the uniqueness. If F, F ′ are two solutions, then F−1F ′ is a constant
(as ∩ni=0 Ker(Di : O → O) = 0), and it also belongs to 1 + ⊕̂k>0(Ak ⊗ O+), which implies

that F = F ′. To prove the existence, one sets F = 1 + f1 + f2 + ..., Xi = x
(i)
1 + ..., where

fk, x
(i)
k ∈ Ak ⊗ O+ and solves by induction the system Di(fk) = x

(i)
1 fk−1 + ... + x

(i)
k using

Proposition A.1. �

Proposition A.3. Let Ci(u1, ..., un) ∈ ⊕̂k>0Ak[[u1, ..., un]] (i = 1, ..., n) be such that ui∂ui
(Cj)−

uj∂uj
(Ci) = [Ci, Cj ] for any i, j. Assume that the series Ci have radius R.

Then there exists a unique solution of the system ui∂ui
(X) = CiX, analytic in the do-

main {u||u| ≤ R, u /∈ R−}n, such that the ratio (u
C1

0
1 ...u

Cn
0

n )−1X(u1, ..., un) (we set Ci0 :=

Ci(0, ..., 0)) has the form 1 +
∑

k>0

∑
a1,...,an,i

ra1,...,an,i
k (u1, ..., un) (the second sum is fi-

nite for any k), ra1,...,an,i
k has degree k, ai ≥ 0, i ∈ {1, ..., n}, and ra1,...,an,i

k (u1, ..., un) =

O(ui(logu1)
a1 ...(log un)

an). The same is then true of the ratio X(u1, ..., un)(u
C1

0
1 ...u

Cn
0

n )−1;

we write X(u1, ..., un) ' u
C1

0
1 ...u

Cn
0

n .

Proof. Let us show the existence ofX . The compatibility condition implies that [C i0, C
j
0 ] =

0. If we set Y (u1, ..., un) := (u
C1

0
1 ...u

Cn
0

n )−1X(u1, ..., un), thenX is a solution iff Y is a solution
of ui∂ui

(Y ) = exp(−∑n
j=1(loguj)C

0
j )(Ci − C0

i ) · Y .

Let us setXi(u1, ..., `n) := exp(−∑n
j=1 `jC

0
j )(Ci(u1, ..., un)−Ci(0, ..., 0)), thenXi(u1, ..., `n) ∈

⊕̂k>0(Ak ⊗O+). We then apply Proposition A.2 and find a solution Y ∈ 1 + ⊕̂k>0Ak ⊗O+

of Di(Y ) = XiY . Let Yk be the component of Y of degree k. Since Y has radius R, the
replacement `i = logui in Yk for ui ∈ {u||u| ≤ R, u /∈ R−} gives an analytic function
on {u||u| ≤ R, u /∈ R−}n. Moreover, O+ =

∑n
i=1 uiC[[u1, ..., un]][`1, ..., `n], which gives a

decomposition Yk =
∑

i,a1,...,an
ui`

a1
1 ...`

an
n yki,a1,...,an

(u1, ..., un) and leads (after substitution

`i = logui) to the above estimates.

The ratio X(u1, ..., un)(u
C1

0
1 ...u

Cn
0

n )−1 is then 1 + exp(
∑

j C
j
0 loguj)(Y (u1, ..., un)− 1); the

term of degree k has finitely many contributions to which we apply the above estimates.
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Let us prove the uniqueness of X . Any other solution has the form X = X(1 + ck + ...)
where cj ∈ Aj , and ck 6= 0. Then the degree k term is transformed by the addition of ck,
which cannot be split as a sum of terms in the various O(ui(log u1)

a1 ...(log un)
an). �
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