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1 Introduction

This is an entirely expository piece: the main results discussed are very well-
known and the approach we take is not really new, although the presentation
may be somewhat different to what is in the literature. The author’s main
motivation for writing this piece comes from a feeling that the ideas deserve to
be more widely known.

Let g be a Lie algebra over R or C. A vector subspace I ⊂ g is an ideal
if [I,g] ⊂ I. The Lie algebra is called simple if it is not abelian and contains
no proper ideals. A famous result of Cartan asserts that any simple complex
Lie algebra has a compact real form (that is to say, the complex Lie algebra
is the complexification of the Lie algebra of a compact group). This result
underpins the theory of real Lie algebras, their maximal compact subgroups
and the classification of symmetric spaces. In the standard approach, Cartan’s
result emerges after a good deal of theory: the Theorems of Engel and Lie,
Cartan’s criterion involving the nondegeneracy of the Killing form, root systems
etc. On the other hand if one assumes this result known–by some means–then
one can immediately read off much of the standard structure theory of complex
Lie groups and their representations. Everything is reduced to the compact case
(Weyl’s “unitarian trick”), and one can proceed directly to develop the detailed
theory of root systems etc.

In [3], Cartan wrote
J’ai trouvé effectivement une telle forme pour chacun des types de groupes

simples. M. H. Weyl a démontré ensuite l’existence de cette forme par une
raisonnement général s’appliquant à tous les cas à fois. On peut se deman-
der si les calculs qui l’ont conduit à ce résultat ne pourraient pas encore se
simplifier, ou plutôt si l’on ne pourrait pas, par une raissonnement a priori,
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démontrer ce théorème; une telle démonstration permettrait de simplifier no-
tablement l’exposition de la theorie des groupes simples. Je ne suis a cet égard
arrivé à aucun résultat; j’indique simplement l’idée qui m’a guidé dans mes
recherches infructueuses.

The direct approach that Cartan outlined (in which he assumed known the
nondegeneracy of the Killing form) was developed by Helgason (see page 196
in [4]), and a complete proof was accomplished by Richardson in [14]. In this
article we revisit these ideas and present an almost entirely geometric proof of
the result. This is essentially along the same lines as Richardson’s, so it might
be asked what we can add to the story. One point is that, guided by modern
developments in Geometric Invariant Theory and its relations with differential
geometry, we can nowadays fit this into a much more general context and hence
present the proofs in a (perhaps) simpler way. Another is that we are able to
remove more of the algebraic theory; in particular, the nondegeneracy of the
Killing form. We show that the results can be deduced from a general principle
in Riemannian geometry (Theorem 4). The arguments apply directly to real
Lie groups, and in our exposition we will work mainly in that setting. In the
real case the crucial concept is the following. Suppose V is a Euclidean vector
space. Then there is a transposition map A 7→ AT on the Lie algebra End V .
We say a subalgebra g ⊂ End V is symmetric with respect to the Euclidean
structure if it is preserved by the transposition map.

Theorem 1 Let g be a simple real Lie algebra. Then there is a Euclidean
vector space V , a Lie algebra embedding g ⊂ End(V ), and a Lie group G ⊂
SL(V ) with Lie algebra g, such that g is symmetric with respect to the Euclidean
structure. Moreover, any compact subgroup of G is conjugate in G to a subgroup
of G ∩ SO(V ).

We explain in (5.1) below how to deduce the existence of the compact real
form, in the complex case. Theorem 1 also leads immediately to the standard
results about real Lie algebras and symmetric spaces, as we will discuss further
in (5.1).

The author thanks Professors Martin Bridson, Frances Kirwan, Zhou Zhang
and Xuhua He for comments on the earlier version of this article.

2 More general setting

Consider any representation

ρ : SL(V ) → SL(W ),

where V,W are finite-dimensional real vector spaces. Let w be a nonzero vector
in W and let Gw be the identity component of the stabiliser of w in SL(V ).
Then we have

Theorem 2 If V is an ireducible representation of Gw then there is a Euclidean
metric on V such that the Lie algebra of Gw is symmetric with respect to the
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Euclidean structure, and any compact subgroup of Gw is conjugate in Gw to a
subgroup of Gw ∩ SO(V ).

Now we will show that Theorem 2 implies Theorem 1. Given a simple real Lie
algebra g, consider the action of SL(g) on the vector space W of skew symmetric
bilinear maps from g × g to g. The Lie bracket of g is a point w in W . The
group Gw is the identity component of the group of Lie algebra automorphisms
of g, and the Lie algebra of Gw is the algebra Der(g) of derivations of g, that
is, linear maps δ : g → g with

δ[x, y] = [δx, y] + [x, δy].

The adjoint action gives a Lie algebra homomorphism

ad : g → Der(g).

The kernel of ad is an ideal in g. This is not the whole of g (since g is not
abelian) so it must be the zero ideal (since g is simple). Hence ad is injective. If
U is a vector subspace of g preserved by Gw then any derivation δ must map U
to U . In particular adξ maps U to U for any ξ in g, so [g, U ] ⊂ U and U is an
ideal. Since g is simple we see that there can be no proper subspace preserved
by Gw and the restriction of the representation is irreducible. By Theorem 2
there is a Euclidean metric on g such that Der(g) is preserved by transposition.
Now we want to see that in fact Der(g) = g. For α ∈ Der(g) and ξ ∈ g we have

[adξ, α] = adα(ξ),

so g is an ideal in Der(g). Consider the bilinear form

B(α1, α2) = Tr(α1α2)

on Der(g). This is nondegenerate, since Der(g) is preserved by transposition
and B(α, αT ) = |α|2. We have

B([α, β], γ) + B(β, [α, γ]) = 0

for all α, β, γ ∈ Der(g). Thus the subspace

gperp = {α ∈ Derg : B(α, adξ) = 0 for all ξ ∈ g}

is another ideal in Der(g). On the other hand the map α 7→ −αT is an auto-
morphism of Der(g), so gT is also an ideal in Der(g). Suppose that g∩gT 6= 0.
Then we can find a non-zero element α of g ∩ gT with αT = ±α and then
B(α, α) = ±|α|2 6= 0, so the restriction of B to g is not identically zero. This
means that I = g ∩ gperp is not the whole of g, but I is an ideal in g so, since
g is simple, we must have I = 0.

We conclude from the above that if g were a proper ideal in Der(g) there
would be another proper ideal J in Der(g) such that J ∩ g = 0. (We take J to
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be either gT or gperp.) But then for α ∈ J we have [α,g] = 0, but this means
that α acts trivially on g, which gives a contradiction.

Finally, the statement about compact subgroups in Theorem 1 follows im-
mediately from that in Theorem 2.

(The argument corresponding to the above in the complex case (see (5.1))
is more transparent. )

3 Lengths of vectors

We will now begin the proof of Theorem 2. The idea is to find a metric by
minimising the associated norm of the vector w. In the Lie algebra situation,
which we are primarily concerned with here, this is in essence the approach
suggested by Cartan and carried through by Richardson. In the general situation
considered in Theorem 2 the ideas have been studied and applied extensively
over the last quarter century or so, following the work of Kempf-Ness [8], Ness
[12] and Kirwan [6]. Most of the literature is cast in the setting of complex
representations. The real case has been studied by Richardson and Slodowy
[13] and Marian [11] and works in just the same way.

Recall that we have a representation ρ of SL(V ) in SL(W ), where V and W
are real vector spaces, a fixed vector w ∈ W and we define Gw to the stabiliser
of w in SL(V ). Suppose we also have some compact subgroup (which could be
trivial) K0 ⊂ Gw. We fix any Euclidean metric | |1 on V which is preserved by
K0. Now it is standard that we can choose a Euclidean metric | |W on W which
is invariant under the restriction of ρ to SO(V ). We want to choose this metric
| |W with the further property that the derivative dρ intertwines transposition
in EndV (defined by | |1) and transposition in EndW (defined by | |W ); that is
to say

dρ(ξT ) = (dρ(ξ))T
.

To see that this is possible we can argue as follows. We complexify the rep-
resentation to get ρC : SL(V ⊗ C) → SL(W ⊗ C). Then the compact group
generated by the action of SU(V ⊗C) and complex conjugation acts on W ⊗C
and we can choose a Hermitian metric on W ⊗C whose norm function is invari-
ant under this group. Invariance under complex conjugation means that this
Hermitian metric is induced from a Euclidean metric on W . Then the fact that
ρC maps SU(V ⊗C) to SU(W ⊗C) implies that dρ has the property desired.
(The author is grateful to Professors He and Zhang for pointing out the need
for this argument. In our main application, to Theorem 1, the standard metric
on W already has the desired property.)

Now define a function F̃ on SL(V ) by

F̃ (g) = |g(w)|2W .

For u ∈ SO(V ) and γ ∈ Gw we have

F̃ (ugγ) = |ugγ(w)|2W = |ug(w)|2W = F̃ (g)
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So F̃ induces a function F on the quotient space H = SL(V )/SO(V ), invariant
under the natural action of Gw ⊂ SL(V ). We can think about this in another,
equivalent, way. We identify H with the Euclidean metrics on V of a fixed
determinant. Since ρ : SL(V ) → SL(W ) maps SO(V ) to SO(W ) it induces
a map from SL(V )/SO(V ) to SL(W )/SO(W ) and so a metric on V with the
same determinant as | |1 induces a metric on W . Then F is given by the
square of the induced norm of the fixed vector w. Explicitly, the identification
of SL(V )/SO(V ) with metrics is given by [g] 7→ | |g where

|v|2g = |gv|21 = 〈v, gT gv〉1.

This function F has two crucial, and well-known, properties, which we state
in the following Lemmas

Lemma 1 Suppose F has a critical point at H ∈ H. Then the Lie algebra of
the stabiliser Gw is symmetric with respect to the Euclidean structure H on V .

To prove this, there is no loss in supposing that H is the original metric | |1.
(For we can replace w by gw for any g ∈ SL(V ).) The fact that ρ maps SO(V )
to SO(W ) implies that its derivative takes transposition in EndV (defined by
| |1) to transposition in EndW defined by | |W . The condition for Ṽ to be
stationary is that

〈dρ(ξ)w,w〉W = 0

for all ξ in the Lie algebra of SL(V ). In particular consider elements of the form
ξ = [η, ηT ] and write A = dρ(η). Then we have

0 = 〈dρ[η, ηT ]w,w〉W = 〈[A,AT ]w,w〉W = |AT w|2W − |Aw|2W .

By definition η lies in the Lie algebra of Gw if and only if Aw = 0. By the
identity above, this occurs if and only if AT w = 0, which is just when ηT lies in
the Lie algebra of Gw.

For the second property of the function we need to recall the standard notion
of geodesics in H. We can identify H with the positive definite symmetric
elements of SL(V ), with the quotient map SL(V ) → H given by g 7→ gT g.
Then the geodesics in H are paths of the form

γ(t) = gT exp(St)g, (1)

where g and S are fixed, with g ∈ SL(V ) and S a trace-free endomorphism
which is symmetric with respect to | |1. Another way of expressing this is that
a geodesics through any point H ∈ H is the orbit of H under a 1-parameter
subgroup e(t) in SL(V ) where e(t) = exp(σt) with σ a symmetric endomorphism
with respect to the metric H.

Lemma 2 1. For any geodesic γ the function F ◦ γ is convex i.e.

d2

dt2
F (γ(t)) ≥ 0.

5



2. If F achieves its minimum in H then Gw acts transitively on the set of
minima.

To prove the first part, note that, replacing w by gw, we can reduce to
considering a geodesic through the base point [1] ∈ H, so of the form exp(St)
where S is symmetric with respect to | |1. Now the derivative dρ maps the
symmetric endomorphism S to a symmetric endomorphism A ∈ End(W ). We
can choose an orthonormal basis in W so that A is diagonal, with eigenvalues
λi say. Then if w has coordinates wi in this basis we have

F (exp(St)) = F̃ (exp(St/2)) =
∑

| exp(λit/2)wi|2W =
∑

|wi|2 exp(λit),

and this is obviously a convex function of t.
To prove the second part note that, in the above, the function F (exp(St) is

either strictly convex or constant, and the latter only occurs when λi = 0 for
each index i such that wi 6= 0, which is the same as saying that exp(St)w = w
for all t, or that the 1-parameter subgroup exp(St) lies in Gw. More generally
if we write a geodesic through a point H as the orbit of H under a 1-parameter
subgroup e(t) in SL(V ) then the function is constant if and only if the 1-
parameter subgroup lies in Gw. Suppose that H1,H2 are two points in H where
F is minimal. Then F must be constant on the geodesic between H1,H2. Thus
H2 lies in the orbit of H1 under a 1-parameter subgroup in Gw. So Gw acts
transitively on the set of minima.

We now turn back to the proof of Theorem 2. Suppose that the convex
function F on H achieves a minimum at H1 ∈ H. Then by Lemma 1 the Lie
algebra of Gw is symmetric with respect to the Euclidean structure H1 on V .
It only remains to see that the compact subgroup K0 of Gw is conjugate to a
subgroup of the orthogonal group for this Euclidean structure. For each H ∈ H
we have a corresponding special orthogonal group SO(H,V ) ⊂ SL(V ). For
g ∈ SL(V ) the groups SO(H,V ), SO(g(H), V ) are conjugate by g in SL(V ).
Recall that we chose the metric | |1 to be K0 invariant. This means that K0 fixes
the base point [1] in H. Suppose we can find a point H0 in H which minimises
F and which is also K0-invariant. Then K0 is contained in SO(H0, V ). But by
the second part of Lemma 2 there is a γ ∈ Gw such that γ(H0) = H1. Thus
conjugation by γ takes SO(H0, V ) to SO(H1, V ) and takes K0 to a subgroup
on SO(H1, V ), as required.

To sum up, Theorem 2 will be proved if we can establish the following result.

Theorem 3 Let F be a convex function on H, invariant under a group Gw ⊂
SL(V ). Let K0 be a compact subgroup of Gw and let [1] ∈ H be fixed by K0.
Then if V is an ireducible representation of Gw there is a point H0 ∈ H where
F achieves its minimum and which is fixed by K0.

(Notice that the hypothesis here that there is a point [1] ∈ H fixed by K0 is
actually redundant, since any compact subgroup of SL(V ) fixes some metric.)
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4 Riemannian geometry argument

In this section we will see that Theorem 3 is a particular case of a more general
result in Riemannian geometry. Let M be a complete Riemannian manifold, so
for each point p ∈ M we have a surjective exponential map

expp : TMp → M.

We suppose M has the following property

Property (*)
For each point p in M the exponential map expp is distance-increasing

Readers with some background in Riemannian geometry will know that it
is equivalent to say that M is simply connected with nonpositive sectional cur-
vature, but we do not need to assume knowledge of these matters. The crucial
background we need to know is

Fact
There is a metric on H = SL(V )/SO(V ) for which the action of SL(V ) is

isometric, with the geodesics described in (1) above and having Property (*).

This Riemannian metric on H can be given by the formula

‖δH‖2H = Tr
(
δHH−1

)2
.

The distance-increasing property can be deduced from the fact that H has non-
positive curvature and standard comparison results for Jacobi fields. For com-
pleteness, we give a self-contained proof of the Fact in the Appendix.

The piece of theory we need to recall in order to state our Theorem is the
notion of the “sphere at infinity” associated to a manifold M with Property (*).
This will be familiar in the prototype cases of Euclidean space and hyperbolic
space. In general, for x ∈ M write Sx for the unit sphere in the tangent space
TMx and define

Θx : M \ {x} → Sx

by

Θx(z) =
exp−1

x (z)
| exp−1

x (z)|
.

If y is another point in M and R is greater than the distance d = d(x, y) we
define

FR,x,y : Sy → Sx

by
FR,x,y(ν) = Θx expy(Rν).
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Lemma 3 For fixed x, y, ν the norm of the derivative of FR,x,y,ν with respect
to R is bounded by

| ∂

∂R
FR,x,y(ν)| ≤ d

R(R− d)
.

Let γ be the geodesic γ(t) = expy(tν), let w be the point γ(R) and let σ be
the geodesic from x to w. The distance-increasing property of expx implies that
the norm of the derivative appearing in the statement is bounded by d(x,w)−1

times the component of γ′(R) orthogonal to the tangent vector of σ at w. Thus

| ∂

∂R
FR,x,y(ν)| ≤ sinφ

d(x,w)
,

where φ is the angle between the geodesics γ, σ at w. By the triangle inequality
d(x,w) ≥ R − d. In a Euclidean triangle with side lengths d, R the angle
opposite to the side of length d is at most sin−1(d/R). It follows from the
distance-increasing property of expz that sinφ ≤ d/R. Thus

sinφ

d(x,w)
≤ d

R(R− d)
,

as required.
Since the integral of the function 1/R(R−d), with respect to R, from R = 2d

(say) to R = ∞, is finite, it follows from the Lemma that FR,x,y converges
uniformly as R → ∞ to a continuous map Fx,y : Sy → Sx, and obviously Fx,x

is the identity. Let z be another point in M and ν be a unit tangent vector at
z. Then we have an identity, which follows immediately from the definitions,

FR,x,z(ν) = FR′,x,y ◦ FR,y,z(ν),

where R′ = d(y, expz(Rν)). Since, by the triangle inequality again,

R′ ≥ R− d(y, z),

we can take the limit as R →∞ to obtain

Fx,z = Fx,y ◦ Fy,z : Sz → Sx.

In particular, Fy,x is inverse to Fx,y so the maps Fx,y give a compatible family of
homeomorphisms between spheres in the tangent spaces. We define the sphere
at infinity S∞(M) to be the quotient of the unit sphere bundle of M by these
homeomorphisms, with the topology induced by the identification with Sx0 for
any fixed base point x0.

Now suppose that a topological group Γ acts by isometries on M . Then Γ
acts on S∞(M), as a set. Explicitly, if we fix a base point x0 and identify the
sphere at infinity with Sx0 ,, the action of a group element g ∈ Γ is given by

g(ν) = lim
R→∞

Θx0g(expx0
Rν).
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Write the action as
A : Γ× Sx0 → Sx0 .

Given a compact set P ⊂ Γ we can define

AR : P × Sx0 → Sx0 ,

for sufficiently large R, by

AR(g, ν) = Θx0g(expx0
Rν).

Since g(expx0
Rν) = expg(x0)(Rg∗ν) the maps AR converge uniformly as R →∞

to the restriction of A to P × Sx0 . It follows that the action A is continuous.
With these preliminaries in place we can state our main technical result.

Theorem 4 Suppose that the Riemannian manifold M has Property (*). Sup-
pose that Γ acts by isometries on M and F is a convex Γ-invariant function
on M . Then either there is a fixed point for the action of Γ on S∞(M) or the
function F attains its minimum in M . Moreover, in the second case, if K0 is a
subgroup of Γ which fixes a point x ∈ M , then there is a point x′ ∈ M where F
attains its minimum in M and with x′ fixed by K0.

Return now to our example H. The tangent space at the identity matrix [1]
is the set of trace-free symmetric matrices. We define a weighted flag (F , µ) to
be a strictly increasing sequence of vector subspaces

0 = F0 ⊂ F1 ⊂ F2 . . . ⊂ Fr = V

with associated weights µ1 > µ2 . . . > µr, subject to the conditions∑
niµi = 0,

∑
niµ

2
i = 1,

where ni = dimFi/Fi−1. If S is a trace-free symmetric endomorphism with
Tr S2 = 1 then we associate a weighted flag to S as follows. We take µi to be
the eigenvalues of S, with eigenspaces Ei, and form a flag with

F1 = E1 , F2 = E1 ⊕ E2, . . . .

It is clear then that the unit sphere S[1] in the tangent space of H at [1] can be
identified with the set of all weighted flags. Now there is an obvious action of
SL(V ) on the set of weighted flags and we have:

Lemma 4 The action of SL(V ) on the sphere at infinity in H coincides with
the obvious action under the identifications above.

This is clearly true for the subgroup SO(V ). We use the fact that given any
weighted flag (F , µ) and g ∈ SL(V ) we can write g = uh where u ∈ SO(V )
and h preserves F . (This is a consequence of the obvious fact that SO(V ) acts
transitively on the set of flags of a given type.) Thus it suffices to show that such
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h fix the point S in the unit sphere corresponding to (F , µ) in the differential-
geometric action. By the SO(V ) invariance of the set-up we can choose a basis
so that F is the standard flag

0 ⊂ Rn1 ⊂ Rn1 ⊕Rn2 . . . ⊂ Rn.

Then S is the diagonal matrix with diagonal entries µ1, . . . , µr, repeated accord-
ing to the multiplicities n1, . . . , nr. The matrix h is upper triangular in blocks
with respect to the flag. Now consider, for a large real parameter R the matrix

MR = exp(−RS

2
)h exp(

RS

2
).

Consider a block hij of h. The corresponding block of MR is

(MR)ij = eR(µi−µj)/2hij .

Since h is upper-triangular in blocks and the µi are increasing, we see that MR

has a limit as R tends to infinity, given by the diagonal blocks in h. Since these
diagonal blocks are invertible the limit of M(R) is invertible, hence

δR = Tr (log(MRM∗
R))2

is a bounded function of R. But δ
1/2
R is the distance in Hn between exp(RS)

and h exp(RS)hT . It follows from the comparison argument, as before, that the
angle between Θ[1](h exp(RS)hT ) and S tends to zero as R →∞, hence h fixes
S in the differential geometric action.

Now Theorem 3 is an immediate consequence of Theorem 4 and Lemma 4,
since if Gw fixes a point on the sphere at infinity in H it fixes a flag, hence some
non-trivial subspace of V , and V is reducible as a representation of Gw.
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Remarks

• The advantage of this approach is that Theorem 4 seems quite accessible
to geometric intuition. For example it is obviously true in the case when
M is hyperbolic space, taking the ball model, and we suppose that F
extends continuously to the boundary of the ball. For then F attains its
minimum on the closed ball and if there are no minimising points in the
interior the minimiser on the boundary must be unique (since there is a
geodesic asymptotic to any two given points in the boundary).

• The author has not found Theorem 4 in the literature, but it does not seem
likely that it is new. There are very similar results in [1] for example. The
author has been told by Martin Bridson that a more general result of this
nature holds, in the context of proper CAT(0) spaces. The proof of this
more general result follows in an obvious way from Lemma 8.26 of [2] (see
also Corollary 8.20 in that reference).

• The hypothesis on the existence of a fixed point x for K0 in the statement
of Theorem 4 is redundant, since any compact group acting on a manifold
with Property (*) has a fixed point, by a theorem of Cartan (see the
remarks at the end of Section 3 above, and at the end of (5.2) below).
However we do not need to use this.

We now prove Theorem 4. We begin by disposing of the statement involving
the compact group K0. Suppose that F attains its minimum somewhere in M .
Then, by convexity, the minimum set is a totally geodesic submanifold Σ ⊂ M .
The action of K0 preserves Σ, since F is Γ-invariant and K0 is contained in Γ.
Let x′ be a point in Σ which minimises the distance to the K0 fixed-point x.
Then if x′′ is any other point in Σ the geodesic segment from x′ to x′′ lies in Σ
and is orthogonal to the geodesic from x to x′ at x′. By the distance-increasing
property of the exponential map at x′ it follows that the distance from x to x′′

is strictly greater than the distance from x to x′. Thus the distance-minimising
point x′ is unique, hence fixed by K0.

To prove the main statement in Theorem 4 we use the following Lemma.

Lemma 5 Suppose that M has Property (*) and N is any set of isometries of
M . If there is a sequence xi in M with d(x0, xi) →∞ and for each g ∈ N there
is a Cg with d(xi, gxi) ≤ Cg for all i, then there is a point in S∞(M) fixed by
N .

Set Ri = d(x0, xi) and νi = Θx0(xi) ∈ Sx0 . By the compactness of this
sphere we may suppose, after perhaps taking a subsequence, that the νi converge
as i tends to infinity to some ν ∈ Sx0 . Then for each g ∈ N we have, from the
definitions,

ARi
(g, νi) = Θx0(gxi).
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Fixing g, let φi be the angle between the unit tangent vectors νi = Θx0(xi) and
Θx0(gxi). The distance increasing property implies, as in Lemma 3, that

sinφi ≤ Cg/Ri.

The angle φi can be regarded as the distance dist( , ) between the points νi and
ARi(g, νi) in the sphere Sx0 . In other words we have

dist ((νi, ARi
(g, νi)) ≤ sin−1(

Cg

Ri
).

Now take the limit as i →∞: we see that dist (ν, A(g, ν)) = 0, which is to say
that ν is fixed by g.

To prove Theorem 4, consider the gradient vector field grad F of the function
F , and the associated flow

dx

dt
= −grad Fx

on M . By the standard theory, given any initial point there is a solution x(t)
defined for some time interval (−T, T ).

Lemma 6 If x(t) and y(t) are two solutions of the gradient flow equation, for
t ∈ (−T, T ), then d(x(t), y(t)) is a non-increasing function of t.

If x(t) and y(t) coincide for some t then they must do so for all t, by uniqueness
to the solution of the flow equation, and in that case the result is certainly true.
If x(t) and y(t) are always different then the function D(t) = d(x(t), y(t)) is
smooth: we compute the derivative at some fixed t0. Let γ(s) be the geodesic
from x(t0) = γ(0) to y(t0) = γ(D). Clearly

D′(t0) = 〈gradFx(t), γ
′(0)〉 − 〈gradFy(t), γ

′(D)〉.

But 〈gradFγ(s), γ
′(s)〉 is the derivative of the function F ◦ γ(s), which is nonde-

creasing in s by the convexity hypothesis, so D′(t0) ≥ 0, as required.
A first consequence of this Lemma—applied to y(t) = x(t+δ) and taking the

limit as δ → 0— is that the velocity |dx
dt |of a gradient path is decreasing. Thus

for finite positive time x(t) stays in an a priori determined compact subset of M
(since this manifold is complete). It follows that the flow is actually defined for
all positive time, for any initial condition. Consider an arbitrary initial point x0

and let x(t) be this gradient path, for t ≥ 0. If there is a sequence ti →∞ such
that x(ti) is bounded then, taking a subsequence, we can suppose that x(ti)
converges and it follows in a standard way that the limit is a minimum of F .
If there is no such minimum then we can take a sequence such that xi = x(ti)
tends to infinity. Suppose that g is in Γ, so the action of g on M preserves F
and the metric. Then y(t) = g(x(t)) is a gradient path with initial value g(x0)
and d(xi, gxi) ≤ Cg = d(x0, gx0). Then, by Lemma 5, there is a fixed point for
the action of Γ on S∞(M).

12



There is an alternative argument which is perhaps more elementary, although
takes more space to write down in detail. With a fixed base point x0 choose c
with infM F < c < F (x0) and let Σc be the hypersurface F−1(c). Let zc ∈ Σc

be a point which minimises the distance to x0, so that x0 lies on a geodesic γ
from zc normal to Σc. The convexity of F implies that the second fundamental
form of Σc at zc is positive with respect to the normal given by the geodesic
from zc to x0. A standard comparison argument in “Fermi coordinates” shows
that the exponential map on the normal bundle of Σc is distance increasing on
the side towards x0. In particular, let w be another point in Σc and y = exp(Rξ)
where ξ is the unit normal to Σc at w pointing in the direction of increasing F
and R = d(x0, zc). Then we have d(zc, w) ≤ d(x0, y). Now suppose g is in Γ.
Then g preserves Σc and if we take w = g(zc) above we have y = g(x0). So we
conclude from this comparison argument that d(zc, g(zc)) ≤ d(x0, gx0). Now
take a sequence ci decreasing to inf F (which could be finite or infinite). We get
a sequence xi = zci

of points in M . If (xi) contains a bounded subsequence then
we readily deduce that there is a minimum of F . If xi tends to infinity we get
a sequence to which we can apply Lemma 5, since d(xi, gxi) ≤ Cg = d(x0, gx0).

5 Discussion

5.1 Consequences of Theorem 1

• We start with a simple Lie algebra g and use Theorem 1 to obtain an
embedding g ⊂ End(V ), for a Euclidean space V , with g preserved by
the transposition map. We also have a corresponding Lie group G ⊂
SL(V ). We write K for the identity component of G ∩ SO(V ). It follows
immediately from Theorem 1 that K is a maximal compact connected
subgroup of G, and any maximal compact connected subgroup is conjugate
to K.

• The involution α 7→ −αT on End(V ) induces a Cartan involution of g so
we have an eigenspace decomposition

g = k⊕ p

with k = Lie(K) and

[k,k] ⊂ k , [k,p] ⊂ p , [p,p] ⊂ k. (2)

Notice that k is non-trivial, for otherwise g would be abelian.

• Consider the bilinear form B(α, β) = Tr(αβ) on g. Clearly this is positive
definite on p, negative definite on k and the two spaces are B-orthogonal.
Thus B is nondegenerate. The Killing form B̂ of g is negative-definite on
k (since the restriction of the adjoint action to K preserves some metric
and k is not an ideal). So the Killing form is not identically zero and must
be a positive multiple of B (otherwise the relative eigenspaces would be
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proper ideals). In fact we do not really need this step, since in our proof
of Theorem 1 the vector space W is g itself, and B is trivially equal to
the Killing form.

• Either p is trivial, in which case G is itself compact, or there is a nontrivial
Riemannian symmetric space of negative type M−

g = G/K associated
to g. This can be described rather explicitly. Let us now fix on the
specific representation g ⊂ End(g) used in the proof of Theorem 1. Say a
Euclidean metric on g is “optimal” if the adjoint embedding is symmetric
with respect to the metric, as in Theorem 1. (It is easy to see that the
optimal metrics are exactly those which minimise the norm of the bracket,
among all metrics of a given determinant.) Then M−

g can be identified
with the set of optimal metrics, a totally geodesic submanifold of H =
SL(g)/SO(g).

• So far we have worked exclusively in the real setting. We will now see
how to derive the existence of compact real forms of a simple complex Lie
algebra.

Lemma 7 If g is a simple complex Lie algebra then it is also simple when
regarded as a real Lie algebra.

To see this, suppose that A ⊂ g is a proper real ideal: a real vector
subspace with [A,g] ⊂ A. By complex linearity of the bracket A ∩ iA is
a complex ideal, so we must have A ∩ iA = 0. But then since ig = g we
have [A,g] = [A, ig] = i[A,g] ⊂ iA, so [A,g] = 0. But A + iA is another
complex ideal, so we must have g = iA⊕A and g is Abelian.

Next we have

Lemma 8 Let g be a simple complex Lie algebra and let g = Lie(G) ⊂
EndV be an embedding provided by Theorem 1, regarding g as a real Lie
algebra. Then g is the complexification of the Lie algebra of the compact
group K = G ∩ SO(V ).

The inclusions (2) imply that

I = (p ∩ ik) + (k ∩ ip),

is a complex ideal in g, so either I = g or I = 0. In the first case we
have ik = p and g is the complexification of k, as required. So we have
to rule out the second case. If this were to hold we have k ∩ ip = 0 so
g = k⊕ (ip). Then [ip, ip] ⊂ k so the map σ on g given by multiplication
by 1 on k and by −1 on ip is another involution of g, regarded as a real
Lie algebra. Now let B̂C be the Killing form regarded as a complex Lie
algebra. So B̂ = 2ReB̂C. The fact that σ is an involution of g means
that B̂(k, ip) = 0. But we know that p is the orthogonal complement of
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k with respect to B and B̂, so we must have ip = p. But B̂ is positive
definite on p while B̂(iα, iα) = 2ReB̂C(iα, iα) = −B̂(α, α) so p ∩ ip = 0.
This means that p = 0 and g = k which is clearly impossible (by the same
argument with the Killing form).

• The argument above probably obscures the picture. If one is interested
in the complex situation it is much clearer to redo the whole proof in
this setting, working with Hermitian metrics on complex representation
spaces. The proof goes through essentially word-for-word, using the fact
that the standard metric on SL(n,C)/SU(n) has Property (*).Then one
can deduce the real case from the complex case rather than the other way
around, as we have done above.

• Returning to the case of a simple real Lie algebra g, which is not the Lie
algebra of a compact group, we can also give an explicit description of the
symmetric space M+

g of positive type dual to M−
g . Fix an optimal metric

on g and extend it to a Hermitian metric H on g ⊗C. Then M+
g is the

set of real forms g′ ⊂ g⊗C which are conjugate by Gc to g and such that
the restriction of Re H to g′ is an optimal metric on g′. This is a totally
geodesic submanifold of SU(g ⊗C)/SO(g).

5.2 Comparison with other approaches

The approach we have used, minimising the norm of the Lie bracket, is essen-
tially the same as that suggested by Cartan, and carried through by Richardson,
with the difference that we do not assume known that the Killing form is non-
degenerate so we operate with a special linear group rather than an orthogonal
group. The crucial problem is to show that the minimum is attained when the
Lie algebra is simple. This can be attacked by considering points in the closure
of the relevant orbit for the action on the projectivized space. Richardson gives
two different arguments. One uses the fact that a semisimple Lie algebra is
rigid with respect to small deformations; the other uses the fact that a semisim-
ple Lie algebra is its own algebra of derivations, so the orbits in the variety of
semisimple Lie algebras all have the same dimension.

There is a general procedure for testing when an orbit contains a minimal
vector, using Hilbert’s 1-parameter subgroup criterion for stability in the sense
of Geometric Invariant Theory [9]. In the Lie algebra situation this gives a
criterion involving the nonexistence of filtrations of a certain kind, but the
author does not know an easy argument to show that simple Lie algebras do
not have such filtrations. However it is also a general fact that, in the unstable
case, there is a preferred maximally destabilising 1-parameter subgroup. This
theory was developed by Kempf [7] and Hesselink [5] in the algebraic setting,
and in connection with the moment map and the length function by Kirwan [6]
and Ness [12]. The argument we give in Section 4 is essentially a translation
of this theory into a differential geometric setting. Lauret [10] has studied the
application of this general circle of ideas (Geometric Invariant Theory/Moment

15



maps/minimal vectors) to more sophisticated questions in Lie algebra theory—
going beyond the case of simple algebras.

One advantage of this method, in the real case, is that the uniqueness of
maximal compact subgroups up to conjugacy emerges as part of the package.
In the usual approach ([4], Theorem 13.5) this is deduced from a separate argu-
ment: Cartan’s fixed point theorem for spaces of negative curvature. We avoid
this, although the techniques we apply in Section 4 are very similar in spirit.

6 Appendix

We give a simple proof of the well-known fact stated in Section 4: that the
manifold H has Property (*). We identify H with n× n positive definite sym-
metric matrices of determinant 1. It suffices to prove the statement for the
exponential map at the identity matrix. Recall that the metric on H is given by
|δH|2H = Tr

(
(δH)H−1

)2. For fixed symmetric matrices S, α and a small real
parameter h define

H(h) = (exp(S + hα)− exp(S)) exp(−S),

and
v =

dH

dh
|h=0.

we need to show that, for any S and α, we have

Tr v2 ≥ Tr α2.

To see this we introduce another real parameter t and set

H(t, h) = (exp(t(S + hα))− exp(tS)) exp(−tS).

Then one readily computes

∂H

∂t
= [S, H] + hα exp(t(S + hα)) exp(−tS).

Now differentiate with respect to h and evaluate at h = 0 to get a matrix valued
function V (t). Then we have

dV

dt
=

∂2H

∂h∂t
|h=0 = [S, V ] + α.

Clearly v = V (1) and V (0) = 0, so our result follows from the following

Lemma 9 Let S, α be real, symmetric n×n matrices and let V (t) be the matrix
valued function which is the solution of the ODE

dV

dt
= [S, V ] + α

with V (0) = 0. Then
Tr V (t)2 ≥ t2Tr α2

for all t.
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To see this, consider first a scalar equation

df+

dt
= λf+ + a,

with λ, a constants and with the initial condition f+(0) = 0. The solution is

f+(t) =
(

eλt − 1
λ

)
a,

where we understand the expression in brackets is to be interpreted as t in the
case when λ = 0. Let f−(t) satisfy the similar equation

df−

dt
= −λf− + a,

with f−(0) = 0. Then
f+(t)f−(t) = t2a2Q(t),

where

Q(t) =
(eλt − 1)(1− e−λt)

λ2t2
=

2(cosh(λt)− 1)
λ2t2

.

It is elementary that Q(t) ≥ 1, so f+(t)f−(t) ≥ t2a2.
Now consider the operator adS acting on n × n matrices. We can suppose

S is diagonal with eigenvalues λi. Then a basis of eigenvectors for adS is given
by the standard elementary matrices Eij and

adS(Eij) = λijEij ,

where λij = λi − λj . Thus the matrix equation reduces to a collection of scalar
equations for the components Vij(t). Since λji = −λij and αij = αji, each pair
Vij , Vji satisfy the conditions considered for f+, f− above and we have

Vij(t)Vji(t) ≥ α2
ijt

2.

(This is also true, with equality, when i = j). Now summing over i, j gives the
result.

This proof is not very different from the usual discussion of the Jacobi equa-
tion in a symmetric space. It is also much the same as the proof of Helgason’s
formula for the derivative of the exponential map ([4], Theorem 1.7).
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