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1 Introduction

In several instances the entropy h(ϕ) of an automorphism ϕ on a space X can be
calculated in terms of periodic points:

(1.1) h(ϕ) = lim
n→∞

1

n
log |Fix (ϕn)| .

Here Fix (ϕn) is the set of fixed points of ϕn on X. Let logp : Q∗
p → Zp be the branch

of the p-adic logarithm normalized by logp(p) = 0. The p-adic analogue of the limit
(1.1), if it exists, may be viewed as a kind of entropy with values in the p-adic number
field Qp,

(1.2) hp(ϕ) = lim
n→∞

1

n
logp |Fix (ϕn)| .

It depends only on the action of ϕ on X viewed as a set.

An earlier different approach to a p-adic entropy theory was mentioned to me by
Amnon Besser. The usual definitions of measure theoretic or topological entropy have
no obvious p-adic analogue since lim or sup do not make sense p-adically and since the
cardinalities of partitions, coverings and of separating or spanning sets do not behave
reasonably in the p-adic metric.

Instead of actions of a single automorphism ϕ we look more generally at actions of a
countable discrete residually finite but not necessarily amenable group Γ on a set X.
Let us write Γn → e if (Γn) is a sequence of cofinite normal subgroups of Γ such that
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only the neutral element e of Γ is contained in infinitely many Γn’s. Let Fix Γn
(X) be

the set of points in X which are fixed by Γn. If the limit:

(1.3) hp := lim
n→∞

1

(Γ : Γn)
logp |Fix Γn

(X)|

exists with respect to a choice of Γn → e we call it the p-adic entropy of the Γ-action
on the set X (with respect to the sequence (Γn)).

In this note we show that for an interesting class of Γ-actions the p-adic entropy exists
independently of the choice of Γn → e. In these examples X is an abelian group and Γ
acts by automorphisms of groups. Namely, let (R/Z)Γ be the full shift on Γ with values
in the circle R/Z and left Γ-action by γ(xγ′) = (xγ−1γ′). For an element f =

∑

γ aγγ

in the integral group ring ZΓ consider the closed subshift Xf ⊂ (R/Z)Γ consisting of
all sequences (xγ′) which satisfy the equation

∑

γ′

xγ′aγ−1γ′ = 0 in (R/Z)Γ for all γ ∈ Γ .

In fact as in [ER] we study more general systems defined by an r × r-matrix over ZΓ.
However, in this introduction, for simplicity, we describe only the case r = 1. If Γ is
amenable, we denote by h(f) the topological entropy of the Γ-action on Xf .

The case Γ = Zd is classical. Here we may view f as a Laurent polynomial and
according to [LSW] the entropy is given by the (logarithmic) Mahler measure of f

(1.4) h(f) = m(f) :=

∫

T d

log |f(z)| dµ(z) .

Here µ is the normalized Haar measure on the d-torus T d. According to [LSW] the
Zd-action on Xf is expansive if and only if f does not vanish in any point of T d. By
a theorem of Wiener this is also equivalent to f being a unit in L1(Zn). In this case
h(f) can be calculated in terms of periodic points, c.f. [LSW] Theorem 7.1. See also
[S] for this theory.

What about a p-adic analogue? In [D1] it was observed that in the expansive case
m(f) has an interpretation via the Deligne–Beilinson regulator map from algebraic K-
theory to Deligne cohomology. Looking at the analogous regulator map from algebraic
K-theory to syntomic cohomology one gets a suggestion what a (purely) p-adic Mahler
measure mp(f) of f should be, c.f. [BD]. It can only be defined if f does not vanish in
any point of the p-adic d-torus T d

p = {z ∈ Cd
p | |zi|p = 1} , where Cp is the completion

of a fixed algebraic closure Qp of Qp. In this case mp(f) is given by the convergent
Snirelman integral

(1.5) mp(f) =

∫

T d
p

logp f(z) .
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Recall that the Snirelman integral of a continuous function F : T d
p → Cp is defined by

the following limit if it exists:
∫

T d
p

F (z) := lim
N→∞

(N,p)=1

1

Nd

∑

ζ∈µd
N

F (ζ) .

Here µN is the group of N -th roots of unity in Q
∗

p.

For example, let P (t) = amtm + . . . + art
r be a polynomial in Cp[t] with am, ar 6= 0

whose zeroes α satisfy |α|p 6= 1. Then, according to [BD] Proposition 1.5 we have the
following expression for the p-adic Mahler measure:

mp(f) = logp ar −
∑

0<|α|p<1

logp α(1.6)

= logp am +
∑

|α|p>1

logp α .

For d ≥ 2 there does not seem to be a simple formula for mp(f).

In [BD] we mentioned the obvious problem to give an interpretation of mp(f) as a
p-adically valued entropy. This is now provided by the following result:

Theorem 1.1 Assume that f ∈ Z[Zd] = Z[t±1
1 , . . . , t±1

d ] does not vanish in any point
of the p-adic d-torus T d

p . Then the p-adic entropy hp(f) of the Γ = Zd-action on Xf

in the sense of (1.3) exists for all Γn → 0 and we have hp(f) = mp(f).

Now we turn to more general groups Γ. In [DS] extending [D2] it was shown that
for countable residually finite amenable groups Γ and elements f in ZΓ which are
invertible in L1(Γ) we have

(1.7) h(f) = log detNΓf .

Here detNΓ is the Fuglede–Kadison determinant [FK] on the units of the von Neumann
algebra NΓ ⊃ L1Γ ⊃ ZΓ of Γ. In fact, equation (1.7) holds without the condition of
amenability if h(f) is replaced by the quantity:

hper (f) := lim
n→∞

1

(Γ : Γn)
log |Fix Γn

(X)| .

For the Γ-action on Xf this limit exists and is independent of the choice of sequence
Γn → e.

In the p-adic case, instead of working with a p-adic L1-convolution algebra it is more
natural to work with the bigger convolution algebra c0(Γ). It consists of all formal
series x =

∑

γ xγγ with xγ ∈ Qp and |xγ|p → 0 as γ → ∞ in Γ.
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For Γ = Zd it is known that f ∈ Z[Zd] does not vanish in any point of the p-adic d-
torus T d

p if and only if f is a unit in the algebra c0(Z
d). Hence in general, it is natural

to look for a p-adic analogue of formula (1.7) for all f ∈ ZΓ which are units in c0(Γ).
In the p-adic case there is no analogue for the theory of von Neumann algebras and for
the functional calculus used to define detNΓ. However using some algebraic K-theory
and the results of [FL], [BLR] and [KLM] we can define a p-adic analogue logp detΓ

of log detNΓ for suitable classes of groups Γ. For example we get the following result
generalizing theorem 1.1:

Theorem 1.2 Assume that the residually finite group Γ is elementary amenable and
torsion-free. Let f be an element of ZΓ which is a unit in c0(Γ). Then the p-adic
entropy hp(f) of the Γ-action on Xf in the sense of (1.3) exists for all Γn → e and we
have

hp(f) = logp detΓf .

Acknowledgement: I would like to thank my colleagues Wolfgang Lück and Peter
Schneider for helpful conversations.

2 Preliminaries

Fix an integer r ≥ 1 and set T = T r = (R/Z)r. For a discrete group Γ let T Γ be the full
shift with left Γ-action by γ(xγ′) = (xγ−1γ′). Write Mr(R) for the ring of r×r-matrices
over a ring R. For an element f =

∑

aγγ in Mr(Z)[Γ] = Mr(ZΓ) the closed subshift
Xf ⊂ T Γ is defined as the closed subgroup consisting of all sequences with

∑

γ′

xγ′a∗
γ−1γ′ = 0 in T Γ for all γ ∈ Γ .

Here a∗ denotes the transpose of a matrix a in Mr(Z). The group ring Mr(Z)[Γ] is
equipped with an anti-involution ∗ defined by f ∗ =

∑

γ a∗
γ−1γ for f =

∑

γ aγγ.

Let ρf be right multiplication by f ∗ on the group T [[Γ]] of formal T -valued series on
Γ. For x =

∑

γ xγγ in T [[Γ]] we have

ρf (x) =
∑

γ

xγγ
∑

γ

a∗
γ−1γ =

∑

γ

(

∑

γ′

xγ′a∗
γ−1γ′

)

γ .

Hence we see that
Xf = Ker (ρf : T [[Γ]] −→ T [[Γ]])
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where on the right hand side the group Γ acts by left multiplication. Let N be a
normal subgroup of Γ with quotient map ∼: Γ → Γ̃ = Γ/N . Set

f̃ =
∑

γ

aγ γ̃ =
∑

δ∈Γ̃

(

∑

γ∈δ

aγ

)

δ in Mr(Z)[Γ̃] .

This is the image of f under the reduction map Mr(Z)[Γ] → Mr(Z)[Γ̃]. Under the
natural isomorphism

T [[Γ̃]]
∼−→ Fix N(T [[Γ]])

mapping
∑

δ xδδ to
∑

γ xγ̃γ the action ρf̃ corresponds to the restriction of ρf . Hence
we have

Fix N (Xf) = Ker (ρf̃ : T [[Γ̃]] −→ T [[Γ̃]]) = Xf̃ .

If we assume that Γ̃ is finite we get that

Fix N(Xf ) = ρ−1

f̃ ,R
(ZΓ̃)r/(ZΓ̃)r

for the endomorphism ρf̃ ,R of right multiplication by f̃ ∗ on (RΓ̃)r. This implies the
following fact, c.f. [DS], Corollary 4.3:

Proposition 2.1 Let Γ̃ be finite. Then ρf̃ is an isomorphism of (QΓ̃)r if and only if
Fix N(Xf ) is finite. In this case the order is given by

|Fix N(Xf)| = ±detρf̃ .

This follows from the fact that for an isomorphism ϕ of a finite dimensional real vector
space V and a lattice Λ in V with ϕ(Λ) ⊂ Λ we have:

|ϕ−1Λ/Λ| = |Λ/ϕ(Λ)| = | det(ϕ | V )| .

For any countable discrete group Γ let c0(Γ) be the set of formal series
∑

γ xγγ with
xγ ∈ Qp and |xγ |p → 0 for γ → ∞. This means that for any ε > 0 there is a finite
subset S ⊂ Γ such that |xγ |p < ε for all γ ∈ Γ \ S. The set c0(Γ) is a Qp-vector space
and it becomes a Qp-algebra with the product

(2.1)
∑

γ

xγγ ·
∑

γ

yγγ =
∑

γ

(

∑

γ′γ′′=γ

xγ′yγ′′

)

γ .

Note that the sums
∑

γ′γ′′=γ

xγ′yγ′′ =
∑

γ′

xγ′yγ′−1γ
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converge p-adically for every γ since limγ′→∞ |xγ′yγ
′
−1γ|p = 0. The value is independent

of the order of summation. Moreover, because of the inequality

(2.2)
∣

∣

∣

∑

γ′

xγ′yγ
′
−1γ

∣

∣

∣

p
≤ sup

γ′

|xγ′yγ
′
−1γ|p ,

we have
lim

γ→∞

∑

γ′

xγ′yγ′−1γ = 0 ,

so that the product (2.1) is well defined. We may also view c0(Γ) as an algebra of
Qp-valued functions on Γ under convolution.

The Qp-algebra c0(Γ) is complete in the norm

‖
∑

γ

xγγ‖ = sup
γ

|xγ|p = max
γ

|xγ |p .

The norm satisfies the following properties:

‖x‖ = 0 if and only if x = 0(2.3)

‖x + y‖ ≤ max(‖x‖, ‖y‖)(2.4)

‖λx‖ = |λ|p ‖x‖ for all λ ∈ Qp(2.5)

‖xy‖ ≤ ‖x‖ ‖y‖ and ‖1‖ = 1(2.6)

Hence c0(Γ) is a p-adic Banach algebra over Qp, i.e. a unital Qp-algebra B which is
complete with respect to a norm ‖ ‖ : B → R≥0 satisfying conditions (2.3)–(2.6).

We will only consider Banach algebras where ‖ ‖ takes values in pZ ∪{0}. The subring
A = B0 of elements x in B of norm ‖x‖ ≤ 1 is a p-adic Banach algebra over Zp, defined
similarly as before. An example is given by

c0(Γ, Zp) = c0(Γ)0 = {
∑

xγγ | xγ ∈ Zp with lim
γ→∞

|xγ|p = 0} .

In this case the residue algebra A/pA over Fp is isomorphic to the group ring of Γ
over Fp:

(2.7) c0(Γ, Zp)/pc0(Γ, Zp) = Fp[Γ] .

The 1-units U1 = 1 + pA form a subgroup of A∗ since

(1 + pa)−1 :=
∞

∑

ν=0

(−pa)ν

provides an inverse of 1 + pa ∈ U1 in U1. It is easy to see that one has an exact
sequence of groups

(2.8) 1 −→ U1 −→ A∗ −→ (A/pA)∗ −→ 1 .
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For A = c0(Γ, Zp) this is the exact seqence

(2.9) 1 −→ 1 + pc0(Γ, Zp) −→ c0(Γ, Zp)
∗ −→ Fp[Γ]∗ −→ 1 .

Concerning the units of a p-adic Banach algebra over Qp, we have the following known
fact:

Proposition 2.2 Let B be a p-adic Banach algebra over Qp whose norm takes values
in pZ ∪{0} and set A = B0. If the residue algebra A/pA has no zero divisors, then we
have

B∗ = pZA∗ and pZ ∩ A∗ = 1 .

Proof For f in B∗ set g = 1/f . Let ν, µ be such that f1 = pνf and g1 = pµg have
norm one. The reductions f 1, g1 of f1, g1 are non-zero. In the equation f1g1 = pν+µ we
have ν + µ ≥ 0. Reducing mod p we find that 0 6= f 1g1 = pν+µ mod p in A/pA. Hence
we have ν +µ = 0 and therefore f1g1 = 1. The first assertion follows. Because of (2.6)
we have ‖a‖ = 1 for a ∈ A∗ and ‖pν‖ = p−ν . This implies the second assertion. 2

Example 2.3 For the group Γ = Zd the algebra c0(Z
d) can be identified with the

affinoid commutative algebra Qp〈t±1
1 , . . . , t±1

d 〉 of power series
∑

ν∈Zd xνt
ν with xν ∈ Qp

and lim|ν|→∞ |xν |p = 0. Note that these power series can be viewed as functions on T d
p .

The residue algebra is Fp[Z
d] = Fp[t

±1
1 , . . . , t±1

d ]. It has no zero divisors and its groups
of units is

Fp[Z
d]∗ = F∗

pt
Z
1 · · · tZ

d .

The preceeding proposition and the exact sequence (2.9) now give a decomposition
into a direct product of groups

c0(Z
d)∗ = pZµp−1t

Z
1 · · · tZ

d (1 + p c0(Z
d, Zp)) .

Proposition 2.4 For f in Qp[Z
d] = Qp[t

±1
1 , . . . , t±1

d ] the following properties are equiv-
alent:
a) We have f(z) 6= 0 for every z in T d

p

b) f is a unit in c0(Z
d)∗

c) f has the form f(t) = ctν(1+pg(t)) for some c ∈ Q∗
p, ν ∈ Zd and g(t) in c0(Z

d, Zp).

Proof We have seen that b) and c) are equivalent and it is clear that both b) and
c) imply a). For proving that a) implies b) note that the maximal ideals of c0(Z

d) =
Qp〈t±1

1 , . . . , t±1
d 〉 correspond to the orbits of the Gal (Qp/Qp)-operation on T d

p ∩ (Q
∗

p)
d.

Hence f is not contained in any maximal ideal of c0(Z
d) by assumption a) and therefore

f is a unit. 2
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3 The Frobenius group determinant and a proof of

theorem 1.1

The map ZΓ → ZΓ̃ for Γ̃ = Γ/N from the beginning of the last section can be extended
to a homomorphism of Qp-algebras c0(Γ) → c0(Γ̃) by sending f =

∑

aγγ to f̃ =
∑

aγ γ̃.
Note that this is well defined by the ultrametric inequality and that we have ‖f̃‖ ≤
‖f‖. If Γ̃ is finite, we have c0(Γ̃) = QpΓ̃ and hence we obtain a homomorphism of
groups GLr(c0(Γ)) → GLr(QpΓ̃). It follows that for f in Mr(ZΓ) ∩ GLr(c0(Γ)) the
endomorphism ρf̃ of (QΓ̃)r is an isomorphism. Together with proposition 2.1 we have
shown the first equation in the following proposition:

Proposition 3.1 Let Γ be a discrete group and N a normal subgroup with finite quo-
tient group Γ̃. For f in Mr(ZΓ) ∩ GLr(c0(Γ)) the set Fix N(Xf ) is finite and we have

|Fix N(Xf )| = ± det ρf̃

= ±
∏

π

detQp

(

∑

γ

a∗
γ ⊗ ρπ(γ̃)

)dπ

.

Here π runs over the equivalence classes of irreducible representations ρπ of Γ̃ on Qp-
vector spaces Vπ and dπ is the degree dim Vπ of π.

Proof It remains to prove the second equation which is essentially due to Frobenius.
Consider QpΓ̃ as a representation of Γ̃ via the map γ̃ 7→ ρ(γ̃) := right multiplication
with γ̃−1. This (“right regular”) representation decomposes as follows into irreducible
representations c.f. [S] I, 2.2.4

QpΓ̃ ∼=
⊕

π

V dπ

π .

The endomorphism

ρf̃ =
∑

γ

a∗
γ ⊗ ρ(γ̃)

on
(QpΓ̃)r = Q

r

p ⊗ QpΓ̃

therefore corresponds to the endomorphism

⊕

π

(

∑

γ

a∗
γ ⊗ ρπ(γ̃)

)dπ

on
⊕

π

Q
r

p ⊗ V dπ

π =
⊕

π

(Q
r

p ⊗ Vπ)dπ .

Hence the formula follows. 2

Remark In the real case and for the Heisenberg group, Klaus Schmidt previously used
the group determinant to calculate |Fix Γn

(Xf)| for f in L1(Γ)∗ and certain Γn.
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The following result generalizes theorem 1.1 from the introduction, at least for a par-
ticular sequence Γn → 0:

Theorem 3.2 Let f =
∑

ν∈Zn aνt
ν in Mr(Z[t±1

1 , . . . , t±1
d ]) be invertible in every point

of the p-adic d-torus T d
p . Then the p-adic entropy hp(f) of the Γ = Zd-action on Xf

exists in the sense of (1.3) for the sequence Γn = (nZ)d → 0 with n prime to p, and
we have

hp(f) = mp(det f) .

Proof By assumption, the Laurent polynomial det f does not vanish in any point of
T d

p . Hence det f is a unit in c0(Γ) by proposition 2.4. It follows from proposition 3.1
that we have:

|Fix Γn
(Xf )| = ±

∏

χ

detQp

(

∑

ν∈Zd

a∗
ν ⊗ χ(ν)

)

where χ runs over the characters of Γ/Γn = (Z/nZ)d. These correspond via χ(ν) = ζν

to the elements ζ of µd
n. Viewing f as a matrix of functions on T d

p we therefore get the
formulas

|Fix Γn
(Xf)| = ±

∏

ζ∈µd
n

detQp

(

∑

ν∈Zd

a∗
νζ

ν
)

= ±
∏

ζ∈µd
n

detQp
(f(ζ))

= ±
∏

ζ∈µd
n

(det f)(ζ) .

Thus the p-adic entropy hp(f) of the Γ-action on Xf with respect to the above sequence
is given by:

hp(f) = lim
n→∞

(n,p)=1

1

(Γ : Γn)
logp |Fix Γn

(Xf )|

= lim
n→∞

(n,p)=1

1

nd

∑

ζ∈µd
n

logp(det f)(ζ)

=

∫

T d
p

logp det f = mp(det f) .

Note here that for the Laurent polynomials det f under consideration the Snirelman
integral exists by [BD] Proposition 1.3. 2

Remark A suitable generalization of that proposition would give theorems 3.2 and
1.1 for general sequences Γn → 0 in Γ = Zd. We leave this to the interested reader
since the general case of theorem 1.1 is also a corollary of theorem 1.2 which will be
proved by a different method in section 5.

9



Example The polynomial in one variable f(T ) = 2T 2 − T + 2 does not vanish in any
point of the 2-adic circle T 1

2 . In this sense, Xf is “2-adically expansive”. Consider the
square root of −15 in Z2 given by the 2-adically convergent series

√
−15 = (1 + (−16))1/2 =

∞
∑

ν=0

(

1/2

ν

)

(−1)ν24ν .

The zeroes of f(T ) in Q2 are given by α± = 1
4
(1 ±

√
−15) ∈ Q2 where |α+|2 = 2 and

|α−|2 = 1/2. Successive approximations for α+ coming from the series for
√
−15 are

1/2,−3/2,−19/2,−83/2. By theorem 3.2 and formula (1.6) the 2-adic entropy of Xf

is given by
h2(f) = log2 α+ ∈ Z2 .

Note that f viewed as a complex valued function has both its zeroes on S1, so that
Xf is not expansive in the usual sense. The topological entropy is h(f) = log 2.

We end this section by mentioning another example of a dynamical system where the
p-adic entropy exists.

Proposition 3.3 For ϕ in GLd(Z) without eigenvalues in Qp of p-adic absolute value
one, the p-adic entropy of the ϕ-action on (R/Z)d in the sense of (1.2) exists and is
zero.

Proof We have

|Fix (ϕn | (R/Z)d| = |Zd/(1 − ϕn)(Zd)|
= ± det(1 − ϕn) = ±

∏

λ

(1 − λn) .

Here the product runs over the eigenvalues λ ∈ Qp of ϕ. Thus we get

(3.1)
1

n
logp |Fix (ϕn | (R/Z)d| =

∑

λ

1

n
logp(1 − λn) .

The characteristic polynomial of ϕ is monic with integer coefficients. Hence the eigen-
values λ are algebraic integers. In particular, we have |λ|p ≤ 1 and hence |λ|p < 1
since we assumed that |λ|p 6= 1.

Thus it suffices to show that for λ ∈ Qp with |λ|p < 1 we have

lim
n→∞

1

n
logp(1 − λn) = 0 .
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This is a consequence of the following estimate:

∣

∣

∣

1

n
logp(1 − λn)

∣

∣

∣

p
=

∣

∣

∣

∞
∑

ν=1

1

νn
λνn

∣

∣

∣

p
≤ max

ν

∣

∣

∣

1

νn
λνn

∣

∣

∣

p

≤ max
i≥n

∣

∣

∣

1

i
λi

∣

∣

∣

p
.

The last expression tends to zero for n → ∞ since |λ|p < 1. 2

4 The logarithm on the 1-units of a p-adic Banach

algebra

For a discrete group Γ we would like to define a homomorphism

logp detΓ : c0(Γ)∗ −→ Qp

which should be a p-adic replacement for the map

log detNΓ : L1(Γ)∗ ⊂ (NΓ)∗ −→ R .

More generally, we would like to define such a map on GLr(c0(Γ)). In this section we
give the definition on the subgroup of 1-units and relate logp detΓ to p-adic entropy.
The extension to a map on all of c0(Γ)∗ will be done in the next section for suitable
classes of groups Γ using rather deep facts about group rings.

Let B be a p-adic Banach algebra over Qp whose norm ‖ ‖ takes values in pZ ∪ {0}.
A trace functional on B is a continuous linear map trB : B → Qp which vanishes on
commutators [a, b] = ab − ba of elements in B. For b ∈ B and c ∈ B∗ we have

(4.1) trB(cbc−1) = trB(b) .

Set A = B0 = {b ∈ B | ‖b‖ ≤ 1} and let U1 be the normal subgroup of 1-units in A∗.
The logarithmic series

log : U1 −→ A , log u = −
∞

∑

ν=1

(1 − u)ν

ν

converges and defines a continuous map. An argument with formal power series shows
that we have

(4.2) log uv = log u + log v

if the elements u and v in U1 commute with each other.

The next result is a consequence of the Campbell–Baker–Hausdorff formula.
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Theorem 4.1 The map
trB log : U1 −→ Zp

is a homomorphism. For u in U1 and a in A∗ we have

(4.3) trB log(aua−1) = trB log(u) .

Proof Formula (4.3) follows from (4.1). From [B] Ch. II, § 8 we get the following

information about log. Set G = {b ∈ B | ‖b‖ < p−
1

p−1}. Then the exponential series
defines a bijection exp : G

∼−→ 1 + G with inverse exp−1 = log |1+G. For x, y in G we
have

(4.4) exp x · exp y = exp h(x, y)

where h(x, y) ∈ G is given by a convergent series in B. It has the form

h(x, y) = x + y + series of (iterated) commutators .

Elements u, v of 1 + G have the form u = exp x and v = exp y. Taking the log of
relation (4.4) and applying trB we get

trB log(uv) = trBh(x, y) = trB(x + y)

= trB log u + trB log v .(4.5)

Hence trB log is a homomorphism on the subgroup 1 + G of U1. By assumption the
norm of B takes values in pZ ∪ {0}. For p 6= 2 we therefore have 1 + G = U1 and we
are done.
For p = 2 the restriction of the map

ϕ = trB log : U1 → Q2

to 1 + G = 1 + 4A is a homomorphism by (4.5). We have to show that it is a
homomorphism on U1 = 1 + 2A as well. For u in U1 we have ϕ(u) = 1

2
ϕ(u2) by (4.2)

and u2 lies in 1 + 4A. Now consider elements u, v in U1. Then we have

ϕ(uv) =
1

2
ϕ((uv)2) =

1

2
ϕ(uvuv)

(4.3)
=

1

2
ϕ(u2vuvu−1)

=
1

2
ϕ(u2) +

1

2
ϕ(vuvu−1)

since u2 and vuvu−1 lie in 1 + 4A where ϕ is a homomorphism. By similar arguments
we get

ϕ(uv) = ϕ(u) +
1

2
ϕ(v2uvu−1v−1)

= ϕ(u) + ϕ(v) +
1

2
ϕ(uvu−1v−1) .
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Thus we must show that ϕ(uvu−1v−1) = 0. By (4.3) we have ϕ(uvu−1v−1) = ϕ(vu−1v−1u)
and hence using that both uvu−1v−1 and vu−1v−1u lie in 1 + 4A we find

2ϕ(uvu−1v−1) = ϕ(uvu−1v−1) + ϕ(vu−1v−1u)

= ϕ(uvu−2v−1u)
(4.3)
= ϕ(u−2v−1u2v)

= ϕ(u−2) + ϕ(v−1u2v)
(4.3)
= ϕ(u−2) + ϕ(u2) = ϕ(e)

= 0 .

2

For a discrete group Γ, the map

trΓ : c0(Γ) −→ Qp , trΓ(
∑

aγγ) = ae

defines a trace functional on c0(Γ). Let B = Mr(c0(Γ)) be the p-adic Banach algebra
over Qp of r × r-matrices (aij) with entries in c0(Γ) and equipped with the norm
‖(aij)‖ = maxij ‖aij‖. The composition:

trΓ : Mr(c0(Γ))
tr−→ c0(Γ)

trΓ−→ Qp

defines a trace functional on Mr(c0(Γ)).

The algebra A = B0 is given by Mr(c0(Γ, Zp)) and we have U1 = 1 + pMr(c0(Γ, Zp)).
The exact sequence (2.8) becomes the exact sequence of groups:

(4.6) 1 −→ 1 + pMr(c0(Γ, Zp)) −→ GLr(c0(Γ, Zp)) −→ GLr(FpΓ) −→ 1 .

According to theorem 4.1 the map

(4.7) logp detΓ := trΓ log : 1 + pMr(c0(Γ, Zp)) −→ Zp

is a homomorphism of groups.

Example 4.2 For Γ = Zd, in the notation of example 2.3 we have a commutative
diagram, c.f. [BD] Lemma 1.1

c0(Γ)
∼

//

trΓ
��

Qp〈t±1
1 , . . . , t±1

d 〉
∫

Td
p

��

Qp Qp .

It follows that for a 1-unit f in Mr(c0(Γ)) we have:

(4.8) logp detΓf =

∫

T d
p

log det f = mp(det f) .

13



Here we have used the relation

(4.9) tr log f = log det f in c0(Γ) ,

where det : GLr(c0(Γ)) → c0(Γ)∗ is the determinant and tr the trace for matrices over
the commutative ring c0(Γ). Note that det maps 1-units to 1-units. Relation (4.9) can
be proved by embedding the integral domain c0(Γ) = Qp〈t±1

1 , . . . , t±1
d 〉 into its quotient

field and applying [H] Appendix C, Lemma 4.1.

For finite groups Γ the map logp detΓ can be calculated as follows. For f in Mr(c0(Γ)) =
Mr(QpΓ) let ρf be the endomorphism of (QpΓ)r by right multiplication with f ∗ and
detQp

(ρf) its determinant over Qp.

Proposition 4.3 Let Γ be finite. Then we have

(4.10) logp detΓf =
1

|Γ| logp detQp
(ρf)

for f in 1 + pMr(ZpΓ).

Remark Since ρfg = ρfρg, the equation in the proposition shows that logp detΓ is a
homomorphism – something we know in general by theorem 4.1. For finite Γ the group
GLr(FpΓ) is finite. Hence, by (4.6) there is at most one way to extend logp detΓ from
1 + pMr(ZpΓ) to a homomorphism from GLr(ZpΓ) to Qp. Namely, we have to set

logp detΓf :=
1

N
logp detΓfN ,

where N ≥ 1 is any integer with f
N

= 1 in GLr(FpΓ). Because of (4.2) this is well
defined but it is not clear from the definition that we get a homomorphism. However,
for the same f, N we have

logp detQp
(ρf ) =

1

N
logp detQp

(ρfN ) .

Hence equation (4.10) holds for all f in GLr(ZpΓ) and it follows that logp detΓ ex-
tends to a homomorphism on GLr(ZpΓ). In the next section such arguments will be
generalized to infinite groups with the help of K-theory.

Proof of 4.3 Under the continuous homomorphism of p-adic Banach algebras over Zp

ρ : Mr(ZpΓ) −→ End Zp
(ZpΓ)r

the groups of 1-units are mapped to each other. Hence we have

(4.11) log ρf = ρlog f

14



for f in 1 + pMr(ZpΓ).

On the other hand we have

(4.12) trΓ(g) =
1

|Γ|tr(ρg)

for any element g of Mr(QpΓ). This is proved first for r = 1 by checking the cases
where g = γ is an element of Γ. Then one extends to arbitrary r by thinking of ρg as
a block matrix with blocks of size |Γ| × |Γ|.

Combining (4.11) and (4.12) we find:

logp detΓf = trΓ log f

=
1

|Γ|tr(ρlog f )

=
1

|Γ|tr(log ρf)

=
1

|Γ| logp detQp
(ρf) .

The last equation is proved by writing ρf in triangular form in a suitable basis over
Qp and observing that the eigenvalues of ρf are 1-units in Qp. 2

The next result is necessary to prove the relation of logp detΓ f with p-adic entropies.

Proposition 4.4 Let Γ be a residually finite countable discrete group and Γn → e a
sequence as in the introduction. For f in 1 + pMr(c0(Γ, Zp)) consider its image f (n)

in 1 + pMr(ZpΓ
(n)) where Γ(n) is the finite group Γ(n) = Γ/Γn. Then we have

logp detΓf = lim
n→∞

logp detΓ(n)f (n) in Zp .

Proof The algebra map Mr(c0(Γ)) → Mr(c0(Γ
(n))) sending f to f (n) is continuous

since we have ‖f (n)‖ ≤ ‖f‖. For f in 1 + pMr(c0(Γ, Zp)) we therefore get:

(log f)(n) = log f (n) in Mr(c0(Γ
(n))) .

The next claim for g = log f thus implies the assertion. 2

Claim 4.5 For g in Mr(c0(Γ)) we have

trΓ(g) = lim
n→∞

trΓ(n)(g(n)) .

15



Proof We may assume that r = 1. Writing g =
∑

aγγ with aγ ∈ Qp, |aγ|p → 0 for
γ → ∞ we have

|trΓ(g) − trΓ(n)(g(n))|p =
∣

∣

∣
ae −

∑

γ=e

aγ

∣

∣

∣

p

=
∣

∣

∣

∑

γ∈Γn\e

aγ

∣

∣

∣

p

≤ max
γ∈Γn\e

|aγ |p .

For ε > 0 there is a finite subset S = Sε of Γ such that |aγ|p < ε for γ ∈ Γ\S. Only e is
contained in infinitely many Γn’s. Hence there is some n0 such that (Γn \e)∩S = ∅ i.e.
Γn\e ⊂ Γ\S for all n ≥ n0. It follows that for n ≥ n0 we have |trΓ(g)−trΓ(n)(g(n))|p ≤ ε.

2

Corollary 4.6 Let Γ be a residually finite countable discrete group and f an element
of Mr(ZΓ) which is a 1-unit in Mr(c0(Γ)). Then the p-adic entropy hp(f) of the Γ-
action on Xf exists for all Γn → e and we have

hp(f) = logp detΓf in Zp .

Proof By propositions 3.1 and 4.3 we have

1

(Γ : Γn)
logp |Fix Γn

(Xf )| =
1

(Γ : Γn)
logp detQp

(ρf(n))

= logp detΓ(n)(f (n)) .

Hence the assertion follows from proposition 4.4. 2

5 A p-adic logarithmic Fuglede–Kadison determi-

nant and its relation to p-adic entropy

Having defined a homomorphism logp detΓ on 1 + pc0(Γ, Zp) in (4.7) one would like to
use the exact sequence (2.9) to extend it to c0(Γ, Zp)

∗. However, for infinite groups Γ
the abelianization of the group Fp[Γ]∗ divided by the image of Γ is not known to be
torsion in any generality – as far as I know. However, corresponding results are known
for K1 of Fp[Γ] and this determines our approach which even for r = 1 requires the
preceeding considerations for matrix algebras.

For a unital ring R recall the embedding GLr(R) →֒ GLr+1(R) mapping a to ( a 0
0 1 ).

Let GL∞(R) be the union of the GLr(R)’s. We will view elements of GL∞(R) as

16



infinite matrices with 1’s on the diagonal and only finitely many further nonzero entries.
The subgroup Er(R) ⊂ GLr(R) of elementary matrices is the subgroup generated by
matrices which have 1’s on the diagonal and at most one further non-zero entry. Let
E∞(R) be their union and set K1(R) = GL∞(R)/E∞(R). It is known that we have
E∞(R) = (GL∞(R), GL∞(R)) and hence that K1(R) = GL∞(R)ab c.f. [M] § 3. The
Whitehead group over Fp of a discrete group Γ is defined to be

WhFp(Γ) := K1(Fp[Γ])/〈Γ〉 .

Here 〈Γ〉 is the image of Γ under the canonical map Fp[Γ]∗ → K1(Fp[Γ]).

We can treat groups for which WhFp(Γ) is torsion. According to [FL] Theorem 1.1
this is the case for torsion-free elementary amenable groups Γ. Recently, in [BLR] it
has been shown for a larger class of groups that WhFp(Γ) is torsion. Apart from the
elementary amenable groups, this class comprises all word hyperbolic groups. It is
closed under subgroups, finite products, colimits and suitable extensions.

Theorem 5.1 Let Γ be a countable discrete residually finite group such that WhFp(Γ)
is torsion. Then there is a unique homomorphism

logp detΓ : K1(c0(Γ, Zp)) −→ Qp

with the following properties:
a For every r ≥ 1 the composition

1 + pMr(c0(Γ, Zp)) →֒ GLr(c0(Γ, Zp)) → K1(c0(Γ, Zp))
logp detΓ−−−−−→ Qp

coincides with the map logp detΓ introduced in (4.7).
b On the image of Γ in K1(c0(Γ, Zp)) the map logp detΓ vanishes.

Proof Set A = c0(Γ, Zp) and A = A/pA = Fp[Γ]. The reduction map A → A induces
an exact sequence

(5.1) 0 → ΓE∞(A)(1 + pM∞(A))/ΓE∞(A) → K1(A)/〈Γ〉 → K1(A)/〈Γ〉 .

Here M∞(A) is the (non-unital) algebra of infinite matrices (aij)i,j≥1 with only finitely
many non-zero entries. Note that 1 + pM∞(A) is a subgroup of GL∞(A) since 1 +
pMr(A) is a subgroup of GLr(A). Moreover ΓE∞(A) is a normal subgroup of GL∞(A).
Hence the sequence (5.1) becomes an exact sequence:

(5.2) 0 → (1 + pM∞(A))/ΓE∞(A) ∩ (1 + pM∞(A)) → K1(A)/〈Γ〉 → K1(A)/〈Γ〉 .

Since Qp is uniquely divisible this implies the uniqueness assertion in the theorem for
any group Γ such that WhFp(Γ) = K1(A)/〈Γ〉 is torsion. For the existence, we first
note that the homomorphisms defined in (4.7) induce a homomorphism

logp detΓ : 1 + pM∞(A) −→ Zp .

17



We have to show that logp detΓf = 0 for every f in 1 + pM∞(A) which also lies in
ΓE∞(A). Under our identification of GLr(A) with a subgroup of GL∞(A) we find some
r ≥ 1 such that we have

f = i(γ)e1 · · · eN in 1 + pMr(A) .

Here the ei are elementary r × r-matrices and i(γ) =
(

γ 0
0 1r−1

)

for some γ in Γ.

According to propositions 4.3 and 4.4 we have for any choice of sequence Γn → e:

logp detΓf = lim
n→∞

1

(Γ : Γn)
logp detQp

(ρf(n)) .

On the other hand:

detQp
(ρf(n)) = detQp

(ρ
i(γ)(n)e

(n)
1 ...e

(n)
N

) = detQp
(ρi(γ)(n))

∏

i

detQp
(ρ

e
(n)
i

) .

Let b be a basis of Qp[Γ
(n)]. In the basis (b, . . . , b) of Qp[Γ

(n)]r the endomorphism ρ
e
(n)
i

is given by a matrix of |Γ(n)|× |Γ(n)|-blocks. The diagonal blocks are identity matrices.
At most one of the other blocks is non-zero. In particular, the matrix is triangular and
we have detQp

(ρ
e
(n)
i

) = 1. In the same basis ρi(γ)(n) is a permutation matrix and hence

detQp
(ρi(γ)(n)) = ±1. It follows that we have logp detΓf = 0 as we wanted to show. 2

I think that theorem 5.1 should also hold without the condition that Γ is residually
finite.

Remark 5.2 For Γ = Zd and f in GLr(c0(Γ, Zp)), writing [f ] for the class of f in K1,
we have

logp detΓ[f ] = mp(det f)

extending equation (4.8).

This follows from the uniqueness assertion in theorem 5.1. Namely, the map [f ] 7→
mp(det f) defines a homomorphism on K1 which according to equation (4.8) satisfies
condition a. It satisfies condition b as well, since logp vanishes on roots of unity and
hence we have mp(t

ν) = 0 for all ν in Zd, c.f. example 2.3.

Definition 5.3 For any group Γ as in the theorem we define the homomorphism
logp detΓ on GLr(c0(Γ, Zp)) to be the composition

logp detΓ : GLr(c0(Γ, Zp)) −→ K1(c0(Γ, Zp))
logp detΓ−−−−−→ Qp .
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If we unravel the definitions we get the following description of this map. Given a ma-
trix f in GLr(c0(Γ, Zp)) there are integers N ≥ 1 and s ≥ r such that in GLs(c0(Γ, Zp))
we have fN = i(γ)εg with ε in Es(c0(Γ, Zp)), g in 1+pMs(c0(Γ, Zp)) and i(γ) the s×s-
matrix

(

γ 0
0 1s−1

)

. Then we have

(5.3) logp detΓf =
1

N
logp detΓg =

1

N
trΓ log g .

We can now prove the following extension of corollary 4.6.

Theorem 5.4 Let Γ be a residually finite countable discrete group such that WhFp(Γ)
is torsion. Let f be an element of Mr(ZΓ) ∩GLr(c0(Γ, Zp)). Then hp(f) exists for all
Γn → e and we have

hp(f) = logp detΓf in Qp .

Proof Let us write fN = i(γ)εg as above. Then by proposition 3.1 we have

logp |Fix Γn
(Xf)| = logp detQp

(ρf(n))

=
1

N
logp detQp

(ρi(γ)(n)) +
1

N
logp detQp

(ρε(n))

+
1

N
logp detQp

(ρg(n)) .

Note here that the composition

Ms(c0(Γ)) −→ Ms(c0(Γ
(n)))

ρ−→ End Qp
(QpΓ

(n))s

is a homomorphism of algebras.

As in the proof of theorem 5.1 we see that the terms logp detQp
(ρi(γ)(n)) and logp detQp

(ρε(n))
vanish. This gives

1

(Γ : Γn)
logp |Fix Γn

(Xf )| =
1

(Γ : Γn)

1

N
logp detQp

(ρg(n))

=
1

N
logp detΓ(n)(g(n)) by proposition 4.3.

Using proposition 4.4 we get in the limit n → ∞ that

hp(f) =
1

N
logp detΓ(g)

(5.3)
= logp det f .

2
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For groups Γ as in theorem 5.4 whose group ring FpΓ has no zero divisors it is possible
to extend the definition of logp detΓ from c0(Γ, Zp)

∗ to c0(Γ)∗. Namely, by proposition
2.2 we know that

c0(Γ)∗ = pZc0(Γ, Zp)
∗ and pZ ∩ c0(Γ, Zp)

∗ = 1 .

Hence there is a unique homomorphism

logp detΓ : c0(Γ)∗ −→ Qp

which agrees with logp detΓ previously defined on c0(Γ, Zp)
∗ in definition 5.3 and sat-

isfies
logp detΓ(p) = 0 .

Let Γ be a torsion-free elementary amenable group. Then according to [KLM] Theorem
1.4 the group ring FpΓ has no zero divisors and according to [FL] Theorem 1.1 the
group WhFp(Γ) is torsion. Hence logp detΓ is defined on c0(Γ)∗ and this is the map
used in theorem 1.2.

Proof of theorem 1.2 Writing f in ZΓ ∩ c0(Γ)∗ as a product f = pνg with g in
c0(Γ, Zp)

∗ it follows that g ∈ ZΓ and proposition 3.1 shows that we have

logp |Fix Γn
(Xf)| = logp detQp

(ρf(n))

= logp detQp
(ρg(n))

= logp |Fix Γn
(Xg)| .

Note here that we have logp(p) = 0. It follows from theorem 5.4 applied to g that for
all Γn → e we get:

hp(f) = hp(g) = logp detΓg = logp detΓf .

2

For Γ = Zd it follows from remark 5.2 that for any f in c0(Z
d)∗ = Qp〈t±1

1 , . . . , t±1
d 〉∗ we

have:
logp detΓf = mp(f) .

Hence theorem 1.1 is a special case of theorem 1.2.

Concerning approximations of logp detΓ f we note that proposition 4.4 extends to more
general cases.

Proposition 5.5 Let Γ be a residually finite countable discrete group and Γn → e as
in the introduction. For f in Mr(c0(Γ)) let f (n) be its image in Mr(QpΓ

(n)). Then the
formula

(5.4) logp detΓf = lim
n→∞

1

(Γ : Γn)
logp detQp

(ρf(n))
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holds whenever logp detΓ f is defined. These are the cases
a where f is in 1 + pMr(c0(Γ, Zp))
b where WhFp(Γ) is torsion and f is in GLr(c0(Γ, Zp))
c where WhFp(Γ) is torsion, FpΓ has no zero divisors and f is in c0(Γ)∗.

Proof The assertions follow from propositions 4.3 and 4.4 together with calculations
as in the proofs of theorems 5.1 and 5.4. 2

We end the paper with some open questions: Is there a dynamical criterion for the
existence of the limit defining p-adic entropy? Is there a notion of “p-adic expansive-
ness” for Γ-actions on compact spaces X which for the systems Xf with f in Mr(ZΓ)
translates into the condition that f is invertible in Mr(c0(Γ)), (or in Mr(c0(Γ, Zp)))?
In fact, I assume that p-adic entropy can only be defined for “p-adically expansive”
systems, c.f. [BD] Remark after proposition 1.3. What is the dynamical meaning of
proposition 3.3? Is there a direct proof that the limit in formula (5.4) exists?

Finally, in [BD] a second version of a p-adic Mahler measure was defined which involves
both the p-adic and the archimedian valuations of Q. Can this be obtained for the
systems Xf by doing something more involved with the fixed points than taking their
cardinalities and forming the limit (1.3)?
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