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1 Introduction

In several instances the entropy h(p) of an automorphism ¢ on a space X can be
calculated in terms of periodic points:

1
(1.1) h(¢) = lim —log |Fix (¢™)] .
n—oo 1
Here Fix (¢™) is the set of fixed points of ¢™ on X. Let log, : Q5 — Z, be the branch
of the p-adic logarithm normalized by log,(p) = 0. The p-adic analogue of the limit
(1.1), if it exists, may be viewed as a kind of entropy with values in the p-adic number
field Q,,

.1 -
(1.2) hp(p) = lim —log, |Fix (¢")] .

n—oo M,
It depends only on the action of ¢ on X viewed as a set.

An earlier different approach to a p-adic entropy theory was mentioned to me by
Amnon Besser. The usual definitions of measure theoretic or topological entropy have
no obvious p-adic analogue since lim or sup do not make sense p-adically and since the
cardinalities of partitions, coverings and of separating or spanning sets do not behave
reasonably in the p-adic metric.

Instead of actions of a single automorphism ¢ we look more generally at actions of a
countable discrete residually finite but not necessarily amenable group I' on a set X.
Let us write I';, — e if (I',,) is a sequence of cofinite normal subgroups of I" such that



only the neutral element e of I is contained in infinitely many I',’s. Let Fixr, (X) be
the set of points in X which are fixed by I',,. If the limit:

1
1. h, = li

log, [Fixr, (X)|

exists with respect to a choice of I',, — e we call it the p-adic entropy of the ['-action
on the set X (with respect to the sequence (I',,)).

In this note we show that for an interesting class of ['-actions the p-adic entropy exists
independently of the choice of I';, — e. In these examples X is an abelian group and I"
acts by automorphisms of groups. Namely, let (R/Z)" be the full shift on T" with values
in the circle R/Z and left I-action by y(z./) = (2,-1,/). For an element f =} a,y
in the integral group ring ZI' consider the closed subshift X; C (R/Z)" consisting of
all sequences (z.) which satisfy the equation

nyaqﬁlv, =0 in(R/Z)" forally el .

Y

In fact as in [ER] we study more general systems defined by an r x r-matrix over ZI.
However, in this introduction, for simplicity, we describe only the case »r = 1. If I' is
amenable, we denote by h(f) the topological entropy of the I'-action on X;.

The case I' = Z? is classical. Here we may view f as a Laurent polynomial and
according to [LSW] the entropy is given by the (logarithmic) Mahler measure of f

(1.4 (1) =m(s) = [ Toglf )l du(2).

Here p is the normalized Haar measure on the d-torus T9. According to [LSW] the
Z%-action on X is expansive if and only if f does not vanish in any point of 7. By
a theorem of Wiener this is also equivalent to f being a unit in L'(Z"). In this case
h(f) can be calculated in terms of periodic points, c.f. [LSW] Theorem 7.1. See also
[S] for this theory.

What about a p-adic analogue? In [D1] it was observed that in the expansive case
m(f) has an interpretation via the Deligne-Beilinson regulator map from algebraic K-
theory to Deligne cohomology. Looking at the analogous regulator map from algebraic
K-theory to syntomic cohomology one gets a suggestion what a (purely) p-adic Mahler
measure m,(f) of f should be, c.f. [BD]. It can only be defined if f does not vanish in
any point of the p-adic d-torus T = {z € C}||z|, = 1} , where C, is the completion
of a fixed algebraic closure @p of Q,. In this case m,(f) is given by the convergent
Snirelman integral

(1.5 o) = [ o8, 1(2).

2



Recall that the Snirelman integral of a continuous function F : Tg — C, is defined by
the following limit if it exists:

) 1
/ Pz = lim =5 > F(Q).
g =1 T cepd,
Here pp is the group of N-th roots of unity in @;

For example, let P(t) = a,t™ + ... + a,t" be a polynomial in C,[t] with a,,,a, # 0
whose zeroes «a satisfy ||, # 1. Then, according to [BD] Proposition 1.5 we have the
following expression for the p-adic Mahler measure:

(1.6) my(f) = log,a, — Z log,
0<|ap<l

= log, an + Z log, o .
lor]p>1

For d > 2 there does not seem to be a simple formula for m,(f).

In [BD] we mentioned the obvious problem to give an interpretation of m,(f) as a
p-adically valued entropy. This is now provided by the following result:

Theorem 1.1 Assume that f € Z[Z%] = Z[t{", ... ;"] does not vanish in any point
of the p-adic d-torus T;l. Then the p-adic entropy h,(f) of the T = Z%-action on X;
in the sense of (1.3) exists for all ', — 0 and we have h,(f) = my,(f).

Now we turn to more general groups I'. In [DS] extending [D2] it was shown that
for countable residually finite amenable groups I' and elements f in ZI' which are
invertible in L'(T") we have

(1.7) h(f) = logdetyrf .

Here detyr is the Fuglede—Kadison determinant [FK] on the units of the von Neumann
algebra NT D L'T' D ZT of T'. In fact, equation (1.7) holds without the condition of
amenability if h(f) is replaced by the quantity:

. 1
per (f) = lim S

log |Fixr, (X)] .
For the I'-action on X this limit exists and is independent of the choice of sequence
I, —e.

In the p-adic case, instead of working with a p-adic L!-convolution algebra it is more
natural to work with the bigger convolution algebra co(I'). It consists of all formal
series © = ) x,7y with 2, € Q, and [2,|, —» 0 as y — oo in I'.

3



For I' = Z¢ it is known that f € Z[Z%) does not vanish in any point of the p-adic d-
torus Tg if and only if f is a unit in the algebra cy(Z?). Hence in general, it is natural
to look for a p-adic analogue of formula (1.7) for all f € ZI" which are units in ¢o(I").
In the p-adic case there is no analogue for the theory of von Neumann algebras and for
the functional calculus used to define detyr. However using some algebraic K-theory
and the results of [FL], [BLR] and [KLM] we can define a p-adic analogue log, detp
of log detr for suitable classes of groups I'. For example we get the following result
generalizing theorem 1.1:

Theorem 1.2 Assume that the residually finite group I' is elementary amenable and
torsion-free. Let f be an element of ZI' which is a unit in co(I'). Then the p-adic
entropy h,(f) of the I'-action on Xy in the sense of (1.3) exists for all T, — e and we
have

hy(f) = log, detr f .

Acknowledgement: I would like to thank my colleagues Wolfgang Liick and Peter
Schneider for helpful conversations.

2 Preliminaries

Fix an integer 7 > 1 and set T = T" = (R/Z)". For a discrete group I let T" be the full
shift with left I'-action by y(z/) = (2,-1,/). Write M, (R) for the ring of X r-matrices
over a ring R. For an element f = ) a,vy in M,(Z)[I'| = M,(ZT") the closed subshift
X; C TV is defined as the closed subgroup consisting of all sequences with

nyaf{_lw, =0 inT  forally el .
,Y/
Here a* denotes the transpose of a matrix a in M,.(Z). The group ring M,(Z)[T] is

equipped with an anti-involution x defined by f* =5} a1 for f = Zv a~7y.

Let py be right multiplication by f* on the group T[[I']] of formal T-valued series on
I Forx =}z, in T[[I']] we have

pr(x) = ZxWVZafﬁl’y = Z (nya:ﬂy)y .
v v v v

Hence we see that
Xy =Ker (py : T[[I']] — TY[I'))



where on the right hand side the group I' acts by left multiplication. Let N be a
normal subgroup of I" with quotient map ~: I' — I' =T'/N. Set

F=Ya7=Y (Za7)5 in M, (Z)[[] .

selr €S

This is the image of f under the reduction map M,(Z)[T] — M,(Z)[T]. Under the
natural isomorphism

T[T = Fix 5 (T][1]))

mapping » s 50 to Zv z57 the action pf corresponds to the restriction of py. Hence
we have

Fix y(X;) = Ker (pj : T[] — T[[[]]) = X .

If we assume that T is finite we get that

Fix y(Xy) = pj (ZD)"/(ZL)

R

for the endomorphism pjp of right multiplication by f* on (Rf)". This implies the
following fact, c.f. [DS], Corollary 4.3:

Proposition 2.1 Let T be finite. Then pj is an isomorphism of (QD)" if and only if
Fix y(Xy) is finite. In this case the order is given by

[Fix n(Xf)| = £detpy .

This follows from the fact that for an isomorphism ¢ of a finite dimensional real vector
space V and a lattice A in V' with ¢(A) C A we have:

o™ A/A[ = [A/p(A)] = [det(o | V)] .

For any countable discrete group I' let ¢(I") be the set of formal series , Ty With
zy € Q, and |z,|, — 0 for v — oco. This means that for any ¢ > 0 there is a finite
subset S C I' such that |z,|, < e for all y € I'\ S. The set ¢y(I') is a Q,-vector space
and it becomes a Q,-algebra with the product

(2.1) va’y ' Z%”Y = Z ( Z xﬂ/%”)’y :

v vy =y

E 'r'Y/y'YN = E 'T'Y/y’y/_l’y

¥y =y 0l

Note that the sums



converge p-adically for every v since lim,/_,« ‘x“/yw’—wb = 0. The value is independent
of the order of summation. Moreover, because of the inequality

(2.2) ’ S ey
,-Y/

we have

S Sup |x’Yly'y/*1'y|p )
p ¥

lim E TyYy—1, =0,
y—00
,y/

so that the product (2.1) is well defined. We may also view ¢o(I') as an algebra of
Qp-valued functions on I' under convolution.

The Q,-algebra ¢(I') is complete in the norm
| Zl"ﬂ” = sup |z, |, = mvax |2y ]p -
v
gl

The norm satisfies the following properties:

|z|| =0 if and only if z =0
|z + y| < max([|z|], [[y]])

|Az]| = |Al, ||z]| forall A € Q,
lzyll < [lz[l[lyl] and [[1]] =1

(
(
(
(

N DN NN
S O = W
~— — ~— ~—

Hence ¢y(I') is a p-adic Banach algebra over Q,, i.e. a unital Q,-algebra B which is
complete with respect to a norm || || : B — R=2? satisfying conditions (2.3)—(2.6).

We will only consider Banach algebras where || || takes values in p? U {0}. The subring
A = B of elements z in B of norm ||z|| < 1 is a p-adic Banach algebra over Z,, defined
similarly as before. An example is given by

co(T,Z,) = co(I')° = {Z x| 2y € Z,, with ,}E{}o |2y, =0} .

In this case the residue algebra A/pA over F, is isomorphic to the group ring of T’
over [,

(2.7) co(T', Zy) [pco(T, Zp) = Fp[T] -

The 1-units U* = 1 + pA form a subgroup of A* since

o0

(1+pa)™' == (—pa)’

v=0

provides an inverse of 1 4+ pa € U' in U'. It is easy to see that one has an exact
sequence of groups

(2.8) 1 — U — A — (A/pA)* — 1.
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For A = ¢y(I',Z,) this is the exact seqence
(2.9) 1 — 14+ pc(I,Zy,) — co(I',Z,)" — F,[I]" — 1.

Concerning the units of a p-adic Banach algebra over Q,, we have the following known
fact:

Proposition 2.2 Let B be a p-adic Banach algebra over Q, whose norm takes values
in p? U{0} and set A = BY. If the residue algebra A/pA has no zero divisors, then we
have

B* =p”A* and pFNA*=1.

Proof For f in B* set ¢ = 1/f. Let v, be such that f; = p”f and g1 = ptg have
norm one. The reductions f,, g, of fi, g1 are non-zero. In the equation fig; = p* ™ we
have v + g > 0. Reducing mod p we find that 0 # f,g, = p*™ modp in A/pA. Hence
we have v+ u = 0 and therefore f;g; = 1. The first assertion follows. Because of (2.6)
we have ||a|]| =1 for a € A* and ||p”|| = p~. This implies the second assertion. O

Example 2.3 For the group I' = Z? the algebra co(Z?) can be identified with the
affinoid commutative algebra Q, (1, ..., ¢;') of power series Y ;. 2, with z, € Q,
and lim,| o |7, |, = 0. Note that these power series can be viewed as functions on Tg.
The residue algebra is F,[Z9] = F,[ti, ..., t:']. It has no zero divisors and its groups

of units is
Fo[Z7]* =Fot] - 15 .

The preceeding proposition and the exact sequence (2.9) now give a decomposition
into a direct product of groups

co(Z)* = p ppaty - t5(1 + peo(Z9, Zy))

Proposition 2.4 For f in Q,[Z%] = Q,[ti", . .., t5"] the following properties are equiv-
alent:

a) We have f(z) # 0 for every z in T¢

b) f is a unit in co(Z)*

¢) [ has the form f(t) = ct”(1+pg(t)) for some c € Q;, v € Z and g(t) in co(Z?, Zy).

Proof We have seen that b) and c) are equivalent and it is clear that both b) and
c) imply a). For proving that a) implies b) note that the maximal ideals of co(Z?) =
Qu(ti", ..., t;") correspond to the orbits of the Gal (Q,/Q,)-operation on TN (@;)d.
Hence f is not contained in any maximal ideal of ¢y(Z?) by assumption a) and therefore
f is a unit. O



3 The Frobenius group determinant and a proof of
theorem 1.1

The map ZI' — ZI forT =T /N from the beginning of the last section can be extended
to a homomorphism of Q,-algebras ¢y (I') — co(T) by sending f = > ayy to f= > ayy.
Note that this is well defined by the ultrametric inequality and that we have || f|| <
\fIl. If [ is finite, we have cO(F) QpF and hence we obtain a homomorphism of
groups GL,(co(I")) — GL,(Q,I'). It follows that for f in M,(ZI') N GL,(co(I")) the
endomorphism p; of (Qf‘)” is an isomorphism. Together with proposition 2.1 we have
shown the first equation in the following proposition:

Proposition 3.1 Let I' be a discrete group and N a normal subgroup with finite quo-
tient group I'. For f in M,(ZI') N GL,(co(I")) the set Fix n(Xy) is finite and we have

d7\'
= inet@p(Zaf{@)pﬂ(’y))
m ¥

Here m runs over the equivalence classes of irreducible representations p, off on @p—
vector spaces V. and d, is the degree dim V. of m.

Proof It remains to prove the second equation which is essentially due to Frobenius.
Consider pr as a representation of T’ via the map 7 — p(7) := right multiplication
with 471, This (“right regular”) representation decomposes as follows into irreducible
representations c.f. [S] I, 2.2.4

o=@
The endomorphism

pr=_a;®p(F)
il

@) =Q,®Q,r

therefore corresponds to the endomorphism
dr = -
B (X wen®) o BT ev =P,
™ ¥ ™ ™

Hence the formula follows. O

on

Remark In the real case and for the Heisenberg group, Klaus Schmidt previously used
the group determinant to calculate |Fixr, (X;)| for f in L*(I')* and certain I,,.
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The following result generalizes theorem 1.1 from the introduction, at least for a par-
ticular sequence I',, — 0:

Theorem 3.2 Let f = . a,t” in M (Z[t{", ... t7"]) be invertible in every point
of the p-adic d-torus T;l. Then the p-adic entropy h,(f) of the T = Z%-action on X;
exists in the sense of (1.3) for the sequence T'y, = (nZ)* — 0 with n prime to p, and
we have

hp(f) = my(det f) .

Proof By assumption, the Laurent polynomial det f does not vanish in any point of
T g. Hence det f is a unit in ¢o(I") by proposition 2.4. It follows from proposition 3.1

that we have:
[Fixr, (X;)| = + [T detg, (3 ar @ x())
X

vezZd

where y runs over the characters of I'/T,, = (Z/nZ)%. These correspond via x(v) = ¢”
to the elements ¢ of u?. Viewing f as a matrix of functions on Tzfl we therefore get the

formulas
Fixr, (X)) = =[] det@p( 3 a’;g”)

cepd veZd
— & ] detg, (<)
Cepd

= £ [J(det £)(0) .

Ceud

Thus the p-adic entropy h,(f) of the I'-action on Xy with respect to the above sequence
is given by:

1
hy(f) = lim ———log, |Fixr, (X
’ o (DTn) 7 !
1
= lim — ) log,(det f)(¢)
(eP=t T Cepd

= / log, det f = my(det f) .
T3

Note here that for the Laurent polynomials det f under consideration the Snirelman
integral exists by [BD| Proposition 1.3. O

Remark A suitable generalization of that proposition would give theorems 3.2 and
1.1 for general sequences I', — 0 in I' = Z¢. We leave this to the interested reader
since the general case of theorem 1.1 is also a corollary of theorem 1.2 which will be
proved by a different method in section 5.



Example The polynomial in one variable f(T) = 2T% — T + 2 does not vanish in any
point of the 2-adic circle Ty. In this sense, X is “2-adically expansive”. Consider the
square root of —15 in Z, given by the 2-adically convergent series

VT = (1o =3 () o

14
v=0

The zeroes of f(T') in Q, are given by ay = (1 +£+/—15) € Q, where |ay|, = 2 and
|a_|y = 1/2. Successive approximations for a coming from the series for /—15 are
1/2,-3/2,—19/2,—83/2. By theorem 3.2 and formula (1.6) the 2-adic entropy of X
is given by

ho(f) =logy ay € Zs .
Note that f viewed as a complex valued function has both its zeroes on S!, so that
X is not expansive in the usual sense. The topological entropy is h(f) = log2.

We end this section by mentioning another example of a dynamical system where the
p-adic entropy exists.

Proposition 3.3 For ¢ in GL4(Z) without eigenvalues in @p of p-adic absolute value
one, the p-adic entropy of the p-action on (R/Z)? in the sense of (1.2) exists and is
zero.

Proof We have

[Fix (¢" | (R/Z)"] = |Z7/(1 - ¢")(2%)

= Hdet(l—¢") =+ ]J(1-I").

Here the product runs over the eigenvalues A € @p of ¢. Thus we get
]- . n d ]- n
(3.1) ~ log, [Fix (¢" | (R/Z)"| = > ~log,(1 - ")
A

The characteristic polynomial of ¢ is monic with integer coefficients. Hence the eigen-
values \ are algebraic integers. In particular, we have |A[, < 1 and hence |\, < 1
since we assumed that ||, # 1.

Thus it suffices to show that for A € Q, with |[A[, < 1 we have

1
lim —log,(1—-A")=0.

n—oo M
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This is a consequence of the following estimate:

1 n - 1 vn 1 vn
Elogp(l—k) = ‘Zlun)\ <max‘ —A

P vn P
L
< max |-\ .
ZZTL VA p
The last expression tends to zero for n — oo since |A|, < 1. O

4 The logarithm on the 1-units of a p-adic Banach
algebra

For a discrete group I' we would like to define a homomorphism
log, detr : ¢o(I')" — @,
which should be a p-adic replacement for the map
logdetyr : L'(I)* € (NT)* — R.

More generally, we would like to define such a map on GL,(cy(I")). In this section we
give the definition on the subgroup of 1-units and relate log,detr to p-adic entropy.
The extension to a map on all of ¢o(I")* will be done in the next section for suitable
classes of groups I' using rather deep facts about group rings.

Let B be a p-adic Banach algebra over Q, whose norm || || takes values in p? U {0}.
A trace functional on B is a continuous linear map trp : B — Q, which vanishes on
commutators [a,b] = ab — ba of elements in B. For b € B and ¢ € B* we have

(4.1) trg(cbc™t) = trp(b) .
Set A= B%={be B||b|| <1} and let U' be the normal subgroup of 1-units in A*.

The logarithmic series

00 1— v
log:U1—>A,logu:—§ ﬂ
v

v=1

converges and defines a continuous map. An argument with formal power series shows
that we have

(4.2) log uv = log u + logv
if the elements u and v in U' commute with each other.

The next result is a consequence of the Campbell-Baker—Hausdorff formula.
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Theorem 4.1 The map
trplog: U' — Z,

is a homomorphism. For w in U' and a in A* we have
(4.3) trplog(aua™) = trglog(u) .

Proof Formula (4.3) follows from (4.1). From [B] Ch. II, §8 we get the following

information about log. Set G = {b € B|||b|| < pfﬁ}. Then the exponential series
defines a bijection exp : G —— 1+ G with inverse exp~! = log |11¢. For z,y in G we
have

(4.4) exp e - expy = exp h(z,y)
where h(z,y) € G is given by a convergent series in B. It has the form
h(z,y) = x + y + series of (iterated) commutators .

Elements u,v of 1 + G have the form v = expx and v = expy. Taking the log of
relation (4.4) and applying trp we get

trplog(uv) = treh(z,y) =tre(z+y)
(4.5) = trplogu +trglogv .

Hence trplog is a homomorphism on the subgroup 1 + G of U'. By assumption the
norm of B takes values in p” U {0}. For p # 2 we therefore have 1 + G = U' and we
are done.

For p = 2 the restriction of the map

cp:trBlog:Ul—N@Q

to 14+ G = 1+ 4A is a homomorphism by (4.5). We have to show that it is a
homomorphism on U' =1+ 24 as well. For u in U we have ¢(u) = 3¢(u?) by (4.2)
and u? lies in 1 4+ 4A. Now consider elements «,v in U'. Then we have

1 1 (43) 1 _
pluv) = Sp((w0)?) = Fp(wvur) =" Sp(u*vuvu™)
1 1
= Selw?) + Sp(vunu™)

since u? and vuvu~! lie in 1 + 4A where ¢ is a homomorphism. By similar arguments
we get
Lo 11
plur) = p(u) + Sp(Puvu )

= () + o) + pplwouo ™)
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Thus we must show that ¢(uvvu='v™) = 0. By (4.3) we have p(uvu='v™!) = p(vu'v 1)
and hence using that both uvu=!v~! and vu='v~tu lie in 1 + 4A we find

20(uvu o) =

For a discrete group I', the map

trr : co(I') — Qp , trr(D_ayy) = ae

defines a trace functional on ¢o(I"). Let B = M,(co(I")) be the p-adic Banach algebra
over Q, of r x r-matrices (a;;) with entries in ¢o(I') and equipped with the norm
| (aij)|| = max;; [|a;;]|. The composition:

trr : My(co(T)) = co(T) =5 Q,
defines a trace functional on M, (co(I)).

The algebra A = B is given by M,(co(T',Z,)) and we have U' = 1 + pM,(co(T, Z,)).
The exact sequence (2.8) becomes the exact sequence of groups:

(4.6) 1 — 14 pM,(c(T',Z,)) — GL.(co(I',Z,)) — GL,.(F,I') — 1.
According to theorem 4.1 the map
(4.7) log, detr := trrlog : 1 + pM,(co(', Zy)) — Zy

is a homomorphism of groups.

Example 4.2 For I' = Z¢, in the notation of example 2.3 we have a commutative
diagram, c.f. [BD] Lemma 1.1

(T) —= Q... 1)

trp l/ l/ng

Qp:(@p-

It follows that for a 1-unit f in M, (co(I")) we have:

(4.8) log, detr f = / log det f = my,(det f) .
T
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Here we have used the relation
(4.9) trlog f =logdet f in ¢o(T),

where det : GL,(co(I")) — ¢o(I')* is the determinant and tr the trace for matrices over
the commutative ring ¢y(I"). Note that det maps 1-units to 1-units. Relation (4.9) can
be proved by embedding the integral domain co(I') = Q, (55, ..., ¢5') into its quotient
field and applying [H] Appendix C, Lemma 4.1.

For finite groups I' the map log, detr can be calculated as follows. For f in M, (co(I")) =
M, (Q,T') let ps be the endomorphism of (Q,I')" by right multiplication with f* and
detg,(py) its determinant over Q,.

Proposition 4.3 Let I" be finite. Then we have
1
(4.10) log, detp f = T log, detg, (py)

for f in 1+ pM,.(Z,L).

Remark Since py, = pyp,, the equation in the proposition shows that log, detr is a
homomorphism — something we know in general by theorem 4.1. For finite I" the group
GL,(F,I') is finite. Hence, by (4.6) there is at most one way to extend log, detr from
1 4+ pM,(Z,I") to a homomorphism from GL,(Z,I") to Q,. Namely, we have to set

1
log, detr f := N log, dethN )

where N > 1 is any integer with ?N = 1 in GL,(F,I'). Because of (4.2) this is well
defined but it is not clear from the definition that we get a homomorphism. However,
for the same f, N we have

1
log, detq, (py) = 77 log, detq, (pyv) -

Hence equation (4.10) holds for all f in GL,(Z,I') and it follows that log, detr ex-
tends to a homomorphism on GL,(Z,I'). In the next section such arguments will be
generalized to infinite groups with the help of K-theory.

Proof of 4.3 Under the continuous homomorphism of p-adic Banach algebras over Z,
p: M.(Z,') — End z,(Z,I)"
the groups of 1-units are mapped to each other. Hence we have

(4.11) log pf = piog 1
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for fin 1+ pM,.(Z,T).

On the other hand we have

(4.12) trr(9) = 5rtr(r,)

for any element g of M,(Q,I'). This is proved first for r = 1 by checking the cases
where g = 7 is an element of I'. Then one extends to arbitrary r by thinking of p, as
a block matrix with blocks of size |I'| x |T'|.

Combining (4.11) and (4.12) we find:
log, detrf = ftrrlog f

1
= —tr(piog s)
|F| g f

1
= tr(log py)
N !

1
=T log,, detq, (py) -

The last equation is proved by writing p; in triangular form in a suitable basis over
Q, and observing that the eigenvalues of p are 1-units in Q,,. O

The next result is necessary to prove the relation of log,detr f with p-adic entropies.

Proposition 4.4 Let I' be a residually finite countable discrete group and I',, — € a
sequence as in the introduction. For f in 1+ pM,(co(T,Z,)) consider its image f™
in 1+ pM,(Z,L'™) where T™ is the finite group T =T /T,,. Then we have

log, detr f = lim log, detre £ in Ly .

Proof The algebra map M, (co(T)) — M,(co(I'™)) sending f to f™ is continuous
since we have || f™| < || f|. For f in 1+ pM,(co(T',Z,)) we therefore get:

(log f)™ =log f™ in M, (co(I'™)).

The next claim for g = log f thus implies the assertion. O

Claim 4.5 For g in M,(co(I")) we have

trr(g) = JI_{IC}O trpem) (g(n)) .
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Proof We may assume that r = 1. Writing g = ) a,y with a, € Q,,|a,|, — 0 for
v — o0 we have

trr(g) — trpem (g(n))|p =

ae—;ay
= | 2,

“/EFn\e

p

< max |a .
> ’*/an)\<6| 'y|p

For e > 0 there is a finite subset S = S. of I such that |a,|, < e for vy € I'\'S. Only e is
contained in infinitely many I',,’s. Hence there is some ng such that (I',\e)NS = 0 i.e.
[, \e C T\S for all n > ng. It follows that for n > ng we have [trr(g) —trpem (¢™)], < €.

]

Corollary 4.6 Let I' be a residually finite countable discrete group and f an element
of M,(ZI') which is a 1-unit in M,(co(I')). Then the p-adic entropy h,(f) of the I'-
action on Xy ewxists for all T';, — e and we have

hp(f) =log,detrf inZ, .

Proof By propositions 3.1 and 4.3 we have

1 ) 1
(T:T,) log,, [Fixr, (Xy)| = m log,, detg, (psm)
= log, et (f™) .
Hence the assertion follows from proposition 4.4. O

5 A p-adic logarithmic Fuglede—Kadison determi-
nant and its relation to p-adic entropy

Having defined a homomorphism log, detr on 14 pco(I', Zp) in (4.7) one would like to
use the exact sequence (2.9) to extend it to ¢o(I', Z,)*. However, for infinite groups I
the abelianization of the group F,[['* divided by the image of I" is not known to be
torsion in any generality — as far as I know. However, corresponding results are known
for K, of IF,[I'] and this determines our approach which even for r = 1 requires the
preceeding considerations for matrix algebras.

For a unital ring R recall the embedding GL,(R) — GL,;1(R) mapping a to (&9).
Let GLy(R) be the union of the GL,(R)’s. We will view elements of GL(R) as
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infinite matrices with 1’s on the diagonal and only finitely many further nonzero entries.
The subgroup E,.(R) C GL,.(R) of elementary matrices is the subgroup generated by
matrices which have 1’s on the diagonal and at most one further non-zero entry. Let
E(R) be their union and set Ki(R) = GLo(R)/Ex(R). It is known that we have
Eo(R) = (GLy(R),GLy(R)) and hence that K;(R) = GL(R)* c.f. [M] §3. The
Whitehead group over F, of a discrete group I is defined to be

Wh' (L) == Ky (F,[T) /(T) -
Here (I') is the image of I" under the canonical map F,[I'|* — K;(F,[I']).

We can treat groups for which WhFr(T) is torsion. According to [FL] Theorem 1.1
this is the case for torsion-free elementary amenable groups I'. Recently, in [BLR] it
has been shown for a larger class of groups that Wh¥»(T') is torsion. Apart from the
elementary amenable groups, this class comprises all word hyperbolic groups. It is
closed under subgroups, finite products, colimits and suitable extensions.

Theorem 5.1 Let T be a countable discrete residually finite group such that Wh¥»(T')
1s torsion. Then there is a unique homomorphism

log, detr : Ki(co(T,Zy)) — Q,
with the following properties:

a For every r > 1 the composition

log,, detp

L4 pM,(co(T', Zy)) = GLi(co(I' Zy)) — Ki(co(T, Zp)) ——— @y

coincides with the map log, detr introduced in (4.7).
b On the image of I' in Ky(co(I',Z,)) the map log, detr vanishes.

Proof Set A = ¢(T',Z,) and A = A/pA = F,[T]. The reduction map A — A induces
an exact sequence

(5.1) 0 — PEx(A)(1 +pMec(A))/TEx(A) — Ki(A)/(T) — Ki(A)/(T) .

Here M (A) is the (non-unital) algebra of infinite matrices (a;;); j>1 with only finitely
many non-zero entries. Note that 1 4+ pM(A) is a subgroup of GL(A) since 1 +
pM,.(A) is a subgroup of GL,(A). Moreover I'E,(A) is a normal subgroup of GLy (A).
Hence the sequence (5.1) becomes an exact sequence:

(5.2) 00— (1+pMy(A)/TEL(A)N(1+pMy(A)) — Ki1(A)/(T) — K (A) /() .

Since Q, is uniquely divisible this implies the uniqueness assertion in the theorem for
any group I' such that Wh¥»(I') = K;(A)/(T') is torsion. For the existence, we first
note that the homomorphisms defined in (4.7) induce a homomorphism

log,detp : 1 +pMy(A) — Zy .
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We have to show that log,detrf = 0 for every f in 1+ pM.(A) which also lies in
['E,(A). Under our identification of GL,(A) with a subgroup of GL.,(A) we find some
r > 1 such that we have

f=i(y)ei ey inl+pM.(A).
Here the e; are elementary r X r-matrices and i(vy) = (g 1T07 1) for some v in T.

According to propositions 4.3 and 4.4 we have for any choice of sequence I', — e:

. 1
log, detr f = lim .1, log,, detq, (psm) -

On the other hand:

detQp (pf(n)) = detQp <pi(y)(”)e§")...e$\7)) = detQp (pi(,y)(n)) H detQp (pegn)) .

Let b be a basis of Q,[T'™]. In the basis (b, ..., b) of Q,[I'™]" the endomorphism p_c)

is given by a matrix of [['™| x |[T'™]|-blocks. The diagonal blocks are identity matrices.
At most one of the other blocks is non-zero. In particular, the matrix is triangular and
we have detg, (pe(n)) = 1. In the same basis Pi()m is a permutation matrix and hence

detq, (pi()m) = +1. Tt follows that we have log, detr f = 0 as we wanted to show. O

I think that theorem 5.1 should also hold without the condition that I' is residually
finite.

Remark 5.2 For I' = Z% and f in GL,(co(T, Z,)), writing [f] for the class of f in K,
we have

log,, detr[f] = my(det f)
extending equation (4.8).

This follows from the uniqueness assertion in theorem 5.1. Namely, the map [f] —
my(det f) defines a homomorphism on K; which according to equation (4.8) satisfies
condition a. It satisfies condition b as well, since log, vanishes on roots of unity and
hence we have m,,(t") = 0 for all v in Z%, c.f. example 2.3.

Definition 5.3 For any group I' as in the theorem we define the homomorphism
log, detr on GL,(co(I', Zy)) to be the composition

log,, detr

log, detr : GL,(co(I', Zyp)) — Ki(co(I', Zp)) ——— Q, .

18



If we unravel the definitions we get the following description of this map. Given a ma-
trix f in GL,(co(I', Z,)) there are integers N > 1 and s > r such that in GL4(co(I', Z,))
we have fV = i(y)eg with € in Es(co(T',Z,)), g in 1+pM(co(T', Z,)) and i(7) the s x s-
matrix (§,° ). Then we have

1 1
(5.3) log, detr f = N log, detrg = Ntrp logg .
We can now prove the following extension of corollary 4.6.

Theorem 5.4 Let T be a residually finite countable discrete group such that Wh¥»(T)
is torsion. Let f be an element of M, (Z') N GL,(co(I',Z,)). Then hy,(f) exists for all
I',, — e and we have

hy(f) = log,detrf inQ, .

Proof Let us write f¥ = i(y)eg as above. Then by proposition 3.1 we have
log, [Fixr, (Xf)| = log,detg,(pm)
= % log,, detg, (pi(yym ) + % log, detg, (pm)
+% log, detq, (pg(n)) )
Note here that the composition
M;(co(T)) — M,(co(T™)) = End g, (Q,I'™)°

is a homomorphism of algebras.

As in the proof of theorem 5.1 we see that the terms log, detq, (p;(,)m ) and log, detg, (p.m )
vanish. This gives

1 , 11
= log, [Fixr, (Xy)| = =+ log,detg, (pym)

(I':T) (T:T,) N
1
= N log, detpe) (¢™) by proposition 4.3.

Using proposition 4.4 we get in the limit n — oo that

1 (5.3)
h,(f) = Nlogp detr(g) =" log,det f .
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For groups I' as in theorem 5.4 whose group ring IF,I" has no zero divisors it is possible
to extend the definition of log, detr from co(I", Z,)* to co(T')*. Namely, by proposition
2.2 we know that

co(D)* = pPco(T,Z,)* and p”Neo(T,Z,)" =1.
Hence there is a unique homomorphism
log, detr : ¢o(I')" — @,

which agrees with log, detr previously defined on ¢y(I', Z,)* in definition 5.3 and sat-
isfies

log, detr(p) = 0.

Let I' be a torsion-free elementary amenable group. Then according to [KLM] Theorem
1.4 the group ring F,I" has no zero divisors and according to [FL] Theorem 1.1 the
group WA (T') is torsion. Hence log,detr is defined on ¢(T')* and this is the map
used in theorem 1.2.

Proof of theorem 1.2 Writing f in ZI' N ¢o(I")* as a product f = p”g with g in
co(I', Z,)* it follows that g € ZI' and proposition 3.1 shows that we have

log, |[Fixr, (Xy)| = log,detg,(psm)
= log, detq, (pym)
= log, [Fixr, (X,)] .

Note here that we have log,(p) = 0. It follows from theorem 5.4 applied to g that for
all T',, — e we get:

hyp(f) = hyp(g) = log, detpg = log, detr f .

|

For ' = Z% it follows from remark 5.2 that for any f in ¢o(Z9)* = Q, (5, ..., ") we
have:

log, detr f = my(f) .
Hence theorem 1.1 is a special case of theorem 1.2.
Concerning approximations of log, detr f we note that proposition 4.4 extends to more

general cases.

Proposition 5.5 Let I' be a residually finite countable discrete group and I', — e as
in the introduction. For f in M,(co(T)) let f) be its image in M,(Q,T™). Then the
formula

) 1
(5.4) log, detp f = Tim T log, detq, (psm)
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holds whenever log, detr f is defined. These are the cases
a where f is in 1+ pM,(co(I', Z,))
b where Wh(T') is torsion and f is in GL,(co(T, Z,))

¢ where WhE»(T) is torsion, F,I' has no zero divisors and f is in co(T)*.

Proof The assertions follow from propositions 4.3 and 4.4 together with calculations
as in the proofs of theorems 5.1 and 5.4. O

We end the paper with some open questions: Is there a dynamical criterion for the
existence of the limit defining p-adic entropy? Is there a notion of “p-adic expansive-
ness” for I'-actions on compact spaces X which for the systems X; with f in M, (ZI)
translates into the condition that f is invertible in M, (co(I")), (or in M,(co(T',Zy)))?
In fact, I assume that p-adic entropy can only be defined for “p-adically expansive”
systems, c.f. [BD] Remark after proposition 1.3. What is the dynamical meaning of
proposition 3.37 Is there a direct proof that the limit in formula (5.4) exists?

Finally, in [BD] a second version of a p-adic Mahler measure was defined which involves
both the p-adic and the archimedian valuations of Q. Can this be obtained for the
systems X; by doing something more involved with the fixed points than taking their
cardinalities and forming the limit (1.3)?
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