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Introduction

Let X be a proper scheme over the field F of functions meromorphic in an open neighborhood

of zero in the complex plane C. The scheme X gives rise to a proper morphism of complex

analytic spaces X h → D∗ = D\{0}, where D is an open disc with center at zero (see §3). It is

well known that, after shrinking the disc D (and replacing X h by its preimage), the cohomology

groups Hi(X h
t ,Z) of the fiber X h

t at a point t ∈ D∗ form a local system of finitely generated

abelian groups, and that the corresponding action of the fundamental group π1(D∗) = π1(D∗, t)

on Hi(X h
t ,Z) is quasi-unipotent. Furthermore, the mixed Hodge structures on the above groups

define a variation of mixed Hodge structures on D∗. Let D
∗ → D∗ be a universal covering of D∗,

and X h = X h ×D∗ D
∗
. Then the cohomology group Hi(X h,Z) admits a mixed Hodge structure,

which is the limit (in a certain sense) of the above variation of mixed Hodge structures on D∗ (see

[GNPP, Exp. IV, Theorem 7.4]). One of the purposes of this paper is to describe the weight zero

subspace W0H
i(X h,Q) in terms of non-Archimedean analytic geometry.

Let K be the completion of the discrete valuation field F , and fix a corresponding multiplicative

valuation on it. The scheme X gives rise to a proper K-analytic space X an = (X ⊗F K)an in

the sense of [Ber1] and [Ber2]. Recall that, as a topological space, X an is compact and locally

arcwise connected, and the topological dimension of X an is equal to the dimension of X . If X is

smooth, then X an is even locally contractible. Furthermore, let X an = (X ⊗F K̂a)an, where K̂a

is the completion of the algebraic closure Ka of K, which corresponds to the universal covering
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D
∗ → D∗. Recall that the cohomology groups Hi(X an,Z) of the underlying topological space of

X an are finitely generated, and there is a finite extension K ′′ of K in Ka such that they coincide

with Hi((X ⊗F K ′)an,Z) for any finite extension K ′ of K ′′ in Ka (see [Ber5, 10.1]).

In §3, we construct a topological space XAn and a surjective continuous map λ : XAn → [0, 1]

for which there are an open embedding λ−1(]0, 1]) ↪→ X h×]0, 1], which is a homotopy equivalence,

and a homeomorphism λ−1(0) ∼→ X an×]0, r[, where r is the radius of the disc D. We show

that the induced maps Hi(XAn,Z) → Hi(X an×]0, r[,Z) = Hi(X an,Z) are isomorphisms for all

i ≥ 0. In this way, we get a homomorphism Hi(X an,Z) → Hi(X h,Z), whose composition with

the canonical map Hi(X h,Z) → Hi(X h,Z) gives a homomorphism Hi(X an,Z) → Hi(X h,Z). The

same construction applied to finite extensions of F in F a gives rise to a homomorphism of π1(D∗)-

modules Hi(X an,Z) → Hi(X h,Z). Theorem 5.1 states that the latter gives rise to a functorial

isomorphism π1(D∗)-modules

Hi(X an,Q) ∼→ W0H
i(X h,Q) .

If X is projective and smooth, one can describe the group W0H
i(X h,Q) as follows. By the

local monodromy theorem, the action of (Tm − 1)i+1 on Hi(X h
t ,Z) is zero (for some m ≥ 1),

where T is the canonical generator of π1(D∗). If we fix a point of D
∗

over t, there is an induced

isomorphism Hi(X h,Z) ∼→ Hi(X h
t ,Z) which gives rise to an isomorphism between W0H

i(X h,Q)

and the maximal unipotent monodromy subspace of Hi(X h
t ,Q), i.e., (Tm − 1)iHi(X h

t ,Q). Thus,

in the case considered, there is a functorial isomorphism of π1(D∗)-modules

Hi(X an,Q) ∼→ (Tm − 1)iHi(X h
t ,Q) .

The mixed Hodge theory (see [Ill], [St]) provides an upper bound on the dimension of the space on

the right hand side, which implies the following bound on that of the left hand side

dimQ Hi(X an,Q) ≤ min
p+q=i

dimF Hq(X , Ωp
X ) .

The equality is achieved for a totally degenerate family of abelian varieties (see [Ber1, §6]), and for

a totally degenerate family of Calabi-Yau varieties (in the strong sense). In the latter example, X an

has rational cohomology of the sphere of dimension dim(X ), and is simply connected (see Remark

4.4(ii)).

In fact XAn is the underlying topological space of an analytic space over a commutative

Banach ring. The idea of such an object was introduced in [Ber1, §1.5], and developed there in
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detail in the case when the Banach ring is a non-Archimedean field. The spaces considered in this

paper are defined over the field of complex numbers C provided with the following Banach norm:

||a|| = max{|a|∞, |a|0} for a ∈ C, where | |∞ is the usual Archimedean valuation, and | |0 is the

trivial valuation (i.e., |a|0 = 1 for a 6= 0). One has [0, 1] ∼→ M(C, || ||). Namely, a nonzero point

ρ ∈]0, 1] corresponds to the Archimedean valuation | |ρ∞, and the zero 0 corresponds to the trivial

valuation | |0. The above map λ is a canonical map XAn → M(C, || ||) = [0, 1]. The preimage

λ−1(ρ) of ρ ∈]0, 1] is the restriction of the complex analytic space X h to the smaller open disc

D(r
1
ρ ), and λ−1(0) is a non-Archimedean analytic space over the field C provided with the trivial

valuation | |0. Thus, the space XAn incorporates both complex analytic and non-Archimedean

analytic spaces, and the result on a non-Archimedean interpretation of the weight zero subspaces

is evidence that analytic spaces over (C, || ||) are worth studying.

In §1, we recall a construction from [Ber1, §1] that associates with an algebraic variety over

a commutative Banach ring k the underlying topological space of a k-analytic space. We do

not develop a theory of k-analytic spaces, but restrict ourselves with establishing basic properties

necessary for this paper. In §2, we specify our study for the field C provided with the above Banach

norm || ||, and prove a particular case of the main result from §4. Let OC,0 be the local ring of

functions analytic in an open neighborhood of zero in C. In §3, we associate with an algebraic

variety X over OC,0 analytic spaces of three types: a complex analytic space X h, a (C, || ||)-analytic

space XAn, and a (C, | |0)-analytic space XAn
0 . All three spaces are provided with a morphism to the

corresponding open discs, and are closely interrelated. The construction gives rise to a commutative

diagram of maps between topological spaces. In §4, we prove our main result (Theorem 4.1) which

states that, if X is proper and flat over OC,0, the homomorphisms between integral cohomology

groups induced by certain maps from that diagram are isomorphisms. Essential ingredients of the

proof are C. H. Clemens’s results from [Cle] and similar results from [Ber5]. If X is strictly semi-

stable over OC,0, the former provide a strong deformation retraction of X h to its fiber X h
s at zero,

and the latter provide a similar homotopy description of the non-Archimedean space XAn
0 . In §5,

we prove Theorem 5.1 which was already formulated.

We want to emphasize that the above result is an analog of the description of the weight zero

subspaces of l-adic étale cohomology groups of algebraic varieties defined over a local field in terms

of cohomology groups of the associated non-Archimedean spaces (see [Ber6]). All of these results

are evidence for the fact that the underlying topological space of the non-Archimedean analytic

space associated with an algebraic variety somehow represents the weight zero part of the mixed

motive of the variety.
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§1. Topological spaces associated with algebraic varieties

over a commutative Banach ring

Let k be a commutative Banach ring, i.e., a commutative ring provided with a Banach norm

|| || and complete with respect to it. For an affine scheme X = Spec(A) of finite type over k, let XAn

denote the set of all nonzero multiplicative seminorms | | : A → R+ on the ring A whose restriction

to k is bounded with respect to the norm || ||. The set XAn is provided with the weakest topology

with respect to which all real valued functions of the form | | 7→ |f |, f ∈ A, are continuous. For a

point x ∈ XAn, the corresponding multiplicative seminorm | |x on A gives rise to a multiplicative

norm on the integral domain A/Ker(| |x) and, therefore, extends to a multiplicative norm on its field

of fractions. The completion of the latter is denoted by H(x), and the image of an element f ∈ A

under the corresponding character A → H(x) is denoted by f(x). (In particular, |f |x = |f(x)| for

all f ∈ A.) If A = k, the space X an is the spectrum M(k) of k, which is a nonempty compact

space, by [Ber1, 1.2.1]. If A = k[T1, . . . , Tn], the space XAn is denoted by An (the n-dimensional

affine space over k). Notice that the correspondence X 7→ XAn is functorial in X .

A continuous map of topological spaces ϕ : Y → X is said to be Hausdorff if, for any pair of

different points y1, y2 ∈ Y with ϕ(y1) = ϕ(y2), there exist open neighborhoods V1 and V2 of y2

with V1 ∩ V2 = ∅ (i.e., the image of Y in Y ×X Y is closed). Furthermore, let X be a topological

space such that each point of it has a compact neighborhood. A continuous map ϕ : Y → X is

said to be compact, if the preimage of a compact subset of X is a compact subset of Y (i.e., ϕ is

proper in the usual sense, but we use the terminology of [Ber2]). Such a map is Hausdorff, it takes

closed subsets of Y to closed subsets of X, and each point of Y has a compact neighborhood.

1.1. Lemma. (i) The space XAn is locally compact and countable at infinity;

(ii) given a closed (resp. an open) immersion ϕ : Y → X , the map ϕan : YAn → XAn induces

a homeomorphism of YAn with a closed (resp. open) subset of XAn;

(iii) given morphisms ϕ : Y → X and Z → X , the canonical map (Y×X Z)an → YAn×XAnZAn

is compact.

Proof. (ii) If ϕ is a closed immersion, the required fact is trivial. If ϕ is an open immersion,

it suffices to consider the case of a principal open subset Y = Spec(Af ) for an element f ∈ A. It is

clear that the map ϕan is injective and its image is an open subset of XAn. A fundamental system

of open sets in Yan is formed by finite intersections of sets of the form U = {y ∈ Yan
∣∣| g

fn (y)| < r}
and V = {y ∈ Yan

∣∣| g
fn (y)| > r}, where g ∈ A, n ≥ 0 and r > 0. It suffices therefore to verify that

the sets U and V are open in XAn. Given a point y ∈ U (resp. V), there exist ε, δ > 0 such that
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|g(y)|+δ
|fn(y)|−ε < r (resp. |g(y)|−δ

|fn(y)|+ε > r). Then the set {z ∈ XAn
∣∣|g(z)| < |g(y)|+δ, |fn(z)| > |fn(y)|−ε}

(resp. {z ∈ XAn
∣∣|g(z)| > |g(y)| − δ, |fn(z)| < |fn(y)|+ ε}) is an open neighborhood of the point y

in XAn, which is contained in U (resp. V).

(i) By (ii), it suffices to consider the case of the affine space An, which is associated with

the ring of polynomials k[T ] = k[T1, . . . , Tn]. One has An =
⋃

r E(r), where the union is taken

over tuples of positive numbers r = (r1, . . . , rn) and E(r) is the closed polydisc of radius r with

center at zero {x ∈ An
∣∣|Ti(x)| ≤ ri for all 1 ≤ i ≤ n}. The latter is a compact space. Indeed,

let k〈r−1T 〉 = k〈r−1
1 T1, . . . , r

−1
n Tn〉 denote the commutative Banach ring of all power series f =

∑
ν aνT ν over k such that ||f || =

∑
ν ||aν ||rν < ∞. By [Ber1, Theorem 1.2.1], the spectrum

M(k〈r−1T 〉) is a nonempty compact space, and the canonical homomorphism k[T ] → k〈r−1T 〉
induces a homeomorphism M(k〈r−1T 〉) ∼→ E(r).

(iii) Let X = Spec(A), Y = Spec(B) and Z = Spec(C). By (ii), it suffices to consider the case

when A = k[T1, . . . , Tn], B = A[U1, . . . , Up] and C = A[V1, . . . , Vq], i.e., it suffices to verify that

the corresponding map An+p+q → An+p ×An An+q is compact. This is clear since the preimage

of E(r′)×An E(r′′) with r′ = (r1, . . . , rn, s1, . . . , sp) and r′′ = (r1, . . . , rn, t1, . . . , tq) is the polydisc

E(r) with r = (r1, . . . , rn, s1, . . . , sp, t1, . . . , tq).

Let now X be a scheme of finite type over k. By Lemma 1.1(ii), one can glue the spaces

UAn for open affine subschemes U ⊂ X to get a topological space XAn in which all UAn are open

subspaces. Here is an equivalent description of the space XAn. For a bounded character χ : k → K

to a valuation field K (i.e., a field complete with respect to a valuation), let X (K)χ denote the

set of all K-points of X which induce the character χ on k. Furthermore, let X̃An be the disjoint

union of the sets X (K)χ taken over bounded characters χ : k → K to a valuation field K. Two

points x′ ∈ X (K ′)χ′ and x′′ ∈ X (K ′′)χ′′ are said to be equivalent if there exist a bounded character

χ : k → K, a point x ∈ X (K)χ, and isometric embeddings K → K ′ and K → K ′′ which are

compatible with the characters χ′ and χ′′, taking x to the points x′ and x′′, respectively. It is really

an equivalence relation, and the space XAn is the set of equivalence classes in X̃An.

The correspondence X 7→ XAn is functorial in X , and the properties (ii) and (iii) of Lemma

1.1 are straightforwardly extended to arbitrary schemes of finite type over k.

1.2. Lemma. Let ϕ : Y → X be a morphism of schemes of finite type over k, and let ϕan be

the induced map YAn → XAn. Then

(i) if ϕ is separated, then the map ϕAn is Hausdorff;

(ii) if ϕ is projective, then the map ϕAn is compact;
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(iii) if ϕ is proper and either the ring k is Noetherian, or Y has a finite number of irreducible

components, then the map ϕAn is compact.

The assumptions in (iii) guarantee application of Chow’s Lemma (see [EGAII, 5.6.1]).

Proof. We may assume that the scheme X = Spec(A) is affine.

(i) Since ϕ is separated, the diagonal map YAn → (Y ×X Y)An has a closed image. Since the

image of the latter in YAn ×XAn YAn is closed, it follows that the map ϕAn is Hausdorff.

(ii) It suffices to consider the case when Y = Proj(A[T0, . . . , Tn]) is the projective space over

A. In this case, Y = ∪n
i=0Yi, where Yi = Spec(A[T0

Ti
, . . . , T0

Ti
]). If Ei = {y ∈ YAn

i

∣∣|T0
Ti

(y)| ≤ 1 for all

0 ≤ j ≤ n}, then the map Ei → XAn is compact, and one has YAn = ∪n
i=0Ei. It follows that ϕAn

is a compact map.

(iii) Chow’s Lemma reduces the situation to the case considered in (ii).

§2. The case of the Banach ring (C, || ||)

We now consider the case when k is the field of complex numbers C provided with the following

Banach norm: ||a|| = max{|a|∞, |a|0} for all a ∈ C. Notice that there is a homeomorphism

[0, 1] ∼→ M(C, || ||) : ρ 7→ pρ, where the point p0 corresponds to the trivial norm | |0, and each

point pρ with ρ > 0 corresponds to the Archimedean norm | |ρ∞. Indeed, if | | is a valuation which

is different from the above ones, then it is nontrivial and not equivalent to | |∞. It follows that

there exists a complex number a ∈ C with |a|∞ < 1 and |a| > 1, i.e., |a| > ||a||, and the valuation

| | is not bounded with respect to the Banach norm || ||.
For every scheme X of finite type over C, there is a canonical surjective map λ = λX : XAn →

M(C, || ||) = [0, 1]. If ρ ∈]0, 1], then H(pρ) is the field C provided with the Archimedean valuation

| |ρ∞. The fiber λ−1(1) is the complex analytic space X h associated with X , by complex GAGA

([Serre]). The fiber λ−1(0) is the non-Archimedean (C, | |0)-analytic space X an associated with X ,

by non-Archimedean GAGA ([Ber1]).

2.1. Lemma. There is a functorial homeomorphism λ−1(]0, 1]) ∼→ X h×]0, 1] : x 7→ (y, ρ),

which commutes with the projections onto ]0, 1] and, in the case of affine X = Spec(A), is defined

by ρ = λ(x) and |f(y)|∞ = |f(x)| 1ρ , f ∈ A.

Proof. Assume first that X = Spec(A) is affine. The map considered is evidently continuous.

It has an inverse map X h×]0, 1] → λ−1(]0, 1]) : (y, ρ) 7→ yρ, defined by |f(yρ)| = |f(y)|ρ∞ for f ∈ A,

and, therefore, it is bijective. The inverse map is continuous since the topology on X h×]0, 1]

coincides with the weakest one with respect to which all functions of the form X h×]0, 1] → R+ :

6



(y, ρ) 7→ |f(y)|ρ for f ∈ A are continuous. It is trivial that the homeomorphisms are functorial in

X , and they extend to the class of all schemes of finite type over C.

2.2. Corollary. If X is connected, then the topological space XAn is also connected.

Proof. Any C-point of X defines a section M(C, || ||) = [0, 1] → XAn of the canonical map

λ : XAn → [0, 1], and so the required fact follows from the corresponding facts in complex GAGA

([Serre]) and non-Archimedean GAGA ([Ber1, 3.5.3]).

2.3. Proposition. If X is proper, then Hq(XAn,Z) ∼→ Hq(X an,Z) for all q ≥ 0.

Proof. Since the space XAn is compact, it suffices to show that the cohomology groups with

compact support Hq
c (X h×]0, 1],Z) are zero for all q ≥ 0. For this we use the Leray spectral sequence

Ep,q
2 = Hp

c (]0, 1], Rqλ∗Z) =⇒ Hp+q
c (X h×]0, 1],Z) .

The sheaves Rqλ∗Z are constant and, therefore, Ep,q
2 = 0 for all p, q ≥ 0, and the required fact

follows.

By Proposition 2.3, if X is proper, there is a homomorphism

Hq(X an,Z) −→ Hq(X h×]0, 1],Z) = Hq(X h,Z) .

2.4. Corollary. If X is proper, the above homomorphism gives rise to an isomorphism

Hq(X an,Q) ∼→ W0H
q(X h,Q)

Proof. By the construction from [Del3, §6.2] and Hironaka’s theorem on resolution of singu-

larities, there exists a proper hypercovering X• → X such that each Xn is smooth. By [SGA4, Exp.

V bis], it gives rise to a homomorphism of spectral sequences

′Ep,q
1 = Hq(X an

p ,Q) =⇒ Hp+q(X an,Q)
↓ ↓

′′Ep,q
1 = Hq(X h

p ,Q) =⇒ Hp+q(X h,Q)

By [Ber5, §5], the connected components of each X an
p are contractible. This implies that ′Ep,q

1 =

0 for all q ≥ 1 and, therefore, the first spectral sequence gives rise to isomorphisms ′Ep,0
2

∼→
Hp(X an,Q). On the other hand, by [Del2, 3.2.15(ii)], the mixed Hodge structure on Hq(X h

p ,Q)

has the property that Wi = 0 for i < q. Since the functor H 7→ W0H on the category of rational

mixed Hodge structures H with WiH = 0 for i < 0 is exact ([Del2, 2.3.5(iv)]), the latter implies

that W0(′′E
p,q
1 ) = 0 for all q ≥ 1 and, therefore, the second spectral sequence gives rise to an

isomorphism W0(′′E
p,0
2 ) ∼→ W0H

p(X h,Q). The required fact now follows from Corollary 2.2.
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2.5. Remarks. (i) It would be interesting to know if Proposition 2.3. is true for an arbitrary

separated scheme X of finite type over F . If this is true, then the similar induced homomorphism

Hq(X an,Z) → Hq(X h,Z) gives rise to an isomorphism of Corollary 2.4. That such an isomorphism

exists is shown in [Ber6, Theorem 1.1(c)] using the same reasoning as that used in the proof of

Corollary 2.4 (see also Remark 5.3).

(ii) It is very likely that the map X an → XAn is a homotopy equivalence at least in the case

when X is a proper scheme over F with the property that, for every n ≥ 1, a nonempty intersection

of n irreducible components is smooth and of codimension n− 1 (see also Remark 4.4(iii)).

§3. Topological spaces associated with algebraic varieties

over the ring OC,0

Let X be a scheme of finite type over the local ring OC,0. We are going to associate with X
(the underlying topological spaces of) analytic spaces of three types. The first one is a classical

object. This is a complex analytic space X h over an open disc D(r) in C of radius r (with center

at zero). The second one is a (C, || ||)-analytic space XAn over an open disc D(r) in A1. And

the third one is a non-Archimedean (C, | |0)-analytic space XAn
0 over an open disc D0(r) in the

(C, | |0)-analytic affine line A1
0. The first two objects are related to two representations of the ring

OC,0 in the form of a filtered inductive limit of the same commutative rings, provided with two

different commutative Banach ring structures. The third object is the analytic space associated

with the base change of X under the homomorphism OC,0 → C[[T ]] = OA1
0,0, and is a particular

case of an object introduced in [Ber3, §3].

For r > 0, let C〈r−1T 〉 denote the commutative Banach algebra of formal power series f =
∑∞

i=0 aiT
i over C absolutely convergent at the closed disc E(r) = {x ∈ C

∣∣|T (x)| ≤ r} and provided

with the norm ||f || =
∑∞

i=0 |ai|∞ri. The canonical homomorphism C[T ] → C〈r−1T 〉 induces a

homeomorphism M(C〈r−1T 〉) ∼→ E(r), and one has OC,0 = lim
−→

C〈r−1T 〉 for r tending to zero.

By [EGAIV, §8], for any scheme X of finite type over OC,0, there exist r > 0 and a scheme

X ′ of finite type over C〈r−1T 〉 whose base change with respect to the canonical homomorphism

C〈r−1T 〉 → OC,0 is X . By the construction of §1, there is an associated topological space X ′h,

and we denote by X h the preimage of the open disc D(r) = {x ∈ C
∣∣|T (x)| < r} with respect to

the canonical map X ′h → E(r). The morphism X h → D(r) does not depend, up to a change of r,

on the choice of X ′, and the construction is functorial in X (see Remark 3.3).

Furthermore, for r > 0, let C〈〈r−1T 〉〉 denote the commutative Banach ring of formal power

series f =
∑∞

i=0 aiT
i over C such that ||f || =

∑∞
i=0 ||ai||ri < ∞. The canonical homomorphism
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C[T ] → C〈〈r−1T 〉〉 gives rise to a homeomorphism M(C〈〈r−1T 〉〉) ∼→ E(r) = {x ∈ A1
∣∣|T (x)| ≤ r}.

If r ≥ 1, then C[T ] ∼→ C〈〈r−1T 〉〉, and, if r < 1, then C〈〈r−1T 〉〉 ∼→ C〈r−1T 〉 (as abstract C-

algebras). One has OC,0 = lim
−→

C〈〈r−1T 〉〉 for r tending to zero. By [EGAIV, §8] again, for any

scheme X of finite type over OC,0, there exist 0 < r < 1 and a scheme X ′ of finite type over

C〈〈r−1T 〉〉 whose base change with respect to the canonical homomorphism C〈〈r−1T 〉〉 → OC,0

is X . By the construction of §1, there is an associated topological space X ′An, and we denote by

XAn the preimage of D(r) = {x ∈ A1
∣∣|T (x)| < r} with respect to the canonical map X ′An → E(r).

The map ϕ : XAn → D(r) does not depend, up to a change of r, on the choice of X ′, and the

construction is functorial in X (see again Remark 3.3).

Finally, for r > 0, let C{r−1T} denote the commutative Banach ring of formal power series

f =
∑∞

i=0 aiT
i over C convergent at the closed disc E0(r) = {x ∈ A1

0

∣∣|T (x)| ≤ r} and provided

with the norm ||f || = max
i≥0

{|ai|0ri}. The canonical homomorphism C[T ] → C{r−1T} gives rise

to a homeomorphism M(C{r−1T}) ∼→ E0(r). If r ≥ 1, then C[T ] ∼→ C{r−1T}, and, if r < 1,

then C{r−1T} ∼→ C[[T ]] (as abstract C-algebras). One has OA1
0,0 = C[[T ]] = C{r−1T} for every

0 < r < 1. Thus, given a scheme X of finite type over OC,0, we set X0 = X ⊗OC,0 C[[T ]] and, for

0 < r < 1, we set X ′0 = X0⊗C[[T ]] C{r−1T}. There is an associated topological space X ′An
0 , and we

denote by XAn
0 the preimage of D0(r) = {x ∈ A1

0

∣∣|T (x)| < 1} with respect to the canonical map

X ′An
0 → E0(r).

Recall that F denotes the fraction field of OC,0, and K denotes the completion of F with

respect to a fixed valuation, which is determined by its value at T . Let ε be the latter value. The

K-analytic space associated with a scheme X of finite type over F is denoted by X an (instead of

(X ⊗F K)an).

3.1. Lemma. Let X be a scheme of finite type over OC,0, Xη = X ⊗OC,0 F its generic fiber,

and Xs = X ⊗OC,0 C its closed fiber. Let XAn be the associated (C, || ||)-analytic space over D(r)

with 0 < r < 1, and let λ, λη and λs be the canonical maps to M((C, || ||) = [0, 1] from XAn, XAn
η

and XAn
s , respectively. Then

(i) there is a homeomorphism

λ−1(]0, 1]) ∼→ {(y, ρ) ∈ X h×]0, 1]
∣∣|T (y)|∞ < r

1
ρ } : x 7→ (y, ρ) ,

which commutes with the projections onto ]0, 1] and, in the case of the affine X = Spec(A), is

defined by ρ = λ(x) and |f(y)|∞ = |f(x)| 1ρ , f ∈ A;

(ii) λ−1(0) ∼→ XAn
0 ;

9



(iii) there is a homeomorphism

λ−1
η (0) ∼→ X an

η ×]0, r[: x 7→ (y, ρ) ,

which, in the case of the affine X = Spec(A), is defined by ρ = |T (x)| and |f(y)| = |f(x)|logρ(ε),

f ∈ A;

(iv) XAn\XAn
η = XAn

s , where the right hand side is the (C, || ||)-analytic space associated with

Xs in the sense of §2.

Proof. In (i), the converse map (y, ρ) 7→ yρ is defined by |f(yρ)| = |f(y)|ρ∞, f ∈ A, and, in (iii),

the converse map X an
η ×]0, r[∼→ λ−1(0)\ϕ−1(0) : (y, ρ) 7→ Py,ρ is defined by |f(Py,ρ)| = |f(y)|logε(ρ),

f ∈ A. The statements (ii) and (iv) are trivial.

3.2. Corollary. The open embedding λ−1(]0, 1]) ↪→ X h×]0, 1] is a homotopy equivalence.

Proof. The formula ((x, ρ), t) 7→ (x, (1 − t)ρ) defines a strong deformation retraction of

λ−1(]0, 1]) and X h×]0, 1] to X h × {1}.

3.3. Remark. The spaces X h, XAn and XAn
0 are in fact pro-objects (i.e., filtered projective

systems of objects) of the corresponding categories of analytic spaces (see [Ber3, §2]). The functo-

riality of their constructions means that they give rise to functors from the category of schemes of

finite type over OC,0 to the corresponding categories of pro-objects.

4. The main result

Let X be a scheme of finite type over OC,0. By the previous subsection, for some 0 < r < 1

there is a commutative diagram in which hook and down arrows are open embeddings, left and up

arrows are closed embeddings, and all squares are cartesian:

X h
η ×]0, 1] ←↩ λ−1

η (]0, 1])
∗

↪→ XAn
η ←− λ−1

η (0) ∼−→ X an
η ×]0, r[y∗ y∗ y y y

X h×]0, 1] ←↩ λ−1(]0, 1])
∗

↪→ XAn ←− λ−1(0) ∼−→ XAn
0x x x x x

X h
s ×]0, 1] ∼←− λ−1

s (]0, 1])
∗

↪→ XAn
s ←− λ−1

s (0) ∼−→ X an
s

4.1. Theorem. Assume that X is proper and flat over OC,0. Then for a sufficiently small r

all of the arrows of the diagram, except those marked by ∗, induce an isomorphism between integral

cohomology groups of the corresponding topological spaces.

The following lemma is a version of Grothendieck’s Proposition 3.10.2 from [Gro]. If F is a

sheaf on a topological space X, Φ is a family of supports in X, and Y is a subspace of X, then
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Hq
Φ∩Y (Y, F ) denotes the cohomology groups with coefficients in the pullback of F at Y and with

supports in Φ ∩ Y = {A ∩ Y
∣∣A ∈ Φ}.

4.2. Lemma. Let X be a paracompact locally compact topological space, X1 ⊂ X2 ⊂ . . .

an increasing sequence of closed subsets such that the union of their topological interiors in X

coincides with X, and Φ a paracompactifying family of supports in X such that A ∈ Φ if and only

if A ∩ Xi ∈ Φ ∩ Xi for all i ≥ 1. Let F be an abelian sheaf on X, and let q ≥ 1. Assume that

for each i ≥ 1 the image Hq−1
Φ∩Xi+1

(Xi+1, F ) in Hq−1
Φ∩Xi

(Xi, F ) under the restriction homomorphism

coincides with the image of Hq−1
Φ∩Xi+2

(Xi+2, F ). Then there is a canonical isomorphism

Hq
Φ(X,F ) ∼→ lim

←−
Hq

Φ∩Xi
(Xi, F ) .

4.3. Remark. An analog of [Gro, Proposition 3.10.2] for étale cohomology groups of non-

Archimedean analytic spaces is [Ber2, Proposition 6.3.12]. In the formulation of the latter only the

assumption that X is a union of all Xi’s was made. This is not enough, and one has to make the

stronger assumption that X is a union of the topological interiors of all Xi’s (it guarantees that

F (X) ∼→ lim
←−

F (Xi) for any sheaf F on X).

Proof. First of all, we notice that, for any abelian sheaf G on X, one has ΓΦ(X, G) ∼→
lim
←−

ΓΦ∩Xi(Xi, G). We claim that, given an injective abelian sheaf J on X and a closed subset

Y ⊂ X, the canonical map ΓΦ(X,J) → ΓΦ∩Y (Y, J) is surjective. Indeed, let g be an element from

ΓΦ∩Y (Y, J) and let B be its support. By [God, Ch. II, Theorem 3.3.1], g is the restriction of a

section g′ of F over an open neighborhood U of B in X. Furthermore, let A ∈ Φ be such that

B = A∩Y , and let A′ ∈ Φ be a neighborhood of A in X. Shrinking U , we may assume that U ⊂ A′.

Since J is injective, the map Γ(X,J) → Γ(U ∐
(X\A′), J) = Γ(U , J)⊕ Γ(X\A′, J) is surjective. It

follows that there exists an element f ∈ Γ(X, J) whose restriction to U is g and the restriction to

X\A′ is zero. Since the support of f lies in A′, one has f ∈ ΓΦ(X,J), and the claim follows.

The claim implies that the pullback of J at any closed subset Y ⊂ X is a (Φ ∩ Y )-soft sheaf

on Y , i.e., for any A ∈ Φ, the canonical map ΓΦ∩Y (Y, J) → Γ(A, J) is surjective (see [God, Ch. II,

§3.5]). Thus, given an injective resolution 0 → F → J0 → J1 → . . . of F , there is a commutative

diagram

0 −→ ΓΦ(X,J0) −→ ΓΦ(X,J1) −→ ΓΦ(X, J2) −→ . . .y y y
0 −→ ΓΦ∩Xi(Xi, J

0) −→ ΓΦ∩Xi(Xi, J
1) −→ ΓΦ∩Xi(Xi, J

2) −→ . . .

in which the first and second rows give rise to the groups Hq
Φ(X,F ) and Hq

Φ∩Xi
(Xi, F ), respectively,

and the vertical arrows are surjections. The injectivity of the map considered is verified by a simple
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diagram search in the same way as in the proof of [Ber2, Proposition 6.3.12], and verification of its

surjectivity is even easier (and because of that it was omitted in loc.cit) and goes as follows.

Let βi ∈ Hq
Φ∩Xi

(Xi, F ), i ≥ 1, be a compatible system. Assume that, for i ≥ 1, we constructed

elements βj ∈ ΓΦ∩Xj (Xj , J
q) each from the class of βj , 1 ≤ j ≤ i, with βj+1

∣∣
Xj

= βj for 1 ≤
j ≤ i − 1, and let β′i+1 be an element from the class of βi+1. Then β′i+1

∣∣
Xi

= βi + dγi for

some γi ∈ ΓΦ∩Xi(Xi, J
q−1). If α ∈ ΓΦ(X, Jq−1) is such that α

∣∣
Xi

= γi, then for the element

βi+1 = β′i+1 − α
∣∣
Xi+1

, we have βi+1

∣∣
Xi

= βi. By the remark at the beginning of the proof, there

exists an element α ∈ ΓΦ(X, Jq) such that α
∣∣
Xi

= βi for all i ≥ 1. Then dα = 0, and the surjectivity

follows.

Proof of Theorem 4.1. Step 1. First of all, the isomorphism Hq(XAn
s ,Z) ∼→ Hq(λ−1

s (0),Z) =

Hq(X an
s ,Z) follows from Proposition 2.3. The isomorphisms Hq(X h×]0, 1],Z) ∼→ Hq(λ−1(]0, 1]),Z)

and Hq(X h
η ×]0, 1],Z) ∼→ Hq(λ−1

η (]0, 1]),Z) follow from Corollary 3.2.

Step 2. To get the isomorphisms

Hq(XAn,Z) ∼→ Hq(λ−1(0),Z) and Hq(XAn
η ,Z) ∼→ Hq(λ−1

η (0),Z) ,

we assume that r is sufficiently small so that the groups Hq(X h
t ,Z), t ∈ D∗(r), form a local system

for all q ≥ 0 and, therefore, Rqψη∗(ZXh
η
) are locally constant quasi-unipotent sheaves of finitely

generated abelian groups for all q ≥ 0, where ψ is the canonical morphism X h → D(r). Let X̃ h

and X̃ h
η denote the images of λ−1(]0, 1]) and λ−1

η (]0, 1]) in X h×]0, 1] and X h
η ×]0, 1], respectively.

It suffices to show that Hq
Φ(X̃ h,Z) = 0 and Hq

Φη
(X̃ h

η ,Z) = 0 for all q ≥ 0, where Φ and Φη are

families of supports in X̃ h and X̃ h
η consisting of the closed subsets which are also closed in XAn

and XAn
η , respectively.

Consider the following commutative diagrams in which all squares are cartesian

D̃(r) ↪→ D(r) ←− [0, r[ D̃∗(r) ↪→ D∗(r) ←− ]0, r[
↑ ϕ̃ ↑ ϕ ↑ and ↑ ϕ̃η ↑ ϕη ↑
X̃ h ↪→ XAn ←− XAn

0 X̃ h
η ↪→ XAn

η ←− X an
η ×]0, r[

Since all of the vertical maps are compact, there are spectral sequences (with initial terms Ep,q
2 )

Hp
Φ(D̃(r), Rqϕ̃∗ZX̃h

) =⇒ Hp+q
Φ (X̃ h,Z) and Hp

Φη
(D̃∗(r), Rqϕ̃η∗ZX̃h

η

) =⇒ Hp+q
Φη

(X̃ h
η ,Z) ,

where Φ and Φη in the Ep,q
2 terms denote the similar families of supports in D̃(r) and D̃∗(r),

respectively. Thus, it suffices to verify the following fact. Let L be an abelian sheaf on D(r) whose

restriction to D∗(r) is quasi-unipotent, and let π denote the canonical projection D̃(r) → D(r).
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Then (∗) Hp
Φ(D̃(r), π∗L) = 0 and (∗η) Hp

Φη
(D̃∗(r), π∗L) = 0 for all p ≥ 0. Both equalities are

proved in the same way using Lemma 4.2 as follows.

The equality (∗). The space D(r) is a union of the closed discs E(ρ) = {x ∈ D(r)
∣∣|T (x)| ≤ ρ}

with ρ < r. Let Ẽ(ρ) = E(ρ)∩ D̃(r) = {(y, t)
∣∣|T (y)|∞ ≤ ρ

1
t }. Then D̃(r) is a union of all Ẽ(ρ) with

ρ < r, and, if ρ < ρ′, then E(ρ) and Ẽ(ρ) are contained in the topological interiors of E(ρ′) and

Ẽ(ρ′) in D(r) and D̃(r), respectively. It follows easily that a closed subset B ⊂ D̃(r) is closed in

D(r) if and only if B ∩ Ẽ(ρ) is closed in E(ρ) for all ρ < r. Since the spaces E(ρ) are compact, from

Lemma 4.2 it follows that to prove the equality (∗), it suffices to show that Hq
c (Ẽ(ρ), π∗ρL) = 0 for

all q ≥ 0, where πρ is the canonical projection Ẽ(ρ) → E(ρ).

One has π−1
ρ (0) ∼→]0, 1] and, for y 6= 0, π−1

ρ (y) ∼→ [ty, 1], where 0 < ty ≤ 1 is such that

|T (y)|∞ = ρ
1

ty . It follows that (Rqπρ!(π∗ρL))y is zero, if q ≥ 1 or q = 0 and y = 0, and coincides with

Ly, if q = 0 and y 6= 0. This means that Rqπρ!(π∗ρL) is zero for q ≥ 1, and coincides with jρ!(j∗ρL)

for q = 0, where jρ is the canonical open embedding E∗(ρ) ↪→ E(ρ). The Leray spectral sequence

Ep,q
2 = Hp

c (E(ρ), Rqπρ!(π∗ρL)) =⇒ Hp+q
c (Ẽ(ρ), π∗ρL) implies that Hq

c (Ẽ(ρ), π∗ρL) = Hq
c (E∗(ρ), L) for

all q ≥ 0. Thus, the equality (∗) is a consequence of the following simple fact: Hq
c (E∗(ρ), L) = 0,

q ≥ 0, for any abelian quasi-unipotent sheaf L on E∗(ρ).

If L is constant, the above fact follows from the long exact sequence of cohomology groups

associated with the maps E∗(ρ)
jρ

↪→ E(ρ) ←− {0}. It follows easily that the same is true for

any unipotent abelian sheaf L. Assume now that L is quasi-unipotent. Then there exists n ≥ 1

such that the pullback of L under the n-power map ϕ : E∗(ρ
1
n ) → E∗(ρ) : z 7→ zn is unipo-

tent. By the previous case, Hq
c (E∗(ρ

1
n ), ϕ∗L) = 0 for all q ≥ 0. The spectral sequence Ep,q

2 =

Hp(Z/nZ,Hq
c (E∗(ρ

1
n ), ϕ∗L)) =⇒ Hp+q

c (E∗(ρ), L) implies required fact for such L.

The equality (∗η) (see also Remark 4.4(i)). The space D∗(r) is a union of the closed annuli

Aρ = {x ∈ D(r)
∣∣ρ ≤ |T (x)| ≤ r − ρ} with 0 < ρ < r

2 . Let Ãρ = Aρ ∩ D̃∗(r) = {(y, t)
∣∣ρ 1

t ≤
|T (y)|∞ ≤ (r−ρ)

1
t }. Then D̃∗(r) is a union of Ãρ with 0 < ρ < r

2 and, for ρ < ρ′, Aρ and Ãρ lie in

the topological interiors of Aρ′ and Ãρ′ in D∗(r) and D̃∗(r), respectively. It follows that a closed

subset B ⊂ D̃∗(r) is closed in D∗(r) if and only if B ∩ Ãρ is closed in Aρ for all 0 < ρ < r
2 . Since

the spaces Aρ are compact, from Lemma 4.2 it follows that to prove the equality (∗η) it suffices to

show that Hq
c (Ãρ, π

∗
ρL) = 0 for all q ≥ 0, where πρ is the canonical projection Ãρ → E∗(r − ρ).

Notice that, in comparison with the previous case, the preimage of any point of E∗(ρ) under

the latter map is always a closed interval or a point. It follows that Rqπρ∗(π∗ρL) is zero, if q ≥ 1,

and coincides with L
∣∣
E∗(r−ρ)

, if q = 0. The Leray spectral sequence of the map πρ implies that

Hq
c (Ãρ, π

∗
ρL) = Hq

c (E∗(r − ρ), L) for all q ≥ 0, and the equality (∗η) follows from the fact we
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already verified.

Step 3. It remains to show that the unmarked vertical arrows in the extreme left and right

columns induce isomorphisms of cohomology groups. For this we notice that it suffices to consider

the case when X is projective and strictly semi-stable over OC,0. Indeed, if this is so, then the

required fact is trivially extended to the class of schemes X for which the canonical morphism to

Spec(OC,0) is a composition X ϕ→ Spec(OC,0)
ψ→ Spec(OC,0), where ϕ is projective strictly semi-

stable, and ψ is induced by the homomorphism OC,0 → OC,0 : z 7→ zn for some n ≥ 1. Since an

arbitrary scheme X proper and flat over OC,0 admits a proper hypercovering X• → X , where each

Xp is a disjoint union of schemes of the above type, the required fact for X is easily deduced from

the previous case.

Thus, assume that X is projective and strictly semi-stable over OC,0. In this case, X h
s is even

a strong deformation retract of X h, by the results of C. H. Clemens (see [Cle, §6]), and both maps

X an
η ×]0, r[→ XAn

0 and X an
s → XAn

0 are homotopy equivalences, by results from [Ber5], we are going

to explain.

Consider a more general situation. Let k be an arbitrary field (instead of C) provided with

the trivial valuation. The ring of formal power series k[[z]] coincides with the ring OA1,0 of formal

power series convergent in an open neighborhood of zero in the affine line A1 over k as well as with

the ring O(D(1)) of those power series which are convergent in the open disc D(1) (of radius one

with center at zero). The formal spectrum X = Spf(k[[z]]) is a special formal scheme over k◦ = k

in the sense of [Ber4], and its generic fiber Xη coincides with D(1). Notice that there is a canonical

homeomorphism [0, 1[∼→ D(1): ρ 7→ Pρ, where Pρ is defined by |z(Pρ)| = ρ.

Let X be a scheme of finite type over k[[z]]. For any number 0 < r < 1, the ring k[[z]]

coincides with the k-affinoid algebra k{r−1z}, the algebra of analytic functions on the closed disc

E(r) ⊂ A1 (which is canonically homeomorphic to [0, r]), and so there is an associated k-analytic

space Yan(r). If r < r′, X an(r) is identified with a closed analytic subdomain of X an(r′), we set

X an = ∪X an(r). There is a canonical surjective morphism ϕ : X an → D(1) ∼→ [0, 1[. The fiber

ϕ−1(ρ) at ρ ∈ [0, 1[ is identified with the H(Pρ)-analytic space X an
ρ associated with the scheme

X ⊗k[[z]]H(Pρ). The formal completion X̂ of X along its closed fiber Xs is a special formal scheme,

and there is a canonical morphism of strictly k-analytic spaces X̂η → X an whose composition with

the above morphism ϕ is induced by the canonical morphism of formal schemes X̂ → X. If X is

separated and of finite type over k[[z]], X̂η is identified with a closed strictly analytic subdomain

of X an. If X is proper over k[[z]], then X̂η
∼→ X an. If X is semi-stable over k[[z]], then so is X̂ .
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Assume now that Y be a semi-stable formal scheme over X = Spf(k[[z]]) (or, more generally,

poly-stable in the sense of [Ber5]). For ρ ∈ [0, 1[, we set Yρ = Y×XSpf(H(Pρ)◦). It is a semi-stable

formal scheme of H(Pρ), and there are canonical isomorphisms Yρ,η
∼→ Yη,ρ and Yρ,s

∼→ Ys. In

[Ber5, §5], we constructed a closed subset S(Ŷρ) (the skeleton of Yρ), and a strong deformation

retraction Φρ : Yρ,η × [0, 1] → Yρ,η of Yρ,η to the skeleton S(Ŷρ). We denote by S(Y/X) the

union of S(Ŷρ) over all ρ ∈ [0, 1[, and by Φ the mapping Yη × [0, 1] → Yη that coincides with Φρ

at each fiber of ϕ. In [Ber5, §4], we also associated with the closed fiber Ys of Y a simplicial set

C(Ys) which has a geometric realization |C(Ys)|. Thus, to prove the claim, it suffices to verify the

following two facts:

(a) the mapping Φ : Yη × [0, 1] → Yη is continuous and compact, and

(b) there is a homeomorphism |C(Ys)| × Xη → S(Y/X) which commutes with the canonical

projections to [0, 1[.

(a) follows from the proof of [Ber5, Theorem 7.1]. In the formulation of the latter the formal

scheme X was in fact assumed to be locally finitely presented over the ring of integers of the ground

field (in our case k◦ = k), but its proof only uses the fact that the morphism Y → X is poly-stable

and works in the case when X is an arbitrary special formal scheme.

(b) By the properties of the skeleton established in [Ber5, §5], the situation is easily reduced

to the case when Y = Spf(B), where B = k[[z]]{T0, . . . , Tm}/(T0 · . . . Tn− z), 0 ≤ n ≤ m. If n = 0,

then S(Y/X) ∼→ Xη
∼→]0, 1[, |C(Ys)| is a point, and (b) follows. Assume that n ≥ 1. Then S(Y/X)

is identified with the set {(Pρ, r0, . . . , rn) ∈ Xη× [0, 1]n+1
∣∣r0 · . . . · rn = ρ}, and |C(Ys)| is identified

with the set {(r0, . . . , rn) ∈ [0, 1]n+1
∣∣r0 · . . . · rn = 0}. The required map |C(Ys)| × Xη → S(Y/X)

takes a point ((r0, . . . , rn), ρ) to (Pρ, (ρ0, . . . , ρn)), where (ρ0, . . . , ρn) is the point of intersection

of the line, connecting the points (r0, . . . , rn) and (1, . . . , 1), and the hypersurface defined by the

equation t0 · . . . · tn = ρ.

4.4. Remarks. (i) The equality (∗η) can be established in a different way. Namely, we claim

that there is a strong deformation retraction of D∗(r) to the subset λ−1
η (0) (identified with ]0, r[).

Indeed, let Pρ denote the point of λ−1
η (0) that corresponds to ρ ∈]0, r[ (it is a unique point from

λ−1
η (0) with |T (Pρ)| = ρ). Then the required strong deformation retraction Ψ : D∗(r) × [0, 1] →
D∗(r) (with Ψ(x, 1) = x and Ψ(x, 0) ∈ λ−1

η (0)) is defined as follows:

(1) if (ρeiϕ, s) ∈ D̃∗(r), then Ψ((ρeiϕ, s), t) = (ρ
1
t eiϕ, st) ∈ D̃∗(r) for t ∈]0, 1];

(2) Ψ((ρeiϕ, s), 0) = Pρs ;

(3) if ρ ∈]0, r[, then Ψ(Pρ, t) = Pρ for all t ∈ [0, 1].
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The above claim implies that, if the sheaf L is constant, the restriction map from the cohomology

of D∗(r) to that of λ−1
η (0) ∼→]0, r[ is an isomorphism and, therefore, the equality (∗η) is true for

such L, and is easily extended to arbitrary quasi-unipotent sheaves L.

(ii) Let X be a connected projective scheme over F that admits a strictly semi-stable reduction

over OC,0. Then the fundamental group of X an is isomorphic to a quotient of the fundamental group

of the fiber X h
t , t ∈ D∗(r), and, in particular, if the latter is simply connected, then so is X an.

Indeed, let Y be a projective strictly semi-stable scheme over OC,0 with Yη = X . The canonical

morphism Y → Spec(OC,0) has a section Spec(OC,0) → Y (with the image in the smooth locus

of that morphism), and, therefore, for some 0 < r < 1, the canonical morphism Yh → D(r)

has a section D(r) → Yh. It follows the canonical surjection π1(X h) → π1(D∗) has a section

whose image lies in the kernel of the canonical homomorphism π1(X h) → π1(Yh) and, therefore,

the image of π1(X h
t ) in π1(Yh) coincides with that of π1(X h). But the canonical homomorphism

π1(X h) → π1(Yh) is surjective since the preimage of X h in a universal covering of Yh is connected

(it is the complement of a Zariski closed subset of a connected smooth complex analytic space).

Thus, π1(Yh) is a quotient of π1(X h
t ). Furthermore, by the result of C. Clemens ([Cle]) used in the

proof of Theorem 4.1, Yh
s is a strong deformation retract of Yh, i.e., π1(Yh

s ) is a quotient of π1(X h
t ).

If C is the simplicial set associated with the scheme Ys, there is a surjective homomorphism from

π1(Yh
s ) to the fundamental group of the geometric realization |C| of C. It remains to notice that,

by [Ber5, Theorem 5.2], X an is homotopy equivalent to |C|. (I am due to O. Gabber for the above

reasoning.)

(iii) Assume that X is proper and strictly semi-stable over OC,0. It is very likely that all of

the maps in the diagram from the beginning of this section, except those marked by ∗, are in fact

homotopy equivalences.

(iv) It would be interesting to know whether Theorem 4.1 is true for not necessarily proper

schemes.

§5. An interpretation of the weight zero subspaces

Let X be a proper scheme over F , and let 0 < r < 1 be small enough so that the isomorphisms

Hq(X an×]0, r[,Z) = Hq(X an,Z) ∼→ Hq(XAn,Z) from Theorem 4.1 take place. They give rise to

homomorphisms Hq(X an,Z) → Hq(X h,Z), q ≥ 0. Let D
∗
(r) → D∗(r) be a universal covering of

D∗(r). The fundamental group π1(D∗) = π1(D∗(r), t) (which does not depend on the choice of r

and a point t ∈ D∗(r)) acts on D
∗
(r) and, therefore, it acts on X h = X h×D∗(r)D

∗
(r). Furthermore,

let F a be the field of functions meromorphic in the preimage of an open neighborhood of zero in
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D
∗
(r), which are algebraic over F . It is an algebraic closure of F and, in particular, π1(D∗)

acts on F a. Let Ka be the corresponding algebraic closure of K, K̂a the completion of Ka, and

X an = (X an ⊗F K̂a)an. As was mentioned in the introduction, the constructed homomorphisms of

cohomology groups induce π1(D∗)-equivariant homomorphisms Hq(X an,Z) → Hq(X h,Z), q ≥ 0.

5.1. Theorem. The above homomorphisms give rise to π1(D∗)-equivariant isomorphisms

Hq(X an,Q) ∼→ W0H
q(X h,Q), q ≥ 0 .

Proof. The standard reasoning (as in the proof of Corollary 2.4), that uses hypercoverings

and the fact that the functor H 7→ W0H on the category of rational mixed Hodge structures H

with WiH = 0 for i < 0 is exact, reduces the situation to the case when X = Yη, where Y is a

projective strictly semi-stable scheme over OC,0. Consider the commutative diagram of Theorem

4.1 for such Y. By Corollary 2.4, the maps from the lower row of the diagram give rise to an

isomorphism Hq(Yan,Q) ∼→ W0H
q(Yh

s ,Q) and, by Steenbrink’s work [St], the homomorphisms

Hq(Yh
s ,Z) ∼→ Hq(Yh,Z) → Hq(X h,Z) → Hq(X h

,Z) give rise to an isomorphism W0H
q(Yh

s ,Q) ∼→
W0H

q(X h
,Q), q ≥ 0. Since the residue field of K is algebraically closed, the canonical map X an →

X an is a homotopy equivalence (see [Ber5, §5]) and, in particular, Hq(X an,Z) ∼→ Hq(X an,Z). The

required fact now follows from Theorem 4.1.

5.2. Corollary. In the above situation, the following is true:

(i) Hq(X an,Q) ∼→ (W0H
q(X h,Q))T=1;

(ii) if X is projective and smooth, then Hq(X an,Q) ∼→ ((Tm − 1)iHq(X h
t ,Q))T=1.

Here T is the canonical generator of π1(D∗), and m is a positive integer for which the action

of (Tm − 1)i+1 on Hq(X h
t ,Q) is zero (see the introduction).

5.3. Remark. As was mentioned at the end of the introduction, Theorem 5.1 is an analog

of a similar description of the weight zero subspaces in the l-adic cohomology groups of algebraic

varieties over a local field, which holds for arbitrary separated schemes of finite type (see [Ber6]).

And so it is very likely that the isomorphism of Theorem 5.1 also takes place for arbitrary separated

schemes of finite type over F . The latter would follow from the validity of Theorem 4.1 for that

class of schemes (see Remark 4.4(iv)), and is easily extended to separated smooth schemes. (Recall

that the theory of limit mixed Hodge structures on the cohomology groups Hq(X h,Q) for separated

schemes X of finite type over F is developed in [EZ].)
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(1994), 9-57.
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