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Introduction

Let X be a proper scheme over the field F' of functions meromorphic in an open neighborhood
of zero in the complex plane C. The scheme X gives rise to a proper morphism of complex
analytic spaces X" — D* = D\{0}, where D is an open disc with center at zero (see §3). It is
well known that, after shrinking the disc D (and replacing X" by its preimage), the cohomology
groups H'(X[',Z) of the fiber X/ at a point ¢ € D* form a local system of finitely generated
abelian groups, and that the corresponding action of the fundamental group m (D*) = m(D*,t)
on H'(X! Z) is quasi-unipotent. Furthermore, the mixed Hodge structures on the above groups
define a variation of mixed Hodge structures on D*. Let D" — D* be a universal covering of D*,
and X" = X" xp- D". Then the cohomology group H'(X",Z) admits a mixed Hodge structure,
which is the limit (in a certain sense) of the above variation of mixed Hodge structures on D* (see
[GNPP, Exp. IV, Theorem 7.4]). One of the purposes of this paper is to describe the weight zero
subspace WoH! (X", Q) in terms of non-Archimedean analytic geometry.

Let K be the completion of the discrete valuation field F', and fix a corresponding multiplicative
valuation on it. The scheme X gives rise to a proper K-analytic space X*" = (X ®p K)*" in
the sense of [Berl] and [Ber2]. Recall that, as a topological space, X*" is compact and locally
arcwise connected, and the topological dimension of X'*" is equal to the dimension of X. If X is
smooth, then X" is even locally contractible. Furthermore, let X** = (X @ K ayan’ where Ko

is the completion of the algebraic closure K2 of K, which corresponds to the universal covering
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D” — D*. Recall that the cohomology groups H*(X?",Z) of the underlying topological space of
X1 are finitely generated, and there is a finite extension K” of K in K? such that they coincide
with H((X @ K')*,Z) for any finite extension K’ of K in K? (see [Ber5, 10.1]).

In §3, we construct a topological space X" and a surjective continuous map A : X" — [0, 1]
for which there are an open embedding A~1(]0, 1]) < X" x]0, 1], which is a homotopy equivalence,
and a homeomorphism A71(0) = X*x]0,r[, where r is the radius of the disc D. We show
that the induced maps H'(XA" Z) — H (X*x]0,r[,Z) = H(X*",Z) are isomorphisms for all
i > 0. In this way, we get a homomorphism H*(X*" Z) — H*(X",Z), whose composition with
the canonical map H* (X" Z) — H'(X",Z) gives a homomorphism H*(X*" Z) — H'(X" Z). The
same construction applied to finite extensions of F'in F'* gives rise to a homomorphism of 71 (D*)-
modules H! (X Z) — H'(X" Z). Theorem 5.1 states that the latter gives rise to a functorial

isomorphism 71 (D*)-modules
H'(X™, Q) = WoH' (X", Q) .

If X is projective and smooth, one can describe the group WoH! (X", Q) as follows. By the
local monodromy theorem, the action of (T — 1)i*! on H(X} Z) is zero (for some m > 1),
where T is the canonical generator of w1 (D*). If we fix a point of D" over ¢, there is an induced
isomorphism H(X" Z) = H'(X}, Z) which gives rise to an isomorphism between Wy H' (X", Q)
and the maximal unipotent monodromy subspace of H* (X, Q), i.e., (T™ — 1)*H*(X}*, Q). Thus,

in the case considered, there is a functorial isomorphism of 71 (D*)-modules
HY(X™, Q) = (I™ —1)'H'(X!", Q) .

The mixed Hodge theory (see [Ill], [St]) provides an upper bound on the dimension of the space on
the right hand side, which implies the following bound on that of the left hand side

dimq H'(x*™,Q) < min_dim HY(X,08) .
pTrg=1

The equality is achieved for a totally degenerate family of abelian varieties (see [Berl, §6]), and for
a totally degenerate family of Calabi-Yau varieties (in the strong sense). In the latter example, X"
has rational cohomology of the sphere of dimension dim(&X’), and is simply connected (see Remark
4.4(ii)).

In fact XA" is the underlying topological space of an analytic space over a commutative

Banach ring. The idea of such an object was introduced in [Berl, §1.5], and developed there in
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detail in the case when the Banach ring is a non-Archimedean field. The spaces considered in this
paper are defined over the field of complex numbers C provided with the following Banach norm:
lla|| = max{|a|co,|alo} for a € C, where | |« is the usual Archimedean valuation, and | |o is the
trivial valuation (i.e., |alo = 1 for a # 0). One has [0,1] = M(C,]|| ||). Namely, a nonzero point
p €]0, 1] corresponds to the Archimedean valuation | |2, and the zero 0 corresponds to the trivial
valuation | |op. The above map A is a canonical map X" — M(C, || ||) = [0,1]. The preimage
A71(p) of p €]0,1] is the restriction of the complex analytic space X" to the smaller open disc
D(r%), and A71(0) is a non-Archimedean analytic space over the field C provided with the trivial
valuation | |o. Thus, the space X" incorporates both complex analytic and non-Archimedean
analytic spaces, and the result on a non-Archimedean interpretation of the weight zero subspaces
is evidence that analytic spaces over (C,|| ||) are worth studying.

In §1, we recall a construction from [Berl, §1] that associates with an algebraic variety over
a commutative Banach ring k the underlying topological space of a k-analytic space. We do
not develop a theory of k-analytic spaces, but restrict ourselves with establishing basic properties
necessary for this paper. In §2, we specify our study for the field C provided with the above Banach
norm || ||, and prove a particular case of the main result from §4. Let Oc o be the local ring of
functions analytic in an open neighborhood of zero in C. In §3, we associate with an algebraic
variety X over Oc o analytic spaces of three types: a complex analytic space X", a (C, || ||)-analytic
space XA and a (C, | |o)-analytic space X", All three spaces are provided with a morphism to the
corresponding open discs, and are closely interrelated. The construction gives rise to a commutative
diagram of maps between topological spaces. In §4, we prove our main result (Theorem 4.1) which
states that, if X' is proper and flat over Oc o, the homomorphisms between integral cohomology
groups induced by certain maps from that diagram are isomorphisms. Essential ingredients of the
proof are C. H. Clemens’s results from [Cle] and similar results from [Ber5]. If X is strictly semi-
stable over Oc o, the former provide a strong deformation retraction of X " to its fiber X7 at zero,
and the latter provide a similar homotopy description of the non-Archimedean space X3*". In §5,
we prove Theorem 5.1 which was already formulated.

We want to emphasize that the above result is an analog of the description of the weight zero
subspaces of [-adic étale cohomology groups of algebraic varieties defined over a local field in terms
of cohomology groups of the associated non-Archimedean spaces (see [Ber6]). All of these results
are evidence for the fact that the underlying topological space of the non-Archimedean analytic
space associated with an algebraic variety somehow represents the weight zero part of the mixed

motive of the variety.



§1. Topological spaces associated with algebraic varieties

over a commutative Banach ring

Let k£ be a commutative Banach ring, i.e., a commutative ring provided with a Banach norm
|| || and complete with respect to it. For an affine scheme X = Spec(A) of finite type over k, let XA"
denote the set of all nonzero multiplicative seminorms | | : A — R on the ring A whose restriction
to k is bounded with respect to the norm || ||. The set XA" is provided with the weakest topology
with respect to which all real valued functions of the form | | — |f|, f € A, are continuous. For a
point x € XA", the corresponding multiplicative seminorm | |, on A gives rise to a multiplicative
norm on the integral domain A/Ker(| |,) and, therefore, extends to a multiplicative norm on its field
of fractions. The completion of the latter is denoted by H(z), and the image of an element f € A
under the corresponding character A — H(x) is denoted by f(x). (In particular, |f|, = |f(x)| for
all f € A.) If A = k, the space X*" is the spectrum M (k) of k, which is a nonempty compact
space, by [Berl, 1.2.1]. If A = k[Ty,...,T,], the space X" is denoted by A" (the n-dimensional
affine space over k). Notice that the correspondence X' — X" is functorial in X.

A continuous map of topological spaces ¢ : Y — X is said to be Hausdorff if, for any pair of
different points y1,y2 € Y with ¢(y1) = ¢(y2), there exist open neighborhoods V; and Vs of ys
with V1 N Ve = (i.e., the image of Y in Y x x Y is closed). Furthermore, let X be a topological
space such that each point of it has a compact neighborhood. A continuous map ¢ : ¥ — X is
said to be compact, if the preimage of a compact subset of X is a compact subset of Y (i.e., ¢ is
proper in the usual sense, but we use the terminology of [Ber2]). Such a map is Hausdorff, it takes

closed subsets of Y to closed subsets of X, and each point of ¥ has a compact neighborhood.

1.1. Lemma. (i) The space X" is locally compact and countable at infinity;

(i) given a closed (resp. an open) immersion ¢ : Y — X, the map @™ : YA* — XA induces
a homeomorphism of Y™ with a closed (resp. open) subset of X An,

(iii) given morphisms ¢ : J) — X and Z — X, the canonical map (Y x x Z)* — YA X yan ZA7
is compact.

Proof. (ii) If ¢ is a closed immersion, the required fact is trivial. If ¢ is an open immersion,
it suffices to consider the case of a principal open subset ) = Spec(Ay) for an element f € A. It is
clear that the map ¢®" is injective and its image is an open subset of XA". A fundamental system
of open sets in Y*" is formed by finite intersections of sets of the form U = {y € yan\|f%(y)| <r}
and V = {y € yanuf%(yﬂ > r}, where g € A, n > 0 and r > 0. It suffices therefore to verify that
the sets U and V are open in X", Given a point y € U (resp. V), there exist £, > 0 such that
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BUWEES. < (vesp. (N0 > 1), Then the set {z € X4%(|g(2)] < |g(y)|+3, |f"(2)| > [f"(v)| —¢}
(resp. {z € X*"(|g(2)| > |g(y)| — 8, |f™(2)| < |f™(y)| +€}) is an open neighborhood of the point y
in X" which is contained in U (resp. V).

(i) By (ii), it suffices to consider the case of the affine space A", which is associated with
the ring of polynomials k[T = k[Ti,...,T,]. One has A™ = [, E(r), where the union is taken
over tuples of positive numbers r = (r1,...,7,) and E(r) is the closed polydisc of radius r with
center at zero {x € A"||T;(z)| < r; for all 1 < i < n}. The latter is a compact space. Indeed,
let k(r='T) = k(r;'T,...,7;'T,) denote the commutative Banach ring of all power series f =
>, a,T" over k such that ||f|| = >, [|la|[r” < oco. By [Berl, Theorem 1.2.1], the spectrum
M(k(r='T)) is a nonempty compact space, and the canonical homomorphism k[T — k{r—'T)
induces a homeomorphism M (k{r=1T)) = E(r).

(iii) Let X = Spec(A), Y = Spec(B) and Z = Spec(C). By (ii), it suffices to consider the case
when A = k[Ty,...,T,], B = A[Ui,...,Up] and C = A[Vy,..., V], i.e., it suffices to verify that
the corresponding map A"TPT4 — AP x on A"V is compact. This is clear since the preimage
of E(r') xan E(r") with ' = (r1,..., 710, 81,...,8p) and "’ = (r1,..., 7, t1,...,t,) is the polydisc

E(r) with 7 = (11, ..., 70, S1, -+, Spy b1, .-, bg)- n

Let now X be a scheme of finite type over k. By Lemma 1.1(ii), one can glue the spaces
UA™ for open affine subschemes I C X to get a topological space X" in which all A" are open
subspaces. Here is an equivalent description of the space XA". For a bounded character x : k — K
to a valuation field K (i.e., a field complete with respect to a valuation), let X(K)X denote the
set of all K-points of X which induce the character x on k. Furthermore, let XA be the disjoint
union of the sets X'(K)X taken over bounded characters y : k — K to a valuation field K. Two
points 2/ € X(K")X and 2/ € X(K")X" are said to be equivalent if there exist a bounded character
X : k — K, apoint x € X(K)X, and isometric embeddings K — K’ and K — K" which are
compatible with the characters x’ and x”, taking x to the points 2’ and z”, respectively. It is really
an equivalence relation, and the space X" is the set of equivalence classes in XAn

The correspondence X ~— X" is functorial in X', and the properties (ii) and (iii) of Lemma

1.1 are straightforwardly extended to arbitrary schemes of finite type over k.

1.2. Lemma. Let ¢ : Y — X be a morphism of schemes of finite type over k, and let ©*" be
the induced map Y™ — XA, Then
(i) if ¢ is separated, then the map ©*" is Hausdorff:

(ii) if o is projective, then the map ¢ is compact;
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(iii) if o is proper and either the ring k is Noetherian, or ) has a finite number of irreducible

components, then the map ¢*" is compact.
The assumptions in (iii) guarantee application of Chow’s Lemma (see [EGAII, 5.6.1]).

Proof. We may assume that the scheme X = Spec(A) is affine.

(i) Since ¢ is separated, the diagonal map VA" — () xx Y)*" has a closed image. Since the
image of the latter in YA X yan VA" is closed, it follows that the map ¢*" is Hausdorff.

(ii) It suffices to consider the case when ) = Proj(A[Ty,...,T,]) is the projective space over
A. In this case, Y = U ,Y;, where ); = Spec(A[%’, ce %]) IfE, ={ye y;*nﬂ%(yﬂ <1 for all
0 < j < n}, then the map E; — X" is compact, and one has YA = U™ E;. Tt follows that p”®
is a compact map.

(iii) Chow’s Lemma reduces the situation to the case considered in (ii). .

§2. The case of the Banach ring (C,|| ||)

We now consider the case when k is the field of complex numbers C provided with the following
Banach norm: |[|a|| = max{|a|s,|alo} for all a € C. Notice that there is a homeomorphism
[0,1] = M(C,|| ||) : p — p,, where the point py corresponds to the trivial norm | |g, and each
point p, with p > 0 corresponds to the Archimedean norm | |%,. Indeed, if | | is a valuation which
is different from the above ones, then it is nontrivial and not equivalent to | |~. It follows that
there exists a complex number a € C with |a| < 1 and |a| > 1, i.e., |a|] > ||a||, and the valuation
| | is not bounded with respect to the Banach norm || ||.

For every scheme X of finite type over C, there is a canonical surjective map A = Ay : X4 —
M(C, || |]) = [0,1]. If p €]0, 1], then H(p,) is the field C provided with the Archimedean valuation
| |2,. The fiber A=%(1) is the complex analytic space X" associated with X, by complex GAGA
([Serre]). The fiber A~1(0) is the non-Archimedean (C,| |)-analytic space X" associated with X,
by non-Archimedean GAGA ([Berl]).

2.1. Lemma. There is a functorial homeomorphism A~*(]0,1]) = X"x]0,1] : x — (y,p),
which commutes with the projections onto |0, 1] and, in the case of affine X = Spec(A), is defined
by p =) and |f(y)loc = |/(2)|7, f € 4.

Proof. Assume first that X = Spec(A) is affine. The map considered is evidently continuous.
It has an inverse map X" x]0,1] — A=%(]0,1]) : (y, p) — y,, defined by |f(y,)| = |f(y)|% for f € A,
and, therefore, it is bijective. The inverse map is continuous since the topology on X7 x]0,1]

coincides with the weakest one with respect to which all functions of the form X"x]0,1] — R, :
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(y,p) — |f(y)|? for f € A are continuous. It is trivial that the homeomorphisms are functorial in

X, and they extend to the class of all schemes of finite type over C. .

2.2. Corollary. If X is connected, then the topological space X" is also connected.

Proof. Any C-point of X' defines a section M(C, || ||) = [0,1] — X*" of the canonical map
A XA" [0, 1], and so the required fact follows from the corresponding facts in complex GAGA
([Serre]) and non-Archimedean GAGA ([Berl, 3.5.3]). .

2.3. Proposition. If X is proper, then HI(XA" Z) = HY(X* Z) for all ¢ > 0.
Proof. Since the space X" is compact, it suffices to show that the cohomology groups with

compact support H(X"x]0, 1], Z) are zero for all ¢ > 0. For this we use the Leray spectral sequence
EPY = HP(]0,1], R\ Z) = HPT9(X"x]0,1],Z) .

The sheaves RI\,.Z are constant and, therefore, EY'? = 0 for all p,q > 0, and the required fact

follows. .

By Proposition 2.3, if X' is proper, there is a homomorphism
HY(Xx™, Z) — HI1(X"x]0,1],Z) = HI(X",Z) .
2.4. Corollary. If X is proper, the above homomorphism gives rise to an isomorphism
HY(X™, Q) = WoH (X", Q)

Proof. By the construction from [Del3, §6.2] and Hironaka’s theorem on resolution of singu-
larities, there exists a proper hypercovering X, — X such that each X, is smooth. By [SGA4, Exp.

V bis], it gives rise to a homomorphism of spectral sequences

BT = HUARN Q) = HPTI(AM,Q)
! l
"BV = H1(X),Q) = HMX"Q)

By [Ber5, §5], the connected components of each X" are contractible. This implies that 'E}*? =
0 for all ¢ > 1 and, therefore, the first spectral sequence gives rise to isomorphisms ’ Eg’o =
HP(X**, Q). On the other hand, by [Del2, 3.2.15(ii)], the mixed Hodge structure on H?(X}', Q)
has the property that W; = 0 for i < ¢. Since the functor H — WyH on the category of rational
mixed Hodge structures H with W;H = 0 for ¢ < 0 is exact ([Del2, 2.3.5(iv)]), the latter implies
that Wo("EP?) = 0 for all ¢ > 1 and, therefore, the second spectral sequence gives rise to an

isomorphism Wy (" EE?) = WoHP (X", Q). The required fact now follows from Corollary 2.2. ]
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2.5. Remarks. (i) It would be interesting to know if Proposition 2.3. is true for an arbitrary
separated scheme X of finite type over F'. If this is true, then the similar induced homomorphism
Hi(x™ Z) — HI(X" Z) gives rise to an isomorphism of Corollary 2.4. That such an isomorphism
exists is shown in [Ber6, Theorem 1.1(c)] using the same reasoning as that used in the proof of
Corollary 2.4 (see also Remark 5.3).

(i) It is very likely that the map X" — XA is a homotopy equivalence at least in the case
when X is a proper scheme over F' with the property that, for every n > 1, a nonempty intersection

of n irreducible components is smooth and of codimension n — 1 (see also Remark 4.4(iii)).

63. Topological spaces associated with algebraic varieties

over the ring Oc

Let X be a scheme of finite type over the local ring Oc 9. We are going to associate with X’
(the underlying topological spaces of) analytic spaces of three types. The first one is a classical
object. This is a complex analytic space X" over an open disc D(r) in C of radius r (with center
at zero). The second one is a (C, || ||)-analytic space X" over an open disc D(r) in A'. And
the third one is a non-Archimedean (C, | |)-analytic space X§" over an open disc Do(r) in the
(C, | |o)-analytic affine line A{. The first two objects are related to two representations of the ring
Oc,o in the form of a filtered inductive limit of the same commutative rings, provided with two
different commutative Banach ring structures. The third object is the analytic space associated
with the base change of X under the homomorphism Oc,o — C[[T]] = O ¢, and is a particular
case of an object introduced in [Ber3, §3].

For r > 0, let C(r~'T) denote the commutative Banach algebra of formal power series f =
Se o ai T over C absolutely convergent at the closed disc E(r) = {z € C| |T'(x)| < r} and provided
with the norm ||f|| = Y2 |@i|sor’. The canonical homomorphism C[T] — C(r~'T) induces a
homeomorphism M(C({r~1T)) = E(r), and one has Og,y = li_n}1C<r_1T> for r tending to zero.
By [EGAIV, §8], for any scheme X of finite type over Oc o, there exist » > 0 and a scheme
X' of finite type over C{r—!T) whose base change with respect to the canonical homomorphism
C(r=1T) — Oc, is X. By the construction of §1, there is an associated topological space X,
and we denote by X" the preimage of the open disc D(r) = {z € C||T(z)| < r} with respect to
the canonical map X’* — E(r). The morphism X" — D(r) does not depend, up to a change of r,
on the choice of X”, and the construction is functorial in X (see Remark 3.3).

Furthermore, for r > 0, let C{(r~!T)) denote the commutative Banach ring of formal power

series f = > -2 a;T" over C such that ||f]| = Y .2, |la;||r* < co. The canonical homomorphism
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C[T] — C{(r~'T)) gives rise to a homeomorphism M(C((r~'T))) = £(r) = {z € A!||T(z)| < r}.
If » > 1, then C[T] = C{(r~'T)), and, if r < 1, then C{(r~1T)) = C(r~'T) (as abstract C-
algebras). One has Oc¢,y = hi>nC<<r*1T>> for r tending to zero. By [EGAIV, §8] again, for any
scheme X of finite type over Oc,, there exist 0 < r < 1 and a scheme X’ of finite type over
C{(r~1T)) whose base change with respect to the canonical homomorphism C{(r~'T)) — Ocg
is X. By the construction of §1, there is an associated topological space X’A", and we denote by
X A0 the preimage of D(r) = {x € A'||T'(z)| < r} with respect to the canonical map X’4" — &£(r).
The map ¢ : X*" — D(r) does not depend, up to a change of r, on the choice of X’, and the
construction is functorial in X (see again Remark 3.3).

Finally, for r > 0, let C{r~'T"} denote the commutative Banach ring of formal power series
f =3 a;T" over C convergent at the closed disc Eo(r) = {z € A}||T(x)| < r} and provided
with the norm ||f|| = ringgi{]aﬂori}. The canonical homomorphism C[T] — C{r~!T} gives rise
to a homeomorphism M}C{r‘lT}) = Eo(r). If r > 1, then C[T] = C{r~!T}, and, if r < 1,
then C{r—!T} = CJ[T]] (as abstract C-algebras). One has Oa10 = C[[T]] = C{r~1T} for every
0 < r < 1. Thus, given a scheme X" of finite type over Oc o, we set Xy = X ®o , C[[T]] and, for
0<r <1, weset Xy = X @1y C{r~!T}. There is an associated topological space X", and we
denote by X" the preimage of Dy(r) = {& € A§||T(z)| < 1} with respect to the canonical map
XA — Eo(r).

Recall that F' denotes the fraction field of Oc o, and K denotes the completion of F' with
respect to a fixed valuation, which is determined by its value at T'. Let € be the latter value. The
K-analytic space associated with a scheme X' of finite type over F is denoted by X" (instead of
(X @p K)*").

3.1. Lemma. Let X' be a scheme of finite type over Oc,0, X, = X ®o, I its generic fiber,
and X, = X ®o, , C its closed fiber. Let X" be the associated (C,|| ||)-analytic space over D(r)
with 0 < r < 1, and let X\, A, and A, be the canonical maps to M((C, || ||) = [0,1] from X4", X;*0
and XA, respectively. Then

(i) there is a homeomorphism

A7110,1]) = {(y, p) € X" %10, 1]||T(W)|oo < 77} = (y,p) ,

which commutes with the projections onto ]0,1] and, in the case of the affine X = Spec(A), is
defined by p = A(z) and [f(y)|ec = [f(z)|7, [ € A;
(i) A1 (0) = A



(iii) there is a homeomorphism

—1 ~ an .
Ay (0) = X5 x]0,r[: = (y,p)

which, in the case of the affine X = Spec(A), is defined by p = |T'(z)| and |f(y)| = |f(z)['*8(),
fed;

(iv) XA“\/K;*“ = XA", where the right hand side is the (C, || ||)-analytic space associated with
Xs in the sense of §2.

Proof. In (i), the converse map (y, p) — y, is defined by |f(y,)| = |f(¥)|%, f € A, and, in (iii),
the converse map X2 x]0, 1= AL (0)\p™1(0) : (3, p) - Py.p is defined by |£(Py.,)| = |£(y)]°(®),

f € A. The statements (ii) and (iv) are trivial. .

3.2. Corollary. The open embedding A\=1(]0, 1]) — X" x]0,1] is a homotopy equivalence.
Proof. The formula ((z,p),t) — (x,(1 — t)p) defines a strong deformation retraction of

A71(]0,1]) and X*x]0,1] to X" x {1}. .

3.3. Remark. The spaces X", XA and Xé’*n are in fact pro-objects (i.e., filtered projective
systems of objects) of the corresponding categories of analytic spaces (see [Ber3, §2]). The functo-
riality of their constructions means that they give rise to functors from the category of schemes of

finite type over Oc o to the corresponding categories of pro-objects.

4. The main result

Let X be a scheme of finite type over Oc 9. By the previous subsection, for some 0 < r < 1
there is a commutative diagram in which hook and down arrows are open embeddings, left and up

arrows are closed embeddings, and all squares are cartesian:

Xhx]0,1] — ASL(10,1]) < AR e—  ASN0) S AR, 7]

B 1 l l l
Xhx]0,1] < A7Y(0,1]) — A — A7) = X

O 1 1 i

Xrx)0,1] <= ATH0]) S A — ATH0) S A

4.1. Theorem. Assume that X is proper and flat over Oc . Then for a sufficiently small r
all of the arrows of the diagram, except those marked by #, induce an isomorphism between integral

cohomology groups of the corresponding topological spaces.

The following lemma is a version of Grothendieck’s Proposition 3.10.2 from [Gro]. If F'is a

sheaf on a topological space X, ® is a family of supports in X, and Y is a subspace of X, then
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Hi (Y, F) denotes the cohomology groups with coefficients in the pullback of F' at ¥ and with
supports in #NY = {ANY|A4 € ¢}.

4.2. Lemma. Let X be a paracompact locally compact topological space, X1 C Xo C ...
an increasing sequence of closed subsets such that the union of their topological interiors in X
coincides with X, and ® a paracompactifying family of supports in X such that A € ® if and only
ifANX, € N X, for alli > 1. Let F be an abelian sheaf on X, and let ¢ > 1. Assume that
for each i > 1 the image Hg;;iﬂ (Xit1, F) in H%;; (X;, F) under the restriction homomorphism

coincides with the image of H, ga;iw (Xiq2, F'). Then there is a canonical isomorphism
Hi(X,F) > lim Hgx (X;, F) .

4.3. Remark. An analog of [Gro, Proposition 3.10.2] for étale cohomology groups of non-
Archimedean analytic spaces is [Ber2, Proposition 6.3.12]. In the formulation of the latter only the
assumption that X is a union of all X;’s was made. This is not enough, and one has to make the
stronger assumption that X is a union of the topological interiors of all X;’s (it guarantees that

F(X) = lim F(X;) for any sheaf F on X).

Proof. First of all, we notice that, for any abelian sheaf G on X, one has I's(X,G) =
{iinF@nXi (Xi,G). We claim that, given an injective abelian sheaf J on X and a closed subset
Y C X, the canonical map T'e (X, J) — Tony (Y, J) is surjective. Indeed, let g be an element from
Feny (Y, J) and let B be its support. By [God, Ch. II, Theorem 3.3.1], ¢ is the restriction of a
section ¢’ of F over an open neighborhood U of B in X. Furthermore, let A € ® be such that
B = ANY, and let A’ € ® be a neighborhood of A in X. Shrinking I/, we may assume that &/ C A’.
Since J is injective, the map I'(X, J) — T(WU [[(X\A"),J) =T(U,J) @ T'(X\A', J) is surjective. It
follows that there exists an element f € T'(X,J) whose restriction to I is g and the restriction to
X\ A’ is zero. Since the support of f lies in A’, one has f € I'¢(X, J), and the claim follows.

The claim implies that the pullback of J at any closed subset Y C X is a (® NY)-soft sheaf
on Y, ie., for any A € ®, the canonical map T'sny (Y, J) — ['(A, J) is surjective (see [God, Ch. II,
§3.5]). Thus, given an injective resolution 0 — F — J° — J! — ... of F, there is a commutative
diagram

0 — Te(X,J%) — TeX,J) — Tg(X,J?) —...

0 — Tonx,(Xi,J?) — Tonx,(Xs,J') — Tonx, (X, J?) — ...
in which the first and second rows give rise to the groups Hg (X, F') and Hg . (X;, F), respectively,

and the vertical arrows are surjections. The injectivity of the map considered is verified by a simple
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diagram search in the same way as in the proof of [Ber2, Proposition 6.3.12], and verification of its
surjectivity is even easier (and because of that it was omitted in loc.cit) and goes as follows.

Let 3, € Hgmxi (X;, F),i > 1, be a compatible system. Assume that, for i > 1, we constructed
elements 3; € I'pnx,(Xj,J?) each from the class of Bj, 1 < j < i, with ﬁjﬂ’xj = f; for 1 <
j < i—1, and let 3, be an element from the class of Bip1- Then ﬁz,’Jrl‘Xi = B; + d~; for
some v; € Lony, (X;, J971). If a € T'g(X,J971) is such that a‘Xi = #;, then for the element
Bit1 = Biyq — a‘Xi_H, we have ﬁi.}rl‘xi = (;. By the remark at the beginning of the proof, there
exists an element o € T'g (X, J7) such that oz‘Xi = f; for all + > 1. Then da = 0, and the surjectivity

follows. »

Proof of Theorem 4.1. Step 1. First of all, the isomorphism H9(XA* Z) = H1(\;1(0),Z) =
H1 (X2 Z) follows from Proposition 2.3. The isomorphisms H4(X"x]0,1],Z) = HY(A71(]0,1]), Z)
and HY(X]'x]0,1],Z) = H?(X,*(]0,1]), Z) follow from Corollary 3.2.

Step 2. To get the isomorphisms
HO(XA" 2) 5 HIA1(0),2) and HU(X2",Z) 5 HO(\,(0),2)

we assume that 7 is sufficiently small so that the groups H4(X}*, Z), t € D*(r), form a local system
for all ¢ > 0 and, therefore, R, (Z X#) are locally constant quasi-unipotent sheaves of finitely
generated abelian groups for all ¢ > 0, where v is the canonical morphism X* — D(r). Let xh
and /"VZL denote the images of A=*(]0,1]) and X, *(]0,1]) in X"x]0,1] and &/"x]0,1], respectively.
It suffices to show that Hg (X", Z) = 0 and Hg (X}, Z) = 0 for all ¢ > 0, where ¢ and &, are
families of supports in xh and QA(ZI consisting of the closed subsets which are also closed in AA"
and Xf“, respectively.

Consider the following commutative diagrams in which all squares are cartesian

D(r) — D(r) «— [0 D(r) = D(r) «— 0,7
1e Te T and 1oy T on T
Xho o xAr o — xgn X xRN — a0,

Since all of the vertical maps are compact, there are spectral sequences (with initial terms E5'?)
Hy(D(r), R'¢.Z ;) = Hy *(X",Z) and Hy (D*(r), Rq@n*z;n;) — Hy (XM, Z),
where @ and @, in the EY? terms denote the similar families of supports in D(r) and D*(r),
respectively. Thus, it suffices to verify the following fact. Let L be an abelian sheaf on D(r) whose

restriction to D*(r) is quasi-unipotent, and let m denote the canonical projection D(r) — D(r).
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Then (x) HY (D ( ), ™ L) = 0 and (*,) HE (D*( ), L) = 0 for all p > 0. Both equalities are
proved in the same way using Lemma 4.2 as follows.

The equality (). The space D(r) is a union of the closed discs £(p) = {z € D(r)||T(z)| < p}
with p < r. Let E,T,;) =&(p) ﬂD( ) =A{W, O)[IT ()| < p7 t}. Then D(r ) is a union of all E(p) with
p < r,and, if p < p/, then £(p) and S(p) are contained in the topological interiors of £(p’) and
S/(;)//) in D(r) and 25(7), respectively. It follows easily that a closed subset B C D/E;) is closed in
D(r) if and only if BN g(?) is closed in £(p) for all p < r. Since the spaces £(p) are compact, from
Lemma 4.2 it follows that to prove the equality (x), it suffices to show that HZ (fjp/), my L) =0 for
all ¢ > 0, where 7, is the canonical projection Sf(;) — E(p).

One has 7, '(0) —=]0,1] and, for y # 0, 7, (y) = [ty,1], where 0 < ¢, < 1 is such that
IT(y)|oo = p%. It follows that (RIm (75 L)), is zero, if ¢ > 1 or ¢ = 0 and y = 0, and coincides with
Ly, if ¢ = 0 and y # 0. This means that Rm, (7, L) is zero for ¢ > 1, and coincides with j,(j, L)
for ¢ = 0, where j, is the canonical open embedding E*(p) — E(p). The Leray spectral sequence
E%" = HP(E(p), Rimp (75 L)) = HET9(E(p), w3 L) implies that HI(E(p), w3 L) = HI(E*(p), L) for
all ¢ > 0. Thus, the equality (%) is a consequence of the following simple fact: HI(E*(p),L) = 0,
q > 0, for any abelian quasi-unipotent sheaf L on E*(p).

If L is constant, the above fact follows from the long exact sequence of cohomology groups
associated with the maps E*(p) Z, E(p) «— {0}. It follows easily that the same is true for
any unipotent abelian sheaf L. Assume now that L is quasi-unipotent. Then there exists n > 1
such that the pullback of L under the n-power map ¢ : E*(p=) — E*(p) : z — 2™ is unipo-
tent. By the previous case, HI(E*(p=),¢*L) = 0 for all ¢ > 0. The spectral sequence EL¢ =
HP(Z/nZ, Hi(E*(pw),p*L)) = HPT4(E*(p), L) implies required fact for such L.

The equality (+,) (see also Remark 4.4(i)). The space D*(r) is a union of the closed annuli

—{z € D(r)|p < |T(x)| < r—p}with0 < p < . Let A, = A, N D*(r) = {(y,)|p* <
\T( Yoo < (r—p)*}. Then D*(r) is a union of;i; with 0 < p < £ and, for p < p, A, and ;4\; lie in
the topological interiors of A, and Zp// in D*(r) and DT(/T), respectively. It follows that a closed
subset B C DI*E") is closed in D*(r) if and only if BN ,Zp is closed in A, for all 0 < p < 5. Since
the spaces A, are compact, from Lemma 4.2 it follows that to prove the equality (x,) it suffices to
show that Hq(.Ap, m, L) =0 for all ¢ > 0, where 7, is the canonical projection .Z; — E*(r — p).

Notice that, in comparison with the previous case, the preimage of any point of E*(p) under

the latter map is always a closed interval or a point. It follows that R9m,, (W;L) is zero, if ¢ > 1,

B (r—p)? if ¢ = 0. The Leray spectral sequence of the map 7, implies that

(Apﬂl’;L) = HI(E*(r — p),L) for all ¢ > 0, and the equality (x,) follows from the fact we
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already verified.

Step 3. It remains to show that the unmarked vertical arrows in the extreme left and right
columns induce isomorphisms of cohomology groups. For this we notice that it suffices to consider
the case when X is projective and strictly semi-stable over Oc . Indeed, if this is so, then the
required fact is trivially extended to the class of schemes X for which the canonical morphism to
Spec(Oc¢,o) is a composition X RN Spec(Oc0) 4, Spec(Oc,0), where ¢ is projective strictly semi-
stable, and 1 is induced by the homomorphism Oco — Oc : z +— 2" for some n > 1. Since an
arbitrary scheme X proper and flat over O¢ o admits a proper hypercovering X, — X', where each
A&, is a disjoint union of schemes of the above type, the required fact for X is easily deduced from

the previous case.

Thus, assume that X is projective and strictly semi-stable over Oc,o. In this case, X" is even
a strong deformation retract of X", by the results of C. H. Clemens (see [Cle, §6]), and both maps
Xy %0, r[— A0 and X2 — X8 are homotopy equivalences, by results from [Ber5], we are going

to explain.

Consider a more general situation. Let k& be an arbitrary field (instead of C) provided with
the trivial valuation. The ring of formal power series k[[z]] coincides with the ring Oa1 ¢ of formal
power series convergent in an open neighborhood of zero in the affine line A! over k as well as with
the ring O(D(1)) of those power series which are convergent in the open disc D(1) (of radius one
with center at zero). The formal spectrum X = Spf(k[[z]]) is a special formal scheme over k° = k
in the sense of [Ber4], and its generic fiber X,, coincides with D(1). Notice that there is a canonical
homeomorphism [0, 1[= D(1): p — P,, where P, is defined by |z(P,)| = p.

Let X be a scheme of finite type over k[[z]]. For any number 0 < r < 1, the ring k[[z]]
coincides with the k-affinoid algebra k{r=1z}, the algebra of analytic functions on the closed disc
E(r) C A (which is canonically homeomorphic to [0,7]), and so there is an associated k-analytic
space Y (r). If r < v/, X*(r) is identified with a closed analytic subdomain of X*"(r’), we set
X = UXxa(r). There is a canonical surjective morphism ¢ : X — D(1) = [0,1[. The fiber
¢ '(p) at p € [0,1] is identified with the H(P,)-analytic space X3" associated with the scheme
X @pi2)) H(P,). The formal completion X of X along its closed fiber X is a special formal scheme,
and there is a canonical morphism of strictly k-analytic spaces 2?,7 — X?" whose composition with
the above morphism ¢ is induced by the canonical morphism of formal schemes X — X If X is
separated and of finite type over k[[z]], /'/Y\n is identified with a closed strictly analytic subdomain

of X2, If X' is proper over k[[z]], then /'?n 5 xan If X is semi-stable over k[[2]], then so is X.
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Assume now that ) be a semi-stable formal scheme over X = Spf(k[[2]]) (or, more generally,
poly-stable in the sense of [Ber5]). For p € [0, 1], we set ), = ) x 9 Spf(H(F,)°). It is a semi-stable
formal scheme of H(P,), and there are canonical isomorphisms 9,, = 9, , and 9, , = 9,. In
[Ber5, §5], we constructed a closed subset S(9),) (the skeleton of 9),), and a strong deformation
retraction ®, : 9, x [0,1] — 9, of Y, to the skeleton S(QAJP). We denote by S(9)/X) the
union of S(@p) over all p € [0, 1], and by ® the mapping 9, x [0,1] — ), that coincides with ®,
at each fiber of . In [Berb, §4], we also associated with the closed fiber ), of 2 a simplicial set
C(9),) which has a geometric realization |C(2),)|. Thus, to prove the claim, it suffices to verify the
following two facts:

(a) the mapping ® : ), x [0,1] — 9, is continuous and compact, and

(b) there is a homeomorphism |C(2),)| x X,, — S(2/X) which commutes with the canonical
projections to [0, 1].

(a) follows from the proof of [Ber5, Theorem 7.1]. In the formulation of the latter the formal
scheme X was in fact assumed to be locally finitely presented over the ring of integers of the ground
field (in our case k° = k), but its proof only uses the fact that the morphism g — X is poly-stable
and works in the case when X is an arbitrary special formal scheme.

(b) By the properties of the skeleton established in [Ber5, §5], the situation is easily reduced
to the case when ) = Spf(B), where B = k[[z][{Tv,.... T}/ (To-... T —2),0<n<m. If n=0,
then S(9/X) = X, ]0,1], |C(2),)] is a point, and (b) follows. Assume that n > 1. Then S(9)/X)
is identified with the set {(Pp, ro,...,7) € X, x [0,1]" |rg-...- 7, = p}, and [C(2),)] is identified
with the set {(ro,...,r) € [0,1]""|rg - ... -7, = 0}. The required map |C(9),)| x X, — S(9/X)
takes a point ((ro,...,7n),p) to (P,, (po,...,pn)), where (po,...,pn) is the point of intersection
of the line, connecting the points (rg,...,7,) and (1,...,1), and the hypersurface defined by the

equation tg - ... t, = p. .

4.4. Remarks. (i) The equality (*,) can be established in a different way. Namely, we claim
that there is a strong deformation retraction of D*(r) to the subset X\, '(0) (identified with ]0,r]).
Indeed, let P, denote the point of A 1(0) that corresponds to p €]0,r[ (it is a unique point from
A, 1(0) with |T(P,)| = p). Then the required strong deformation retraction ¥ : D*(r) x [0,1] —

D*(r) (with ¥(z,1) = 2 and ¥(z,0) € X, '(0)) is defined as follows:

(1) if (pe“" s) € D*( ), then U((pei®, s),t) = (ptei®, st) € D*( ) for ¢ €]0,1];

(2) W((pe™®, 5),0) = Bye:

(3) if p €]0,r[, then U(P,,t) = P, for all t € [0, 1].
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The above claim implies that, if the sheaf L is constant, the restriction map from the cohomology
of D*(r) to that of A;*(0) =]0,r[ is an isomorphism and, therefore, the equality (%,) is true for
such L, and is easily extended to arbitrary quasi-unipotent sheaves L.

(ii) Let X be a connected projective scheme over F' that admits a strictly semi-stable reduction
over Oc,o. Then the fundamental group of X*" is isomorphic to a quotient of the fundamental group
of the fiber X', t € D*(r), and, in particular, if the latter is simply connected, then so is A"
Indeed, let )V be a projective strictly semi-stable scheme over Oc g with ), = X. The canonical
morphism Y — Spec(Oc,o) has a section Spec(Oc,0) — YV (with the image in the smooth locus
of that morphism), and, therefore, for some 0 < r < 1, the canonical morphism Y* — D(r)
has a section D(r) — Y. It follows the canonical surjection mi(X") — m(D*) has a section
whose image lies in the kernel of the canonical homomorphism 71 (X") — 71(J") and, therefore,
the image of 7 (X/*) in 71 (J") coincides with that of 71 (X"). But the canonical homomorphism
71 (X") — 7 (Y") is surjective since the preimage of X" in a universal covering of Y" is connected
(it is the complement of a Zariski closed subset of a connected smooth complex analytic space).
Thus, 71 (V") is a quotient of 1 (X/*). Furthermore, by the result of C. Clemens ([Cle]) used in the
proof of Theorem 4.1, V" is a strong deformation retract of V" i.e., m (") is a quotient of 71 (X}*).
If C' is the simplicial set associated with the scheme ), there is a surjective homomorphism from
71 (Y1) to the fundamental group of the geometric realization |C| of C. It remains to notice that,
by [Berb, Theorem 5.2], X*" is homotopy equivalent to |C|. (I am due to O. Gabber for the above
reasoning.)

(iii) Assume that X' is proper and strictly semi-stable over Oc . It is very likely that all of
the maps in the diagram from the beginning of this section, except those marked by *, are in fact
homotopy equivalences.

(iv) It would be interesting to know whether Theorem 4.1 is true for not necessarily proper

schemes.

§5. An interpretation of the weight zero subspaces

Let X be a proper scheme over F', and let 0 < r < 1 be small enough so that the isomorphisms
HY( X x]0,r[,Z) = HI(X* Z) = HY(XA" Z) from Theorem 4.1 take place. They give rise to
homomorphisms HY(X*",Z) — HY(X" Z), ¢ > 0. Let D (r) — D*(r) be a universal covering of
D*(r). The fundamental group m(D*) = 71 (D*(r),t) (which does not depend on the choice of r
and a point t € D*(r)) acts on D" (r) and, therefore, it acts on X" = X" xD*(T)E* (r). Furthermore,

let F'* be the field of functions meromorphic in the preimage of an open neighborhood of zero in
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ﬁ*(r), which are algebraic over F. It is an algebraic closure of F' and, in particular, m(D*)
acts on F®. Let K? be the corresponding algebraic closure of K, K*® the completion of K?, and
X0 = (X" @ K*)a As was mentioned in the introduction, the constructed homomorphisms of

cohomology groups induce 7 (D*)-equivariant homomorphisms H4(X*, Z) — HI(X" Z), ¢ > 0.

5.1. Theorem. The above homomorphisms give rise to w1 (D*)-equivariant isomorphisms
Hq(?an’ Q) = WOH!](?h’ Q)? q= 0.

Proof. The standard reasoning (as in the proof of Corollary 2.4), that uses hypercoverings
and the fact that the functor H — WyH on the category of rational mixed Hodge structures H
with W;H = 0 for i < 0 is exact, reduces the situation to the case when X = ), where Y is a
projective strictly semi-stable scheme over Oc . Consider the commutative diagram of Theorem
4.1 for such Y. By Corollary 2.4, the maps from the lower row of the diagram give rise to an
isomorphism HY(Y** Q) = WyH(Y"?, Q) and, by Steenbrink’s work [St], the homomorphisms
HI(Yh, Z) = HI(Y", Z) — HI(X",Z) — HIY(X"Z) give rise to an isomorphism WoH(Y", Q) =
WoH4 (?h, Q), ¢ > 0. Since the residue field of K is algebraically closed, the canonical map X" —
X2 is a homotopy equivalence (see [Ber5, §5]) and, in particular, H9(X?",Z) = HI(X*" Z). The

required fact now follows from Theorem 4.1. .

5.2. Corollary. In the above situation, the following is true:
(Z) Hq(Xan’ Q) = (WOHq(yha Q))TZl;
(ii) if X is projective and smooth, then H1(X** Q) = ((T™ — 1)'HI(X], Q))T=1. ]

Here T is the canonical generator of 1 (D*), and m is a positive integer for which the action

of (T™ —1)i*! on HY(X}', Q) is zero (see the introduction).

5.3. Remark. As was mentioned at the end of the introduction, Theorem 5.1 is an analog
of a similar description of the weight zero subspaces in the l-adic cohomology groups of algebraic
varieties over a local field, which holds for arbitrary separated schemes of finite type (see [Ber6]).
And so it is very likely that the isomorphism of Theorem 5.1 also takes place for arbitrary separated
schemes of finite type over F. The latter would follow from the validity of Theorem 4.1 for that
class of schemes (see Remark 4.4(iv)), and is easily extended to separated smooth schemes. (Recall
that the theory of limit mixed Hodge structures on the cohomology groups H4 (X", Q) for separated
schemes X of finite type over F' is developed in [EZ].)
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