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Abstract

Let M and N be Lagrangian submanifolds of a complex symplec-
tic manifold S. We construct a Gerstenhaber algebra structure on
TorOS

∗ (OM ,ON ) and a compatible Batalin-Vilkovisky module structure
on Ext∗OS

(OM ,ON ). This gives rise to a de Rham type cohomology the-
ory for Lagrangian intersections.
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Introduction

We are interested in intersections of Lagrangian submanifolds of holomorphic
symplectic manifolds. Thus we work over the complex numbers in the analytic
category.

Lagrangian intersection numbers: smooth case

Let S be a (complex) symplectic manifold and L, M Lagrangian submanifolds.
Since L andM are half-dimensional, the expected dimension of their intersection
is zero. Intersection theory therefore gives us the intersection number

#(L ∩M)

if the intersection is compact. In the general case, we get a class

[L ∩M ]vir ∈ A0(L ∩M)

in degree zero Borel-Moore homology, such that in the compact case

#(L ∩M) = deg[L ∩M ]vir .

If the intersection X = L ∩M is smooth,

[X]vir = ctop(E) ∩ [X] ,

where E is the excess bundle of the intersection, which fits into the exact se-
quence

0 //TX
//TL|X ⊕ TM |X //TS |X //E //0

of vector bundles on X. The symplectic form σ defines an isomorphism
TS |X = ΩS |X . Under this isomorphism, the subbundle TL|X corresponds to
the conormal bundle N∨

L/S . Thus we can rewrite our exact sequence as

0 //E∨ //N∨
L/S ⊕N∨

M/S
//ΩS |X //ΩX

//0 ,

which shows that the excess bundle E is equal to the cotangent bundle ΩX .
Thus, in the smooth case

[X]vir = ctop(E) = ctop(ΩX) ∩ [X] = (−1)nctop(TX) ∩ [X] ,

and in the smooth and compact case

#(L ∩M) = deg[X]vir = (−1)n

∫
X

ctop(TX) = (−1)nχ(X) ,

where 2n is the dimension of S and χ(X) is the topological Euler characteristic
of X. This shows that we can make sense of the intersection number even if the
intersection is not compact: define the intersection number to be signed Euler
characteristic.
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Intersection numbers: singular case

In [1], is was shown how to make sense of the statement that Lagrangian inter-
section numbers are signed Euler characteristics in the case that the intersection
X is singular. We introduced an integer invariant νX(P ) ∈ Z of the singularity
of the analytic spaceX at the point P ∈ X. (Essentially, νX(P ) is MacPherson’s
local Euler obstruction applied the the signed support of the intrinsic normal
cone of X at P .) The basic properties of νX(P ) are

(i) νX : X → Z is a constructible function with respect to the Zariski topology
on X,

(ii) if X is smooth at P , then νX(P ) = (−1)dim X ,
(iii) if X = Z(df) is the critical set of a holomorphic function f on an n-

dimensional manifold M , then νX(P ) = (−1)n
(
1 − χ(FP )

)
, where FP is

the Milnor fibre of f at P .
If f is a holomorphic function on the manifold M , we consider the cotangent
bundle ΩM as a symplectic manifold. The zero section M , and the graph of
the closed 1-form df are Lagrangian submanifolds, and X = Z(df) is their
intersection.

The main theorem of [1] implies that if L andM are Lagrangian submanifolds
of the symplectic manifold S, with intersection X, then

#X = deg[X]vir = χ(X, νX) ,

the weighted Euler characteristic of X with respect to the constructible function
νX , which is defined as

χ(X, νX) =
∑
i∈Z

i · χ({νX = i}) .

In particular, arbitrary Lagrangian intersection numbers are always well-defined:
the intersection need not be smooth or compact. The integer νX(P ) may be
considered as the contribution of the point P to the intersection X = L ∩M .

Categorifying intersection numbers: smooth case

To categorify the intersection number means to construct a cohomology theory
such that the intersection number is equal to the alternating sum of Betti num-
bers. If X is smooth (not necessarily compact) a natural candidate is (shifted)
holomorphic de Rham cohomology

#(X) = (−1)nχ(X) =
∑

(−1)i−n dimC Hi
(
X, (Ω•

X , d)
)
.

Here (Ω•
X , d) is the holomorphic de Rham complex of X and Hi its hyperco-

homology. Of course, by the holomorphic Poincaré lemma, hypercohomology
reduces to cohomology.
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Categorification: compact case

If the intersection X = L∩M is compact, but not necessarily smooth, we have

#X =
∑

i

(−1)i−n dimC Exti
OS

(OL,OM )

=
∑
i,j

(−1)i(−1)j−n dimC H
i
(
X, ExtjOS

(OL,OM )
)
.

If X is smooth, ExtjOS
(OL,OM ) = Ωj

X , so this reduces to Hodge cohomology

#X =
∑
i,j

(−1)i(−1)j−n dimC H
i(X,Ωj

X) .

This justifies using the sheaves ExtjOS
(OL,OM ) as replacements for the sheaves

Ωj
X if X is not smooth any longer. To get finite-dimensional cohomology groups,

we will construct de Rham type differentials

d : ExtjOS
(OL,OM ) −→ Extj+1

OS
(OL,OM )

so that the hypercohomology groups

Hi
(
X, (Ext•OS

(OL,OM ), d)
)

are finite dimensional, even if X is not compact. Returning to the compact case,
for any such d, we would necessarily have

#X =
∑

i

(−1)i−n dimC Hi
(
X, (Ext•OS

(OL,OM ), d)
)
.

Categorification: local case

Every symplectic manifold S is locally isomorphic to the cotangent bundle ΩN

of a manifold N . The fibres of the induced vector bundle structure on S are
Lagrangian submanifolds, and thus we have defined (locally on S) a foliation
by Lagrangian submanifolds, i.e., a Lagrangian foliation. (Lagrangian foliations
are also called polarizations.) We may assume that the leaves or our Lagrangian
foliation of S are transverse to the two Lagrangians L and M whose intersection
we wish to study. Then L and M turn into the graphs of 1-forms on N . The
Lagrangian condition implies that these 1-forms on N are closed. Without loss
of generality, we may assume that one of these 1-forms is the zero section of ΩN

and hence identify M with N . By making M = N smaller if necessary, we may
assume that the closed 1-form defined by L is exact. Then L is the graph of the
1-form df , for a holomorphic function f on M . Thus the intersection L ∩M is
now the zero locus of the 1-form df :

X = Z(df) .
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This is the local case.
Multiplying by df defines a differential

s : Ωj
M −→ Ωj+1

M

ω 7−→ df ∧ ω .

Because df is closed, the differential s commutes with the de Rham differential
d : Ωj

M → Ωj+1
M . Thus the de Rham differential passes to cohomology with

respect to s:
d : hj(Ω•

M , s) −→ hj+1(Ω•
M , s) ,

where hj denotes the cohomology sheaves, which are coherent sheaves of OX -
modules. Let us denote these cohomology sheaves by

Ej = hj(Ω•
M , s) .

We have thus defined a complex of sheaves on X

(E•, d) , (1)

where the E i are coherent sheaves of OX -modules, and the differential d is C-
linear. It is a theorem of Kapranov [2], that the cohomology sheaves hi(E•, d)
are constructible sheaves on X and thus have finite dimensional cohomology
groups. It follows that the hypercohomology groups

Hi
(
X, (E•, d)

)
are finite-dimensional as well.

Kapranov [2] also examines the relationship of (E•, d) with the perverse sheaf
of vanishing cycles on X. In fact, he proves that there is a spectral sequence
from the former to the latter. This implies that the constructible function

P 7→
∑

i

(−1)i−n dimC Hi
{P}

(
X, (E , d)

)
,

of fiberwise Euler characteristic of (E , d) is equal to νX . This achieves the
categorification in the local case. In particular, for the non-compact intersection
numbers we have

χ(X, νX) =
∑

i

(−1)i−n dimC Hi
(
X, (E , d)

)
.

To make the connection with the compact case (and because this construc-
tion is of central importance to the paper), let us explain why

E i = ExtiOS
(OL,OM ) .

Denote the projection S = ΩM → M by π. The 1-form on ΩM which cor-
responds to the vector field generating the natural C∗-action on the fibres we
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shall call α. Then dα = σ is the symplectic form on S. We consider the 1-form
s = α−π∗df on S. Its zero locus in S is equal to the graph of df . Let us denote
the subbundle of ΩS annihilating vector fields tangent to the fibres of π by E.
Then e ∈ ΩS is a section of E and we obtain a resolution of the structure sheaf
of OL over OS :

. . . // Λ2E∨ es // E∨ es // OS ,

where s̃ denotes the derivation of the differential graded OS-algebra Λ•E∨ given
by contraction with s. Taking duals and tensoring with OM , we obtain a com-
plex of vector bundles (ΛE∨|M , s|M ) which computes ExtiOS

(OL,OM ). One
checks that (ΛE∨|M , s|M ) = (ΩM , s).

Categorification: global case

We now come to the contents of this paper. let S be a symplectic manifold and
L, M Lagrangian submanifolds with intersection X. Let us use the abbreviation
E i = ExtiOS

(OL,OM ). The E i are coherent sheaves of OX -modules. The main
theorem of this paper is that the locally defined de Rham differentials (1) do
not depend on the way we write S as a cotangent bundle, or, in other words,
that d is independent of the chosen polarization of S. Thus the locally defined
d glue and we obtain a globally defined canonical de Rham type differential

d : E i → E i+1 .

In the case that X is smooth, E i = Ωi
X , and d is the usual de Rham differential.

We may call (E•, d) the virtual de Rham complex of the Lagrangian intersection
X. It categorifies Lagrangian intersection numbers in the sense that for the
local contribution of the point P ∈ X to the Lagrangian intersection we have

νX(P ) =
∑

i

(−1)i−n dimC Hi
{P}

(
X, (E , d)

)
.

Hence, for the non-compact intersection numbers we have

χ(X, νX) =
∑

i

(−1)i−n dimC Hi
(
X, (E , d)

)
,

In particular, if the intersection is compact, we have written #X = χ(X, νX)
as alternating sum of the Betti numbers of the hypercohomology groups of the
virtual de Rham complex.

Gerstenhaber and Batalin-Vilkovisky structures

The virtual de Rham complex (E•, d) is just one half of the story. There is also
the graded sheaf of OX -algebras A• given by

Ai = TorOS
−i (OL,OM ) ,
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Locally, A• is given as the cohomology of (ΛTM , s̃), in the above notation. The
Lie-Schouten bracket induces a C-linear bracket operation

[ , ] : A • ⊗CA• −→ A•

of degree +1. We show that these locally defined brackets glue to give a globally
defined bracket making (A•,∧, [ , ]) a Gerstenhaber algebra.

Then E• is a sheaf of modules overA•. The bracket onA• and the differential
on E• satisfy a compatibility condition, see (6). We say that (E , d) is a Batalin-
Vilkovisky module over the Gerstenhaber algebra (A•, [ , ]).

In the case that L and M are oriented submanifolds, i.e., the highest exterior
powers of the normal bundles have been trivialized, we have an identification

Ai = En+i .

Transporting the differential from E• to A• via this identification turns
(A•,∧, [ , ], d) into a Batalin-Vilkovisky algebra.

To prove these facts we have to study differential Gerstenhaber algebras and
differential Batalin-Vilkovisky modules over them. We will prove that locally
defined Gerstenhaber algebras and their Batalin-Vilkovisky modules are quasi-
isomorphic, making their cohomologies isomorphic and hence yielding the well-
definedness of the bracket and the differential.

DG category of Lagrangian submanifolds

Choose an affine open cover U = (Uα) of S. Then we associate to Lagrangians
L and M the Čech double complex

Č•(U, (Ext•OS
(OL,OM ), d)

)
(2)

which computes Hi
(
X, (Ext•OS

(OL,OM ), d)
)
. Define a differential graded cate-

gory with objects the Lagrangian submanifolds of S and morphism spaces (2).
One can also enlarge this category to include d-branes (local systems on La-
grangian submanifolds).

Donaldson-Thomas invariants

Our original motivation for this research was a better understanding of
Donaldson-Thomas invariants. It is to be hoped that the moduli spaces giving
rise to Donaldson-Thomas invariants (spaces of stable sheaves of fixed determi-
nant on Calabi-Yau threefolds) are Lagrangian intersections, at least locally. We
have two reasons for believing this: first of all, the obstruction theory giving rise
to the virtual fundamental class is symmetric, a property shared by the obstruc-
tion theories of Lagrangian intersections. Secondly, at least heuristically, these
moduli spaces are equal to the critical set of the holomorphic Chern-Simons
functional.

Our exchange property should be useful for gluing virtual de Rham com-
plexes if the moduli spaces are only local Lagrangian intersections.
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In this way we hope to construct a virtual de Rham complex on the
Donaldson-Thomas moduli spaces and thus categorify Donaldson-Thomas in-
variants.

1 Algebraic Preliminaries

1.1 The algebra K(E, s) and its dual L(E, s)

Let S be a manifold and E be a vector bundle on S. By K(E), we will always
mean the sheaf of graded OS-algebras Λ•(E∨), where E∨ is placed in degree
−1. By L(E), we will denote Λ•E, where E is placed in degree +1. We will
denote the natural pairing of E∨ and E by X y ω ∈ OS , for X ∈ E∨ and ω ∈ E.

Lemma 1.1 There exists a unique extension of y to an action of the sheaf
of graded OS-algebras K(E) on the sheaf of graded OS-modules L(E), which
satisfies

(i) f yω = fω, for f ∈ OS and ω ∈ L(E) (linearity over OS),
(ii) X y (ω1 ∧ ω2) = (X yω1) ∧ ω2 + (−1)ω1ω1 ∧ (X yω2), for X ∈ E∨ and

ω1, ω2 ∈ L(E), (the degree −1 part acts by derivations)
(iii) (X ∧ Y ) yω = X y (Y yω), for X,Y ∈ K(E), ω ∈ L(E) (action property)

Proof. Standard. The homomorphism X y : E → OS extends in a
unique way to a derivation of degree −1 on L(E). For different X, Y these
derivations anticommute, which defines a morphism of OS-algebras K(E) →
HomOS

(
L(E), L(E)

)
. �

Remark 1.2 Set 〈X,ω〉 equal to the degree zero part of X yω. This defines
a perfect pairing K(E) ⊗OS

L(E) → OS , identifying L(E) as the OS-dual of
K(E). One checks that

〈X1∧. . .∧Xp, ω1∧. . .∧ωp〉 = (−1)
p(p−1)

2

∑
σ∈Sp

sign(σ)(Xσ(1) y s1) . . . (Xσ(p) y sp) .

Lemma 1.3 For X1, . . . , Xp ∈ E∨, for s ∈ E and ω ∈ L(E) we have

X1 ∧ . . . ∧Xp y (s ∧ ω) =

(−1)ps ∧ (X1 ∧ . . . ∧Xp yω) +
p∑

i=1

(−1)p−i〈Xi, s〉X1 ∧ . . . X̂i . . . ∧Xp yω (3)

Proof.Straightforward calculation.�

Now turn things around and note that any section s ∈ E defines a derivation
of degree +1 on K(E), which we shall denote by s̃. It is the unique derivation
which extends the map E∨ → OS given by s̃(X) = 〈X, s〉, for all X ∈ E∨. (Note
that this is not a violation of the universal sign convention, see Remark 1.5.)
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Lemma 1.4 The pair
(
K(E), s̃

)
is a sheaf of differential graded algebras. Left

multiplication by s defines a differential on L(E) and the pair (L(E), s) is a
sheaf of differential graded modules over

(
K(E), s̃

)
.

Proof. We need to check that

s ∧ (X yω) = s̃(X) yω + (−1)XX y (s ∧ ω) (4)

for all ω ∈ L(E) and X ∈ K(E). We may assume that X = X1 ∧ . . . ∧ Xp,
where X1, . . . , Xp ∈ E∨. Then

s̃(X) = s̃(X1 ∧ . . . ∧Xp) = −
p∑

i=1

(−1)is̃(Xi)X1 ∧ . . . X̂i . . . ∧Xp .

Hence (4) follows from (3). �

Remark 1.5 According to Formula (4), we have, if degX + degω + 1 = 0,

〈s̃(X), ω〉+ (−1)X〈X, s ∧ ω〉 = 0 .

This means that the derivation s̃ and left multiplication by s are OS-duals of
one another. To explain the signs, not that we think of s̃ and s as differentials
on the graded sheaves K(E) and L(E), and for differentials of degree +1 the
sign convention is

0 = D〈X,ω〉 = 〈DX,ω〉+ (−1)X〈X,Dω〉 .

In particular, for degX = 1 and ω = 1 we get s̃(X) = 〈X, s〉.

Remark 1.6 We can summarize Formula (4) more succinctly as

[s, iX ] = iesX .

Definition 1.7 We will use the notation K(E, s) =
(
K(E), s̃

)
and L(E, s) =(

L(E), s
)
. We will usually think of L(E, s) as a differential graded module over

the differential graded algebra K(E, s). We will keep in mind that L(E, s) is
the OS-dual of K(E, s).

Finally, let us note that there is a canonical isomorphism of complexes of
OS-modules

ΛnE[−n]⊗K(E, s) −→ L(E, s) (5)

ω1 ∧ . . . ∧ ωn ⊗X 7−→ (−1)nXX y (ω1 ∧ . . . ∧ ωn) ,

where n is the rank of E. The sign is necessitated by the sign change in the
differential when shifting a complex. For that reason it seems more natural to
write ΛnE[−n] on the left rather than on the right.
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1.2 Brackets vs. derivations

Definition 1.8 A bracket on K(E) of degree +1 is a homomorphism

[ ] : K(E)⊗C K(E) −→ K(E)

of degree +1 satisfying:
(i) [ ] is a graded C-linear derivation in each of its two arguments,
(ii) [ ] is graded commutative (not anti-commutative).

If [ ] satisfies in addition the Jacobi identity, we shall call [ ] a Lie bracket.

The sign convention for brackets of degree +1 is that the comma is treated
as carrying the degree +1, the opening and closing bracket as having degree
0. Thus, when passing an odd element past the comma, the sign changes. For
example, the graded commutativity reads:

[Y,X] = (−1)XY +X+Y [X,Y ] .

Proposition 1.9 Suppose we are given a derivation d ∈ Der1C
(
L(E), L(E)

)
.

Then there exists a unique bracket [ ] of degree +1 on K(E) such that

d(X ∧ Y yω) + (−1)X+Y X ∧ Y y dω + (−1)X [X,Y ] yω =

(−1)XX y d(Y yω) + (−1)XY +Y Y y d(X yω) , (6)

for all X,Y ∈ K(E) and ω ∈ L(E).
Moreover, every bracket of degree +1 comes about in this way from a unique

d ∈ Der1C
(
L(E), L(E)

)
.

Finally, [ ] is Lie bracket if and only if d is a differential, i.e., [d, d] = d2 = 0.

Before we proceed with the proof, let us remark that Formula (6) can be
rewritten as

[X,Y ] yω =
[
[iX , d], iY

]
(ω)

or simply
i[X,Y ] =

[
[iX , d], iY

]
. (7)

Note also that
[
[iX , d], iY

]
=

[
iX , [d, iY ]

]
.

Proof. We define the bracket [X,Y ] ∈ Λ−X−Y−1E∨ to be the OS-linear map
Λ−X−Y−1E → OS defined by

[X,Y ] yω = X y d(Y yω) + (−1)XY +X+Y Y y d(X yω)− (−1)Y X ∧ Y y dω .

To check that this expression for [X,Y ] yω is OS-linear in ω, amounts to proving
that for every f ∈ OS we have

[
[iX , df ], iY

]
= 0. But this is easy:

[
[iX , df ], iY

]
=

(−1)X [i edf(X), iY ] = 0, by Remark 1.6.
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With this definition, Formula (6) automatically holds, whenever degω =
−degX − deg Y − 1, i.e., if the expression in (6) is of degree 0.

Fix X ∈ K(E) and let us prove that [X, · ] is a derivation of degree degX+1
on K(E). The claim is that

[X,Y ∧ Z] = [X,Y ] ∧ Z − (−1)XY ∧ [X,Z] .

This is equivalent to checking that

i[X,Y ∧Z] = i[X,Y ] ◦ iZ − (−1)X iY ◦ i[X,Z]

holds after evaluating on ω of degree −degX − deg Y − degZ − 1. But in this
case we already know that (6) or rather (7) holds. (Note that one can commute
iY and i[X,Z].) Thus we may instead prove that[

[iX , d], iY ◦ iZ
]

=
[
[iX , d], iY

]
◦ iZ − (−1)X iY ◦

[
[iX , d], iZ ]

holds on elements ω of the correct degree. But this latter formula is a general
property of composition of functions, so is always true.

In the same way we can prove that [ ] is a derivation in the first argument,
and that it is symmetric.

Let us now prove that (6) holds without restrictions on the degree of ω.
Again, we may instead prove (7). Note that (6) is symmetric in X and Y . If X
and Y are of degree zero, the equation follows directly from the Leibnitz rule for
d. If X is of degree −1 and Y of degree zero, the equation is also tautological.
If X and Y are of degree −1, then iX and iY are derivations, so the iterated
commutator of derivations on the right hand side of (7), as well as the left hand
side are derivations. Hence it is enough to check (7) after evaluation on elements
ω ∈ E, for which it holds by definition. Finally, not that both sides of (7) are
derivations in the argument Y . So the general case reduces to case of degree
−1.

We leave the ‘Moreover’ and the ‘Finally’ to the reader. We will not use
them in the paper. �

Remark 1.10 For example, if E = ΩM , for a manifold M = S and d is the ex-
terior derivative, then [ ] is the Schouten-Nijenhuis bracket on polyvector fields.

Proposition 1.11 Given a derivation d ∈ Der1
(
L(E), L(E)

)
and the cor-

responding bracket [ ] of degree +1 on K(E). Let s ∈ E be a section and
s̃ ∈ Der1

(
K(E),K(E)

)
the corresponding derivation. Then s̃ is a derivation

with respect to the bracket [ ], if ds = 0 ∈ Λ2E.

Proof. Note that [d, s] is equal to multiplication from the left by ds. Thus we
may write [d, s] = ds. Also, note that [s, iX ] = ies(X), for all X ∈ K(E) and so
we have

[
[iX , s], iY

]
= ±[ies(X), iY ] = 0, for all X,Y ∈ K(E). Using these facts,

a formal calculation with iterated commutators yields the following result:

(−1)X
[
[iX , ds], iY

]
= ies[X,Y ] − i[esX,Y ] + (−1)X i[X,esY ]
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Thus, ds = 0 implies

s̃[X,Y ] = [s̃X, Y ]− (−1)X [X, s̃Y ] ,

which is the condition for s̃ to be a derivation with respect to [ ]. �

1.3 Differential Gerstenhaber algebras and differential
Batalin-Vilkovisky modules

We will formalize some of the previous considerations. We are always working
on a topological space S, with a ‘structure sheaf’ OS , i.e., a sheaf of commu-
tative C-algebras with unit (non-graded). Examples are manifolds with their
structure sheaf, or manifolds with the (pushforward of the) structure sheaf of a
submanifold.

Differential Gerstenhaber algebras

Definition 1.12 A Gerstenhaber algebra over OS is a sheaf of graded OS-
modules A, concentrated in non-positive degrees, A0 = OS , endowed with

(i) a commutative (associative, of course) product ∧ of degree 0 with unit,
making A an OS-algebra,

(ii) a Lie bracket [ ] of degree +1 (see Definition 1.8).

In our cases, the underlying OS-module of A will usually be coherent.

Definition 1.13 A differential Gerstenhaber algebra is a Gerstenhaber
algebra A over OS endowed with an additional C-linear map s̃ : A → A of
degree +1 which satisfies

(i) [s̃, s̃] = s̃2 = 0,
(ii) s̃ is a derivation with respect to ∧, in particular it is OS-linear,
(iii) s̃ is a derivation with respect to [ ].

Thus, neglecting the bracket, a differential Gerstenhaber algebra is a sheaf
of differential graded algebras over OS .

Lemma 1.14 Let (A, s̃) be a differential Gerstenhaber algebra. Let I ⊂ OS

be the image of s̃ : A−1 → A0. This is a sheaf of ideals in OS. Then the
cohomology h∗(A, s̃) is a Gerstenhaber algebra over OS/I.

Proof. This is clear: the fact that s̃ is a derivation with respect to both
products on A implies that the two products pass to h∗(A, s̃). Then all the
properties of the products pass to cohomology. �
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Morphisms of differential Gerstenhaber algebras

Definition 1.15 Let A and B be Gerstenhaber algebras over OS . A mor-
phism of Gerstenhaber algebras is a homomorphism φ : A → B of graded
OS-modules (of degree zero) which is compatible with both ∧ and [ ]:

(i) φ(X ∧ Y ) = φ(X) ∧ φ(Y ),
(ii) φ([X,Y ]) = [φ(X), φ(Y )].

Definition 1.16 Let (A, s̃) and (B, t̃) be differential Gerstenhaber algebras. A
morphism of differential Gerstenhaber algebras is a pair (φ, { }), where φ : A→
B is a degree zero homomorphism of graded OS-modules, and { } : A⊗CA→ B
is a degree zero C-bilinear map , such that

(i) φ(X ∧ Y ) = φ(X) ∧ φ(Y ) and φ(s̃X) = t̃φ(X), so that φ : A → B is a
morphisms of differential graded OS-algebras,

(ii) { } is symmetric, i.e., {Y,X} = (−1)XY {X,Y },
(iii) { } is a C-linear derivation with respect to ∧ in each of its arguments,

where the A-module structure on B is given by φ, in other words,

{X ∧ Y, Z} = φ(X) ∧ {Y, Z}+ (−1)XY φ(Y ) ∧ {X,Z} ,

and
{X,Y ∧ Z} = {X,Y } ∧ φ(Z) + (−1)Y Z{X,Z} ∧ φ(Y ) ,

(iv) the default of φ to commute with [ ] is equal to the default of the OS-linear
differentials to behave as derivations with respect to { },

φ[X,Y ]− [φ(X), φ(Y )] = (−1)X t̃{X,Y }−(−1)X{s̃X, Y }−{X, s̃Y } . (8)

Remark 1.17 Suppose all conditions in Definition 1.16 except the last are
satisfied. Then both sides of the equation in Condition (iv) are symmetric
of degree one and C-linear derivations with respect to ∧ in each of the two
arguments. Thus, to check Condition (iv), it suffices to check on C-algebra
generators for A.

Lemma 1.18 A morphism of differential Gerstenhaber algebras

(φ, { }) : (A, s̃) −→ (B, t̃)

induces a morphism of Gerstenhaber algebras on cohomology. In other words,

h∗(φ) : h∗(A, s̃) −→ h∗(B, t̃)

respects both ∧ and [ ].

Proof. Any morphism of differential graded OS-algebras induces a morphism
of graded algebras when passing to cohomology. Thus h∗(φ) respects ∧. The
fact that h∗(φ) respects the Lie brackets, follows form Property (iv) of Defi-
nition 1.16. All three terms on the right hand side of said equation vanish in
cohomology. �
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Definition 1.19 A quasi-isomorphism of differential Gerstenhaber algebras
is a morphism of differential Gerstenhaber algebras which induces an isomor-
phism of Gerstenhaber algebras on cohomology.

Differential Batalin-Vilkovisky modules

Definition 1.20 Let A be a Gerstenhaber algebra. A sheaf of graded OS-
modules L, with an action y of A, making L a graded A-module, is called a
Batalin-Vilkovisky module over A, if it is endowed with a C-linear map
d : L→ L of degree +1 satisfying

(i) [d, d] = d2 = 0,
(ii) Formula (6) holds: i[X,Y ] =

[
[iX , d], iY

]
, for all X,Y ∈ A.

Here iX is the endomorphism ω 7→ X yω of L. The action property (X∧Y ) yω =
X y (Y yω) translates into iX∧Y = iX ◦ iY .

In our applications, Batalin-Vilkovisky modules will always be coherent over
OS . Note that there is no multiplicative structure on L, so there is no require-
ment for the differential d to be a derivation.

Definition 1.21 A differential Batalin-Vilkovisky module over the dif-
ferential Gerstenhaber algebra (A, s̃) is a Batalin-Vilkovisky module L for the
underlying Gerstenhaber algebra A, endowed with an additional C-linear map
s : L→ L of degree +1 satisfying:

(i) [s, s] = s2 = 0,
(ii) (M, s) is a differential graded module over the differential graded algebra

(A, s̃), i.e., we have

s(X yω) = s̃(X) yω + (−1)XX y s(ω) ,

for all X ∈ A, ω ∈ L. More succinctly: [s, iX ] = ies(X).
(iii) [d, s] = 0.

Note that the differential s is necessarily OS-linear. This distinguishes it
from d.

Lemma 1.22 Let (L, s) be a differential Batalin-Vilkovisky module over the
differential Gerstenhaber algebra (A, s̃). Then h∗(L, s) is a Batalin-Vilkovisky
module for the Gerstenhaber algebra h∗(A, s̃).

Proof. First, h∗(M, s) is a graded h∗(A, s̃)-module. The condition [d, s] = 0
implies that d passes to cohomology. Then the properties of d pass to cohomol-
ogy as well. �
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Homomorphisms of differential Batalin-Vilkovisky modules

Definition 1.23 Let A and B be Gerstenhaber algebras and φ : A → B a
morphism of Gerstenhaber algebras. Let L be a Batalin-Vilkovisky module over
A and M a Batalin-Vilkovisky module over B. A homomorphism of Batalin-
Vilkovisky modules of degree n (covering φ) is a degree n homomorphism of
graded A-modules ψ : L→ M (where the A-module structure on M is defined
via φ), which commutes with d:

(i) ψ(X yω) = (−1)nXφ(X) yψ(ω),
(ii) ψdL(ω) = (−1)ndMψ(ω).

We write the latter condition as [ψ, d] = 0.

Definition 1.24 Let (A, s̃) and (B, t̃) be differential Gerstenhaber algebras and
(φ, { }) : (A, s̃) → (B, t̃) a morphism of differential Gerstenhaber algebras. Let
(L, s) be a differential Batalin-Vilkovisky module over (A, s̃) and (M, t) a differ-
ential Batalin-Vilkovisky module over (B, t̃). A homomorphism of differential
Batalin-Vilkovisky modules of degree n covering (φ, { }) is a pair (ψ, δ), where
ψ : (L, s) → (M, t) is a degree n homomorphism of differential graded (A, s̃)-
modules, where the (A, s̃)-module structure on (M, t) is through φ. Moreover,
δ : L→M is a C-linear map, also of degree n, satisfying

(i) the commutator property

ψ ◦ d− (−1)nd ◦ ψ = (−1)nt ◦ δ − δ ◦ s , (9)

(ii) compatibility with the bracket { } property

δ(X∧Y yω)+(−1)n(X+Y )φ(X)∧φ(Y ) y δω+(−1)n(X+Y ){X,Y } yψ(ω)

= (−1)nXφ(X) y δ(Y yω) + (−1)XY +nY φ(Y ) y δ(X yω) . (10)

Remark 1.25 If we use the same letter s to denote the OS-linear differentials
on L and M , we can rewrite the commutator conditions of Definition 1.24 more
succinctly as

[ψ, s] = 0 [ψ, d] + [δ, s] = 0 [δ, d] =??? .

Lemma 1.26 Let (ψ, δ) : (L, s) → (M, t) be a homomorphism of differential
Batalin-Vilkovisky modules over the morphism (φ, { }) : (A, s̃) → (B, t̃) of dif-
ferential Gerstenhaber algebras. Then h∗(ψ) : h∗(L, s) → h∗(M, t) is a ho-
momorphism of Batalin-Vilkovisky modules over the morphism of Gerstenhaber
algebras h∗(φ) : h∗(A, s̃) → h∗(B, t̃).

Proof. Evaluating the right hand side of Equation 9 on s-cocycles in L, yields
t-boundaries in M . �
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Invertible differential Batalin-Vilkovisky modules

Definition 1.27 We call the Batalin-Vilkovisky module L over the Gersten-
haber algebra A invertible, if, locally in S, there exists a section ω◦ of L such
that the evaluation homomorphism

Ψ◦ : A −→ L

X 7−→ (−1)Xω◦X yω◦

is an isomorphism of sheaves of OS-modules. Any such ω◦ will be called a (local)
orientation for L over A.

Note that if the degree of an orientation ω◦ is n, then Lk = 0, for all k > n,
by our assumption on A. Thus orientations always live in the top degree of L.
Moreover, if orientations exist everywhere locally, Ln is an invertible sheaf over
OS .

Lemma 1.28 Let L be an invertible Batalin-Vilkovisky module over the Ger-
stenhaber algebra A and assume that ω◦ is a (global) orientation for L over A.
Then, transporting the differential d via Ψ◦ to A yields a C-linear map of degree
+1 which we will call d◦ : A→ A. It is characterized by the formula

d◦(X) yω◦ = d(X yω◦) .

It squares to 0 and it satisfies:

(−1)X [X,Y ] = d◦(X) ∧ Y + (−1)XX ∧ d◦(Y )− d◦(X ∧ Y ) , (11)

for all X,Y ∈ A. In other words, d◦ is a generator for the bracket [ ], making
A a Batalin-Vilkovisky algebra.

Proof. Follows directly from Formula (6) upon noticing that because ω◦ is
top-dimensional, it is automatically d-closed: dω◦ = 0. �

Corollary 1.29 If the Gerstenhaber algebra admits an invertible Batalin-
Vilkovisky module then it is locally a Batalin-Vilkovisky algebra.

Remark 1.30 For example, let A = K(E) and L = L(E), for a vector bundle
E on S. Let the bracket [ ] on A correspond to the differential d on L via
Proposition 1.9. Then A is a Gerstenhaber algebra and L an invertible Batalin-
Vilkovisky module for A. Any non-vanishing section of ΛnE, where n = rankE,
is an orientation for L.

As a special case, the Schouten algebra A = Λ•TM of a manifold M is
a Gerstenhaber algebra and the de Rham complex L = Ω•

M is an invertible
Batalin-Vilkovisky module for A. An orientation for L is the same thing as a
non-vanishing top-dimensional differential form on M . For orientable manifolds,
i.e., Ωn

M
∼= OM , the Schouten algebra is a Batalin-Vilkovisky algebra. For

Calabi-Yau manifolds, i.e., Ωn
M = OS , a generator for the Batalin-Vilkovisky

algebra is given.
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Definition 1.31 Let (L, s) be a differential Batalin-Vilkovisky module over
the differential Gerstenhaber algebra (A, s̃). Then (L, s) is called invertible,
if the underlying Batalin-Vilkovisky module L is invertible over the underlying
Gerstenhaber algebra A.

Proposition 1.32 Let (L, s) be an invertible differential Batalin-Vilkovisky
module over the differential Gerstenhaber algebra (A, s̃). Then under the iso-
morphism Ψ◦ defined by an orientation ω◦ of L over A, the differential s̃ corre-
sponds to the differential s. In particular, the induced differential d◦ on A has
the property

[d◦, s̃] = 0 ,

besides satisfying (11). Hence (A, d◦, s̃) is a differential Batalin-Vilkovisky
algebra.

Moreover, the cohomology h∗(L, s) is an invertible Batalin-Vilkovisky module
over the Gerstenhaber algebra h∗(A, s̃). We have hn(L, s) = Ln/I and the image
of any orientation of L over A under the quotient map Ln → Ln/I gives an
orientation for h∗(L, s) over h∗(A, s̃).

Proof. The equation s ◦ Ψ◦ = (−1)ω◦Ψ◦ ◦ s̃ follows immediately from
[s, iX ] = ies(X) upon noticing that s(ω) = 0. As Ψ◦ is therefore an iso-
morphism of differential graded OS-modules, the cohomology is isomorphic:
h∗(A, s̃) ∼−→ h∗(L, s). The rest follows from this. �

Remark 1.33 For example, let E be a vector bundle on S, d a differential on
L = L(E) and s a section of E such that ds = 0. Consider the bracket [ ]
induced on A = K(E) from d via Proposition 1.9 and the differential s̃ of A
dual to s as in Remark 1.5. Then (A, s̃) is a differential Gerstenhaber algebra
and (L, s) an invertible differential Batalin-Vilkovisky module.

Example 1.34 As a special case, consider a closed 1-form s on a manifold
M . Left multiplication by s defines the differential s on the de Rham complex
L = Ω•

M . We have the induced derivation s̃ on the Schouten algebra A = Λ•TM .
Then (Ω•, s) is an invertible differential Batalin-Vilkovisky module over the
differential Gerstenhaber algebra (Λ•TM , s̃).

Oriented homomorphisms of invertible Batalin-Vilkovisky modules

Definition 1.35 Let φ : A → B be a morphism of Gerstenhaber algebras
and ψ : L → M a homomorphism of invertible Batalin-Vilkovisky modules
covering φ. Let ω◦L and ω◦M be orientations for L and M , respectively. The
homomorphism ψ : L → M is said to preserve the orientations (or be
oriented) if ψ(ω◦L) = ω◦M ).

Lemma 1.36 Suppose given oriented invertible Batalin-Vilkovisky modules L
and M over the Gerstenhaber algebras A and B, making A and B into Batalin-
Vilkovisky algebras. Suppose ψ : L → M is an oriented homomorphism of
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Batalin-Vilkovisky modules. Then under the identifications of L and M with
A and B given by ω◦L and ω◦M , the map ψ : L → M corresponds to φ : A →
B. Hence φ : A → B commutes with d◦. Thus φ is a morphism of Batalin-
Vilkovisky algebras: it respects ∧, [ ] and d◦.

Definition 1.37 Let (ψ, δ) : (L, s) → (M, t) be a homomorphism of invertible
differentiable Batalin-Vilkovisky modules over (φ, { }) : (A, s̃) → (B, t̃). Let ω◦L
and ω◦M be orientations for L and M , respectively. We call (ψ, δ) oriented if
ψ(ωL) = ωM and δ(ωL) = 0.

Proposition 1.38 Suppose (ψ, δ) : (L, s, ω◦L) → (M, t, ω◦M ) is an oriented ho-
momorphism of oriented invertible differential Batalin-Vilkovisky modules over
(φ, { }) : (A, s̃) → (B, t̃). Then (A, s̃, [ ], d◦) and (B, t̃, [ ], d◦) are differential
Batalin-Vilkovisky algebras. Transporting δ : L → M via the identifications of
L and M with A and B to a map δ◦ : A→ B, satisfying

δ◦(X) yωM = (−1)δXδ(X yωL) ,

we get a triple
(φ, { }, δ◦) : (A, s̃, [ ], d◦) −→ (B, t̃, [ ], d◦) ,

which satisfies the following conditions:
(i) φ : (A, s̃) → (B, t̃) is a morphism of differential graded algebras,
(ii) the commutator property

φ ◦ d◦ − d◦ ◦ φ = t̃ ◦ δ◦ − δ◦ ◦ s̃ ,

or, by abuse of notation, [φ, d◦] + [δ◦, s̃] = 0,
(iii) the map δ◦ is a potential for the bracket { },

{X,Y } = δ◦(X) ∧ φ(Y ) + φ(X) ∧ δ◦(Y )− δ◦(X ∧ Y ) ,

(iv) the default of φ to preserve [ ] equals the default of s̃ to be a derivation
with respect to { }, Equation (8),

Thus (φ, { }, δ◦) is a morphism of differential Batalin-Vilkovisky alge-
bras.

The Lie bracket [ ] is determined by its potential d0, and the bracket { } is
determined by its potential δ0. Thus, in a certain sense, the two brackets are
redundant. Moreover, Condition (iv) is implied by Conditions (ii) and (iii).

Remark 1.39 A morphism of differential Batalin-Vilkovisky algebras

(φ, { }, δ◦) : (A, s̃, [ ], d◦) −→ (B, t̃, [ ], d◦)

induces on cohomology

h∗(φ) :
(
h∗(A, s̃), [ ], d◦

)
→

(
h∗(B, t̃), [ ], d◦

)
a morphism of Batalin-Vilkovisky algebras.
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2 Symplectic Geometry

Let S be a symplectic manifold and let σ denote the symplectic form on S. Let
us choose the identification of tangent and cotangent vectors given by

TS −→ ΩS

X 7−→ σ( · , X) .

2.1 Lagrangian foliations and Euler sections

A Lagrangian foliation is an integrable distribution H ⊂ TS , where H ⊂ TS

is a Lagrangian subbundle. All leaves of the foliation H are then Lagrangian
submanifolds of S.

2.2 Lagrangian foliations and transverse Lagrangians

Let S be a symplectic manifold with symplectic form σ. Let E be a Lagrangian
foliation. Think of sections of E as differential forms on S.

Lemma 2.1 Let M be a Lagrangian submanifold of S which is everywhere
transverse to E. Then there exists a unique section s of E, such that ds = σ
and M = Z(s). Conversely, if s is any section of E such that ds = σ, then Z(s)
is a Lagrangian submanifold.

Thus we have a canonical one-to-one correspondence between sections s of
E such that ds = σ and Lagrangian submanifolds of S transverse to E.

Definition 2.2 We call s the Euler vector field of M with respect to E.

Lemma 2.3 Let s be the Euler section of E defining the Lagrangian subman-
ifold M . Let H be any Lagrangian foliation transverse to E. Then under
the canonical isomorphism E = H∨, the section s maps to a closed form:
ds = 0 ∈ Λ2H∨.

Proof. The canonical isomorphism E = H∨ is the composition E → ΩS →
H∨. The form ds ∈ Λ2H∨ is the projection of the symplectic form via Ω2

S →
Λ2H∨. This latter projection is 0. �

2.3 The extra structures on E = Ext and A = Tor

Let M and N be Lagrangian submanifolds of the symplectic manifold S. Let
OZ = OM ⊗ON be the structure sheaf of the intersection Z = M ∩N . Write
Ai = Tor−i(OM ,ON ), so that A is a sheaf of graded OS-modules concentrated
in non-positive degrees, A0 = OZ . Write also E i = Exti(OM ,ON ). Thus E
is a sheaf of graded OS-modules. We will define on A a canonical structure
of Gerstenhaber algebra over OZ and on E a canonical structure of invertible
Batalin-Vilkovisky module over A. Any orientation on N , i.e., trivialization of
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Ωn
N , gives rise to an orientation of the invertible Batalin-Vilkovisky module E

and hence to the structure of Batalin-Vilkovisky algebra with generator on A.
We will define these structures on A and E locally, and then glue.

The local construction

Let E be a Lagrangian foliations of S, transverse everywhere to both M and N .
Here we will show how E gives (canonically) rise to the structure of Gerstenhaber
algebra on A and invertible Batalin-Vilkovisky module on E .

In a later section we will prove that these structures do not depend on the
choice of E and hence glue, as locally such E can always be found.

Let s be the Euler section of E defining M . Via TS → ΩS think of s as a
differential form. This form we can restrict to N , the restriction we will also
denote by s. As ds = σ on S, and σ restricts to 0 onN , becauseN is Lagrangian,
we see that s is closed on N .

Now, by Example 1.34, we have the differential Gerstenhaber algebra
(Λ•TN , s̃) and its invertible differential Batalin-Vilkovisky module (Ω•

N , s).
Thus, by Proposition 1.32, h∗(Ω•

N , s) is an invertible Batalin-Vilkovisky module
over the Gerstenhaber algebra h∗(Λ•TN , s̃).

Recall that L(E, s) = (Λ•E, s) is the OS-dual of K(E, s) = (Λ•E∨, s̃), and
so

(Ω•
N , s) = (Λ•E, s)|N = L(E, s)⊗OS

ON = HomOS

(
K(E, s),ON

)
.

Therefore,
hi(Ω•

N , s) = ExtiOS
(OM ,ON ) ,

as K(E, s) → OM is an OS-resolution of OM . Thus, h∗(Ω•
N , s) = E .

Similarly,

(Λ•TN , s̃) = (Λ•E∨, s̃)|N = K(E, s)⊗OS
ON ,

and hence
hi(Λ•TN , s̃) = TorOS

−i (OM ,ON ) ,

in other words, h∗(Λ•TN , s̃) = A.
We conclude that A is a Gerstenhaber algebra and E an invertible Batalin-

Vilkovisky module over A. Note that these extra structures on A and E are
determined in a canonical way by E. Note also, that non-vanishing sections of
Ωn

N define orientations of (Ω•
N , s) over (Λ•TN , s̃) and hence orientations for E

over A.

3 Derived Lagrangian intersections on polarized
symplectic manifolds

Let (S, σ) be a symplectic manifold of dimension 2n.. An immersed La-
grangian of S is an unramified morphism i : L→ S, where L is a manifold of
dimension n, such that i∗σ ∈ ΩL vanishes.
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A polarized symplectic manifold (S,E, σ) is a symplectic manifold (S, σ)
together with a Lagrangian foliation E ⊂ TS .

Definition 3.1 Let (S,E, σ) be a polarized symplectic manifold and L, M
immersed Lagrangians of S which are both transverse to E. Then the derived
intersection

L eS M

is the sheaf of differential Gerstenhaber algebras (ΛTM , t̃) on M , where t̃ is
the derivation on ΛTM induced by the restriction to M of the Euler section
t ∈ E ⊂ ΩS of L.

Since dt = σ, and M is Lagrangian, the restriction of t to M is closed, and so
t̃ is a derivation with respect to the Schouten bracket on ΛTM , making (ΛTM , t̃)
a differential Gerstenhaber algebra.

Remark 3.2 After passing to suitable étale neighborhoods of L in S we can
assume that L is embedded (not just immersed) in S and that L admits a
globally defined Euler section t on S. This defines the derived intersection étale
locally in M , and the global derived intersection is defined by gluing in the étale
topology on M .

Remark 3.3 The derived intersection L eS M depends a priori on the polar-
ization E. We will see later that different polarizations lead to locally quasi-
isomorphic derived intersections. (The quasi-isomorphism is not canonical, as
it depends on the choice of a third polarization transverse to both of the po-
larizations being compared. It is not clear that such a third polarization can
necessarily be found globally.)

Remark 3.4 The derived intersection does not seem to be symmetric. We will
see below that LeS M = M eS L, where S = (S,−σ), but only if S is endowed
with a different polarization, transverse to E. Then the issue of change of
polarization of Remark 3.3 arises.

3.1 The exchange property: polarized case

Given two symplectic manifolds S′, S, of dimensions 2n′ and 2n, a symplectic
correspondence between S′ and S is a manifold C of dimension n+n′, together
with morphisms π′ : C → S′ and π : C → S, such that

(i) π∗σ = π′
∗
σ′ (as sections of Ω2

C),
(ii) C → S′ × S is unramified.

Thus a symplectic correspondence is an immersed Lagrangian of S
′×S = (S′×

S, σ − σ′).
Let C → S′×S be a symplectic correspondence. We say that the immersed

Lagrangian L→ S is transverse to C, if

21



(i) for every (Q,P ) ∈ C ×S L we have that

TC |Q ⊕ TL|P −→ TS |π(Q)

is surjective, hence the pullback L′ = C ×S L is a manifold of dimension
n′

(ii) the natural map L′ → S′ is unramified (and hence L′ is an immersed
Lagrangian of S′).

By exchanging the roles of S and S′ we also get the notion of transversality to
C for immersed Lagrangians of S′.

Exchange property setup

Let (S,E, σ) and (S′, E′, σ′) be polarized symplectic manifolds. Consider a
transverse symplectic correspondence C → S′×S. This means that C → S′×S
is transverse to the foliation E′ × E of S′ × S. In particular, the composition

TC −→ π∗TS −→ π∗E∨

is surjective (recall that TS/E = E∨). Hence the foliation E ⊂ TS pulls back
to a foliation F ⊂ TC of rank n′. We have the exact sequence of vector bundles

0 −→ F −→ TC −→ π∗E∨ −→ 0 .

Similarly, the foliation E′ ⊂ TS′ pulls back to a foliation F ′ ⊂ TC of rank n
with the exact sequence

0 −→ F ′ −→ TC −→ π′
∗
E′∨ −→ 0 .

Moreover, F and F ′ are transverse foliations of C and so we have F ′⊕F = TC =
π′
∗
E′∨ ⊕ π′

∗
E∨, and canonical identifications F = π′

∗
E′∨ and F ′ = π∗E∨.

Now assume given immersed Lagrangians L of S and M ′ of S′. Assume
both are transverse to C. Then we obtain manifolds L′ and M by the pullback
diagram

L′ //

��
�

L

��
M //

��
�

C
π //

π′

��

S

M ′ // S′

(12)

Note that L′ is then an immersed Lagrangian for S′ and M an immersed La-
grangian for S.

Finally, we assume that L and M are transverse to E and that M ′ and L′ are
transverse to E′. As a consequence, L′ is transverse to F ′ and M is transverse
to F .
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Theorem 3.5 Let (S,E, σ) and (S′, E′, σ′) be polarized symplectic manifolds,
and C → S′ × S a transverse symplectic correspondence. Let M ′ → S′ and
L → S be immersed Lagrangians, both transverse to C, such that L and M
are transverse to E and M ′ and L′ are transverse to E′, with notation as in
(12). Then there are canonical quasi-isomorphisms of differential Gerstenhaber
algebras

(M ′ × L) eS
′×S C −→ L eS M ,

and
(M ′ × L) eS

′×S C −→M ′ eS
′ L′ .

In particular, the derived intersections L ×S M and M ′ ×S
′ L′ are canonically

quasi-isomorphic.

Proof. Passing to étale neighborhoods of L in S and M ′ in S′ will not change
anything about either derived intersection L ×S M or M ′ ×S

′ L′, so we may
assume, without loss of generality, that

(i) L is embedded (not just immersed) in S (and same for M ′ in S′),
(ii) L admits a global Euler section t with respect to E on S (and M ′ has the

Euler section s′ in E′ on S′)

Then the Euler section of M ′ with respect to E′ on S
′
is −s′. Thus the derived

intersection L×S M is equal to (ΛTM , t̃) and the derived intersection M ′×S
′ L′

equals (ΛTL′ ,−s̃′).
Pulling back the 1-form t via π, we obtain a 1-form on C, which we shall,

by abuse of notation, also denote by t. Similarly, pulling back s′ via π′ we get
the 1-form s′ on C. The difference t − s′ is closed on C, and thus we have the
differential Gerstenhaber algebra (ΛTC , t̃ − s̃′). We remark that it is equal to
(M ′ × L) eS

′×S C.
Recall that we have the identification TC = π′

∗
E′∨⊕π∗E∨. Under this direct

sum decomposition t̃ − s̃′ splits up into two components, −s̃′ and t̃. Hence we
obtain the decomposition

(ΛTC , t̃− s̃′) = π′
∗(ΛE′∨,−s̃′)⊗ π∗(ΛE∨, t̃)

of differential graded OC-algebras.
Recall that OS′ → OM ′ induces a quasi-isomorphism of differential graded

OS′ -algebras (ΛE′∨,−s̃′) → OM ′ . Because the pullback M = M ′ ×S′ C is
transverse, we get an induced quasi-isomorphism

π′
∗(ΛE′∨,−s̃′) −→ OM

of differential graded OC-algebras. Tensoring with π∗(ΛE∨, t̃), we obtain the
quasi-isomorphism

(ΛTC , t̃− s̃′) −→ (ΛE∨, t̃)|M .

Noting that E∨|M = TM , because M is an immersed Lagrangian in S transverse
to E, we see that (ΛE∨, t̃)|M = (ΛTM , t̃) and so we have a quasi-isomorphism
of differential graded OC-algebras

φ : (ΛTC , t̃− s̃′) −→ (ΛTM , t̃) . (13)
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For analogous reasons, we also have the quasi-isomorphism

φ′ : (ΛTC , t̃− s̃′) −→ (ΛTL′ ,−s̃′) .

The proof will be finished, if we can enhance φ and φ′ by brackets, making
them morphisms of differential Gerstenhaber algebras. We will concentrate on
φ. The case of φ′ follows by symmetry.

Thus we shall define a bracket

{ } : ΛTC ⊗C ΛTC −→ ΛTM , (14)

such that (φ, {, }) becomes a morphism of differential Gerstenhaber algebras.
We shall need a certain symmetric bilinear form

η : N∨
M/C ⊗OM

N∨
M/C −→ OM , (15)

where NM/C is the normal bundle of M in C. This bilinear map will be canon-
ical, so we can construct it étale locally on C. Thus we shall assume that M is
embedded in S and has the Euler section s with respect to E. We also assume
that the closed 1-form s− s′ on C is exact. Let I be the ideal of M in S. Then
there exists a unique regular function f ∈ I2 such that df = s − s′. The fact
that f ∈ I2 follows because s and s′ vanish in ΩC |M , so df vanishes in ΩC |M .
Then the Hessian of f is a symmetric bilinear form

H(f) : NM/C ⊗OM
NM/C −→ OM .

Claim. The bilinear form H(f) is non-degenerate.
To prove the claim, let us start by putting H(f) into the composition

TC |M //NM/C
H(f) //N∨

M/C
//ΩC |M ,

and noting that it suffices to prove that this composition has rank n′ at every
point of M . We also note that the above composition is equal to the restriction
to M of the composition

TC = π′
∗
E′∨ ⊕ π∗E∨ −es′⊕es //OC

d //ΩC .

So it suffices to prove that the restriction to M of

π′
∗
E′∨ es′ //OC

d //ΩC ,

which is an OM -linear map, has rank equal to n′ everywhere. But this follows
directly from the fact that s′ ∈ π′∗E′ is a regular section of a vector bundle of
rank n′ whose zero locus is exactly M . This latter fact, in turn, follows from
the transversality of the pullback M = M ′ ×S′ C. Thus the claim is proved.
Note that this claim uses the transversality of C to E′ ×E in an essential way.

We define the form η mentioned above (15) to be the inverse of H(f).
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Now we are ready to construct the bracket (14). We use the foliation F ⊂ TC .
It defines a partial connection

∇ : TC/F −→ F∨ ⊗OC
TC/F ,

by the rule

∇ : TC/F −→ HomOC
(F, TC/F )

X + F 7−→ [ · , X + F ] + F .

In other words,

∇(X + F )(Y ) = ∇Y (X + F ) = [Y,X + F ] + F .

Abusing notation, we also write ∇(X)(Y ) = [Y,X] . By the usual formulas we
can transport ∇ onto the exterior powers of TC/F . Or we can remark that
Λ(TC/F ) is equal to the quotient of ΛTC by the ideal generated by F and the
Schouten bracket respects this ideal. Hence the same rule ∇(X) = [ · , X] gives
rise to a well-defined C-linear map

∇ : Λ(TC/F ) −→ HomOC

(
F,Λ(TC/F )

)
,

which satisfies the Leibnitz rule.
In our context, we obtain

∇ : π∗ΛE∨ −→ F∨ ⊗OC
π∗ΛE∨ .

To get the signs right, we will consider the elements of the factor F∨ in this
expression to have degree zero.

Let us write the projection ΛTC → π∗ΛE∨ as ρ. We identify F∨|M with
N∨

M/C and (π∗ΛE∨)|M with ΛTM . Then φ is the composition of ρ with restric-
tion to M . We now define for X,Y ∈ ΛTC

{X,Y } = η
(
∇(ρX)|M ∧∇(ρY )|M

)
. (16)

In this formula, ‘∧’ denotes the homomorphism

(N∨
M/C ⊗OC

ΛTM )⊗OC
(N∨

M/C ⊗OC
ΛTM ) −→ (N∨

M/C ⊗OC
N∨

M/C)⊗OC
ΛTM

v ⊗X ⊗ w ⊗ Y 7−→ v ⊗ w ⊗X ∧ Y .

There is no sign correction in this definition, because the elements of N∨
M/C are

considered to have degree zero, by our sign convention. We have also extended
the map η linearly to

η : (N∨
M/C ⊗OC

N∨
M/C)⊗OC

ΛTM −→ ΛTM .

Claim. The conditions of Definition 1.16 are satisfied by (φ, { }).
All but the last condition follow easily from the definitions. Let us check

Condition (iv). We use Remark 1.17. The C-algebra ΛTC is generated in degrees
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0 and −1. As generators in degree −1, we may take the basic vector fields of a
coordinate system for C. We choose this coordinate system such that M is cut
out by a subset of the coordinates. Then, if we plug in any of these generators
of degree −1 for both X and Y in Formula (8), every term vanishes. Also, if we
plug in terms of degree 0 for both X and Y , both sides of (8) vanish for degree
reasons. By symmetry, we thus reduce to considering the case where X is of
degree −1, i.e., a vector field on C, and Y is of degree 0, i.e., a regular function
on C.

Hence we need to prove that for all X ∈ TC and g ∈ OC we have

X(g)|M − ρ(X)|M
(
g|M

)
= {(t̃− s̃′)X, g} − t̃{X, g} . (17)

We will prove that

X(g)|M − ρ(X)|M
(
g|M

)
= {(s̃− s̃′)X, g} (18)

and
{(t̃− s̃)X, g} = t̃{X, g} . (19)

Equation (18) involves only M , not L, and Equation (19) involves only E, not
E′. Together, they imply Equation (17).

All terms in these three equations are OS-linear in X and derivations in
g, and may hence be considered as OC-linear maps TC → Der(OC ,OM ). As
Der(OC ,OM ) = HomOC

(ΩC ,OM ) = TC |M , we may also think of them as OC-
linear maps TC → TC |M .

For example, the OC-linear map

TC −→ TC |M (20)
X 7−→ {(s̃− s̃′)X, · }

Is equal to the composition

TC
df //OC

d //ΩC
//F∨|M

η //F |M //TC |M ,

if we choose df = s− s′, as above. The the commutative diagram

TC
df //

��

OC
d // ΩC

�� $$IIIIIIIII

TC |M

��

ΩC |M // F∨|M
η // F |M // TC |M

NM/C
H(f) // N∨

M/C

OO

id

;;wwwwwwwww

and the fact that η is the inverse of H(f), proves that (20) is equal to the
composition

TC
//TC |M

p //TC |M ,
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where p is the projection onto the the second summand of the decomposition

TC |M = TM ⊕NM/C

given by the foliation F transverse to M in C. If we denote by q the projection
onto the first summand, we see that the map

TC −→ TC |M (21)
X 7−→ ρ(X)|M ( · |M )

is equal to

TC
//TC |M

q //TC |M .

Thus (20) and (21) sum up to the restriction map TC → TC |M , which is equal
to the map given by X 7→ X( · )|M . This proves (18).

Now, let us remark that for any closed 1-form u on C we have

ũ[Y,X] = Y
(
ũ(X)

)
−X

(
ũ(Y )

)
.

If u ∈ π∗E ⊂ ΩC , then ũ(Y ) = 0, for all Y ∈ F . So if Y ∈ F we have

ũ[Y,X] = Y
(
ũ(X)

)
.

We have ũ[Y,X] = ũ
(
∇(X)(Y )

)
by definition of the partial connection ∇ and

we can write Y
(
ũ(X)

)
= 〈Y, d

(
ũ(X)

)
〉. In other words, the diagram

TC/F
∇ //

eu
��

Hom(F, TC/F )

◦eu
��

OC
d // ΩC

// F∨

commutes. Thus, the larger diagram

TC
ρ //

eu ""EE
EE

EE
EE

E π∗E∨ ∇ //

eu
��

F∨ ⊗ π∗E∨

id⊗eu
��

// F∨|M ⊗ TM
η⊗id //

id⊗eu|M
��

F |M ⊗ TM

id⊗eu|M
��

OC
d // F∨ // F∨|M

η // F |M

��
TC |M

commutes as well. We can apply these considerations to u = t−s. Then ũ = t̃−s̃
and ũ|M = t̃|M . Thus the upper composition in this diagram represents the right
hand side of Equation (19), and the lower composition represents the left hand
side of Equation (19). This exhibits that (19) holds and finishes the proof of
the theorem. �
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3.2 The Batalin-Vilkovisky case

By a local system we mean a vector bundle (locally free sheaf of finite rank)
endowed with a flat connection. Every local system P on a manifold M has
an associated de Rham complex (P ⊗OM

Ω•
M , d), where d denotes the covariant

derivative.

Definition 3.6 Let (S,E, σ) be a polarized symplectic manifold and L, M
immersed Lagrangians, both transverse to E. Let P be a local system on M and
Q a local system on S. The derived hom from Q|L to P |M is the differential
Batalin-Vilkovisky module

RHomS

(
Q|L,P |M

)
=

(
Ω•

M ⊗Q∨|M ⊗ P, t
)

over the differential Gerstenhaber algebra

L eS M = (ΛTM , t̃) .

Here the tensor products are taken over OM . The OM -linear differential t is
multiplication by t and the C-linear differential d is covariant derivative with
respect to the induced flat connection on Q∨|M ⊗ P .

Remark 3.7 If we forget about the C-linear differential d and hence
the flat connections on P and Q, the underlying complex of OS-
modules RHomS(Q|L,P |M) represents the derived sheaf of homomorphisms
RHomOS

(Q|L, P ) in the derived category of sheaves of OS-modules.

For the exchange property in the Batalin-Vilkovisky case, we need the notion
of orientation on a Lagrangian foliation.

Definition 3.8 Let (S, σ) be a symplectic manifold and E a Lagrangian folia-
tion on S. An orientation of E is an isomorphism

ΛnE
∼−→ OS

of OS-modules. The corresponding nowhere vanishing section θ ∈ ΛnE∨ will be
called the orientation field of the orientation on E. A Lagrangian foliation (or
a polarized symplectic manifold) is called orientable, if it admits an orientation.

Theorem 3.9 Consider (S,E, σ), (S′, E′, σ′), C → S′ × S, M ′ → S′ and
L → S as in Theorem 3.5. Assume E and E′ are orientable. In addition, let
P ′ be a local system on S′ and Q a local system on S. Let P = π′

∗
P ′ and

Q′ = π∗Q be the pullbacks of our local systems to C. Then every orientation of
E′ defines a quasi-isomorphism of differential Batalin-Vilkovisky modules

RHomS
′×S

(
O|(M ′ × L), (P ⊗Q′∨)|C

)
−→ RHomS

(
Q|L,P |M

)
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of degree −n′, covering the corresponding canonical quasi-isomorphism of dif-
ferential Gerstenhaber algebras of Theorem 3.5. Every orientation of E defines
a quasi-isomorphism of differential Batalin-Vilkovisky modules

RHomS
′×S

(
O|(M ′ × L), (P ⊗Q′∨)|C

)
−→ RHomS

′
(
P ′

∨|M ′, Q′∨|L′
)

of degree −n, covering the other canonical quasi-isomorphism of differential
Gerstenhaber algebras of Theorem 3.5. Thus, if E and E′ are oriented, the
derived homs RHomS(Q|L,P |M) and RHomS

′(P ′∨|M ′, Q′∨|L′) are canonically
quasi-isomorphic, up to a degree shift n′ − n.

4 The virtual de Rham complex

Applying the exchange property to C = S = S′, but different polarizations E,
E′, we get the independence of the bracket [ , ] and the differential d from the
polarization. Hence we get globally defined Gerstenhaber algebra structures on
A and Batalin-Vilkovisky module structures on E .
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