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Abstract

Let M and N be Lagrangian submanifolds of a complex symplec-
tic manifold S. We construct a Gerstenhaber algebra structure on
TorPs (Om,On) and a compatible Batalin-Vilkovisky module structure
on &ty (Onr, On). This gives rise to a de Rham type cohomology the-
ory for Lagrangian intersections.
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Introduction

We are interested in intersections of Lagrangian submanifolds of holomorphic
symplectic manifolds. Thus we work over the complex numbers in the analytic
category.

Lagrangian intersection numbers: smooth case

Let S be a (complex) symplectic manifold and L, M Lagrangian submanifolds.
Since L and M are half-dimensional, the expected dimension of their intersection
is zero. Intersection theory therefore gives us the intersection number

#(LNM)
if the intersection is compact. In the general case, we get a class
[L N M]™ € Ag(L N M)
in degree zero Borel-Moore homology, such that in the compact case
#(L N M) = deg[L N M|,
If the intersection X = L N M is smooth,
X = cuop(E) N [X],

where F is the excess bundle of the intersection, which fits into the exact se-
quence

OHTxﬁTL‘X@TM‘X TS|X E 0

of vector bundles on X. The symplectic form o defines an isomorphism
Ts|x = Qg|x. Under this isomorphism, the subbundle T |x corresponds to
the conormal bundle N}/ /5" Thus we can rewrite our exact sequence as

0——=EY——=Ny,s® Ny g Qslx Qx 0,

which shows that the excess bundle E is equal to the cotangent bundle Qx.
Thus, in the smooth case

[X]vir — Ctop(E) — Ctop(QX) N [X] = (—1)”Ctop(TX) N [X] s

and in the smooth and compact case

F(L0M) = deglX] = (-1)" [ conlTx) = (-1)"X(X).
X
where 2n is the dimension of S and x(X) is the topological Euler characteristic
of X. This shows that we can make sense of the intersection number even if the
intersection is not compact: define the intersection number to be signed Euler
characteristic.



Intersection numbers: singular case

In [1], is was shown how to make sense of the statement that Lagrangian inter-
section numbers are signed Euler characteristics in the case that the intersection
X is singular. We introduced an integer invariant vx (P) € Z of the singularity
of the analytic space X at the point P € X. (Essentially, vx (P) is MacPherson’s
local Euler obstruction applied the the signed support of the intrinsic normal
cone of X at P.) The basic properties of vx (P) are

(i) vx : X — Zis a constructible function with respect to the Zariski topology
on X,

(ii) if X is smooth at P, then vx(P) = (—1)4mX

(iii) if X = Z(df) is the critical set of a holomorphic function f on an n-
dimensional manifold M, then vx(P) = (=1)"(1 — x(Fp)), where Fp is
the Milnor fibre of f at P.

If f is a holomorphic function on the manifold M, we consider the cotangent
bundle Qj; as a symplectic manifold. The zero section M, and the graph of
the closed 1-form df are Lagrangian submanifolds, and X = Z(df) is their
intersection.

The main theorem of [1] implies that if L and M are Lagrangian submanifolds
of the symplectic manifold S, with intersection X, then

#X = deg[ X" = x(X,vx),

the weighted Euler characteristic of X with respect to the constructible function
vx, which is defined as

X(X,vx) =Y i x({vx =1i}).

€L

In particular, arbitrary Lagrangian intersection numbers are always well-defined:
the intersection need not be smooth or compact. The integer vy (P) may be
considered as the contribution of the point P to the intersection X = L N M.

Categorifying intersection numbers: smooth case

To categorify the intersection number means to construct a cohomology theory
such that the intersection number is equal to the alternating sum of Betti num-
bers. If X is smooth (not necessarily compact) a natural candidate is (shifted)
holomorphic de Rham cohomology

#(X) = (~1)"x(X) = Y (=1)"" dime H' (X, (%, d)) -

Here (Q%,d) is the holomorphic de Rham complex of X and H' its hyperco-
homology. Of course, by the holomorphic Poincaré lemma, hypercohomology
reduces to cohomology.



Categorification: compact case

If the intersection X = L N M is compact, but not necessarily smooth, we have
#X =Y (1) dimg Extf, (Or, On)
i

= (=1)(=1) " dim¢ H' (X, &t} (O, Onr)) -
,J

If X is smooth, Extggs (Or,0n) = Qﬁ(, so this reduces to Hodge cohomology

#X = (~1)(=1) " dime H' (X, 9%).

4,3

This justifies using the sheaves Extzgs (O, O ) as replacements for the sheaves

QJX if X is not smooth any longer. To get finite-dimensional cohomology groups,
we will construct de Rham type differentials

d: Extly (Or,0n) — &ty (Or, On)
so that the hypercohomology groups
H' (X, (Extbs (Or,0wnm), d))

are finite dimensional, even if X is not compact. Returning to the compact case,
for any such d, we would necessarily have

#X =3 (~1)" " dime H' (X, (&t (Or, Oar), d)) -

Categorification: local case

Every symplectic manifold S is locally isomorphic to the cotangent bundle 2y
of a manifold N. The fibres of the induced vector bundle structure on S are
Lagrangian submanifolds, and thus we have defined (locally on S) a foliation
by Lagrangian submanifolds, i.e., a Lagrangian foliation. (Lagrangian foliations
are also called polarizations.) We may assume that the leaves or our Lagrangian
foliation of S are transverse to the two Lagrangians L and M whose intersection
we wish to study. Then L and M turn into the graphs of 1-forms on N. The
Lagrangian condition implies that these 1-forms on IV are closed. Without loss
of generality, we may assume that one of these 1-forms is the zero section of 2y
and hence identify M with N. By making M = N smaller if necessary, we may
assume that the closed 1-form defined by L is exact. Then L is the graph of the
1-form df, for a holomorphic function f on M. Thus the intersection L N M is
now the zero locus of the 1-form df:

X = Z(df).



This is the local case.
Multiplying by df defines a differential

S: ng — Qﬂ_ !
wr—df Nw.
Because df is closed, the differential s commutes with the de Rham differential
d: ), — Qﬂl Thus the de Rham differential passes to cohomology with

respect to s: ' _
d: hj( 7\/[75) - hj+1( ;\4’3)’

where b/ denotes the cohomology sheaves, which are coherent sheaves of Ox-
modules. Let us denote these cohomology sheaves by

ET=h(QY,s).
We have thus defined a complex of sheaves on X
(&*,d), )

where the £ are coherent sheaves of Ox-modules, and the differential d is C-
linear. It is a theorem of Kapranov [2], that the cohomology sheaves h*(E®,d)
are constructible sheaves on X and thus have finite dimensional cohomology
groups. It follows that the hypercohomology groups

H' (X, (E°,d))

are finite-dimensional as well.

Kapranov [2] also examines the relationship of (£°, d) with the perverse sheaf
of vanishing cycles on X. In fact, he proves that there is a spectral sequence
from the former to the latter. This implies that the constructible function

P (=1)" " dime Hipy (X, (€, d))

of fiberwise Euler characteristic of (£,d) is equal to vx. This achieves the
categorification in the local case. In particular, for the non-compact intersection
numbers we have

X(X,vx) =Y (-1 dime H (X, (€, d)) .

i

To make the connection with the compact case (and because this construc-
tion is of central importance to the paper), let us explain why

& =&ty (0L, 0n).

Denote the projection S = Qp; — M by 7. The 1-form on Qj; which cor-
responds to the vector field generating the natural C*-action on the fibres we



shall call a. Then da = o is the symplectic form on S. We consider the 1-form
s =a—7*df on S. Its zero locus in S is equal to the graph of df. Let us denote
the subbundle of 2g annihilating vector fields tangent to the fibres of © by FE.
Then e € Qg is a section of ¥ and we obtain a resolution of the structure sheaf
of Oy, over Og:

"HAQEVLE\/%OS 7

where 5 denotes the derivation of the differential graded Og-algebra A®*EVY given
by contraction with s. Taking duals and tensoring with Oy, we obtain a com-
plex of vector bundles (AEY |, s|ar) which computes &:tés (Or,0n). One
checks that (AEY|nr, s|ar) = (Qar, 5).

Categorification: global case

We now come to the contents of this paper. let S be a symplectic manifold and
L, M Lagrangian submanifolds with intersection X. Let us use the abbreviation
& = &rtﬁgs (Or,Ounr). The £ are coherent sheaves of Ox-modules. The main
theorem of this paper is that the locally defined de Rham differentials (1) do
not depend on the way we write S as a cotangent bundle, or, in other words,
that d is independent of the chosen polarization of S. Thus the locally defined
d glue and we obtain a globally defined canonical de Rham type differential

d:E — gL,

In the case that X is smooth, £/ = Q% and d is the usual de Rham differential.
We may call (£°,d) the virtual de Rham complez of the Lagrangian intersection
X. It categorifies Lagrangian intersection numbers in the sense that for the
local contribution of the point P € X to the Lagrangian intersection we have

vx(P) =Y (=1)"""dimc Hipy (X, (£,d)) .
i

Hence, for the non-compact intersection numbers we have

X(X,vx) = (1) dime H' (X, (€,d))

i

In particular, if the intersection is compact, we have written #X = x(X,vx)
as alternating sum of the Betti numbers of the hypercohomology groups of the
virtual de Rham complex.

Gerstenhaber and Batalin-Vilkovisky structures

The virtual de Rham complex (£°,d) is just one half of the story. There is also
the graded sheaf of Ox-algebras A® given by

A" = Tor%$ (01, Onr),



Locally, A® is given as the cohomology of (AT, s), in the above notation. The
Lie-Schouten bracket induces a C-linear bracket operation

[]:Ae@cA® — A°

of degree +1. We show that these locally defined brackets glue to give a globally
defined bracket making (A®, A, [, ]) a Gerstenhaber algebra.

Then £° is a sheaf of modules over A®. The bracket on A® and the differential
on £°* satisfy a compatibility condition, see (6). We say that (€, d) is a Batalin-
Vilkovisky module over the Gerstenhaber algebra (A°, [, ]).

In the case that L and M are oriented submanifolds, i.e., the highest exterior
powers of the normal bundles have been trivialized, we have an identification

Al =gt

Transporting the differential from £° to A® via this identification turns
(A%, A, [, ],d) into a Batalin-Vilkovisky algebra.

To prove these facts we have to study differential Gerstenhaber algebras and
differential Batalin-Vilkovisky modules over them. We will prove that locally
defined Gerstenhaber algebras and their Batalin-Vilkovisky modules are quasi-
isomorphic, making their cohomologies isomorphic and hence yielding the well-
definedness of the bracket and the differential.

DG category of Lagrangian submanifolds

Choose an afﬁI}e open cover i = (U,) of S. Then we associate to Lagrangians
L and M the Cech double complex

ce (L[, (&tzos (O, 0nm), d)) (2)

which computes H' (X, (&t (O, Onr),d)). Define a differential graded cate-
gory with objects the Lagrangian submanifolds of S and morphism spaces (2).
One can also enlarge this category to include d-branes (local systems on La-
grangian submanifolds).

Donaldson-Thomas invariants

Our original motivation for this research was a better understanding of
Donaldson-Thomas invariants. It is to be hoped that the moduli spaces giving
rise to Donaldson-Thomas invariants (spaces of stable sheaves of fixed determi-
nant on Calabi-Yau threefolds) are Lagrangian intersections, at least locally. We
have two reasons for believing this: first of all, the obstruction theory giving rise
to the virtual fundamental class is symmetric, a property shared by the obstruc-
tion theories of Lagrangian intersections. Secondly, at least heuristically, these
moduli spaces are equal to the critical set of the holomorphic Chern-Simons
functional.

Our exchange property should be useful for gluing virtual de Rham com-
plexes if the moduli spaces are only local Lagrangian intersections.



In this way we hope to construct a virtual de Rham complex on the
Donaldson-Thomas moduli spaces and thus categorify Donaldson-Thomas in-
variants.

1 Algebraic Preliminaries

1.1 The algebra K(FE,s) and its dual L(FE,s)

Let S be a manifold and E be a vector bundle on S. By K(E), we will always
mean the sheaf of graded Og-algebras A®*(EV), where EV is placed in degree
—1. By L(E), we will denote A*E, where E is placed in degree +1. We will
denote the natural pairing of EY and Eby X Jw € Og, for X € EY andw € E.

Lemma 1.1 There exists a unique extension of 1 to an action of the sheaf
of graded Og-algebras K(E) on the sheaf of graded Og-modules L(E), which
satisfies
(i) fiw= fw, for f € Og and w € L(E) (linearity over Og),
(i) X 2(wi Aws) = (X Jwi) Awa + (—=1)¥1wy A (X Jws), for X € EV and
wi,we € L(E), (the degree —1 part acts by derivations)
(it)) (X ANY)sw=X (Y sw), for XY € K(F), w € L(E) (action property)

Proor. Standard. The homomorphism X 4 : E — Og extends in a
unique way to a derivation of degree —1 on L(FE). For different X, Y these
derivations anticommute, which defines a morphism of Og-algebras K(F) —
Homo, (L(E), L(E)). O

Remark 1.2 Set (X,w) equal to the degree zero part of X sw. This defines
a perfect pairing K(F) ®oy L(E) — Og, identitying L(E) as the Og-dual of
K(E). One checks that

p(p—1) .
(X1 A AXpwi A Awy) = (=177 Y sign(0)(Xo() a51) - - (Xop) 2 5p) -
o€Sy

Lemma 1.3 For Xi,...,X, € EV, for s € E and w € L(E) we have

Xin AXpa(shw) =
p
(“1Ps A (XA A Xpow)+ > (1) (X s) XA X A Xpaw (3)

i=1
PROOF.Straightforward calculation.[]

Now turn things around and note that any section s € E defines a derivation
of degree +1 on K (F), which we shall denote by 5. It is the unique derivation
which extends the map EY — Og given by 5(X) = (X, s), for all X € EV. (Note
that this is not a violation of the universal sign convention, see Remark 1.5.)



Lemma 1.4 The pair (K(E),g) is a sheaf of differential graded algebras. Left
multiplication by s defines a differential on L(E) and the pair (L(E),s) is a
sheaf of differential graded modules over (K (E),s).

PROOF. We need to check that
SA(X ow) =3(X) sw+ (-1) X J(s Aw) (4)

for all w € L(E) and X € K(F). We may assume that X = X7 A ... A X,
where X,...,X, € EV. Then

'§(X):'§(X1/\.../\Xp):—i(—l)ig(Xi)XlA...E.../\Xp.

i=1

Hence (4) follows from (3). O
Remark 1.5 According to Formula (4), we have, if deg X + degw + 1 =0,
(3(X),w) + (~1)X(X,5 Aw) = 0.

This means that the derivation s and left multiplication by s are Og-duals of
one another. To explain the signs, not that we think of s and s as differentials
on the graded sheaves K(F) and L(E), and for differentials of degree +1 the
sign convention is

0=D(X,w) = (DX,w) + (-1)X(X, Dw) .
In particular, for deg X =1 and w = 1 we get 5(X) = (X, s).
Remark 1.6 We can summarize Formula (4) more succinctly as
[s,ix] = izx -

Definition 1.7 We will use the notation K(E,s) = (K(E),3) and L(E,s) =
(L(E), s). We will usually think of L(E, s) as a differential graded module over
the differential graded algebra K(FE,s). We will keep in mind that L(E, s) is
the Og-dual of K(FE,s).

Finally, let us note that there is a canonical isomorphism of complexes of
Og-modules

A"E[-n)|® K(E,s) — L(E, s) (5)
WA Aw, QX — (-1)”YXJ(W1/\.../\W”)7
where n is the rank of F. The sign is necessitated by the sign change in the

differential when shifting a complex. For that reason it seems more natural to
write A" E[—n] on the left rather than on the right.



1.2 Brackets vs. derivations

Definition 1.8 A bracket on K(FE) of degree +1 is a homomorphism
[]: K(E) @c K(E) — K(E)

of degree +1 satisfying;:
(i) [] is a graded C-linear derivation in each of its two arguments,
(ii) [] is graded commutative (not anti-commutative).
If [] satisfies in addition the Jacobi identity, we shall call [] a Lie bracket.

The sign convention for brackets of degree +1 is that the comma is treated
as carrying the degree 41, the opening and closing bracket as having degree
0. Thus, when passing an odd element past the comma, the sign changes. For
example, the graded commutativity reads:

Y, X] = (~1)X XY [ x ],

Proposition 1.9 Suppose we are given a derivation d € Derg (L(E),L(E)).
Then there exists a unique bracket [] of degree +1 on K(E) such that

AXAY 3w)+ (DX XAY Jdw+ (-1)N[X, Y] sw =
(~1)XX 4d(Y sw) + (-1 Y Ld(X sw), (6)
forall X, Y € K(E) and w € L(E).
Moreover, every bracket of degree +1 comes about in this way from a unique

d € Der (L(E), L(E)).
Finally, ] is Lie bracket if and only if d is a differential, i.e., [d,d] = d* = 0.

Before we proceed with the proof, let us remark that Formula (6) can be
rewritten as
(X, Y] sw = [[ix,d],iy](w)

or simply
ix,y) = [lix,d,iv]. (7)

Note also that [[ix,d], iy ] = [ix, [d,iv]].

PrROOF. We define the bracket [X,Y] € A~X"Y=1EV t0 be the Og-linear map
A=X"Y-1E  Og defined by

[X,V]ow=X2d(Y sw) + (-1 XYY Jd(X Jw) — (1) X AY Ldw.

To check that this expression for [X, Y] Jw is Og-linear in w, amounts to proving
that for every f € Og we have [[ix,df],iy] = 0. But this is easy: [[ix,df],iy| =
(—1)X[id~f(X), iy] = 0, by Remark 1.6.

10



With this definition, Formula (6) automatically holds, whenever degw =
—deg X —degY — 1, i.e., if the expression in (6) is of degree 0.

Fix X € K(F) and let us prove that [ X, -] is a derivation of degree deg X +1
on K(E). The claim is that

(X, YAZ]=[X,YI\NZ - (-1)* Y AN[X, Z].
This is equivalent to checking that

ix,yaz] = {x,y]olz — (1) %iy o i[x,2]

holds after evaluating on w of degree —deg X — degY — deg Z — 1. But in this
case we already know that (6) or rather (7) holds. (Note that one can commute
iy and i[x z).) Thus we may instead prove that

[lix, d),iy oiz] = [[ix,d],iv] oiz — (=1)%iy o [[ix,d],iz]

holds on elements w of the correct degree. But this latter formula is a general
property of composition of functions, so is always true.

In the same way we can prove that [] is a derivation in the first argument,
and that it is symmetric.

Let us now prove that (6) holds without restrictions on the degree of w.
Again, we may instead prove (7). Note that (6) is symmetric in X and Y. If X
and Y are of degree zero, the equation follows directly from the Leibnitz rule for
d. If X is of degree —1 and Y of degree zero, the equation is also tautological.
If X and Y are of degree —1, then iy and iy are derivations, so the iterated
commutator of derivations on the right hand side of (7), as well as the left hand
side are derivations. Hence it is enough to check (7) after evaluation on elements
w € E, for which it holds by definition. Finally, not that both sides of (7) are
derivations in the argument Y. So the general case reduces to case of degree
—1.

We leave the ‘Moreover’ and the ‘Finally’ to the reader. We will not use
them in the paper. [

Remark 1.10 For example, if E = Q,;, for a manifold M = S and d is the ex-
terior derivative, then [] is the Schouten-Nijenhuis bracket on polyvector fields.

Proposition 1.11 Given a derivation d € Der' (L(E),L(E)) and the cor-
responding bracket [] of degree +1 on K(E). Let s € E be a section and
5 € Der! (K(E),K(E)) the corresponding derivation. Then 5 is a derivation
with respect to the bracket [], if ds =0 € A%E.

PROOF. Note that [d, s] is equal to multiplication from the left by ds. Thus we
may write [d, s] = ds. Also, note that [s,ix] = i5x), for all X € K(F) and so
we have [[ix, s]Jy] = ®lizx),iy] = 0, for all X,Y € K(E). Using these facts,
a formal calculation with iterated commutators yields the following result:

(=1)%[lix, ds],iv] = izxy] — ixy) + (D ix sy

11



Thus, ds = 0 implies
31X, Y] = [3X,Y] - (-1)¥[X,3Y7],

which is the condition for § to be a derivation with respect to []. O

1.3 Differential Gerstenhaber algebras and differential
Batalin-Vilkovisky modules

We will formalize some of the previous considerations. We are always working
on a topological space S, with a ‘structure sheaf’ Og, i.e., a sheaf of commu-
tative C-algebras with unit (non-graded). Examples are manifolds with their
structure sheaf, or manifolds with the (pushforward of the) structure sheaf of a
submanifold.

Differential Gerstenhaber algebras
Definition 1.12 A Gerstenhaber algebra over Og is a sheaf of graded Og-
modules A, concentrated in non-positive degrees, A° = Og, endowed with

(i) a commutative (associative, of course) product A of degree 0 with unit,
making A an Og-algebra,

(ii) a Lie bracket [] of degree +1 (see Definition 1.8).

In our cases, the underlying Og-module of A will usually be coherent.

Definition 1.13 A differential Gerstenhaber algebra is a Gerstenhaber
algebra A over Og endowed with an additional C-linear map s : A — A of
degree +1 which satisfies

() 53] =3 =0,
(ii) 5 is a derivation with respect to A, in particular it is Og-linear,
(iii) $is a derivation with respect to [].

Thus, neglecting the bracket, a differential Gerstenhaber algebra is a sheaf
of differential graded algebras over Og.

Lemma 1.14 Let (A,3) be a differential Gerstenhaber algebra. Let I C Og
be the image of 5 : A= — A°. This is a sheaf of ideals in Og. Then the
cohomology h*(A,s) is a Gerstenhaber algebra over Og/I.

Proor. This is clear: the fact that s is a derivation with respect to both
products on A implies that the two products pass to h*(A4,5). Then all the
properties of the products pass to cohomology. [J

12



Morphisms of differential Gerstenhaber algebras

Definition 1.15 Let A and B be Gerstenhaber algebras over Og. A mor-
phism of Gerstenhaber algebras is a homomorphism ¢ : A — B of graded
Og-modules (of degree zero) which is compatible with both A and []:

() (X AY) = o(X) A e(Y),
(i) o([X,Y]) = [¢(X), p(Y)].

Definition 1.16 Let (A,3) and (B, t) be differential Gerstenhaber algebras. A
morphism of differential Gerstenhaber algebras is a pair (¢, { }), where ¢ : A —
B is a degree zero homomorphism of graded Og-modules, and { } : AQc A — B
is a degree zero C-bilinear map , such that
(i) d(XAY) = ¢(X) A d(Y) and ¢(3X) = t¢(X), so that ¢ : A — B is a
morphisms of differential graded Og-algebras,
(i) {} is symmetric, i.e., {Y, X} = (-=1)*Y{X,Y},
(iii) {} is a C-linear derivation with respect to A in each of its arguments,
where the A-module structure on B is given by ¢, in other words,

(X AY,Z} = ¢(X) AMY, Z} + (-1)XV (V) A {X, 2},
nd
’ (X,YAZY={X, Y} Ao(Z) + (-1)VZ{X, Z} no(Y),

(iv) the default of ¢ to commute with [] is equal to the default of the Og-linear
differentials to behave as derivations with respect to { },

SX, Y]~ [6(X), o(Y)] = (~1)XHX, Y} - (-1)F{5X, Y} - {X,3Y}. (8)

Remark 1.17 Suppose all conditions in Definition 1.16 except the last are
satisfied. Then both sides of the equation in Condition (iv) are symmetric
of degree one and C-linear derivations with respect to A in each of the two
arguments. Thus, to check Condition (iv), it suffices to check on C-algebra
generators for A.

Lemma 1.18 A morphism of differential Gerstenhaber algebras

(@, {}) 1 (4,3) — (B.%)

induces a morphism of Gerstenhaber algebras on cohomology. In other words,

h*(¢) : h*(A,5) — h*(B,1)
respects both A and [].

PrOOF. Any morphism of differential graded Og-algebras induces a morphism
of graded algebras when passing to cohomology. Thus h*(¢) respects A. The
fact that h*(¢) respects the Lie brackets, follows form Property (iv) of Defi-
nition 1.16. All three terms on the right hand side of said equation vanish in
cohomology. [

13



Definition 1.19 A quasi-isomorphism of differential Gerstenhaber algebras
is a morphism of differential Gerstenhaber algebras which induces an isomor-
phism of Gerstenhaber algebras on cohomology.

Differential Batalin-Vilkovisky modules

Definition 1.20 Let A be a Gerstenhaber algebra. A sheaf of graded Og-
modules L, with an action L of A, making L a graded A-module, is called a
Batalin-Vilkovisky module over A, if it is endowed with a C-linear map
d: L — L of degree +1 satisfying

(i) [d,d] = d*> =0,

(ii) Formula (6) holds: i[x,y] = [[ix,d],iy], for all X,Y € A.
Here ix is the endomorphism w — X Jw of L. The action property (XAY) Jw =
X 2 (Y Jw) translates into ixay = ix oiy.

In our applications, Batalin-Vilkovisky modules will always be coherent over
Og. Note that there is no multiplicative structure on L, so there is no require-
ment for the differential d to be a derivation.

Definition 1.21 A differential Batalin-Vilkovisky module over the dif-
ferential Gerstenhaber algebra (A4,5) is a Batalin-Vilkovisky module L for the
underlying Gerstenhaber algebra A, endowed with an additional C-linear map
s: L — L of degree +1 satisfying:
(i) [s,s] = s> =0,
(ii) (M, s) is a differential graded module over the differential graded algebra
(4,53), i.e., we have

$(X sw) =35(X) sw—+ (-1)X X Js(w),

for all X € A, w € L. More succinctly: [s,ix] = i5x)-
(iii) [d, 5] = 0.

Note that the differential s is necessarily Og-linear. This distinguishes it
from d.

Lemma 1.22 Let (L,s) be a differential Batalin-Vilkovisky module over the
differential Gerstenhaber algebra (A,s). Then h*(L,s) is a Batalin-Vilkovisky
module for the Gerstenhaber algebra h*(A,S).

ProoF. First, h*(M,s) is a graded h*(A,s)-module. The condition [d,s] = 0

implies that d passes to cohomology. Then the properties of d pass to cohomol-
ogy as well. [J
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Homomorphisms of differential Batalin-Vilkovisky modules

Definition 1.23 Let A and B be Gerstenhaber algebras and ¢ : A — B a
morphism of Gerstenhaber algebras. Let L be a Batalin-Vilkovisky module over
A and M a Batalin-Vilkovisky module over B. A homomorphism of Batalin-
Vilkovisky modules of degree n (covering ¢) is a degree n homomorphism of
graded A-modules ¢ : L — M (where the A-module structure on M is defined
via ¢), which commutes with d:

() $(X sw) = (~1)"F$(X) Jh(w),
(ii) de(w) = (—1)”sz/J(w).
We write the latter condition as [, d] = 0.

Definition 1.24 Let (4,3) and (B, t) be differential Gerstenhaber algebras and
(¢,{}) : (A,3) — (B,t) a morphism of differential Gerstenhaber algebras. Let
(L, s) be a differential Batalin-Vilkovisky module over (4,3) and (M, t) a differ-
ential Batalin-Vilkovisky module over (B, ~) A homomorphism of differential
Batalin-Vilkovisky modules of degree n covering (¢, { }) is a pair (¢,4), where
¥ : (L,s) — (M,t) is a degree n homomorphism of differential graded (A, 3)-
modules, where the (A4, 3)-module structure on (M,t) is through ¢. Moreover,

0 : L — M is a C-linear map, also of degree n, satisfying

(i) the commutator property
Yod— (=1)"dotp =(=1)"tod—dos, (9)

(ii) compatibility with the bracket { } property

S(XAY sw)+(—1)"EHG(X)AS(Y) sow+(—1)" X, Y Seh(w)
= (=1)"X$(X) J8(Y sw) + (=1) XY (V) J8(X sw) . (10)

Remark 1.25 If we use the same letter s to denote the Og-linear differentials
on L and M, we can rewrite the commutator conditions of Definition 1.24 more
succinctly as

[p,s] =0  [,d+[0,s]=0  [5,d =2?7.

Lemma 1.26 Let (¢,0) : (L,s) — (M,t) be a homomorphism of differential
Batalin- Vilkovisky modules over the morphism (¢,{}) : (A4,3) — (B,t) of dif-
ferential Gerstenhaber algebras. Then h*(v) : h*(L,s) — h*(M,t) is a ho-
momorphism of Batalin-Vilkovisky modules over the morphism of Gerstenhaber

algebras h*(¢) : h*(A,3) — h*(B,1).

PRrOOF. Evaluating the right hand side of Equation 9 on s-cocycles in L, yields
t-boundaries in M. O
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Invertible differential Batalin-Vilkovisky modules

Definition 1.27 We call the Batalin-Vilkovisky module L over the Gersten-
haber algebra A invertible, if, locally in S, there exists a section w® of L such
that the evaluation homomorphism

U°:A— L
X — (—1)750)( Jw°

is an isomorphism of sheaves of Og-modules. Any such w® will be called a (local)
orientation for L over A.

Note that if the degree of an orientation w® is n, then L* = 0, for all k > n,
by our assumption on A. Thus orientations always live in the top degree of L.

Moreover, if orientations exist everywhere locally, L™ is an invertible sheaf over
Os.

Lemma 1.28 Let L be an invertible Batalin-Vilkovisky module over the Ger-
stenhaber algebra A and assume that w® is a (global) orientation for L over A.
Then, transporting the differential d via U° to A yields a C-linear map of degree
+1 which we will call d° : A — A. It is characterized by the formula

d°(X) sw® =d(X Jw°).
It squares to 0 and it satisfies:
(—D)X[X, Y] =d°(X)AY + (~D)XX Ad°(Y) —d(X AY),  (11)

for all X, Y € A. In other words, d° is a generator for the bracket []|, making
A o Batalin-Vilkovisky algebra.

ProOOF. Follows directly from Formula (6) upon noticing that because w® is
top-dimensional, it is automatically d-closed: dw® = 0. [

Corollary 1.29 If the Gerstenhaber algebra admits an invertible Batalin-
Vilkovisky module then it is locally a Batalin-Vilkovisky algebra.

Remark 1.30 For example, let A = K(E) and L = L(E), for a vector bundle
E on S. Let the bracket [] on A correspond to the differential d on L via
Proposition 1.9. Then A is a Gerstenhaber algebra and L an invertible Batalin-
Vilkovisky module for A. Any non-vanishing section of A E, where n = rank F,
is an orientation for L.

As a special case, the Schouten algebra A = A®*Ty; of a manifold M is
a Gerstenhaber algebra and the de Rham complex L = 3, is an invertible
Batalin-Vilkovisky module for A. An orientation for L is the same thing as a
non-vanishing top-dimensional differential form on M. For orientable manifolds,
ie, QY = Oy, the Schouten algebra is a Batalin-Vilkovisky algebra. For
Calabi-Yau manifolds, i.e., Q}; = Og, a generator for the Batalin-Vilkovisky
algebra is given.
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Definition 1.31 Let (L,s) be a differential Batalin-Vilkovisky module over
the differential Gerstenhaber algebra (A4,3). Then (L, s) is called invertible,
if the underlying Batalin-Vilkovisky module L is invertible over the underlying
Gerstenhaber algebra A.

Proposition 1.32 Let (L,s) be an invertible differential Batalin- Vilkovisky
module over the differential Gerstenhaber algebra (A,S). Then under the iso-
morphism WU° defined by an orientation w°® of L over A, the differential s corre-
sponds to the differential s. In particular, the induced differential d° on A has
the property

[do7 §] =0,

besides satisfying (11). Hence (A,d°,3) is a differential Batalin-Vilkovisky
algebra.

Moreover, the cohomology h*(L, s) is an invertible Batalin- Vilkovisky module
over the Gerstenhaber algebra h*(A,s). We have h" (L, s) = L™ /I and the image
of any orientation of L over A under the quotient map L™ — L™/I gives an
orientation for h*(L,s) over h*(A,3).

PROOF. The equation s o ¥° = (—1)¥"U° o 5 follows immediately from
[s,ix] = fdgx) upon noticing that s(w) = 0. As W° is therefore an iso-
morphism of differential graded Og-modules, the cohomology is isomorphic:
h*(A,3) — h*(L, s). The rest follows from this. [J

Remark 1.33 For example, let E be a vector bundle on S, d a differential on
L = L(FE) and s a section of E such that ds = 0. Consider the bracket []
induced on A = K(E) from d via Proposition 1.9 and the differential § of A
dual to s as in Remark 1.5. Then (A4,53) is a differential Gerstenhaber algebra
and (L, s) an invertible differential Batalin-Vilkovisky module.

Example 1.34 As a special case, consider a closed 1-form s on a manifold
M. Left multiplication by s defines the differential s on the de Rham complex
L = Q3;. We have the induced derivation s on the Schouten algebra A = A*T)y,.
Then (€Q°,s) is an invertible differential Batalin-Vilkovisky module over the
differential Gerstenhaber algebra (A*Thy, s).

Oriented homomorphisms of invertible Batalin-Vilkovisky modules

Definition 1.35 Let ¢ : A — B be a morphism of Gerstenhaber algebras
and ¥ : L — M a homomorphism of invertible Batalin-Vilkovisky modules
covering ¢. Let wj and wj, be orientations for L and M, respectively. The
homomorphism ¢ : L — M is said to preserve the orientations (or be
oriented) if ¥ (w9) = wyy).

Lemma 1.36 Suppose given oriented invertible Batalin-Vilkovisky modules L

and M over the Gerstenhaber algebras A and B, making A and B into Batalin-
Vilkovisky algebras. Suppose ¥ : L — M 1is an oriented homomorphism of
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Batalin- Vilkovisky modules. Then under the identifications of L and M with
A and B given by w} and w§;, the map ¢ : L — M corresponds to ¢ : A —
B. Hence ¢ : A — B commutes with d°. Thus ¢ is a morphism of Batalin-
Vilkovisky algebras: it respects A, [] and d°.

Definition 1.37 Let (¢,0) : (L,s) — (M,t) be a homomorphism of invertible
differentiable Batalin-Vilkovisky modules over (¢,{}) : (4,3) — (B,t). Let w$
and w$, be orientations for L and M, respectively. We call (1, ) oriented if
Y(wr) =wpr and §(wr) = 0.

Proposition 1.38 Suppose (¢,9) : (L,s,w$) — (M,t,w3,) is an oriented ho-
momorphism of oriented invertible differential Batalin- Vilkovisky modules over

(6, {}) : (A,3) — (B,t). Then (A,3,[],d°) and (B,t,[],d°) are differential
Batalin- Vilkovisky algebras. Transporting § : L — M wia the identifications of
L and M with A and B to a map 6° : A — B, satisfying

8°(X) swar = (—=1)°X6(X swy),
we get a triple N
(0.{}.6°) : (A4,5,[],d°) — (B, 1,[].d°),

which satisfies the following conditions:

(i) ¢ :(A,38) — (B,t) is a morphism of differential graded algebras,
(ii) the commutator property
pod® —d°op=1t08°—6°03,
or, by abuse of notation, [¢,d°] + [6°,3] =0
(i11) the map 6° is a potential for the bracket { },
{X,V}=6(X)Ao(Y) + d(X)N°(Y) = 8°(X AY),

(iv) the default of ¢ to preserve [| equals the default of § to be a derivation
with respect to { }, Equation (8),

Thus (¢,{},9°) is a morphism of differential Batalin-Vilkovisky alge-
bras.

The Lie bracket [] is determined by its potential d°, and the bracket {} is
determined by its potential 6°. Thus, in a certain sense, the two brackets are
redundant. Moreover, Condition (iv) is implied by Conditions (ii) and (iii).

Remark 1.39 A morphism of differential Batalin-Vilkovisky algebras
(¢7 { }760) : (Aa g’ H?do) — (B7£ Ha do)

induces on cohomology
h* () : (h*(A,3),[].d°) — (P*(B,1),[],d°)

a morphism of Batalin-Vilkovisky algebras.
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2 Symplectic Geometry

Let S be a symplectic manifold and let o denote the symplectic form on S. Let
us choose the identification of tangent and cotangent vectors given by

Tg — Qg
X—o(,X).

2.1 Lagrangian foliations and Euler sections

A Lagrangian foliation is an integrable distribution H C Tg, where H C T
is a Lagrangian subbundle. All leaves of the foliation H are then Lagrangian
submanifolds of S.

2.2 Lagrangian foliations and transverse Lagrangians

Let S be a symplectic manifold with symplectic form o. Let E be a Lagrangian
foliation. Think of sections of E as differential forms on S.

Lemma 2.1 Let M be a Lagrangian submanifold of S which is everywhere
transverse to E. Then there exists a unique section s of E, such that ds = o
and M = Z(s). Conversely, if s is any section of E such that ds = o, then Z(s)
18 a Lagrangian submanifold.

Thus we have a canonical one-to-one correspondence between sections s of
FE such that ds = ¢ and Lagrangian submanifolds of S transverse to E.

Definition 2.2 We call s the Euler vector field of M with respect to E.

Lemma 2.3 Let s be the Euler section of E defining the Lagrangian subman-
ifold M. Let H be any Lagrangian foliation transverse to E. Then under
the canonical isomorphism E = HY, the section s maps to a closed form:

ds=0¢€ A2HV.

PROOF. The canonical isomorphism E = HVY is the composition £ — Qg —
HV. The form ds € AH" is the projection of the symplectic form via Q% —
AZHY. This latter projection is 0. O

2.3 The extra structures on £ = &t and A = 7or

Let M and N be Lagrangian submanifolds of the symplectic manifold S. Let
Oz = Oy ® On be the structure sheaf of the intersection Z = M N N. Write
A® = Tor_;(Opr,On), so that A is a sheaf of graded Og-modules concentrated
in non-positive degrees, A° = Oz. Write also £ = &xt'(Or, On). Thus €
is a sheaf of graded Og-modules. We will define on A a canonical structure
of Gerstenhaber algebra over Oz and on £ a canonical structure of invertible
Batalin-Vilkovisky module over A. Any orientation on N, i.e., trivialization of
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Q};, gives rise to an orientation of the invertible Batalin-Vilkovisky module &£
and hence to the structure of Batalin-Vilkovisky algebra with generator on A.
We will define these structures on A and £ locally, and then glue.

The local construction

Let E be a Lagrangian foliations of S, transverse everywhere to both M and N.
Here we will show how E gives (canonically) rise to the structure of Gerstenhaber
algebra on A and invertible Batalin-Vilkovisky module on £.

In a later section we will prove that these structures do not depend on the
choice of E and hence glue, as locally such E can always be found.

Let s be the Euler section of E defining M. Via Tg — (g think of s as a
differential form. This form we can restrict to N, the restriction we will also
denote by s. Asds = o on S, and o restricts to 0 on IV, because N is Lagrangian,
we see that s is closed on N.

Now, by Example 1.34, we have the differential Gerstenhaber algebra
(A*Tn,s) and its invertible differential Batalin-Vilkovisky module (2%, s).
Thus, by Proposition 1.32, h*(2%, s) is an invertible Batalin-Vilkovisky module
over the Gerstenhaber algebra h*(A*Tn,s).

Recall that L(F,s) = (A*E,s) is the Og-dual of K(E,s) = (A*EY,3), and
SO

(Q¥,s) =(A°E,s)|ny = L(E,s) ®os On = Homoy, (K(E, s),ON) .
Therefore, ‘ ‘
R (Qy, ) = &t (Om, On),
as K(E,s) — Oy is an Og-resolution of Ops. Thus, h*(Q%,s) = £.
Similarly,
(A.TN,g) = (A.EV7§)|N = K(E,S) Rog On,
and hence ‘
(AT, 3) = TorZ (Ou, On),

in other words, h*(A*Ty,3) = A.

We conclude that A is a Gerstenhaber algebra and £ an invertible Batalin-
Vilkovisky module over A. Note that these extra structures on A4 and £ are
determined in a canonical way by E. Note also, that non-vanishing sections of
Q% define orientations of (2%, s) over (A*Tn,s) and hence orientations for €
over A.

3 Derived Lagrangian intersections on polarized
symplectic manifolds
Let (S,0) be a symplectic manifold of dimension 2n.. An immersed La-

grangian of S is an unramified morphism 4 : L. — S, where L is a manifold of
dimension n, such that i*o € €, vanishes.
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A polarized symplectic manifold (S, E, o) is a symplectic manifold (5, o)
together with a Lagrangian foliation £ C Tg.

Definition 3.1 Let (S, E,0) be a polarized symplectic manifold and L, M
immersed Lagrangians of S which are both transverse to E. Then the derived

intersection
Lmg M

is the sheaf of differential Gerstenhaber algebras (ATM,f) on M, where ¢ is
the derivation on AT); induced by the restriction to M of the Euler section
te EC Qg of L.

Since dt = o, and M is Lagrangian, the restriction of ¢ to M is closed, and so
t is a derivation with respect to the Schouten bracket on ATy, making (AT, t)
a differential Gerstenhaber algebra.

Remark 3.2 After passing to suitable étale neighborhoods of L in S we can
assume that L is embedded (not just immersed) in S and that L admits a
globally defined Euler section ¢ on S. This defines the derived intersection étale
locally in M, and the global derived intersection is defined by gluing in the étale
topology on M.

Remark 3.3 The derived intersection L Mg M depends a priori on the polar-
ization E. We will see later that different polarizations lead to locally quasi-
isomorphic derived intersections. (The quasi-isomorphism is not canonical, as
it depends on the choice of a third polarization transverse to both of the po-
larizations being compared. It is not clear that such a third polarization can
necessarily be found globally.)

Remark 3.4 The derived intersection does not seem to be symmetric. We will
see below that L Mg M = M Mg L, where S = (S, —0), but only if S is endowed
with a different polarization, transverse to E. Then the issue of change of
polarization of Remark 3.3 arises.

3.1 The exchange property: polarized case

Given two symplectic manifolds S’, S, of dimensions 2n’ and 2n, a symplectic
correspondence between S’ and S is a manifold C of dimension n+n’, together
with morphisms 7’ : C — S’ and 7 : C — S, such that

(i) 7o =7""0’ (as sections of QZ),

(ii) C — S’ x S is unramified.
Thus a symplectic correspondence is an immersed Lagrangian of S xS = (S x
S,o—0d').

Let C — S’ x S be a symplectic correspondence. We say that the immersed

Lagrangian L — S is transverse to C, if
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(i) for every (Q,P) € C xg L we have that
Tele®Tolp — Tslx(q)

is surjective, hence the pullback L' = C xg L is a manifold of dimension

n/

(ii) the natural map L' — S’ is unramified (and hence L’ is an immersed
Lagrangian of S').
By exchanging the roles of S and S’ we also get the notion of transversality to
C for immersed Lagrangians of S’

Exchange property setup

Let (S,FE,0) and (S, E’,0’) be polarized symplectic manifolds. Consider a
transverse symplectic correspondence C' — S’x S. This means that C — S’xS
is transverse to the foliation E’ x E of S’ x S. In particular, the composition

To — 7*Tg — w*EY

is surjective (recall that Ts/FE = EY). Hence the foliation E C Ts pulls back
to a foliation F' C T¢ of rank n’. We have the exact sequence of vector bundles

0—F —Tc—7m'EY —0.

Similarly, the foliation £’ C Tg pulls back to a foliation F’ C T¢ of rank n
with the exact sequence

0—>F/—>TC—>7r'*E/v—>0.

Moreover, F' and F’ are transverse foliations of C' and so we have F/&F = To =
7*E"Y @ 7" EV, and canonical identifications F = 7/*E’Y and F' = m*EV.
Now assume given immersed Lagrangians L of S and M’ of S’. Assume
both are transverse to C. Then we obtain manifolds L’ and M by the pullback
diagram
L —

l g
C T

M—C ——

lulﬂ,

M/ > S/

n<—t~

Note that L’ is then an immersed Lagrangian for S’ and M an immersed La-
grangian for S.

Finally, we assume that L and M are transverse to E and that M’ and L' are
transverse to E’. As a consequence, L’ is transverse to F’ and M is transverse
to F.
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Theorem 3.5 Let (S, E,0) and (S',E’',c’) be polarized symplectic manifolds,
and C — S’ x S a transverse symplectic correspondence. Let M' — S’ and
L — S be immersed Lagrangians, both transverse to C, such that L and M
are transverse to E and M’ and L' are transverse to E’, with notation as in
(12). Then there are canonical quasi-isomorphisms of differential Gerstenhaber
algebras

(M/ x L) @g/xsc — Lmg M,
and

(M'x L)mg o C— M mg L.
In particular, the derived intersections L xg M and M' x5 L' are canonically
quasi-isomorphic.

PROOF. Passing to étale neighborhoods of L in S and M’ in S’ will not change
anything about either derived intersection L xg M or M’ xz L', so we may
assume, without loss of generality, that

(i) L is embedded (not just immersed) in S (and same for M’ in S’),

(ii) L admits a global Euler section ¢ with respect to F on S (and M’ has the
Euler section s’ in E’ on S’)

Then the Euler section of M’ with respect to £’ on S’ is —s’. Thus the derived
intersection L x g M is equal to (AT, t) and the derived intersection M’ Xgr L'
equals (AT, —5).

Pulling back the 1-form ¢ via 7, we obtain a 1-form on C, which we shall,
by abuse of notation, also denote by ¢. Similarly, pulling back s’ via 7’ we get
the 1-form s’ on C. The difference t — s’ is closed on C, and thus we have the
differential Gerstenhaber algebra (ATo,t — 3'). We remark that it is equal to
(M'"< L)Rg ., 4 C.

Recall that we have the identification T = 7/* E"Y @n* EV. Under this direct
sum decomposition ¢ — § splits up into two components, —3" and ¢. Hence we
obtain the decomposition

(ATe,t—3) =77 (AE",-5) @ 7" (AEY,7)

of differential graded Oc-algebras.

Recall that Og: — Oy induces a quasi-isomorphism of differential graded
Og-algebras (AE’V,—E') — Oypr. Because the pullback M = M’ xg C is
transverse, we get an induced quasi-isomorphism

™ (AE",-§) — Oun

of differential graded O¢-algebras. Tensoring with 7*(AEY,t), we obtain the
quasi-isomorphism

(ATo,t—3") — (AEY, 1)l
Noting that EV | = Ths, because M is an immersed Lagrangian in S transverse
to E, we see that (AEY,t)|ar = (AT, t) and so we have a quasi-isomorphism
of differential graded O¢-algebras

¢ (ATo,t —3) — (ATy,t). (13)
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For analogous reasons, we also have the quasi-isomorphism
(,25/ : (ATc,?f y) — (ATL/, 754) .

The proof will be finished, if we can enhance ¢ and ¢’ by brackets, making
them morphisms of differential Gerstenhaber algebras. We will concentrate on
¢. The case of ¢’ follows by symmetry.

Thus we shall define a bracket

{ } : ATC K¢ ATC — ATM 5 (14)

such that (¢, {,}) becomes a morphism of differential Gerstenhaber algebras.
We shall need a certain symmetric bilinear form

n:N]\\;I/C@OM NJ\\/4/C—>OM’ (15)

where Ny ¢ is the normal bundle of M in C. This bilinear map will be canon-
ical, so we can construct it étale locally on C'. Thus we shall assume that M is
embedded in S and has the Euler section s with respect to E. We also assume
that the closed 1-form s — s’ on C' is exact. Let I be the ideal of M in S. Then
there exists a unique regular function f € I such that df = s — s’. The fact
that f € I? follows because s and s’ vanish in Q¢|ar, so df vanishes in Qc¢|as.
Then the Hessian of f is a symmetric bilinear form

H(f) : NJV[/C ®OM NM/C — OM

Claim. The bilinear form H(f) is non-degenerate.
To prove the claim, let us start by putting H(f) into the composition

H(f)
Te|m HNM/CHNXI/CHQCW )

and noting that it suffices to prove that this composition has rank n’ at every
point of M. We also note that the above composition is equal to the restriction
to M of the composition

Te =7*E"Y @ n*EY I O¢ d Qc .

So it suffices to prove that the restriction to M of
w’*E’Vi>Oc*d>Qc ,

which is an Ojy-linear map, has rank equal to n’ everywhere. But this follows

directly from the fact that s’ € 7/ E’ is a regular section of a vector bundle of

rank n’ whose zero locus is exactly M. This latter fact, in turn, follows from

the transversality of the pullback M = M’ xg C. Thus the claim is proved.

Note that this claim uses the transversality of C' to E' x E in an essential way.
We define the form 7 mentioned above (15) to be the inverse of H(f).
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Now we are ready to construct the bracket (14). We use the foliation F' C T¢.
It defines a partial connection

V:T¢/F — FY ®0,. Tc/F,
by the rule

V: Tc/F—>7'(0moC(F,Tc/F)
X+F+— [, X+F|+F.

In other words,
VX+F)Y)=Vy(X+F)=Y, X+ F|+F.

Abusing notation, we also write V(X)(Y) = [V, X]. By the usual formulas we
can transport V onto the exterior powers of T¢/F. Or we can remark that
A(T¢/F) is equal to the quotient of AT by the ideal generated by F' and the
Schouten bracket respects this ideal. Hence the same rule V(X) = [-, X] gives
rise to a well-defined C-linear map

V: A(Te/F) — Homo,, (F,A(Tc/F)),

which satisfies the Leibnitz rule.
In our context, we obtain

V:m*AEY — FY ®@p, 7 AE" .

To get the signs right, we will consider the elements of the factor FV in this
expression to have degree zero.

Let us write the projection ATc — 7*AEY as p. We identify FV|y; with
Nyp/o and (m*AEY)[y with ATy. Then ¢ is the composition of p with restric-
tion to M. We now define for XY € AT

{(X, Y} =n(V(pX) | AV(pY)n) - (16)
In this formula, ‘A’ denotes the homomorphism
(Nir/c ®0c ATum) @oc (Nagje ®oc ATv) — (Nype ®o0c Nipje) @0 ATu
VRXQUWRY — 1w X AY.

There is no sign correction in this definition, because the elements of Ny, . are
considered to have degree zero, by our sign convention. We have also extended
the map 7 linearly to

1 (Nije ®oc Nipje) ®oc ATy — AT .

Claim. The conditions of Definition 1.16 are satisfied by (¢, { }).
All but the last condition follow easily from the definitions. Let us check
Condition (iv). We use Remark 1.17. The C-algebra AT is generated in degrees
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0 and —1. As generators in degree —1, we may take the basic vector fields of a
coordinate system for C. We choose this coordinate system such that M is cut
out by a subset of the coordinates. Then, if we plug in any of these generators
of degree —1 for both X and Y in Formula (8), every term vanishes. Also, if we
plug in terms of degree 0 for both X and Y, both sides of (8) vanish for degree
reasons. By symmetry, we thus reduce to considering the case where X is of
degree —1, i.e., a vector field on C, and Y is of degree 0, i.e., a regular function
on C.
Hence we need to prove that for all X € T and g € O¢ we have

X(9)|ar = p(X)|ar (9lar) = {(F = 5)X. g} — H{X, g} . (17)

We will prove that

X(9)lr — p(X)Iu (glnr) = {5 -5)X, g} (18)

and B N
{(t—9)X, g} =t{X,g}. (19)

Equation (18) involves only M, not L, and Equation (19) involves only E, not
E’. Together, they imply Equation (17).

All terms in these three equations are Og-linear in X and derivations in
g, and may hence be considered as O¢-linear maps Te — Der(Oc, Opr). As
Der(Oc¢, On) = Homo, (¢, Onr) = Te| M, we may also think of them as Oc-
linear maps Te — To|ar-

For example, the O¢-linear map

Te — Teolm (20)
X+—{E-3)X, -}

Is equal to the composition

df

Tc Oc—12

n

Qc FY|m Flm Telw ,

if we choose df = s — s’, as above. The the commutative diagram

d
T, —Y 0, —2+q,
Te|m Qolvy — FV|u ! Flm Te|m
| P A

H(f
NM/C%NM/C

and the fact that 7 is the inverse of H(f), proves that (20) is equal to the
composition

Te Telm——Tc|um ,
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where p is the projection onto the the second summand of the decomposition
Telmu =Tv @ Nyye

given by the foliation F' transverse to M in C. If we denote by ¢ the projection
onto the first summand, we see that the map

Te — Telu (21)
X — p(X)|m (- [m)

is equal to

Te Telm——Tc|um -

Thus (20) and (21) sum up to the restriction map Te — T¢|p, which is equal
to the map given by X +— X (-)|ps. This proves (18).
Now, let us remark that for any closed 1-form u on C' we have

aly, X] =Y (a(X)) - X (a(Y)).
Ifuen*E CQc, thenu(Y) =0, forallY € F. Soif Y € F we have
aly, X] =Y (a(X)).

We have u[Y, X] = u(V(X)(Y)) by definition of the partial connection V and
we can write Y (@(X)) = (Y,d(@(X))). In other words, the diagram

To/F Y Hom(F, Tc/F)
| |
Oc Qc Y

commutes. Thus, the larger diagram

®id
TC*p>W*EVJ>FV®W*EV*>FV|M®TML>F|M®TM

\ J{a lid@ﬂ iid@ﬁw[ lid@fﬂM
u
n

Oc Fv FY|n Flu

|

Telm

commutes as well. We can apply these considerations to u = t—s. Then @ = t—3
and u|y = ﬂ a - Thus the upper composition in this diagram represents the right
hand side of Equation (19), and the lower composition represents the left hand
side of Equation (19). This exhibits that (19) holds and finishes the proof of
the theorem. [J
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3.2 The Batalin-Vilkovisky case

By a local system we mean a vector bundle (locally free sheaf of finite rank)
endowed with a flat connection. Every local system P on a manifold M has
an associated de Rham complex (P ®p,, %, d), where d denotes the covariant
derivative.

Definition 3.6 Let (S, E,o0) be a polarized symplectic manifold and L, M
immersed Lagrangians, both transverse to E. Let P be a local system on M and
Q@ alocal system on S. The derived hom from Q|L to P|M is the differential
Batalin-Vilkovisky module

RHoms (Q|L, PIM) = (23, © Q"|m ® P,t)

over the differential Gerstenhaber algebra

Lmng M = (ATA[,t) .

Here the tensor products are taken over Oy;. The Oj;-linear differential ¢ is
multiplication by ¢ and the C-linear differential d is covariant derivative with
respect to the induced flat connection on QY| @ P.

Remark 3.7 If we forget about the C-linear differential d and hence
the flat connections on P and @, the underlying complex of Og-
modules RHomg(Q|L, P|M) represents the derived sheaf of homomorphisms
RHomo(Q|L, P) in the derived category of sheaves of Og-modules.

For the exchange property in the Batalin-Vilkovisky case, we need the notion
of orientation on a Lagrangian foliation.

Definition 3.8 Let (5, 0) be a symplectic manifold and E a Lagrangian folia-
tion on S. An orientation of F is an isomorphism

AE =5 Og

of Og-modules. The corresponding nowhere vanishing section § € A"E"Y will be
called the orientation field of the orientation on F. A Lagrangian foliation (or
a polarized symplectic manifold) is called orientable, if it admits an orientation.

Theorem 3.9 Consider (S,E,o0), (S',E',¢'), C — S'" xS, M' — S and
L — S as in Theorem 3.5. Assume E and E' are orientable. In addition, let
P’ be a local system on S’ and Q a local system on S. Let P = 7' P’ and
Q' = 7*Q be the pullbacks of our local systems to C. Then every orientation of
E' defines a quasi-isomorphism of differential Batalin-Vilkovisky modules

RHomg 5 (O|(M' x L), (P& Q")|C) — RHoms (Q|L, P|M)
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of degree —n', covering the corresponding canonical quasi-isomorphism of dif-
ferential Gerstenhaber algebras of Theorem 3.5. FEvery orientation of E defines
a quasi-isomorphism of differential Batalin-Vilkovisky modules

RHomg ¢ (O|(M’ x L), (P® Q"")|C) — RHomg (P"'|M',Q""|L)

of degree —n, covering the other canonical quasi-isomorphism of differential
Gerstenhaber algebras of Theorem 3.5. Thus, if E and E' are oriented, the
derived homs RHomg(Q|L, P|M) and R?’bmg/(P’v\M’, Q'V|L") are canonically
quasi-isomorphic, up to a degree shift n' —n.

4 The virtual de Rham complex

Applying the exchange property to C = S = S’, but different polarizations E,
E', we get the independence of the bracket [, ] and the differential d from the
polarization. Hence we get globally defined Gerstenhaber algebra structures on
A and Batalin-Vilkovisky module structures on &.
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