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1. Introduction

This paper explores analogies between the Weil proof of the Riemann Hypothesis
for function fields and the geometry of the adeles class space, which is the non-
commutative space underlying the spectral realization of the zeros of the Riemann
zeta function constructed in [10]. Our purpose is to build a dictionary between
the algebro-geometric setting of algebraic curves, divisors, the Riemann–Roch
formula, and the Frobenius map, around which the Weil proof is built, and the
world of noncommutative spaces, cyclic cohomology and KK-theory, index formu-
lae, and the thermodynamical notions of quantum statistical mechanics, which,
as we already argued in [11], provide an analog of the Frobenius in characteristic
zero via the scaling action on the dual system.
The present work builds upon several previous results. The first input is the
spectral realization of [10], where the adeles class space was first identified as
the natural geometric space underlying the Riemann zeta function, where the
Weil explicit formula acquires an interpretation as a trace formula. In [10] the
analytic setting is that of Hilbert spaces, which provide the required positivity,
but the spectral realization only involves the critical zeros. In [11], we provided a
cohomological interpretation of the trace formula, using cyclic homology. In the
setting of [11], the analysis is as developed by Ralph Meyer in [32] and uses spaces
of rapidly decaying functions instead of Hilbert spaces. In this case, all zeros
contribute to the trace formula, and the Riemann Hypothesis becomes equivalent
to a positivity question. This mirrors more closely the structure of the two main
steps in the Weil proof, namely the explicit formula and the positivity Tr(Z∗Z ′) >
0 for correspondences (see below). The second main building block we need
to use is the theory of endomotives and their quantum statistical mechanical
properties we studied in [11]. Endomotives are a pseudo-abelian category of
noncommutative spaces that naturally generalize the category of Artin motives.
They are built from semigroup actions on projective limits of Artin motives. The
morphisms in the category of endomotives generalize the notion of correspondence
given by algebraic cycles in the product used in the theory of motives to the
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setting of étale groupoids, to account naturally for the presence of the semigroup
actions. Endomotives carry a Galois action inherited from Artin motives and they
have both an algebraic and an analytic manifestation. The latter provides the
data for a quantum statistical mechanical system, via the natural time evolution
associated by Tomita’s theory to a probability measure carried by the analytic
endomotive. The main example that is of relevance to the Riemann zeta function
is the endomotive underlying the Bost–Connes quantum statistical mechanical
system of [5]. One can pass from a quantum statistical mechanical system to
the “dual system” (in the sense of the duality of type III and type II factors
in [6], [36]), which comes endowed with a scaling action induced by the time
evolution. A general procedure described in [11] shows that there is a “restriction
map” (defined as a morphism in the abelian category of modules over the cyclic
category) from the dual system to a line bundle over the space of low temperature
KMS states of the quantum statistical mechanical system. The cokernel of this
map is not defined at the level of algebras, but it makes sense in the abelian
category and carries a corresponding scaling action. We argued in [11] that the
induced scaling action on the cyclic homology of this cokernel may be thought of
as an analog of the action of Frobenius on étale cohomology. This claim is justified
by the role that this scaling action of R∗

+, combined with the action of Ẑ∗ carried
by the Bost–Connes endomotive, has in the trace formula, see [10], [11] and §4 of
[13]. Further evidence for the role of the scaling action as Frobenius is given in
[20], where it is shown that, in the case of function fields, for a natural quantum
statistical mechanical system that generalizes the Bost–Connes system to rank
one Drinfeld modules, the scaling action on the dual system can be described in
terms of the Frobenius and inertia groups.
In the present paper we continue along this line of thought. We begin by re-
viewing the main steps in the Weil proof for function fields, where we highlight
the main conceptual steps and the main notions that will need an analog in the
noncommutative geometry setting. We conclude this part by introducing the
main entries in our still tentative dictionary. The rest of the paper discusses in
detail some parts of the dictionary and provides evidence in support of the pro-
posed comparison. We begin this part by recalling briefly the properties of the
Bost–Connes endomotive from [11] followed by the description of the “restriction
map” corresponding to the inclusion of the ideles class group CK = A∗

K/K
∗ in the

noncommutative adeles class space XK = AK/K
∗. We discuss its relation to the

exact sequence of Hilbert spaces of [10] that plays a crucial role in obtaining the
spectral realization as an “absorption spectrum”.
We then concentrate on the geometry of the adeles class space over an arbitrary
global field and the restriction map in this general setting, viewed as a map of
cyclic modules. We introduce the actions ϑa and ϑm (with a and m respectively
for additive and multiplicative) of A∗

K on suitable function spaces on AK and on
CK and the induced action on the cokernel of the restriction map in the category
of cyclic modules. We prove the corresponding general form of the associated
Lefschetz trace formula, as a cohomological reformulation of the trace formula of
[10] using the analytical setting of [32].
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The form of the trace formula and the positivity property that is equivalent, in
this setting, to the Riemann Hypothesis for the corresponding L-functions with
Grössencharakter, suggest by comparison with the analogous notions in the Weil
proof a natural candidate for the analog of the Frobenius correspondence on the
curve. This is given by the graph of the scaling action. We can also identify the
analog of the degree and co-degree of a correspondence, and the analog of the
self intersection of the diagonal on the curve, by looking at the explicit form of
our Lefschetz trace formula. We also have a clear analog of the first step in the
Weil proof of positivity, which consists of adjusting the degree by multiples of the
trivial correspondences. This step is possible, with our notion of correspondences,
due to a subtle failure of Fubini’s theorem that allows us to modify the degree by
adding elements in the range of the “restriction map”, which play in this way the
role of the trivial correspondences. This leaves open the more difficult question of
identifying the correct analog of the principal divisors, which is needed in order
to continue the dictionary.
We then describe how to obtain a good analog of the algebraic points of the
curve in the number field case (in particular in the case of K = Q), in terms of
the thermodynamical properties of the system. This refines the general procedure
described in [11]. In fact, after passing to the dual system, one can consider the
periodic orbits. We explain how, by the result of [10], these are the noncommuta-
tive spaces where the geometric side of the Lefschetz trace formula concentrates.
We show that, in turn, these periodic orbits carry a time evolution and give rise to
quantum statistical mechanical systems, of which one can consider the low tem-
perature KMS states. To each periodic orbit one can associate a set of “classical
points” and we show that these arise as extremal low temperature KMS states of
the corresponding system. We show that, in the function field case, the space ob-
tained in this way indeed can be identified, compatibly with the Frobenius action,
with the algebraic points of the curve, albeit by a non-canonical identification.
Passing to the dual system is the analog in characteristic zero of the transition
from Fq to its algebraic closure F̄q. Thus, the procedure of considering periodic
orbits in the dual system and classical points of these periodic orbits can be seen
as an analog, for our noncommutative space, of considering points defined over
the extensions Fqn of Fq in the case of varieties defined over finite fields (cf. [11]
and §4 of [13]).
We analyze the behavior of the adeles class space under field extensions and
the functoriality question. We then finish the paper by sketching an analogy
between some aspects of the geometry of the adeles class spaces and the theory
of singularities, which may be useful in adapting to this context some of the
techniques of vanishing and nearby cycles.

2. A look at the Weil proof

In this preliminary section, we briefly review some aspects of the Weil proof of
the Riemann Hypothesis for function fields, with an eye on extending some of the
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basic steps and concept to a noncommutative framework, which is what we will
be doing in the rest of the paper.

In this section we let K be a global field of positive characteristic p > 0. One
knows that, in this case, there exists a smooth projective curve over a finite field
Fq, with q = pr for some r ∈ N, such that

(2.1) K = Fq(C)

is the field of functions of C. For this reason, a global field of positive character-
istic is called a function field.

We denote by ΣK the set of places of K. A place v ∈ ΣK is a Galois orbit of
points of C(F̄q). The degree nv = deg(v) is its cardinality, namely the number of
points in the orbit of the Frobenius acting on the fiber of the natural map from
points to places

(2.2) C(F̄q) → ΣK.

This means that the fiber over v consists of nv conjugate points defined over Fqnv ,
the residue field of the local field Kv.

The curve C over Fq has a zeta function of the form

(2.3) ZC(T ) = exp

(
∞∑

n=1

#C(Fqn)

n
T n

)
,

with logZC(T ) the generating function for the number of points of C over the
fields Fqn . It is customary to use the notation

(2.4) ζK(s) = ζC(s) = ZC(q−s).

It converges for <(s) > 1. In terms of Euler product expansions one writes

(2.5) ζK(s) =
∏

v∈ΣK

(1 − q−nvs)−1.

In terms of divisors of C, one has equivalently

(2.6) ζK(s) =
∑

D≥0

N(D)−s,

where the norm of the divisor D is N(D) = qdeg(D).

The Riemann–Roch formula formula for the curve C states that

(2.7) `(D) − `(κC −D) = deg(D) − g + 1,

where κC is the canonical divisor on C, with degree deg(κC) = 2g − 2 and
h0(κC) = g, and `(D) the dimension of H0(D). Both deg(D) and N(D) are well
defined on the equivalence classes obtained by adding principal divisors, that is,

(2.8) D ∼ D′ ⇐⇒ D −D′ = (f),

for some f ∈ K∗. The Riemann–Roch formula (2.7) also implies that the zeta
function ζK(s) satisfies the functional equation

(2.9) ζK(1 − s) = q(1−g)(1−2s)ζK(s).
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The zeta function ζK(s) can also be written as a rational fraction

(2.10) ZC(T ) =
P (T )

(1 − T )(1 − qT )
, T = q−s ,

where P (T ) is a polynomial of degree 2g and integer coefficients

(2.11) P (T ) =

2g∏

j=1

(1 − λjT ).

In particular, one has

(2.12) #C(Fqn) = qn + 1 −
2g∑

j=1

λj.

Another important reformulation of the zeta function can be given in terms of
étale cohomology. Namely, the coefficients #C(Fqn) that appear in the zeta
function can be rewritten as

(2.13) #C(Fqn) = #Fix(Frn : C̄ → C̄).

The Lefschetz fixed point formula for étale cohomology then shows that

(2.14) #C(Fqn) =

2∑

i=0

(−1)iTr
(
Frn|Hi(C̄,Q`)

)
.

Thus, the zeta function can be written in the form

(2.15) ζK(s) =

2∏

i=0

(
exp

(
∞∑

n=1

Tr(Frn|Hi(C̄,Q`))
q−sn

n

))(−1)i

.

The analog of the Riemann hypothesis for the zeta functions ζK(s) of function
fields was stated in 1924 by E. Artin as the property that the zeros lie on the line
<(s) = 1/2. Equivalently, it states that the complex numbers λi of (2.11), which
are are the eigenvalues of the Frobenius acting on H 1(C̄,Q`), satisfy

(2.16) |λj | =
√
q.

The Weil proof can be formulated either using étale cohomology, or purely in
terms of the Jacobian of the curve, or again (equivalently) in terms of divisors
on C ×C. We follow this last viewpoint and we recall in detail some of the main
steps in the proof.

2.1. Correspondences and divisors. Correspondences Z, given by divisors on
C × C, form a ring under composition

(2.17) Z1 ? Z2 = (p13)∗(p
∗
12Z1 • p∗23Z2),

with pij : C × C × C → C × C the projections, and • the intersection product.
The ring has an involution

(2.18) Z ′ = σ(Z)

where σ is the involution that exchanges the two copies of C in the product C×C.
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The degree d(Z) and the codegree d′(Z) are defined as the intersection numbers

(2.19) d(Z) = Z • (P × C) and d′(Z) = Z • (C × P ), ∀P ∈ C.

They satisfy the relations

(2.20) d(Z ′) = d′(Z), and d(Z1 ? Z2) = d(Z1)d(Z2).

The correspondences P×C and C×P are called trivial correspondences. One can
consider the abelian group Divtr(C×C) generated by these trivial correspondence
and take the quotient

(2.21) C(C) := Div(C × C)/Divtr(C × C).

It is always possible to change the degree and codegree of a correspondence Z by
adding a multiple of the trivial correspondences P × C and C × P , so that, for
any element in C we find a representative Z ∈ Corr with

(2.22) d(Z) = d′(Z) = 0.

One also wants to consider correspondences up to linear equivalence,

(2.23) Z1 ∼ Z2 ⇐⇒ Z1 − Z2 = (f),

where (f) is a principal divisor on C × C. Thus, one can consider

Pic(C × C) = Div(C × C)/ ∼
and its quotient P(C) modulo the classes of the trivial correspondences.

A correspondence Z is effective if it is given by an effective divisor on C × C,
namely if it is a combination Z =

∑
i niZi of curves Zi ⊂ C ×C with coefficients

ni ≥ 0. We write Z ≥ 0 to mean its effectiveness. An effective correspondence
Z ≥ 0 can be viewed as a multivalued map

(2.24) Z : C → C, P 7→ Z(P ),

of which the divisor is the graph, with the product (2.17) given by the composi-
tion.

The trace of a correspondence Z on C × C is the expression

(2.25) Tr(Z) = d(Z) + d′(Z) − Z • ∆,

with ∆ the diagonal (identity correspondence) and • the intersection product.
This is well defined on P(C) since Tr(Z) = 0 for principal divisors and trivial
correspondences.

Consider a correspondence of degree g of the form Z =
∑
anFrn, given by a

combination of powers of the Frobenius. Then Z can be made effective by adding
a principal correspondence which is defined over Fq and which commutes with
Fr.

This can be seen as follows. The Riemann–Roch theorem ensures that one can
make Z effective by adding a principal correspondence, over the field k(P ), where
k is the common field of definition of the correspondence Z and of the curve (cf.
[34]) and P is a generic point. A correspondence of the form Z =

∑
anFrn is in
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fact defined over Fq hence the principal correspondence is also defined over Fq.
As such it automatically commutes with Fr (cf. [37], p. 287).

Notice however that, in general, it is not possible to modify a divisor D of degree
one on C to an effective divisor in such a way that the added pricipal divisor has
support on the same Frobenius orbit. An illustrative example is given in Chapter
4 of [13].

2.2. The explicit formula. The main steps in the Weil proof of RH for function
fields are

(1) The explicit formula
(2) Positivity

Let K be a global field and let AK denote its ring of adeles. Let ΣK denote the set
of places of K. Let α be a non-trivial character of AK which is trivial on K ⊂ AK.
We write

(2.26) α =
∏

v∈ΣK

αv,

for the decomposition of α as a product of its restrictions to the local fields
αv = α|Kv .
Consider the bicharacter

(2.27) 〈z, λ〉 := λz, for (z, λ) ∈ C × R∗
+.

Let N denote as above the range of the norm | · | : CK → R∗
+. Then N⊥ ⊂ C

denotes the subgroup

(2.28) N⊥ := {z ∈ C|λz = 1, ∀λ ∈ N}.
Consider then the expression

(2.29)
∑

ρ∈C/N⊥|L(χ̃,ρ)=0

f̂(χ̃, ρ),

with L(χ̃, ρ) the L-function with Grössencharakter χ, where χ̃ denotes the exten-

sion to CK of the character χ ∈ ĈK,1. Here f̂(χ̃, ρ) is the Fourier transform

(2.30) f̂(χ̃, ρ) =

∫

CK

f(u)χ̃(u) |u|ρ d∗u.

In the case where N = qZ (function fields), the subgroup N⊥ is nontrivial and
given by

(2.31) N⊥ =
2πi

log q
Z.

Since in the function field case the L-fuctions are functions of q−s, there is a
periodicity by N⊥, hence we need to consider only ρ ∈ C/N⊥. In the number
field case this does not matter, since N = R∗

+ and N⊥ is trivial.
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The Weil explicit formula is the remarkable identity [42]

(2.32) ĥ(0) + ĥ(1) −
∑

ρ∈C/N⊥|L(χ̃,ρ)=0

ĥ(χ̃, ρ) =
∑

v∈ΣK

∫ ′

(K∗
v ,αv)

h(u−1)

|1 − u| d
∗u.

Here the Fourier transform ĥ is as in (2.30). The test function h has compact
support and belongs to the Schwartz space S(CK). As soon as h(1) 6= 0 the
integrals in the right hand side are singular so that one needs to specify how to
take their principal value. This was done in [42] and it was shown in [10] that
the same principal value can in fact be defined in the following unified way.

Definition 2.1. For a local field K and a given (non-trivial) additive character
β of K, one lets %β denote the unique distribution extending d∗u at u = 0, whose
Fourier transform

(2.33) %̂(y) =

∫
%(x)β(xy) dx

satisfies the vanishing condition %̂(1) = 0.

Then by definition the principal value
∫ ′

is given by

(2.34)

∫ ′

(K,β)

f(u−1)

|1 − u| d
∗u = 〈%β, g〉, with g(λ) =

f((λ+ 1)−1)

|λ+ 1| ,

where 〈%β, g〉 denotes the pairing of the distribution %β and the function g(λ).
This makes sense provided the support of f is compact which implies that g(λ)
vanishes identically in a neighborhood of λ = −1.
The Weil explicit formula is a far reaching generalization of the relation between
primes and zeros of the Riemann zeta function, originally due to Riemann [33].

2.3. Riemann–Roch and positivity. Weil positivity is the statement that, if
Z is a nontrivial correspondence in P(C) (i.e. as above a correspondence on C×C
modulo trivial ones and up to linear equivalence), then

(2.35) Tr(Z ? Z ′) > 0.

This is proved using the Riemann–Roch formula on C to show that one can
achieve effectivity. In fact, using trivial correspondences to adjust the degree one
can assume that d(Z) = g. Then the Riemann–Roch formula (2.7) shows that if
D is a divisor on C of degree deg(D) = g then there are effective representatives
in the linear equivalence class of D. The intersection of Z ⊂ C × C with P × C
defines a divisor Z(P ) on C with

deg(Z(P )) = d(Z) = g.

Thus, the argument above shows that there exists fP ∈ K∗ such that Z(P )+(fP )
is effective. This determines an effective divisor Z + (f) on C × C. Since Z is
effective, we can write it as a multivalued function

(2.36) P 7→ Z(P ) = Q1 + · · · +Qg.
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The product Z ? Z ′ is of the form

(2.37) Z ? Z ′ = d′(Z)∆ + Y,

where ∆ is the diagonal in C×C and Y is the effective correspondence such that
Y (P ) is the divisor on C given by the sum of points in

{Q ∈ C|Q = Qi(P ) = Qj(P ), i 6= j}.
One sees this from the description in terms of intersection product that it is given
by the multivalued function

(2.38) (Z ? Z ′)(Q) =
∑

i,j

∑

P∈Uij(Q)

P,

where
Uij(Q) = {P ∈ C|Qi(P ) = Qj(P ) = Q.

One can separate this out in the contribution of the locus where Qi = Qj for
i 6= j and the part where i = j,

(Z ? Z ′)(Q) = U(Q) + Y (Q).

Notice that

(2.39) #{P ∈ C|Q = Qi(P ), for some i = 1, . . . , g} = d′(Z).

Thus, for i = j we obtain that the divisor U(Q) =
∑

i

∑
P∈Uii(Q) P is just

d′(Z)∆(Q), while for i 6= j one obtains the remaining term Y of (2.37).

In the case g = 1, the effective correspondence Z(P ) = Q(P ) is single valued and
the divisor (Z ? Z ′)(P ) of (2.38) reduces to the sum of points in

U(Q) = {P ∈ C|Q(P ) = Q}.
There are d′(Z) such points so one obtains

(2.40) Z ? Z ′ = d′(Z)∆, with Tr(Z ? Z ′) = 2d′(Z) ≥ 0,

since for g = 1 one has ∆ • ∆ = 0 and d′(Z) ≥ 0 since Z is effective.

In the case of genus g > 1, the Weil proof proceeds as follows. Let κC be a choice
of an effective canonical divisor for C without multiple points, and let {f1, . . . , fg}
be a basis of the space H0(κC). One then considers the function C →Mg×g(Fq)
to g × g matrices

(2.41) P 7→M(P ), with Mij(P ) = fi(Qj(P )).

and the function K : C → Fq given by

(2.42) K(P ) = det(M(P ))2.

The function P 7→ K(P ) of (2.42) is a rational function with (2g−2)d′(Z) double
poles. In fact, K(P ) is a symmetric function of the Qj(P ), because of the squaring
of the determinant. The composition P 7→ (Qj(P )) 7→ K(P ) is then a rational
function of P ∈ C. The poles occur (as double poles) at those points P ∈ C for
which some Qi(P ) is a component of κC . The canonical divisor κC has degree
2g − 2. This means that there are (2g − 2)d′(Z) such double poles.
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For Z ? Z ′ = d′(Z)∆ + Y as above, the intersection number Y • ∆ satisfies the
estimate

(2.43) Y • ∆ ≤ (4g − 4) d′(Z).

In fact, the rational function K(P ) of (2.42) has a number of zeros equal to
(4g − 4) d′(Z). On the other hand, Y • ∆ counts the number of times that
Qi = Qj for i 6= j. Since each point P with Qi(P ) = Qj(P ) for i 6= j produces a
zero of K(P ), one sees that Y • ∆ satisfies the estimate (2.43). Notice that, for
genus g > 1 the self intersection of the diagonal is the Euler characteristic

(2.44) ∆ • ∆ = 2 − 2g = χ(C).

Moreover, we have

(2.45) d(Z ? Z ′) = d(Z)d′(Z) = g d′(Z) = d′(Z ? Z ′).

Thus, using again the decomposition (2.37) and the definition of the trace of a
correspondence (2.25), together with (2.44) and (2.45) one obtains

(2.46)
Tr(Z ? Z ′) = 2g d′(Z) + (2g − 2) d′(Z) − Y • ∆

≥ (4g − 2) d′(Z) − (4g − 4) d′(Z) = 2d′(Z) ≥ 0.

This gives the positivity (2.35).

In the Weil proof of RH for function fields, one concentrates on a particular type
of correspondences, namely those that are of the form

(2.47) Zn,m = m∆ + nFr,

for n,m ∈ Z, with Fr the Frobenius correspondence.

Notice that, while the correspondence depends linearly on n,m ∈ Z, the expres-
sion for the trace gives

(2.48) Tr(Zn,m ? Z ′
n,m) = 2gm2 + 2(1 + q −N)mn+ 2gqn2,

where N = #C(Fq). In particular, (2.48) depends quadratically on (n,m). In
the process of passing from a correspondence of degree g to an effective corre-
spondence, this quadratic dependence on (n,m) is contained in the multiplicity
d′(Z). Notice, moreover, that the argument does not depend on the torsion part
of the ring of correspondences.

2.4. A tentative dictionary. In the rest of the paper we illustrate some steps
towards the creation of a dictionary relating the main steps in the Weil proof
described above to the noncommutative geometry of the adeles class space of a
global field. The noncommutative geometry approach has the advantage that it
provides (see [10], [32], [11]) a Lefschetz trace formula interpretation for the Weil
explicit formula and that it gives a parallel formulation for both function fields
and number fields. Parts of the dictionary sketched below are very tentative at
this stage, so we mostly concentrate, in the rest of the paper, on illustrating
what we put in the first few lines of the dictionary, on the role of the scaling
correspondence as Frobenius and its relation to the explicit formula.
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Frobenius correspondence Z(f) =
∫
CK
f(g)Zg d

∗g

Trivial correspondences Elements of the range V

Adjusting the degree Fubini step
by trivial correspondences on the test functions

Correspondences Bivariant elements Z(f) ⇒ Γ(f)

Degree of a correspondence Pointwise index

Riemann–Roch Index theorem

degZ(P ) ≥ g ⇒ Z + (f) effective d(Γ) > 0 ⇒ Γ +K onto

Effective correspondences Epimorphism of C∗-modules

Lefschetz formula Bivariant Chern of Γ(f)
(by localization on the graph Z(f))

3. Quantum statistical mechanics and arithmetic

The work of Bost–Connes [5] first revealed the presence of an interesting interplay
between quantum statistical mechanics and Galois theory. More recently, several
generalizations [12], [14], [15], [11], [20], [25], [26] have confirmed and expanded
this viewpoint. The general framework of interactions between noncommutative
geometry and number theory described in [29], [30], [13], [31] recast these phe-
nomena into a broader picture, of which we explore in this paper but one of many
facets.
The basic framework that combines quantum statistical mechanics and Galois
theory can be seen as an extension, involving noncommutative spaces, of the cat-
egory of Artin motives. In the setting of pure motives (see [27]), Artin motives
correspond to the subcategory generated by zero dimensional objects, with mor-
phisms given by algebraic cycles in the product (in this case without the need to
specify with respect to which equivalence relation). Endomotives were introduced
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in [11] as noncommutative spaces of the form

(3.1) AK = Ao S,

where A is an inductive limit of reduced finite dimensional commutative algebras
over the field K, i.e. a projective limit of Artin motives, and S is a unital abelian
semigroup of algebra endomorphisms ρ : A → A. These have the following
properties: the algebra A is unital; the image e = ρ(1) ∈ A is an idempotent,
for all ρ ∈ S; each ρ ∈ S is an isomorphism of A with the compressed algebra
eAe. A general construction given in [11] based on self maps of algebraic varieties
provides a large class of examples over different fields K. We are mostly interested
here in the case where K is a number field and for part of our discussion below we
will concentrate on a special case (the Bost–Connes endomotive) over the field
K = Q.
Endomotives form a pseudo-abelian category where morphisms are correspon-
dences given by AK–BK-bimodules that are finite and projective as right modules.
These define morphisms in the additive KK-category and in the abelian category
of cyclic modules. In fact, in addition to the algebraic form described above,
endomotives also have an analytic structure given by considering, instead of the
K-algebra (3.1) the C∗-algebra

(3.2) C(X) o S,

whereX denotes the totally disconnected Hausdorff space X = X(K̄) of algebraic
points of the projective limit of Artin motives. There is a canonical action of the
Galois group G = Gal(K̄/K) by automorphisms of the C∗-algebra (3.2) globally
preserving C(X). We refer the reader to [11] for a more detailed discussion
of algebraic and analytic endomotives and the properties of morphisms in the
corresponding categories.
If the endomotive is “uniform” in the sense specified in [11], the space X comes
endowed with a probability measure µ that induces a state ϕ on the C ∗-algebra
(3.2). The general Tomita theory of modular automorphism groups in the context
of von Neumann algebras [35] shows that there is a natural time evolution for
which the state ϕ is KMS1. One can then consider the set Ωβ of low temperature
KMS states for the resulting quantum statistical mechanical system. One also
associates to the system (A, σ) of the C∗-algebra with the time evolution its dual

system (Â, θ), where the algebra Â = A oσ R is obtained by taking the crossed
product with the time evolution and θ is the scaling action of R∗

+

(3.3) θλ(

∫
x(t)Ut dt) =

∫
λit x(t)Ut dt.

One then constructs an R∗
+ equivariant map

(3.4) π : Âβ → C(Ω̃β,L1),

from a suitable subalgebra Âβ ⊂ Â of the dual system to functions on a principal

R∗
+-bundle Ω̃β over the low temperature KMS states of the system, with values

in trace class operators. Since traces define morphisms in the cyclic category, the
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map (3.4) can be used to construct a morphism δ = (Tr◦π)\ at the level of cyclic
modules

(3.5) Â\
β

(Tr◦π)\

−→ C(Ω̃β)\.

This map can be loosely thought of as a “restriction map” corresponding to the
inclusion of the “classical points” in the noncommutative space. One can then
consider the cokernel of this map in the abelian category of cyclic modules. In
[11] we denoted the procedure described above “cooling and distillation” of en-
domotives. We refer the reader to [11] for the precise technical hypotheses under
which this procedure can be performed. Here we only gave an impressionistic
sketch aimed at recalling briefly the main steps involved.

3.1. The Bost–Connes endomotive. The main example of endomotive we
will consider here in relation to the geometry of the adeles class space is the
Bost–Connes system. This can be constructed as an endomotive over K = Q,
starting from the projective system Xn = Spec(An), with An = Q[Z/nZ] the
group ring of Z/nZ. The inductive limit is the group ring A = Q[Q/Z] of Q/Z.
The endomorphism ρn associated to an element n ∈ S of the (multiplicative)
semigroup S = N = Z>0 is given on the canonical basis er ∈ Q[Q/Z], r ∈ Q/Z,
by

(3.6) ρn(er) =
1

n

∑

ns=r

es

The corresponding analytic endomotive is the crossed product C ∗-algebra

C∗(Q/Z) o N.

The Galois action is given by composing a character χ : An → Q̄ with an element
g of the Galois group G = Gal(Q̄/Q). Since χ is determined by the n-th root of
unity χ(e1/n), one obtains the cyclotomic action.
In the case of the Bost–Connes endomotive, the state ϕ on A induced by the
measure µ on X = Ẑ is of the form

(3.7) ϕ(f) =

∫

Ẑ

f(1, ρ) dµ(ρ),

and the modular automorphism group restricts to the C ∗-algebra as the time
evolution of the BC system, cf. [5], [11] and §4 of [13].
The dual system of the Bost–Connes system is best described in terms of com-
mensurability classes of Q-lattices. In [12] the Bost–Connes system is reinter-
preted as the noncommutative space describing the relation of commensurability
for 1-dimensional Q-lattices up to scaling. One can also consider the same equiv-
alence relation without dividing out by the scaling action. If we let G1 denote
the groupoid of the commensurability relation on 1-dimensional Q-lattices and
G1/R

∗
+ the one obtained after moding out by scaling, we identify the C ∗-algebra

of the Bost–Connes system with C∗(G1/R
∗
+) (cf. [12]). The algebra Â of the dual
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system is then obtained in the following way (cf. [11]). There is a C ∗-algebra

isomorphism ι : Â → C∗(G1) of the form

(3.8) ι(X)(k, ρ, λ) =

∫

R

x(t)(k, ρ)λit dt

for (k, ρ, λ) ∈ G1 and X =
∫
x(t)Ut dt ∈ Â.

3.2. Scaling as Frobenius in characteristic zero. In the general setting de-
scribed in [11] one denotes by D(A, ϕ) the cokernel of the morphism (3.5), viewed
as a module in the cyclic category. The notation is meant to recall the depen-
dence of the construction on the initial data of an analytic endomotive A and a
state ϕ. The cyclic module D(A, ϕ) inherits a scaling action of R∗

+ and one can
consider the induced action on the cyclic homology HC0(D(A, ϕ)). We argued
in [11] that this cyclic homology with the induced scaling action plays a role
analogous to the role played by the Frobenius action on étale cohomology in the
algebro-geometric context. Our main supporting evidence is the Lefschetz trace
formula for this action that gives a cohomological interpretation of the spectral
realization of the zeros of the Riemann zeta function of [10]. We return to discuss
the Lefschetz trace formula for the more general case of global fields in §6 below.

The main results of [10] show that we have the following setup. There is an exact
sequence of Hilbert spaces

(3.9) 0 → L2
δ(AQ/Q

∗)0 → L2
δ(AQ/Q

∗) → C2 → 0,

which defines the subspace L2
δ(AQ/Q

∗)0 by imposing the conditions f(0) = 0 and

f̂(0) = 0 and a suitable decay condition imposed by the weight δ. The space
L2

δ(AQ/Q
∗)0 fits into another exact sequence of Hilbert spaces of the form

(3.10) 0 → L2
δ(AQ/Q

∗)0
E→ L2

δ(CQ) → H → 0

where the map E is defined by

(3.11) E(f)(g) = |g|1/2
∑

q∈Q∗

f(qg), ∀g ∈ CQ = A∗
Q/Q

∗.

The map is equivariant with respect to the actions of CQ i.e.

(3.12) E ◦ ϑa(γ) = |γ|1/2ϑm(γ) ◦ E

where (ϑa(γ)ξ)(x) = ξ(γ−1x) for ξ ∈ L2
δ(AQ/Q

∗)0 and similarly ϑm(γ) is the
regular representation of CK.

We showed in [11] that the map E, translated from the context of Hilbert spaces
to that of nuclear spaces as in [32], has a natural interpretation in terms of the
“cooling and distillation process” for the BC endomotive. In fact, we showed in
[11] that, if (A, σ) denotes the BC system, then the following properties hold.

(1) For β > 1 there is a canonical isomorphism

(3.13) Ω̃β ' Ẑ∗ × R∗
+ ' CQ

of Ω̃β with the space of invertible 1-dimensional Q-lattices.
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(2) For X ∈ Â and f = ι(X) ∈ C∗(G1), the cooling map (3.5) takes the form

(3.14) δ(X)(u, λ) =
∑

n∈N=Z>0

f(1, nu, nλ), ∀(u, λ) ∈ CQ ' Ω̃β.

One can compare directly the right hand side of (3.14) with the map E (up
to the normalization by |j|1/2) written as in (3.11) by considering a function

f(ρ, v) = f(1, ρ, v) and its unique extension f̃ to adeles where f is extended by 0

outside Ẑ × R∗ and one requires the parity

(3.15) f̃(−u,−λ) = f(u, λ) .

This gives then

(3.16)
∑

n∈N

f(1, nu, nλ) =
1

2

∑

q∈Q∗

f̃(q j), where j = (u, λ) ∈ CQ.

4. The adeles class space

Let K be a global field, with AK its ring of adeles.

Definition 4.1. The adeles class space of a global field K is the quotient AK/K
∗.

When viewed from the classical standpoint this is a “bad quotient” due to the
ergodic nature of the action which makes the quotient ill behaved topologically.
Thus, following the general philosophy of noncommutative geometry, we describe
it by a noncommutative algebra of coordinates, which allows one to continue
to treat the quotient as a “nice quotient” in the context of noncommutative
geometry.
A natural choice of the algebra is the cross product

(4.1) C0(AK) o K∗ with the smooth subalgebra S(AK) o K∗.

A better description can be given in terms of groupoids.
Consider the groupoid law GK = K∗ n AK given by

(4.2) (k, x) ◦ (k′, y) = (kk′, y), ∀k, k′ ∈ K∗, and ∀x, y ∈ AK with x = k′y,

with the composition (4.2) defined whenever the source s(k, x) = x agrees with
the range r(k′, y) = k′y.

Lemma 4.2. The algebras (4.1) are, respectively, the groupoid C ∗-algebra C∗(GK)
and its dense subalgebra S(GK).

Proof. The product in the groupoid algebra is given by the associative convolution
product

(4.3) (f1 ∗ f2) (k, x) =
∑

s∈K∗

f1(k s
−1, s x)f2(s, x),

and the adjoint is given by f ∗(k, x) = f(k−1, k x).
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The functions (on the groupoid) associated to f ∈ S(AK) and Uk are given,
respectively, by

(4.4)
f(1, x) = f(x) and f(k, x) = 0 ∀k 6= 1

Uk(k, x) = 1 and Ug(k, x) = 0 ∀g 6= k.

The product f Uk is then the convolution product of the groupoid. �

The algebra S(GK) is obtained by considering finite sums of the form

(4.5)
∑

k∈K∗

fk Uk, for fk ∈ S(AK).

The product is given by the convolution product

(4.6) (Uk f U
∗
k )(x) = f(k−1x),

for f ∈ S(AK), k ∈ K∗, and x ∈ AK.

4.1. Cyclic module. We can associate to the algebra S(GK) of the adeles class
space an object in the category of Λ-modules. This means that we consider the
cyclic module S(GK)\ and the two cyclic morphisms

(4.7) εj : S(GK)\ → C

given by

(4.8) ε0(
∑

fk Uk) = f1(0) and ε1(
∑

fk Uk) =

∫

AK

f1(x) dx

and in higher degree by

(4.9) ε\
j(a

0 ⊗ · · · ⊗ an) = εj(a
0 · · · an).

The morphism ε1 is given by integration on AK with respect to the additive Haar
measure. This is K∗ invariant, hence it defines a trace on S(GK). In the case of
K = Q, this corresponds to the dual trace τϕ for the KMS1-state ϕ associated to
the time evolution of the BC system. The morphism ε0 here takes into account
the fact that we are imposing a vanishing condition at 0 ∈ AK (cf. [11] and [13]
Chapter 4). In fact, the Λ-module we associate to S(GK) is given by

(4.10) S(GK)\0 := Ker ε\
0 ∩ Ker ε\1.

Note that since S(GK) is non-unital, the cyclic module S(GK)\ is obtained using
the adjunction of a unit to S(GK).

4.2. The restriction map. Consider the ideles A∗
K = GL1(AK) of K with their

natural locally compact topology induced by the map

(4.11) A∗
K 3 g 7→ (g, g−1).

We can see the ideles class group CK = A∗
K/K

∗ as a subspace of the adeles class
space XK = AK/K

∗ in the following way.

Lemma 4.3. The pairs ((k, x), (k′, y)) ∈ GK such that both x and y are in A∗
K

form a full subgroupoid of GK which is isomorphic to K∗ n A∗
K.
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Proof. Elements of AK whose orbit under the K∗ action contains an idele are also
ideles. Thus, we obtain a groupoid that is a full subcategory of GK. �

This implies the existence of a restriction map. Consider the map

(4.12) ρ : S(AK) 3 f 7→ f |A∗

K
.

We denote by Cρ(A
∗
K) ⊂ C(A∗

K) the range of ρ.

Corollary 4.4. The restriction map ρ of (4.12) extends to an algebra homomor-
phism

(4.13) ρ : S(GK) → Cρ(A
∗
K) o K∗.

Proof. The map (4.12) induced by the inclusion A∗
K ⊂ AK is continuous and K∗

equivariant hence the map

ρ(
∑

k∈K∗

fk Uk) =
∑

k∈K∗

ρ(fk)Uk

is an algebra homomorphism. �

The action of K∗ on A∗
K is free and proper so that we have an equivalence of the

locally compact groupoids K∗nA∗
K and A∗

K/K
∗ = CK. We use the exact sequence

of locally compact groups

(4.14) 1 → K∗ → A∗
K

p→ CK → 1

to parameterize the orbits of K∗ as the fibers p−1(x) for x ∈ CK. By construction
the Hilbert spaces

(4.15) Hx = `2(p−1(x)) , ∀x ∈ CK

form a continuous field of Hilbert spaces over CK. We let L1(Hx) be the Banach
algebra of trace class operators in Hx, these form a continuous field over CK.

Proposition 4.5. The restriction map ρ of (4.12) extends to an algebra homo-
morphism

(4.16) ρ : S(GK) → C(CK,L1(Hx)) .

Proof. Each p−1(x) is globally invariant under the action of K∗ so the crossed
product rules in Cρ(A

∗
K)oK∗ are just multiplication of operators in Hx. To show

that the obtained operators are in L1 we just need to consider monomials fk Uk. In
that case the only non-zero matrix elements correspond to k = xy−1. It is enough
to show that, for any f ∈ S(AK), the function k 7→ f(k b) is summable. This
follows from the discreteness of bK ⊂ AK and the construction of the Bruhat–
Schwartz space S(AK), cf. [10]. In fact the associated operator is of finite rank
when f has compact support. In general what happens is that the sum will look
like the sum over Z of the values f(nb) of a Schwartz function f on R. �

In general the exact sequence (4.14) does not split and one does not have a natural
CK-equivariant trivialization of the continuous field Hx. Thus it is important in
the general case to keep the nuance between the algebras C(CK,L1(Hx)) and
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C(CK). We shall first deal with the special case K = Q in which this issue does
not arise.

4.3. The Morita equivalence and cokernel for K = Q. The exact sequence
(4.14) splits for K = Q and admits a natural continuous section which corresponds

to the open and closed fundamental domain ∆Q = Ẑ∗ × R∗
+ ⊂ A∗

Q for the action
of Q∗ on ideles. This allows to construct a cyclic morphism between the cyclic
module associated to the algebra Cρ(A

∗
Q) o Q∗ and to a suitable algebra Cρ(CQ)

of functions on CQ.

Lemma 4.6. The composition dQ ◦ eQ of the maps

(4.17) eQ : (k, hb) 7→ (b, (k, h)), and dQ(k, h) = (kh, h)

with b ∈ ∆Q and k, h ∈ Q∗, gives an isomorphism of the locally compact groupoids

(4.18) Q∗ n A∗
Q ' ∆Q × Q∗ × Q∗.

Proof. The map eQ realizes an isomorphism between the locally compact groupoids

Q∗ n A∗
Q ' ∆Q × (Q∗ n Q∗),

where Q∗ n Q∗ is the groupoid of the action of Q∗ on itself by multiplication.
The latter is isomorphic to the trivial groupoid Q∗ × Q∗ via the map dQ. �

We then have the following result.

Proposition 4.7. The map

(4.19)
∑

k∈Q∗

fk Uk 7→Mb(x, y) = fxy−1(x b),

for x, y ∈ Q∗ with k = xy−1 and b ∈ ∆Q, defines an algebra homomorphism

Cρ(A
∗
Q) o Q∗ → C(∆Q,M∞(C))

to the algebra of matrix valued functions on ∆Q. For any f ∈ S(GQ) the element
Mb obtained in this way is of trace class.

Proof. We use the groupoid isomorphism (4.17) to write k = xy−1 and khb = xb,
for x = kh and y = h. The second statement follows from Proposition 4.5. �

Let π be the composition of the restriction map ρ of (4.13) with the algebra
morphism (4.19). Since the trace Tr on M∞(C) gives a cyclic morphism one can
use this to obtain a morphism of cyclic modules (Tr ◦π)\, which we now describe
explicitly. We let, in the number field case,

(4.20) S (CK) = ∩β∈R µ
βS(CK),

where µ ∈ C(CK) is the module morphism from CK to R∗
+. In the function field

case one can simply use for S (CK) the Schwartz functions with compact support.

Proposition 4.8. The map Tr ◦ π defines a morphism (Tr ◦ π)\ of cyclic mod-

ules from S(GQ)\0 to the cyclic submodule S \(CQ) ⊂ C(CQ)\ whose elements are
continuous functions whose restriction to the main diagonal belongs to S (CQ).
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Proof. By Proposition 4.7 the map π is an algebra homomorphism from S(GQ)
to C(∆Q,L1) ∼ C(CQ,L1). We need to show that the corresponding cyclic

morphism using Tr\ lands in the cyclic submodule S\(CQ).
For simplicity we can just restrict to the case of monomials, where we consider
elements of the form

(4.21) Z = fk0 Uk0 ⊗ fk1 Uk1 ⊗ · · · ⊗ fkn Ukn .

The matrix valued functions associated to the monomials fkj
Ukj

as in Proposition
4.7 have matrix elements at a point b ∈ ∆Q that are non zero only for xj+1 =

xjk
−1
j and are of the form

(4.22) fkj
Ukj

7→Mb(xj , xj+1) = fkj
(xjb).

Composing with the cyclic morphism Tr\ gives

(4.23) (Tr ◦ π)\(Z)(b0, b1, . . . , bn) =
∑∏

Mbj
(xj , xj+1)

where the xj ∈ K∗ and xn+1 = x0. Let γ0 = 1 and γj+1 = kjγj . Then we find

that (Tr ◦ π)\(Z) = 0, unless
∏

j kj = 1, i.e. γn+1 = 1. In this case we obtain

(4.24) Tr ◦ π(Z)(b0, b1, · · · , bn) =
∑

k∈Q∗

n∏

j=0

fkj
(γ−1

j kbj), ∀bj ∈ ∆Q.

For n = 0 the formula (4.24) reduces to

(4.25) Tr ◦ π(f)(b) =
∑

k∈Q∗

f(kb), ∀b ∈ ∆Q, ∀f ∈ S(AQ)0,

where S(AQ)0 = Kerε0 ∩ Kerε1 ⊂ S(AQ). This gives an element of S (CQ), by
Lemma 2 Appendix 1 of [10]. In general, (4.24) gives a continuous function of n+1
variables on CQ, and its restriction to the main diagonal belongs to S (CQ). �

Since the category of cyclic modules is an abelian category, we can consider the
cokernel in the category of Λ-modules of the cyclic morphism (Tr ◦ π)\, with π
the composite of (4.13) and (4.19). This works nicely for K = Q but makes use
of the splitting of the exact sequence (4.14).

4.4. The cokernel of ρ for general global fields. To handle the general case
in a canonical manner one just needs to work directly with C(CK,L1(Hx)) instead
of C(CK) and express at that level the decay condition of the restrictions to the
diagonal in the cyclic submodule S \(CQ) of Proposition 4.8.

Definition 4.9. We define S \(CK,L1(Hx)) to be the cyclic submodule of the
cyclic module C(CK,L1(Hx))\, whose elements are continuous functions such that
the trace of the restriction to the main diagonal belongs to S (CK).

Note that for T ∈ C(CK,L1(Hx))\ of degree n, T (x0, . . . , xn) is an operator in
Hx0 ⊗ . . .⊗Hxn . On the diagonal, xj = x for all j, the trace map corresponding

to Tr\ is given by

(4.26) Tr\(T0 ⊗ T1 ⊗ . . . ⊗ Tn) = Tr(T0 T1 . . . Tn) .
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This makes sense since on the diagonal all the Hilbert spaces Hxj
are the same.

The argument of Proposition 4.8 extends to the general case and shows that the
cyclic morphism ρ\ of the restriction map ρ lands in S \(CK,L1(Hx)).

Definition 4.10. We define H1(AK/K
∗, CK) to be the cokernel of the cyclic

morphism

ρ\ : S(GK)\0 → S \(CK,L1(Hx))

Moreover, an important issue arises, since the ranges of continuous linear maps
are not necessarily closed subspaces. In order to preserve the duality between
cyclic homology and cyclic cohomology we shall define the cokernel of a cyclic
map T : A\ → B\ as the quotient of B\ by the closure of the range of T . In a dual
manner, the kernel of the transposed map T t : B] → A] is automatically closed
and is the dual of the above.
The choice of the notation H1(AK/K

∗, CK) is explained by the fact that we con-
sider this a first cohomology group, in the sense that it is a cokernel in a sequence
of cyclic homology groups for the inclusion of the ideles class group in the adeles
class space (dually for the restriction map of algebras), hence we can think of it
as giving rise to an H1 in the relative cohomology sequence of an inclusion of CK

in the noncommutative space AK/K
∗. We can use the result of [7], describing the

cyclic (co)homology in terms of derived functors in the category of cylic modules,
to write the cyclic homoloy as

(4.27) HCn(A) = Torn(C\,A\).

Thus, we obtain a cohomological realization of the cyclic module H1(AK/K
∗, CK)

by setting

(4.28) H1(AK/K
∗, CK) := Tor(C\,H1(AK/K

∗, CK)).

We think of this as an H1 because of its role as a relative term in a cohomology
exact sequence of the pair (AK/K

∗, CK).
We now show that H1(AK/K

∗, CK) carries an action of CK, which we can view
as the abelianization W ab

K ∼ CK of the Weil group. This action is induced by
the multiplicative action of CK on AK/K

∗ and on itself. This generalizes to

global fields the action of CQ = Ẑ∗ × R∗
+ on HC0(D(A, ϕ)) for the Bost–Connes

endomotive (cf. [11]).

Proposition 4.11. The cyclic modules S(GK)\0 and S \(CK,L1(Hx)) are endowed
with an action of A∗

K and the morphism ρ\ is A∗
K-equivariant. This induces an

action of CK on H1(AK/K
∗, CK).

Proof. For γ ∈ A∗
K one defines an action by automorphisms of the algebra A =

S(GK) by setting

(4.29) ϑa(γ)(f)(x) := f(γ−1x), for f ∈ S(AK),

(4.30) ϑa(γ)(
∑

k∈K∗

fk Uk) :=
∑

k∈K∗

ϑa(γ)(fk)Uk .
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This action is inner for γ ∈ K∗ and induces an outer action

(4.31) CK → Out(S(GK)) .

Similarly, the continuous field Hx = `2(p−1(x)) over CK is A∗
K-equivariant for the

action of A∗
K on CK by translations, and the equality

(4.32) (V (γ)ξ)(y) := ξ(γ−1 y) , ∀y ∈ p−1(γx) , ξ ∈ `2(p−1(x)) ,

defines an isomorphism Hx
V (γ)−→ Hγx. One obtains then an action of A∗

K on
C(CK,L1(Hx)) by setting

(4.33) ϑm(γ)(f)(x) := V (γ) f(γ−1 x)V (γ−1), ∀f ∈ C(CK,L1(Hx)) .

The morphism ρ is A∗
K-equivariant, so that one obtains an induced action on the

cokernel H1(AK/K
∗, CK). This action is inner for γ ∈ K∗ and thus induces an

action of CK on H1(AK/K
∗, CK). �

We denote by

(4.34) CK 3 γ 7→ ϑm(γ)

the induced action on H1(AK/K
∗, CK).

We have a non-canonical isomorphism

(4.35) CK ' CK,1 ×N,

where N ⊂ R∗
+ is the range of the norm | · | : CK → R∗

+. For number fields this is
N = R∗

+, while for function fields in positive characteristic N ' Z is the subgroup

qZ ⊂ R∗
+ with q = p` the cardinality of the field of constants. We denote by ĈK,1

the group of characters of the compact subgroup CK,1 ⊂ CK, i.e. the Pontrjagin
dual of CK,1. Given a character χ of CK,1, we let χ̃ denote the unique extension
of χ to CK which is equal to one on N .
One obtains a decomposition of H1(AK/K

∗, CK) according to projectors associ-
ated to characters of CK,1.

Proposition 4.12. Characters χ ∈ ĈK,1 determine a canonical direct sum de-
composition

(4.36)
H1(AK/K

∗, CK) =
⊕

χ∈ dCK,1
H1

χ(AK/K
∗, CK)

H1
χ(AK/K

∗, CK) = {ξ|ϑm(γ) ξ = χ(γ) ξ, ∀γ ∈ CK,1}.
where ϑm(γ) denotes the induced action (4.34) on H1(AK/K

∗, CK).

Proof. The action of A∗
K on H1(AK/K

∗, CK) induces a corresponding action of
CK on H1(AK/K

∗, CK). �

We can then reformulate the result of [11] based on the trace formula of [10] in the
formulation of [32] in terms of the cohomology H 1(AK/K

∗, CK) in the following
way.

Proposition 4.13. The induced representation of CK on H1
χ(AK/K

∗, CK) gives
the spectral realization of the zeros of the L-function with Grössencharakter χ.



WEIL’S PROOF AND ADELES CLASSES 23

This result is a variant of Corollary 2 of [10], the proof is similar and essentially
reduces to the result of [32]. There is a crucial difference with [10] in that all
zeros (including those not located on the critical line) now appear due to the
choice of the function spaces. To see what happens it is simpler to deal with the
dual spaces i.e. to compute the cyclic cohomology HC 0. Its elements are cyclic
morphisms T from H1(AK/K

∗, CK) to C\ and they are determined by the map
T 0 in degree 0. The cyclic morphism property then shows that T 0 defines a trace
on S \(CK,L1(Hx)) which vanishes on the range of ρ\. The freeness of the action
of K∗ on A∗

K then ensures that these traces are given by continuous linear forms
on S (CK) which vanish on the following subspace of S (CK) which is the range
of the restriction map, defined as follows.

Definition 4.14. Let V ⊂ S (CK) denote the range of the map Tr ◦ ρ, that is,

(4.37) V = {h ∈ S (CK)|h(x) =
∑

k∈K∗

ξ(kx), with ξ ∈ S(AK)0},

where S(AK)0 = Kerε0 ∩ Kerε1 ⊂ S(AK).

We have seen above in the case K = Q (cf. [10]) that the range of Tr ◦ρ is indeed
contained in S (CK).
Moreover, we have the following results about the action ϑm(γ), for γ ∈ CK, on
H1(AK/K

∗, CK). Suppose given f ∈ S (CK). We define a corresponding operator

(4.38) ϑm(f) =

∫

CK

f(γ)ϑm(γ) d∗γ,

acting on the complex vector space H1(AK/K
∗, CK). Here d∗γ is the multiplica-

tive Haar measure on CK. We have the following description of the action of
ϑm(f).

Lemma 4.15. For f ∈ S (CK), the action of the operator ϑm(f) of (4.38) on
H1(AK/K

∗, CK) is the action induced on the quotient of S (CK) by V ⊂ S (CK) of
the action of ϑm(f) on S (CK) by convolution product

(4.39) ϑm(f)ξ(u) =

∫
ξ(g−1u)f(g) d∗g = (f ? ξ)(u).

Proof. One first shows that one can lift f to a function f̃ on A∗
K such that

∑

k∈K∗

f̃(kx) = f(x)

and that convolution by f̃ i.e.
∫
f̃(γ)ϑa(γ)d

∗γ

leaves S(GK) globally invariant. This means showing that that S(AK)0 is stable
under convolution by the lift of S (CK). Then (4.39) follows directly from the
definition of the actions (4.33), (4.30), (4.34) and the operator (4.38). �
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For f ∈ S (CK) and χ̃ the extension of a character χ ∈ ĈK,1 to CK and f̂(χ̃, ρ)
the Fourier transform (2.30), the operators ϑm(f) of (4.38) satisfy the spectral
side of the trace formula. Namely, we have the following result.

Theorem 4.16. For any f ∈ S (CK), the operator ϑm(f) defined in (4.38) acting
on H1(AK/K

∗, CK) is of trace class. The trace is given by

(4.40) Tr(ϑm(f)|H1(AK/K
∗, CK)) =

∑

ρ∈C/N⊥|L(χ̃,ρ)=0

f̂(χ̃, ρ),

with f̂(χ̃, ρ) the Fourier transform (2.30).

Proof. Due to the different normalization of the summation map, the represen-
tation ϑm(γ) considered here differs from the action W (γ) considered in [10] by

(4.41) ϑm(γ) = |γ|1/2 W (γ).

This means that we have

(4.42) ϑm(f) =

∫

CK

f(γ)ϑm(γ) d∗γ =

∫

CK

h(γ)W (γ) d∗γ,

where

(4.43) h(γ) = |γ|1/2 f(γ).

We then have, for W (h) =
∫
CK
h(γ)W (γ) d∗γ,

(4.44) TrW (h) =
∑

ρ∈C/N⊥|L(χ̃, 1
2
+ρ)=0

ĥ(χ̃, ρ).

Note that unlike in [10] all zeros contribute, including those that might fail to be
on the critical line, and they do with their natural multiplicity. This follows from
the choice of function space as in [32]. The Fourier transform ĥ(χ̃, ρ) satisfies
(4.45)

ĥ(χ̃, ρ) =

∫

CK

h(u)χ̃(u) |u|ρ d∗u =

∫

CK

f(u)χ̃(u) |u|ρ+1/2 d∗u = f̂(χ̃, ρ+ 1/2),

where h and f are related as in (4.43). Thus, the shift by 1/2 in (4.44) is absorbed
in (4.45) and this gives the required formula (4.40). �

4.5. Trace pairing and vanishing. The commutativity of the convolution
product implies the following vanishing result.

Lemma 4.17. Suppose given an element f ∈ V ⊂ S (CK), where V is the range
of the reduction map as in Definition 4.14. Then one has

(4.46) ϑm(f)|H1(AK/K∗,CK) = 0.

Proof. The result follows by showing that, for f ∈ V, the operator ϑm(f) maps
any element ξ ∈ S (CK) to an element in V, hence the induced map on the
quotient of S (CK) by V is trivial. Since V is a submodule of S (CK) for the action
of S (CK) by convolution we obtain

ϑm(f)ξ = f ? ξ = ξ ? f ∈ V,
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where ? is the convolution product of (4.39). �

This makes it possible to define a trace pairing as follows.

Remark 4.18. The pairing

(4.47) f1 ⊗ f2 7→ 〈f1, f2〉H1 := Tr(ϑm(f1 ? f2)|H1(AK/K
∗, CK))

descends to a well defined pairing on H1(AK/K
∗, CK) ⊗H1(AK/K

∗, CK).

5. Primitive cohomology

The aim of this section is to interpret the motivic construction described in the
previous paragraph as the noncommutative version of a classical construction
in algebraic geometry. In motive theory, realizations of (mixed) motives appear
frequently in the form of kernels/cokernels of relevant homomorphisms. The
primitive cohomology is the example we shall review hereafter.

If Y is a compact Kähler variety, a Kähler cocycle class [ω] ∈ H 2(Y,R) determines
the Lefschetz operator (i ∈ Z≥0):

L : H i(Y,R) → H i+2(Y,R), L(a) := [ω] ∪ a.
Let n = dimY . Then, the primitive cohomology is defined as the kernel of iterated
powers of the Lefschetz operator

Hi(Y,R)prim := Ker(Ln−i+1 : Hi(Y,R) → H2n−i+2(Y,R)).

In particular, for i = n we have

Hn(Y,R)prim := Ker(L : Hn(Y,R) → Hn+2(Y,R)).

Let assume, from now on, that j : Y ↪→ X is a smooth hyperplane section of a
smooth, projective complex algebraic variety X. Then, it is a classical result of
geometric topology that L = j∗ ◦ j∗, where

j∗ : Hi(Y,R) → H i+2(X,R)

is the Gysin homomorphism: the Poincaré dual of the restriction homomorphism

j∗ : H2n−i(X,R) → H2n−i(Y,R).

In fact, because the class of L comes from an integral class, the equality L = j ∗◦j∗
holds already in integral cohomology. For i = n, the above description of the
Lefschetz operator together with the Lefschetz theorem of hyperplane sections
imply that

Hn(Y,R)prim
∼= Ker(j∗ : Hn(Y,R) → Hn+2(X,R)) =: Hn(Y,R)van

where by H i(Y,R)van we denote the vanishing cohomology

Hi(Y,R)van := Ker(j∗ : Hi(Y,R) → H i+2(X,R)).

Now, we introduce the theory of mixed Hodge structures in this set-up.
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Let U := X r Y be the open space which is the complement of Y in X and let
denote by k : U ↪→ X the corresponding open immersion. Then, one knows that
Rij∗Z = 0 unless i = 0, 1 so that the Leray spectral sequence for j:

Ep,q
2 = Hq(X,Rpk∗Z) ⇒ Hp+q(U,Z)

coincides with the long exact sequence (of mixed Hodge structures)

. . .
∂→ Hi−2(Y,Z)(−1)

j∗→ Hi(X,Z) → H i(U,Z)
∂→ . . .

The boundary homomorphism ∂ in this sequence is known to coincide ([21], § 9.2)
with the residue homomorphism

Res : H i+1(U,Z) → H i(Y,Z)(−1)

whose description, with complex coefficients, is derived from a corresponding
morphism of filtered complexes (Poincaré residue map). This morphism fits in
the following exact sequence of filtered complexes of Hodge modules

0 → Ω·
X → Ω·

X(log Y )
res→ j∗Ω

·
Y [−1] → 0

res(α ∧ dt

t
) = α|Y .

One knows that Res is a homomorphism of Hodge structures, hence the Hodge
filtration on Hn+1(U,C) ∼= Hn+1(X,Ω·

X(logY )) determines a corresponding fil-
tration on the (twisted) vanishing cohomology

Hn(Y,C)(n)van = Ker(j∗ : Hn(Y,C)(n) → Hn+2(X,C)(n+1)) ∼= Hn+1(U)(n+1).

In degree i = n, one also knows that the excision exact sequence (of Hodge
structures) becomes the short exact sequence

0 → Hn(X,C)
j∗→ Hn(Y,C) → Hn+1

c (U,C) → 0.

Therefore, it follows by the Poincaré duality isomorphism

Hn+1
c (U,C)∗ ∼= Hn+1(U,C)(n+ 1)

that

(5.1) (Coker(j∗ : Hn(X,C) → Hn(Y,C)))∗ ∼= Hn+1
c (U,C)∗ ∼= Hn(Y,C)(n)van.

When j : Y ↪→ X is a singular hypersurface or a divisor in X with (local) normal
crossings (i.e.: Y =

⋃
i Yi, dimYi = n = dimX − 1, Y locally described by an

equation xi1 · · · xir = 0, {i1, . . . ir} ⊆ {1, . . . n + 1}, {x1, . . . xn+1} = system of
local coordinates in X), the notion of the Gysin homomorphism is lost. One then
replaces the vanishing cohomology by the primitive cohomology, whose definition
extends to this general set-up and is given, in analogy to (5.1), as

Hn(Y,C)prim := Coker(j∗ : Hn(X,C) → Hn(Y,C)) ⊆ Hn+1
c (U,C).

One also knows that the primitive cohomology is motivic (cf. [22] and [3] for inter-
esting examples). Following the classical construction that we have just reviewed,
we like to argue now that the definition of the cyclic module H1(AK/K

∗, CK) (as
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in Definition 4.10), which is based on a noncommutative version of a restriction
map “from adeles to ideles” defined in the category of Λ-modules, should be inter-
preted as the noncommutative analogue of a primitive motive (a cyclic primitive
module). The cohomological realization of such motive (i.e. its cyclic homology)
is given by the group H1(AK/K

∗, CK) = Tor(C\,H1(AK/K
∗, CK)) (cf. (4.28))

which therefore can be interpreted as a noncommutative version of a primitive
cohomology.

6. A cohomological Lefschetz trace formula

6.1. Weil’s explicit formula as a trace formula. As in §2.2 above, let α be
a non-trivial character of AK which is trivial on K ⊂ AK. It is well known ([43]
VII-2) that for such a character α there exists a differental idele a = (av) ∈ A∗

K

such that

(6.1) αv(x) = eKv(av x), ∀x ∈ Kv,

where, for a local field K, the additive character eK is chosen in the following
way.

• If K = R then eR(x) = e−2πix, for all x ∈ R.

• If K = C then eC(z) = e−2πi(z+z̄), for all z ∈ C.
• If K is a non-archimedean local field with maximal compact subring O,

then the character eK satisfies Ker eK = O.

The notion of differental idele can be thought of as an extension of the canonical
class of the algebraic curve C, from the setting of function fields Fq(C) to arbitrary
global fields K. For instance, one has

(6.2) |a| = q2−2g or |a| = D−1,

respectively, for the case of a function field Fq(C) and of a number field. In the
number field case D denotes the discriminant.

In [11] we gave a cohomological formulation of the Lefschetz trace formula of [10],
using the version of the Riemann–Weil explicit formula as a trace formula given
in [32] in the context of nuclear spaces, rather than the semi-local Hilbert space
version of [10].

Theorem 6.1. For f ∈ S (CK) let ϑm(f) be the operator (4.38) acting on the
space H1 = H1(AK/K

∗, CK). Then the trace is given by

(6.3) Tr(ϑm(f)|H1) = f̂(0) + f̂(1) − (log |a|) f(1) −
∑

v∈ΣK

∫ ′

(K∗
v ,eKv )

f(u−1)

|1 − u| d
∗u.

The formula (6.3) is obtained in [11] first by showing that the Lefschetz trace
formula of [10] in the version of [32] can be formulated equivalently in the form

(6.4) Tr(ϑm(f)|H1) = f̂(0) + f̂(1) −
∑

v∈Kv

∫ ′

K∗
v

f(u−1)

|1 − u| d
∗u,



28 CONNES, CONSANI, AND MARCOLLI

where one uses the global character α to fix the local normalizations of the prin-
cipal values in the last term of the formula. We then compute this principal value
using the differental idele in the form

(6.5)

∫ ′

(K∗
v ,αv)

f(u−1)

|1 − u| d
∗u = (log |av|) f(1) +

∫ ′

(K∗
v ,eKv )

f(u−1)

|1 − u| d
∗u.

6.2. Weil Positivity and the Riemann Hypothesis. We introduce an invo-
lution for elements f ∈ S (CK) by setting

(6.6) f ∗(g) = f(g−1).

We also consider a one parameter group z 7→ ∆z of automorphisms of the convo-
lution algebra S (CK), with the convolution product (4.39) by setting

(6.7) ∆z(f)(g) = |g|z f(g),

for f ∈ S (CK) and z ∈ C. Since (6.7) is given by multiplication by a character,
it satisfies

(6.8) ∆z(f ? h) = ∆z(f) ?∆z(f), ∀f, h ∈ S (CK).

We consider also the involution

(6.9) f 7→ f ] = ∆−1 f∗, with f ](g) = |g|−1f(g−1).

The reformulation, originally due to A. Weil, of the Riemann Hypothesis in our
setting is given by the following statement.

Proposition 6.2. The following two conditions are equivalent:

• All L-functions with Grössencharakter on K satisfy the Riemann Hypoth-
esis.

• The trace pairing (4.47) satisfies the positivity condition

(6.10) 〈∆−1/2 f,∆−1/2 f∗〉 ≥ 0, ∀f ∈ S (CK).

Proof. Let W (γ) = |γ|−1/2 ϑm(γ). Then, by [41] the RH for L-functions with
Grössencharakter on K is equivalent to the positivity

(6.11) Tr(W (f ? f ∗)) ≥ 0, ∀f ∈ S (CK).

Thus, in terms of the representation ϑm we are considering here, we have

W (f) = ϑm(∆−1/2 f).

Using the multiplicative property (6.8) of ∆z we rewrite (6.11) in the equivalent
form (6.10). �

In terms of the involution (6.9) we can reformulate Lemma 6.2 in the following
equivalent way.

Corollary 6.3. The following conditions are equivalent

• All L-functions with Grössencharakter on K satisfy the Riemann Hypoth-
esis.

• The trace pairing (4.47) satisfies 〈f, f ]〉 ≥ 0, for all f ∈ S (CK).
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Proof. In (6.10) we write ∆−1/2f = h. This gives

∆−1/2f∗ = ∆−1/2(∆1/2h)∗ = ∆−1h∗ = h]

and the result follows, since ∆−1/2 is an automorphism of S (CK). �

The vanishing result of Lemma 4.17, for elements in the range V ⊂ S (CK) of the
reduction map Tr ◦ ρ from adeles, gives then the following result.

Proposition 6.4. The elements f ? f ] considered in Corollary 6.3 above have
the following properties.

(1) The trace pairing 〈f, f ]〉 vanishes for all f ∈ V, i.e. when f is the restric-
tion Tr ◦ ρ of an element of S(GK).

(2) By adding elements of V one can make the values

(6.12) f ? f ](1) =

∫

CK

|f(g)|2 |g| d∗g < ε

for arbitrarily small ε > 0.

Proof. (1) The vanishing result of Lemma 4.17 shows that ϑm(f)|H1(AK/K∗,CK) = 0
for all f ∈ V. Thus, the trace pairing satisfies 〈f, h〉 = 0, for f ∈ V and for all
h ∈ S (CK). In particular this applies to the case h = f ].

(2) This follows from the surjectivity of the map E for the weight δ = 0 (cf.
Appendix 1 of [10]). �

Proposition 6.4 shows that the trace pairing admits a large radical given by all
functions that extend to adeles. Thus, one can divide out this radical and work
with the cohomology H1(AK/K

∗, CK) described above.

7. Correspondences

To start building the dictionary between the Weil proof and the noncommutative
geometry of the adeles class space, we begin by reformulating the trace formula
discussed above in more intersection theoretic language, so as to be able to com-
pare it with the setup of §2.1 above. We also discuss in this section the analog
of moding out by trivial correspondence.

7.1. The scaling correspondence as Frobenius. To the scaling action

ϑa(γ)(ξ)(x) = ξ(γ−1x)

one associates the graph Zg given by the pairs (x, g−1x). These should be con-
sidered as points in the product AK/K

∗×AK/K
∗ of two copies of the adeles class

space. Thus, the analog in our context of the correspondences Z =
∑

n anFrn on
C × C is given by elements of the form

(7.1) Z(f) =

∫

CK

f(g)Zg d
∗g,

for some f ∈ S (CK).

With this interpretation of correspondences, we can then make sense of the terms
in the trace formula in the following way.
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Definition 7.1. For a correspondence of the form (7.1) we define degree and
codegree by the following prescription

(7.2) d(Z(f)) := f̂(1) =

∫

CK

f(u) |u| d∗u,

(7.3) d′(Z(f)) := d(Z(f ])) =

∫

CK

f(u) d∗u = f̂(0).

Here the Fourier transform f̂ is as in (2.30), with the trivial character χ = 1.
Notice that, with this definition of degree and codegree we find

(7.4) d(Zg) = |g|, and d′(Zg) = 1.

Thus, the term f̂(1) + f̂(0) in the trace formula of Theorem 6.1 match the term
d(Z)+d′(Z) in Weil’s formula for the trace of a correspondence as in (2.25). The
term

(7.5) −
∫ ′

(K∗
v ,αv)

f(u−1)

|1 − u| d
∗u

of (6.4) in turn can be seen as the remaining term −Z • ∆ in (2.25). In fact, the
formula (7.5) describes, using distributions, the local contributions to the trace of
the intersections between the graph Z(f) and the diagonal ∆. This was proved
in [10], Section VI and Appendix III. It generalizes the analogous formula for
flows on manifolds of [23], which in turn can be seen as a generalization of the
usual Atiyah–Bott Lefschetz formula for a diffeomorphism of a smooth compact
manifold [2].

When we separate out the contribution log |a|h(1), as in passing from (6.4) to
(6.3), and we rewrite the trace formula as in Theorem 6.1. This corresponds
to separating the intersection Z • ∆ into a term that is proportional to the self
intersection ∆ • ∆ and a remaning terms where the intersection is transverse.
To see this, we notice that the term log |a|, for a = (av) a differental idele, is of
the form (6.2). Indeed one sees that, in the function field case the term

− log |a| = − log q2−2g = (2g − 2) log q = −∆ • ∆ log q

is proportional to the self intersection of the diagonal, which brings us to consider
the value log |a| = − logD with the discriminant of a number field as the analog
in characteristic zero of the self intersection of the diagonal.

In these intersection theoretic terms we can reformulate the positivity condition
(cf. [4]) equivalent to the Riemann Hypothesis in the following way.

Proposition 7.2. The following two conditions are equivalent

• All L-functions with Grössencharakter on K satisfy the Riemann Hypoth-
esis.

• The estimate

(7.6) Z(f) •trans Z(f) ≤ 2d(Z(f))d′(Z(f)) − ∆ • ∆ f ? f ](1)

holds for all f ∈ S (CK).
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Proof. As in the Weil proof one separates the terms Z ?Z ′ = d′(Z)∆ + Y , where
Y has transverse intersection with the diagonal, here we can write an identity

(7.7) Tr(ϑm(f ? f ])|H1) =: Z(f) • Z(f) = ∆ • ∆ f ? f ](1) + Z(f) •trans Z(f)

where the remaning term Z(f) •trans Z(f) which represents the transverse in-
tersection is given by the local contributions given by the principal values over
(K∗

v, eKv) in the formula (6.3) for Tr(ϑm(f ? f ])|H1).

The formula (6.3) for Tr(ϑm(f ?f ])|H1) gives a term of the form − log |a| f ?f ](1),
with

f ? f ](1) =

∫

CK

|f(g)|2 |g| d∗g.

We rewrite this term as −∆•∆ f ?f ](1) according to our interpretation of log |a|
as self-intersection of the diagonal. This matches the term (2g − 2)d′(Z) in the
estimate for Tr(Z ? Z ′) in the Weil proof.

The first two terms in the formula (6.3) for Tr(ϑm(f ? f ])|H1) are of the form

(7.8) f̂ ? f ](0) + f̂ ? f ](1) = 2f̂(0)f̂(1) = 2d′(Z(f))d(Z(f)).

This matches the term 2gd′(Z) = 2d(Z)d′(Z) in the expression for Tr(Z ? Z ′) in
the Weil proof.

With this notation understood, we see that the positivity Tr(ϑm(f ? f ])|H1) ≥ 0
corresponds indeed to the estimate (7.6). �

7.2. Fubini’s theorem and the trivial correspondences. As we have seen
in recalling the main steps in the Weil proof, a first step in dealing with corre-
spondences is to use the freedom to add multiples of the trivial correspondences
in order to adjust the degree. We describe an analog, in our noncommutative ge-
ometry setting, of the trivial correspondences and of this operation of modifying
the degree.

In view of the result of Proposition 6.4 above, it is natural to regard the elements
f ∈ V ⊂ S (CK) as those that give rise to the trivial correspondences Z(f). Here,
as above, V is the range of the reduction map from adeles.

The fact that it is possible to arbitrarily modify the degree d(Z(f)) = f̂(1) of a
correspondence by adding to f an element in V depends on the subtle fact that
we deal with a case where the Fubini theorem does not apply.

In fact, consider an element ξ ∈ S(AK)0. We know that it satisfies the vanishing
condition ∫

AK

ξ(x) dx = 0.

Thus, at first sight it would appear that, for the function on CK defined by
f(x) =

∑
k∈K∗ ξ(kx),

(7.9) f̂(1) =

∫

CK

f(g)|g|d∗g

should also vanish, since we have f(x) =
∑

k∈K∗ ξ(kx) and for local fields (but
not in the global case) the relation between the additive and multiplicative Haar
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measures is of the form dg = |g|d∗g. This, however, is in general not the case. To
see more clearly what happens, let us just restrict to the case K = Q and assume
that the function ξ(x) is of the form

ξ = 1
Ẑ
⊗ η,

with 1
Ẑ

the characteristic function of Ẑ and with η ∈ S(R)0. We then have

CQ = Ẑ∗ × R∗
+ and the function f is of the form

(7.10) f(u, λ) =
∑

n∈Z,n6=0

η(nλ), ∀λ ∈ R∗
+ , u ∈ Ẑ∗ .

We can thus write (7.9) in this case as

(7.11) f̂(1) =

∫

Ẑ∗×R∗
+

f(u, λ)du dλ =

∫

R

∑

n∈N

η(nλ) dλ

Moreover since η ∈ S(R)0 we have for all n,

(7.12)

∫

R

η(nλ)dλ = 0 .

It is however not necessarily the case that we can apply Fubini’s theorem and
write

(7.13)

∫

R

∑

n∈N

η(nλ) dλ =
∑

n

∫

R

η(nλ)dλ = 0

since as soon as η 6= 0 one has
∞∑

n=1

∫

R

|η(nλ)|dλ = (

∫

R

|η(λ)|dλ)

∞∑

n=1

1

n
= ∞

so that Fubini’s theorem does not apply and one cannot interchange the integral
and the sum in (7.13). Thus, one can in general have f̂(1) 6= 0, even though∑

n

∫
R
η(nλ)dλ = 0. In fact, we have the following result.

Lemma 7.3. Given f ∈ S (CK), it is possible to change arbitrarily the value of

the degree d(Z(f)) = f̂(1) by adding elements of V.

Proof. It suffices to exhibit an element f ∈ V such that f̂(1) 6= 0, as then by
linearity one can obtain the result. We only treat the case K = Q. We take
η ∈ S(R)0 given by

η(x) = πx2(πx2 − 3

2
) e−πx2

One finds that, up to normalization, the Fourier transform f̂ is given by

f̂(is) =

∫

R∗
+

∑

n∈N

η(nλ)λisd∗λ = s(s+ i)ζ∗(is)

where ζ∗ is the complete zeta function,

(7.14) ζ∗(z) = π−z/2 Γ
(z

2

)
ζ(z).
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This function has a simple pole at z = 1 thus one gets that f̂(1) 6= 0. �

An important question, in order to proceed and build a dictionary that parallels
the main steps in the Weil proof, is to identify the correct notion of principal
divisors. To this purpose, we show that we have at least a good analog for the
points of the curve, in terms of states of some thermodynamical systems, that
extend from the function field setting to the number field case.

8. Thermodynamics and geometry of the primes

Let K be a global field, with AK the ring of adeles and CK the ideles classes, as
above. We denote by CK,1 ⊂ CK the kernel of the norm | · | : CK → R∗

+.
The origin (cf. [10]) of the terms in the geometric side of the trace formula (Theo-
rem 6.1) comes from the Lefschetz formula by Atiyah-Bott [2] and its adaptation
by Guillemin-Sternberg (cf. [23]) to the distribution theoretic trace for flows on
manifolds, which is a variation on the theme of [2]. For the action of CK on the
adele class space XK the relevant periodic points are

(8.1) P = {(x, u) ∈ XK × CK |ux = x}
and one has (cf. [10])

Proposition 8.1. Let (x, u) ∈ P , with u 6= 1. There exists a place v ∈ ΣK such
that

(8.2) x ∈ XK,v = {x ∈ XK |xv = 0}
The isotropy subgroup of any x ∈ XK,v contains the cocompact subgroup

(8.3) K∗
v ⊂ CK , K∗

v = {(kw) | kw = 1 ∀w 6= v}
The spaces XK,v are noncommutative spaces, as such they are described by the
following noncommutative algebras:

Definition 8.2. Let AK,v ⊂ AK denote the closed K∗-invariant subset of adeles

(8.4) AK,v = {a = (aw)w∈ΣK
| av = 0}.

Let GK,v denote the closed subgroupoid of GK given by

(8.5) GK,v = {(k, x) ∈ GK |xv = 0},
and let Av = S(GK,v) be the corresponding groupoid algebra.

Since the inclusion AK,v ⊂ AK is K∗-equivariant and proper, it extends to an
algebra homomorphism

(8.6) ρv : S(GK) → S(GK,v)

which plays the role of the restriction map to the periodic orbit XK,v. We shall
now determine the classical points of each of the XK,v. Taken together these will
form the following locus inside the adeles class space, which we refer to as the
“periodic classical points” of XK = AK/K

∗.
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Definition 8.3. Let K be a global field. For a place v ∈ ΣK consider the adele

(8.7) a(v) = (a(v)
w ), with a(v)

w =

{
1 w 6= v
0 w = v.

The set of periodic classical points of the adeles class space AK/K
∗ is defined as

the union of orbits

(8.8) ΞK :=
⋃

v∈ΣK

CKa
(v).

8.1. The global Morita equivalence. In order to deal with states rather
than weights, we perform a global Morita equivalence, obtained by reducing the

groupoid GK by a suitable open set. The set A
(1)
K of (8.9) that we use to reduce

the groupoid GK will only capture part of the classical subspace CK, but since our
main focus is on the geometry of the complement of this subspace (the cokernel
of the reduction map), this will not be a problem.

Lemma 8.4. Let K be a global field. Let W ⊂ AK be a neighborhood of 0 ∈ AK.
Then for x ∈ AK one has K∗x ∩W 6= ∅, unless x ∈ A∗

K is an idele. For x ∈ A∗
K,

the orbit K∗x is discrete in AK.

Proof. One can assume that W is of the form

W = {a = (aw)| |aw| < ε ∀w ∈ S and |aw| ≤ 1 ∀w /∈ S},
for S a finite set of places and for some ε > 0. Multiplying by a suitable idele
one can in fact assume that S = ∅, so that we have

W = {a = (aw)| |aw| ≤ 1 ∀w ∈ ΣK}.
One has |xv| ≤ 1 except on a finite set F ⊂ ΣK of places. Moreover, if x is not
an idele, one can also assume that

∏

v∈F

|xv| < δ

for any fixed δ. Thus, − log |xv | is as large as one wants and there exists k ∈ K∗

such that k x ∈W . This is clear in the function field case because of the Riemann
Roch formula (2.7). In the case of Q one can first multiply x by an integer to
get |xv | ≤ 1 for all finite places, then since this does not alter the product of all
|xv| one gets |x∞| < 1 and x ∈ W . The case of more general number fields is
analogous. In the case of ideles, one can assume that x = 1 and then the second
statement follows from the discreteness of K in AK. �

We consider the following choice of a neighborhood of zero.

Definition 8.5. Consider the open neighborhood of 0 ∈ AK defined by

(8.9) A
(1)
K =

∏

w∈ΣK

K(1)
w ⊂ AK
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where for any place we let K
(1)
w be the interior of {x ∈ Kw ; |x| ≤ 1}. Let G(1)

K

denote the reduction of the groupoid GK by the open subset A
(1)
K ⊂ AK of the units

and S(G(1)
K ) denote the corresponding (smooth) groupoid algebra.

The algebra S(G(1)
K ) is a subalgebra of S(GK) where one simply extends the func-

tion f(k, x) by zero outside of the open subgroupoid G (1)
K ⊂ GK. With this con-

vention, the convolution product of S(G (1)
K ) is simply given by the convolution

product of S(GK) of the form

(f1 ? f2)(k, x) =
∑

h∈K∗

f1(kh
−1, hx)f2(h, x).

We see from Lemma 8.4 above that the only effect of the reduction to G (1)
K is

to remove from the noncommutative space AK/K
∗ all the elements of CK whose

class modulo K∗ does not intersect G(1)
K (i.e. in particular those whose norm is

greater than or equal to one). We then have the following symmetries for the

algebra S(G(1)
K ).

Proposition 8.6. Let J + denote the semi-group of ideles j ∈ A∗
K such that

jA
(1)
K ⊂ A

(1)
K . The semigroup J + acts on the algebra S(G(1)

K ) by endomorphisms
obtained as restrictions of the automorphisms of S(GK) of the form

(8.10) ϑa(j)(f)(k, x) = f(k, j−1x), ∀(k, x) ∈ GK , j ∈ J+.

Let K = Q and C+
Q ⊂ CQ be the semigroup C+

Q = {g ∈ CQ| |g| < 1}. The

semi-group C+
Q acts on S(G(1)

Q ) by the endomorphisms

(8.11) F (g) = ϑa(ḡ)

with ḡ the natural lift of g ∈ C+
Q to Ẑ∗ × R∗

+.

Proof. By construction ϑa(j) is an automorphism of S(GK). For a function f

with support B in the open set G(1)
K the support of the function ϑa(j)(f) is

jB = {(k, jx)|(k, x) ∈ B} ⊂ G(1)
K so that ϑa(j)(f) still has support in G(1)

K .

For K = Q let ḡ ∈ Ẑ∗ × R∗
+ be the natural lift of an element g ∈ C+

Q . Then the

archimedean component ḡ∞ is of absolute value less than 1 so that ḡ ∈ J +. The

action of ϑa(ḡ) by endomorphisms of S(G(1)
Q ) induces a corresponding action of

C+
Q . �

Remark 8.7. For m a positive integer, consider the element g = (1,m−1) ∈ C+
Q .

Both g = (1,m−1) and m̃ = (m, 1) are in J + and have the same class in the
idele class group CQ, since mg = m̃. Thus the automorphisms ϑa(g) and ϑa(m̃)

of S(GK) are inner conjugate. Since the open set A
(1)
K ⊂ AK is not closed its

characteristic function is not continuous and does not define a multiplier of S(GK).
It follows that the endomorphism F (g) is inner conjugate to the endomorphism
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ϑa(m̃) only in the following weaker sense. There exists a sequence of elements un

of S(G(1)
K ) such that for any f ∈ S(G(1)

K ) with compact support

F (g)(f) = un ϑa(m̃)(f)u∗n,

holds for all n large enough.

8.2. The valuation systems. We now explain why the orbits CKa
(v) appear

indeed as the set of classical points, in the sense of the low temperature KMS
states, of the noncommutative spaces XK,v. The notion of classical points ob-
tained from low temperature KMS states is discussed at length in [15] (cf. also
[12], [13], [14]).

The noncommutative space XK,v is described by the the restricted groupoid

(8.12) G(v) = K∗ n A
(1)
K,v = {(g, a) ∈ K∗ n AK,v | a and ga ∈ A

(1)
K,v} .

We denote by ϕ the positive functional on C∗(K∗ n A
(1)
K,v) given by

(8.13) ϕ(f) =

∫

A
(1)
K,v

f(1, a) da

Proposition 8.8. The modular automorphism group of the functional ϕ on the
crossed product C∗(G(v)) is given by the time evolution

(8.14) σv
t (f)(k, x) = |k|itv f(k, x), ∀t ∈ R, ∀f ∈ C∗(K∗ n A

(1)
K,v) .

Proof. We identify elements of Cc(K
∗ n A

(1)
K,v) with functions f(g, a) of elements

g ∈ K∗ and a ∈ A
(1)
K,v. The product is simply of the form

f1 ∗ f2(g, a) =
∑

r

f1(g r
−1, ga)f2(r, a).

The additive Haar measure da on AK,v satisfies the scaling property

(8.15) d(ka) = |k|−1
v da , ∀k ∈ K∗ ,

since the product measure da × dav on AK = AK,v × Kv is invariant under the
scaling by k ∈ K∗, while the additive Haar measure dav on Kv gets multiplied
by |k|v, namely d(kav) = |k|vdav. We then check the KMS1 condition, for ϕ
associated to the additive Haar measure, as follows,

ϕ(f1 ∗ f2) =
∑

r

∫

A
(1)
K,v

f1(r
−1, r a)f2(r, a) da

=
∑

r

∫

A
(1)
K,v

f2(k
−1, k b)f1(k, b) |k|−1

v db = ϕ(f2 ∗ σi(f1)) ,

using the change of variables k = r−1, a = kb and da = |k|−1
v db. �

It is worthwhile to observe that these automorphisms extend to the global algebra.

Let G(1)
K be the groupoid K∗ n A

(1)
K of Definition 8.5.
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Lemma 8.9. Let K be a global field and v ∈ ΣK a place. The map

(8.16) dv(k, x) = log |k|v ∈ R

defines a homomorphism of the groupoid G(1)
K to the additive group R and the

time evolution

(8.17) σv
t (f)(k, x) = |k|itv f(k, x), ∀t ∈ R, ∀f ∈ S(G(1)

K )

generates a 1-parameter group of automorphisms of the algebra S(G (1)
K ).

The following result shows that the nontrivial part of the dynamics σv
t concen-

trates on the algebra S(G(v)) with G(v) as in (8.12).

Proposition 8.10. The morphism ρv of (8.6) restricts to a σv
t -equivariant mor-

phism S(G(1)
K ) → S(G(v)). Moreover, the restriction of the one parameter group

σv
t to the kernel of ρv is inner.

Proof. For the first statement note that the proper inclusion AK,v ⊂ AK restricts

to a proper inclusion A
(1)
K,v ⊂ A

(1)
K . For the second statement, notice that the

formula

(8.18) hv(x) = log |x|v , ∀x ∈ A
(1)
K ,

defines the multipliers eithv of the kernel of ρv. Indeed eithv is a bounded contin-

uous function on A
(1)
K r A

(1)
K,v.

We can then check that the 1-cocycle dv is the coboundary of hv. In fact, we
have

(8.19) hv(k x) − hv(x) = dv(k, x), ∀(k, x) ∈ G(1)
K r G(v).

�

We now recall that, for an étale groupoid like G(v), every unit y ∈ G(v)(0) defines,
by

(8.20) (πy(f)ξ)(γ) =
∑

γ1γ2=γ

f(γ1)ξ(γ2),

a representation πy by left convolution of the algebra of G(v) in the Hilbert space
Hy = `2(G(v)y), where G(v)y denotes the set of elements of the groupoid G(v)
with source y. By construction the unitary equivalence class of the representation
πy is unaffected when one replaces y by an equivalent z ∈ G(v)(0) i.e. one assumes
that there exists γ ∈ G(v) with range and source y and z. Thus we can think
of the label y of πy as living in the quotient space XK, v of equivalence classes of

elements of G(v)(0).

The relation between ΞK, v and XK, v is then the following.

Theorem 8.11. For y ∈ XK, v, the representation πy is a positive energy repre-
sentation if and only if y ∈ ΞK, v.
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Proof. Let first y ∈ G(v)(0) ∩ ΞK, v. Thus one has y ∈ A
(1)
K,v, yw 6= 0 for all w

and |yw| = 1 for all w /∈ S where S is a finite set of places. We can identify

G(v)y with the set of k ∈ K∗ such that k y ∈ A
(1)
K,v. We extend y to the adele

ỹ = y× 1 whose component at the place v is equal to 1 ∈ Kv. Then ỹ is an idele.
Thus by Lemma 8.4 the number of elements of the orbit K∗ỹ in a given compact
subset of AK is finite. It follows that log |k|v is lower bounded on G(v)y . Indeed
otherwise there would exist a sequence kn ∈ K∗∩G(v)y such that |kn|v → 0. Then

kn ỹ ∈ A
(1)
K for all n large enough and this contradicts the discreteness of K∗ỹ. In

the representation πy the time evolution σt is implemented by the Hamiltonian
Hy given by

(8.21) (Hy ξ)(k, y) = log |k|v ξ(k, y).
Namely, we have

(8.22) πy(σt(f)) = eitHyπy(f)e−itHy , ∀f ∈ Cc(G(v)) .

Thus since log |k|v is lower bounded on G(v)y we get that the representation πy

is a positive energy representation.

Let then y ∈ G(v)(0) r ΞK, v. We shall show that log |k|v is not lower bounded on
G(v)y , and thus that πy is not a positive energy representation. We consider as
above the adele ỹ = y × 1 whose component at the place v is equal to 1 ∈ Kv.
Assume that log |k|v is lower bounded on G(v)y . Then there exists ε > 0 such
that, for k ∈ K∗,

k y ∈ A
(1)
K,v ⇒ |k|v ≥ ε .

This shows that the neighborhood of 0 ∈ AK defined as

W = {a ∈ AK ; |av | < ε , aw ∈ K(1)
w , ∀w 6= v}

does not intersect K∗ỹ. Thus by Lemma 8.4 we get that ỹ is an idele and y ∈
ΞK, v. �

The specific example of the Bost-Connes system combined with Theorem 8.11
shows that one can refine the recipe of [15] (cf. also [12], [13], [14]) for taking
“classical points” of a noncommutative space. The latter recipe only provides a
notion of classical points that can be thought of, by analogy with the positive
characteristic case, as points defined over the mysterious “field with one element”
F1 (see e.g. [28]). To obtain instead a viable notion of the points defined over
the maximal unramified extension F̄1, one performs the following sequence of
operations.

(8.23) X
Dual System−→ X̂

PeriodicOrbits−→ ∪ X̂v
Classical Points−→ ∪Ξv

which make sense in the framework of endomotives of [11]. Note in particular

that the dual system X̂ is of type II and as such does not have a non-trivial time
evolution. Thus it is only by restricting to the periodic orbits that one passes to
noncommutative spaces of type III for which the cooling operation is non-trivial.
In the analogy with geometry in non-zero characteristic, the set of points X(F̄q)
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over F̄q of a variety X is indeed obtained as the union of the periodic orbits of
the Frobenius.

Remark 8.12. Theorem 8.11 does not give the classification of KMSβ states

for the quantum statistical system (C∗(K∗ n A
(1)
K,v), σt). It just exhibits extremal

KMSβ states but does not show that all of them are of this form.

8.3. The curve inside the adeles class space. In the case of a function field
K = Fq(C), the set of periodic classical points of the adeles class space AK/K

∗

is (non-canonically) isomorphic to the algebraic points C(F̄q). In fact, more
precisely the set of algebraic points C(F̄q) is equivariantly isomorphic to the
quotient ΞK/CK,1 where CK,1 ⊂ CK is the kernel of the norm | · | : CK → R∗

+.

Proposition 8.13. For K = Fq(C) a function field, the orbits of Frobenius on
C(F̄q) give an equivariant identification

(8.24) ΞK/CK,1 ' C(F̄q),

between ΞK/CK,1 with the action of qZ and C(F̄q) with the action of the group of
integer powers of the Frobenius.

Proof. At each place v ∈ ΣK the quotient group of the range N of the norm
| · | : CK → R∗

+ by the range Nv of | · | : Kv → R∗
+ is the finite cyclic group

(8.25) N/Nv = qZ/qnvZ ' Z/nvZ,

where nv is the degree of the place v ∈ ΣK. The degree nv is the same as the
cardinality of the orbit of the Frobenius acting on the fiber of the map (2.2) from
algebraic points in C(F̄q) to places in ΣK. Thus, one can construct in this way
an equivariant embedding

(8.26) C(F̄q) ↪→ (AK/K
∗)/CK,1

obtained, after choosing a point in each orbit, by mapping the orbit of the integer
powers of the Frobenius in C(F̄q) over a place v to the orbit of CK/CK,1 ∼ qZ on

the adele a(v). �

Modulo the problem created by the fact that the identification above is non-
canonical and relies upon the choice of a point in each orbit, it is then possible
to think of the locus ΞK, in the number field case, as a replacement for C(F̄q)
inside the adeles class space AK/K

∗.
In the case of K = Q, the quotient ΞQ/CQ,1 appears as a union of periodic orbits
of period log p under the action of CQ/CQ,1 ∼ R, as in Figure 1. What matters,
however, is not the space ΞQ/CQ,1 in itself but the way it sits inside AQ/Q

∗.
Without taking into account the topology induced by AK the space ΞK would
just be a disjoint union of orbits without any interesting global structure, while
it is the embedding in the adeles class space that provides the geometric setting
underlying the Lefschetz trace formula of [10] and its cohomological formulation
of [11].
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Log2 Log3 Log5 ... LogHpL ...

Figure 1. The classical points ΞQ/CQ,1 of the adeles class space
AQ/Q

∗.

8.4. The valuation systems for K = Q. We concentrate again on the specific
case of K = Q to understand better the properties of the dynamical systems σp

t

associated to the finite primes p ∈ ΣQ.
We know that, in the case of the BC system, the KMS state at critical temperature
β = 1 is given by the additive Haar measure on finite adeles [5]. Thus, one expects
that, for the systems associated to the finite primes, the additive Haar measure
of AQ,p should play an analogous role.

Definition 8.14. Let A∗
Q,p ⊂ A

(1)
Q,p be the subspace

(8.27) A∗
Q,p = {x ∈ AQ,p| |xw| = 1 ∀w 6= p,∞ and p−1 ≤ |x∞| < 1}.

As above G(p) denotes the reduction of the groupoid GQ,p by the open subset

A
(1)
Q,p ⊂ AQ,p, namely

(8.28) G(p) = {(k, x) ∈ GQ,p |x ∈ A
(1)
Q,p, kx ∈ A

(1)
Q,p}.

Notice that the set A
(1)
Q,p meets all the equivalence classes in AQ,p by the action

of Q∗. In fact, given x ∈ AQ,p , one can find a representative y with y ∼ x in

AQ,p/Q
∗, such that y ∈ Ẑ×R. Upon multiplying y by a suitable power of p, one

can make y∞ as small as required, and in particular one can obtain in this way

a representative in A
(1)
Q,p. Let us assume that |yw| = 1 for all finite places w 6= p

and that y∞ > 0. Then there exists a unique n ∈ N ∪ {0} such that pn y ∈ A∗
Q,p.
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Figure 2. Graphs of the functions fp(λ, β) as functions of β for
p = 3, λ = n/27. The gray regions are the gaps in the range of
fp.

Given a prime p we define the function fp(λ, β) for λ ∈ (1, p ] and β > 1 by

(8.29) fp(λ, β) =
∑

ck p
−kβ

where the ck ∈ {0, . . . p− 1} are the digits of the expansion of λ in base p. There
is an ambiguous case where all digits ck are equal to 0 for k > m while cm > 0,
since the same number

λ =
∑

ck p
−k

is obtained using the same cj for j < m, cm − 1 instead of cm and cj = p− 1 for
j > m. In that case, for β > 1, (8.29) gives two different values and we choose
the value coming from the second representation of λ, i.e. the lower of the two.
These coefficients ck of the expansion of λ in base p are then given by

(8.30) ck = dλpk − 1e − p dλpk−1 − 1e ,
where dxe = infn∈Z{n ≥ x} denotes the ceiling function.

Note that, for β > 1, the function fp(λ, β) is discontinuous (cf. Figures 2 and 3) at

any point (λ, β) where the expansion of λ in base p is ambiguous, i.e. λ ∈ N p−k.
Moreover for β = 1 one gets

(8.31) fp(λ, 1) = λ , ∀λ ∈ (1, p ] .

We then obtain the following result.

Theorem 8.15. Let (C∗(G(p)), σp
t ) be the C∗-dynamical system associated to

the groupoid (8.28) with the time evolution (8.17). Then the following properties
hold:

(1) For any y ∈ A∗
Q,p the corresponding representation πy has positive energy.
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(2) Let Hy denote the Hamiltonian implementing the time evolution in the
representation πy, for y ∈ A∗

Q,p with y∞ = λ−1 and λ ∈ (1, p ]. Then the
partition function is given by

(8.32) Zp(λ, β) = Tr(e−βHy) = 2
1 − p−β

1 − p1−β
fp(λ, β) .

(3) The functionals

(8.33) ψβ, y(a) = Tr(e−βHy πy(a)) , ∀a ∈ C∗(G(p))

satisfy the KMSβ condition for σp
t and depend weakly continuously on the

parameter y ∈ A∗
Q,p.

Proof. (1) This follows from Theorem 8.11. For y ∈ A∗
Q,p one has

(8.34) r ∈ Q∗, ry ∈ A
(1)
Q,p =⇒ r = p−km,

for some k ≥ 0 and some integer m prime to p and such that |r y∞| < 1. This
implies

(8.35) |m| < pk+1

and one finds

(8.36) |r|p = pk ≥ 1 and log |r|p ≥ 0,

In fact, the argument above shows that the spectrum of the Hamiltonian Hy

implementing the time evolution σp
t in the representation πy is given by

(8.37) Spec(Hy) = {k log p}k∈N∪{0},

hence πy is a positive energy representation.

(2) We begin by the special case with y∞ = p−1. Then λ = p and fp(λ, β) = p−1
1−p−β

since all digits of λ = p are equal to p − 1. We want to show that the partition
function is given by

(8.38) Tr(e−βHy ) = 2
p− 1

1 − p1−β
.

The multiplicity of an eigenvalue k log p ofHy is the number of integers m 6= 0 ∈ Z
that are prime to p and such that p−k |m| y∞ < 1. Since we are assuming that
y∞ = p−1, this gives |m| < pk+1. Thus, the multiplicity is just 2 (pk+1−pk). The
factor 2 comes from the sign of the integer m. The factor (pk+1−pk) corresponds
to subtracting from the number pk+1 of positive integers m ≤ pk+1 the number
pk of those that are multiples of p.

We now pass to the general case. For x > 0, dx−1e is the cardinality of (0, x)∩N.
The same argument used above shows that the multiplicity of the eigenvalue
k log p is given by the counting

2
(
dλpk − 1e − dλpk−1 − 1e

)
.
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Thus

(8.39) Tr(e−βHy) = 2

∞∑

k=0

(
dλpk − 1e − dλpk−1 − 1e

)
p−kβ .

One has the following equalities of convergent series,
∞∑

k=0

(
dλpk − 1e − dλpk−1 − 1e

)
p−kβ =

∞∑

k=0

dλpk − 1e (p−kβ − p−(k+1)β)

so that,

(8.40) Tr(e−βHy) = 2 (1 − p−β)

∞∑

k=0

dλpk − 1e p−kβ .

Similarly
∞∑

k=0

(
dλpk − 1e − p dλpk−1 − 1e

)
p−kβ =

∞∑

k=0

dλpk − 1e (p−kβ − p p−(k+1)β)

which gives

(8.41) fp(λ, β) = (1 − p1−β)

∞∑

k=0

dλpk − 1e p−kβ ,

since the coefficients ck of the expansion of λ in base p are given by (8.30).
Combining (8.40) with (8.41) gives (8.32).
(3) It follows from (8.22) and the finiteness of the partition function (8.32) that
the functionals (8.33) fulfill the KMSβ condition. In terms of functions on the
groupoid G(p) one has

(8.42) ψβ, y(f) =
∑

f(1, n p−k y) p−kβ , ∀f ∈ Cc(G(p))

where the sum is absolutely convergent. Each of the terms in the sum gives a
weakly continuous linear form thus one obtains the required continuity. �

Remark 8.16. The partition function Zp(λ, β) is a discontinuous function of the
parameter λ and this might seem to contradict the third statement of Theorem
8.15. It would if the algebra C∗(G(p)) were unital since, in that case, the partition
function is given by evaluation on the unit and weak continuity implies that it
is continuous. In our case C∗(G(p)) is not unital, and the partition function is
expressed as a supremum of the form

Zp(λ, β) = sup{ψβ, y(a
∗a)|a ∈ C∗(G(p)) , ||a|| ≤ 1} .

In particular it shows that Zp(λ, β) is lower semi-continuous as a function of λ.

The precise qualitative properties of the partition functions Zp(λ, β) are described
by the following result

Proposition 8.17. As a function of λ ∈ (1, λ] the partition function Zp(λ, β)
satisfies for β > 1:
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Figure 3. Graph of the function Zp(λ, β) as a function of λ for
p = 3, β = 1.2.

(1) Zp is strictly increasing.
(2) Zp is continuous on the left, and lower semi-continuous.

(3) Zp is discontinuous at any point of the form λ = mp−k with a jump of

2 p−kβ (for m prime to p).

(4) The measure
∂Zp

∂λ is the sum of the Dirac masses at the points λ = mp−k,

m prime to p, with coefficients 2 p−kβ.
(5) The closure of the range of Zp is a Cantor set.

Proof. (1) This follows from (8.40) which expresses Zp as an absolutely convergent

sum of multiples of the functions dλpk − 1e. The latter are non-decreasing and
jump by 1 at λ ∈ N p−k ∩ (1, p ]. The density of the union of these finite sets for
k ≥ 0 shows that Zp is strictly increasing.

(2) This follows as above from (8.40) and the semi-continuity properties of the
ceiling function.

(3) Let λ = mp−k with m prime to p. Then for any j ≥ k one gets a jump of
2 (1 − p−β) p−jβ coming from (8.40) so that their sum gives

2 (1 − p−β)

∞∑

j=k

p−jβ = 2 p−kβ

(4) This follows as above from (8.40) and from (3) which computes the disconti-
nuity at the jumps.

(5) Recall that when writing elements of an interval in base p one gets a map
from the cantor set to the interval. This map is surjective but fails to be injective
due to the identifications coming from

∑∞
0 (p − 1) p−m = p. The connectedness

of the interval is recovered from these identifications. In our case the coefficients
ck of the expansion in base p of elements of (1, p ] are such that c0 ∈ {1, . . . , p−1}
while ck ∈ {0, . . . , p − 1} for k > 0. This is a Cantor set K in the product
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Figure 4. Graphs of the functions Zp(λ, β) as functions of β for
p = 3, λ = n/27. The gray regions are the gaps in the range. All
these functions have a pole at β = 1.

topology of K = {1, . . . , p − 1} ×∏N {0, . . . , p − 1}. As shown in Figure 3, the
discontinuities of the function Zp(λ, β) as a function of λ replace the connected
topology of (1, p ] by the totally disconnected topology of K. �

Remark 8.18. One can use (8.39) to define Zp(λ, β) for any λ > 0, as

(8.43) Zp(λ, β) = 2
∞∑

−∞

(
dλpk − 1e − dλpk−1 − 1e

)
p−kβ.

This makes sense for <(β) > 1 since dλpk − 1e = 0 for k ≤ − log λ
log p . The extended

function (8.43) satisfies

Zp(pλ, β) = pβZp(λ, β),

which suggests replacing Zp(λ, β) with

(8.44) ζp(λ, β) = λ−βZp(λ, β)

so that

(8.45) ζp(pλ, β) = ζp(λ, β).

This replacement Zp 7→ ζp corresponds to the shift in the Hamiltonian Hy by

Hy 7→ Hy − log |y∞|.

We can now refine Theorem 8.11 and consider the zero temperature KMS state
of the system (C∗(G(p)), σp

t ) corresponding to the positive energy representation
πy for y ∈ ΞQ, p .
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Proposition 8.19. As β → ∞ the vacuum states (zero temperature KMS states)
of the system (C∗(G(p)), σp

t ) with Hamiltonian Hy have a degeneracy of 2dλ−1e,
where y∞ = λ−1. There is a preferred choice of a vacuum state given by the
evaluation at y ∈ A∗

Q,p .

Proof. When we look at the orbit of y ∈ A∗
Q,p, i.e. at the intersection Q∗y ∩A

(1)
Q,p

and label its elements by pairs (k,m) as above, we find that all elements with
k = 0 give a ground state. This degeneracy of the vacuum reflects the fact that
the limit of the partition function as the temperature goes to 0 is not in general
equal to 1. For instance, for y∞ = p−1, one finds

lim
β→∞

Tr(e−βHy) = lim
β→∞

2
p− 1

1 − p1−β
= 2(p− 1).

More generally, one finds similarly the limit

lim
β→∞

Tr(e−βHy) = 2dλ− 1e.

Among the 2dλ − 1e vacuum states, the state given by evaluation at y ∈ A∗
Q,p is

singled out, since my /∈ A∗
Q,p for m 6= 1. It is then natural to consider, for each

finite place p ∈ ΣQ, the section

(8.46) sp(x) = Q∗x ∩ A∗
Q,p, ∀x ∈ CQa

(p) ⊂ AQ/Q
∗

of the projection from AQ to the orbit CQa
(p). �

Notice that sp is discontinuous at the boundary of the domain A∗
Q,p. Indeed

when y∞ crosses the value p−1 the class in CQa
(p) varies continuously but the

representative in A∗
Q,p jumps discontinuously so that its archimedian component

remains in the interval [p−1, 1). This suggests to consider a cyclic covering of ΞQ

which we now discuss in §8.5.

8.5. The cyclic covering Ξ̃Q of ΞQ. By construction ΞK is a subspace of the
adeles class space XK. We shall now show, in the case K = Q, that it admits
a natural lift Ξ̃Q to a subspace of AQ which reduces the ambiguity group Q∗ to

a cyclic group. One thus obtains a natural cyclic covering Ξ̃Q ⊂ AQ of ΞQ. We
already saw above, in Proposition 8.19, that it is natural to choose representatives
for the elements of the orbit CQa

(p), for a finite prime p, in the subset of adeles
given by

(8.47) Ξ̃Q,p := {y ∈ AQ| yp = 0 and |y`| = 1 for ` 6= p,∞ and y∞ > 0}.
We extend this definition at ∞ by

(8.48) Ξ̃Q,∞ := {y ∈ AQ| |yw| = 1 ∀w 6= ∞ and y∞ = 0}.
Definition 8.20. The locus Ξ̃Q ⊂ AQ is defined as

(8.49) Ξ̃Q =
⋃

v∈ΣQ

Ξ̃Q,v ⊂ AQ

We then have the following simple fact.
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Proposition 8.21. Let π be the projection from Ξ̃Q to ΞQ, with π(x) the class
of x modulo the action of Q∗.

(1) The map π : Ξ̃Q → ΞQ is surjective.

(2) Two elements in Ξ̃Q,v have the same image in CQa
(v) iff they are on the

same orbit of the following transformation T

(8.50) Tx = p x , ∀x ∈ Ξ̃Q,p , Tx = −x , ∀x ∈ Ξ̃Q,∞

Proof. The first statement follows by lifting CQ inside A∗
Q as the subgroup Ẑ∗ ×

R∗
+. Then any element of CQa

(v) has a representative in (Ẑ∗ × R∗
+)a(v)

The proof of the second statement is straightforward, since for a finite prime p
the subgroup pZ ⊂ Q∗ is the group of elements of Q∗ which leave Ξ̃Q,p globally
invariant. �

8.6. Arithmetic subalgebra, Frobenius and monodromy. We now describe
a natural algebra of coordinates B on ΞQ.
The BC system of [5], as well as its arithmetic generalizations of [12] and [14],
have the important property that they come endowed with an arithmetic struc-
ture given by an arithmetic subalgebra. The general framework of endomotives
developed in [11] shows a broad class of examples where a similar arithmetic
structure is naturally present. We consider here the issue of extending the con-

struction of the “rational subalgebra” of the BC-system to the algebra S(G (1)
Q ) of

§8.1.
In order to get a good geometric picture it is convenient to think in terms of
Q-lattices rather than of adeles, as in [12]. Thus, we let L denote the set of
1-dimensional Q-lattices (as defined in [12]). We consider the map

(8.51) ι : Ẑ × R∗
+ → L , ι(ρ, λ) = (Λ, φ) = (λ−1Z, λ−1ρ)

which associates to an adele (ρ, λ) ∈ Ẑ×R∗
+ ⊂ AQ the Q-lattice obtained using ρ

to label the torsion points of R/λ−1Z. Replacing (ρ, λ) by (nρ, nλ), for a positive
integer n ∈ N, one obtains the pair ( 1

nΛ, φ), which is commensurable to (Λ, φ).
Thus, the action of Q∗

+ corresponds to commensurability of Q-lattices under the
map ι. Multiplying λ by a positive scalar corresponds to the scaling action of R∗

+

on Q-lattices.
Let us recall the definition of the “rational algebra” AQ of [12] for the BC system,
given in terms of Q-lattices. We let

(8.52) εa(Λ, φ) =
∑

y∈Λ+φ(a)

y−1,

for any a ∈ Q/Z. This is well defined, for φ(a) 6= 0, using the summation

limN→∞
∑N

−N , and is zero by definition for φ(a) = 0. The function

(8.53) ϕa(ρ, λ) = εa(ι(ρ, λ)), ∀(ρ, λ) ∈ Ẑ × R∗
+,

is well defined and homogeneous of degree 1 in λ. Moreover, for fixed a ∈ Q/Z
with denominator m, it only depends upon the projection of ρ on the finite group
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Z/mZ, hence it defines a continuous function on Ẑ × R∗
+. Using the degree 1

homogeneity in λ, one gets that (8.53) extends by continuity to 0 on Ẑ × {0}.
One gets functions that are homogeneous of weight zero by taking the derivatives
of the functions ϕa. The functions

(8.54) ψa(ρ, λ) =
1

2πi

d

dλ
ϕa(ρ, λ), ∀(ρ, λ) ∈ Ẑ × R∗

+,

are independent of λ hence they define continuous functions on A
(1)
Q . They are

non trivial on Ξ̃Q,∞ = Ẑ∗×{0} ⊂ Ẑ×{0} and they agree there with the functions
ea of [12].

Proposition 8.22. Let B be the algebra generated by the ϕa and ψa defined in
(8.53) and (8.54) above.

(1) The expression

(8.55) N(f) =
1

2πi

d

dλ
f

defines a derivation N of B.
(2) The algebra B is stable under the derivation Y that generates the 1-

parameter semigroup F (µ) of endomorphisms of S(G (1)
Q ) of (8.11) and

one has, at the formal level, the relation

(8.56) F (µ)N = µNF (µ).

(3) For any element f ∈ B one has

(8.57) α ◦ f(x) = f(α̃ x), ∀x ∈ Ξ̃Q,∞ and ∀α ∈ Gal(Qcycl/Q),

where α̃ ∈ Ẑ∗ ⊂ CQ is the element of the idele class group associated to
α ∈ Gal(Qcycl/Q) by the class field theory isomorphism.

Proof. 1) By construction N is a derivation of the algebra of functions. Moreover
(8.54) shows that N(ϕa) = ψa, while N(ψa) = 0. Thus, the derivation rule shows
that B is stable under N .
2) The derivation generating the one parameter semigroup F (µ) is given, up to
sign, by the grading operator

(8.58) Y (f) = λ
d

dλ
f.

By construction, any of the ϕa is of degree one, i.e. Y (ϕa) = ϕa and ψa is of
degree 0. Thus, again the derivation rule shows that B is stable under Y .
3) This only involves the functions ψa, since by construction the restriction of

ϕa is zero on Ξ̃Q,∞. The result then follows from the main result of [5] in the
reformulation given in [12] (see also [13], Chapter 3). In fact, all these functions
take values in the cyclotomic field Qcycl ⊂ C and they intertwine the action of
the discontinuous piece Ẑ∗ of CQ with the action of the Galois group of Qcycl. �
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This is in agreement with viewing the algebra B as the algebra of coordinates on
Ξ̃Q. Indeed, in the case of a global field K of positive characteristic, the action of
the Frobenius on the points of C(F̄q) (which have coordinates in F̄q) corresponds
to the Frobenius map

(8.59) Fr : u 7→ uq, ∀u ∈ K

of the function field K of the curve C. The Frobenius endomorphism u 7→ uq of
K is the operation that replaces a function f : C(F̄q) → F̄q by its q-th power, i.e.
the composition Fr ◦ f with the Frobenius automorphism Fr ∈ Gal(F̄q/Fq). For
f ∈ K, one has

(8.60) Fr ◦ f = f q = f ◦ Fr,

where on the right hand side Fr is the map that raises every coordinate to the
power q. This corresponds to the interwtining with the Galois action discussed
above.
Notice moreover that, as we have seen in Proposition 8.6, only the semigroup C+

Q

acts on the reduced system S(G(1)
Q ) and it acts by endomorphisms. It nevertheless

acts in a bijective manner on the points of ΞQ. This is similar to what happens
with the Frobenius endomorphism (8.59), which is only an endomorphism of the
field of functions K̄, while it acts bijectively (as a Galois automorphism of the
coordinates) on the points of C(F̄q).

Further notice that there is a striking formal analogy between the operators
F and N of Proposition 8.22 satisfying the relation (8.56) and the Frobenius
and local monodromy operators introduced in the context of the “special fiber
at arithmetic infinity” in Arakelov geometry (see [18], [19]). In particular, one
should compare (8.56) with §2.5 of [19] that discusses a notion of Weil–Deligne
group at arithmetic infinity.

9. Functoriality of the adeles class space

We investigate in this section the functoriality of the adele class space XK and of
its classical subspace ΞK ⊂ XK, for Galois extensions of the global field K.
This issue is related to the question of functoriality. Namely, given a finite alge-
braic extension L of the global field K, we want to relate the adele class spaces of
both fields. Assume the extension is a Galois extension. In general, we do not ex-
pect the relation between the adeles class spaces to be canonical, in the sense that
it will involve a symmetry breaking choice on the Galois group G = Gal(L/K) of
the extension. More precisely, the norm map

(9.1) n(a) =
∏

σ∈G

σ(a) ∈ AK, ∀a ∈ AL

appears to be the obvious candidate that relates the two adeles class spaces. In
fact, since n(L) ⊂ K, the map (9.1) passes to the quotient and gives a natural
map from XL = AL/L

∗ to XK = AK/K
∗ that looks like the covering required by

functoriality. However, the problem is that the norm map fails to be surjective
in general, hence it certainly does not qualify as a covering map. In fact, this
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problem already occurs at the level of the idele class group CK, namely the norm
map fails to be a surjection from CL to CK.
The correct object to consider is the Weil group WL,K. This is an extension of
CL by the Galois group G = Gal(L/K), which is not a semi-direct product. The
corresponding non-trivial 2-cocycle is called the “fundamental class”. One has a
natural morphism t, called the transfer, from WL,K to CK. The transfer satisfies
the following two properties.

• The morphism t restricts to the norm map from CL to CK.
• The morphism t is surjective on CK

Thus, the correct way to understand the relation between the adeles class spaces
XL and XK is by extending the construction of the Weil group and of the the
transfer map.
One obtains in this way n copies of the adele class space XL of L and a map to
XK which is now a covering from G×ΞL → ΞK. This space has a natural action
of the Weil group. We explain this in more detail in what follows.

9.1. The norm map. We begin by recalling the well known properties of the
norm map that are relevant to our set-up. Thus, we let L ⊃ K be a finite Galois
extension of K of degree n, with G = Gal(L/K) the Galois group.
Since the adeles depend naturally on the field, one has a canonical action of G
on AL. If v ∈ ΣK is a place of K, there are mv places of L over v and they are
permuted transitively by the action of G. Let Gw be the isotropy subgroup of w.
Then Gw is the Galois group Gw = Gal(Lw/Kv).
One has a canonical embedding of AK as the fixed points of the action of G on
AL by

(9.2) AK = AG
L , (av) 7→ (aπ(w)), with π : ΣL → ΣK.

The norm map n : AL → AK is then defined as in (9.1). By [43] IV 1, Corollary
3, it is given explicitly by

(9.3) n(x) = z , zv =
∏

w|v

nLw/Kv
(xw) , ∀x ∈ AL .

Here the notation w|v means that w is a place of L over the place v ∈ ΣK. Also
nLw/Kv

is the norm map of the extension Lw/Kv. When restricted to principal
adeles of L it gives the norm map from L to K. When restricted to the subgroup
L∗

w = (. . . , 1, . . . , y, . . . , 1, . . .) ⊂ A∗
L, it gives the norm map of the extension

Lw/Kv. For nontrivial extensions this map is never surjective, but its restriction
n : O(Lw)∗ → O(Kv)

∗ is surjective when the extension is unramified, which is
the case for almost all places v ∈ ΣK (cf. [43], Theorem 1 p.153). In such cases,
the module of the subgroup n(L∗

w) ⊂ K∗
v is a subgroup of index the order of

the extension Kv ⊂ Lw. The restriction of the norm map to the idele group A∗
L

is very far from surjective to A∗
K and its range is a subgroup of infinite index.

The situation is much better with the idele class groups since (cf. [43], Corollary
p.153) the norm map is an open mapping n : CL → CK whose range is a subgroup
of finite index.
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9.2. The Weil group and the transfer map. The Weil groupWL,K associated
to the Galois extension K ⊂ L is an extension

(9.4) 1 → CL →WL,K → G→ 1

of CL by the Galois group G. One chooses a section s from G and lets a ∈
Z2(G,CL) be the corresponding 2-cocycle so that

(9.5) aα,β = s−1
αβ sα sβ, ∀α, β ∈ G.

The algebraic rules in WL,K are then given by

(9.6) sα sβ = sαβ aα,β , ∀α, β ∈ G

and

(9.7) sα x s
−1
α = α(x), ∀α ∈ G, ∀x ∈ CL.

The transfer homomorphism

(9.8) t : WL,K → CK

is then given by

(9.9) t(x) = n(x), ∀x ∈ CL and t(sα) =
∏

β

aα,β , ∀α ∈ G.

Its main properties are the following (see [39]).

• t is a surjective group morphism WL,K → CK.

• Let W ab
L,K be the abelian quotient ofWL,K by the closure of its commutator

subgroup W c
L,K. Then t induces an isomorphism of W ab

L,K with CK.

9.3. The covering. We finally describe the resulting functoriality of the adeles
class spaces in terms of a covering map obtained by extending the Weil group and
transfer map described above. Let, as above, L ⊃ K be a finite Galois extension
of K.

Lemma 9.1. The transfer map extends to a map

(9.10) τ : G×XL → XK

of the adele class spaces.

Proof. We endow G ×XL with a two sided action of G compatible with τ . By
construction the norm map n of (9.1) is well defined on AL. Since it is multiplica-
tive and we have n(L∗) ⊂ K∗, it induces a map of quotient spaces n : XL → XK.
By construction CL acts on XL and the actions by left and right multiplication
coincide, so we use both notations. We define the map τ as

(9.11) τ : G×XL → XK, τ(α, x) = t(sα)n(x), ∀x ∈ XL, ∀α ∈ G.
This makes sense since t(sα) ∈ CK and CK acts on XK. By construction, the
restriction of τ to G× CL is the transfer map. �
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One identifies G×CL with WL,K by the map which to (α, g) ∈ G×CL associates
the element sα g of WL,K.
In the following we use the notation

(9.12) xg = g−1(x).

We have the following result.

Lemma 9.2. Let L ⊃ K be a finite Galois extension of K.

(1) The expressions

(9.13) sαg(β, x) = (αβ, aα,βg
βx), and (α, x)sβg = (αβ, aα,βx

βg)

define a left and a right action of WL,K on G×XL.
(2) The map τ of (9.11) satisfies the equivariance property

(9.14) τ(gxk) = t(g)τ(x)t(k), ∀x ∈ G×XL, and ∀g, k ∈WL,K.

Proof. 1) We defined the rules (9.6) as the natural extension of the multiplication
in WL,K using

(9.15) sαgsβh = sαsβg
βh = sαβaα,βg

βh.

Thus, the proof of associativity in the group WL,K extends and it implies that
(9.13) defines a left and a right action of WL,K and that these two actions com-
mute.
2) The proof that the transfer map t is a group homomorphism extends to give
the required equality, since the norm map is a bimodule morphism when extended
to XL. �

At the level of the classical points, we can then describe the covering map in the
following way.

Proposition 9.3. Let L and K be as above.

(1) The restriction of τ to G× ΞL ⊂ G×XL defines a surjection

(9.16) τ : G× ΞL → ΞK.

(2) The map τ induces a surjection

(9.17) τ : G× (ΞL/CL,1) → ΞK/CK,1.

Proof. 1) By construction ΞL = ∪w∈ΣL
CLa

(w), where a(w) ∈ XL is the class,
modulo the action of L∗, of the adele with all entries equal to 1 except for a zero
at w as in (8.7). Let π denote the natural surjection from ΣL to ΣK. One has

(9.18) τ(1, a(w)) = a(π(w)), ∀w ∈ ΣL.

In fact, one has τ(1, a(w)) = n(a(w)). Moreover, by (9.3), the adele a = n(a(w))

has components az = 1 for all z 6= π(w) and aπ(w) = 0. Thus a = a(π(w)). The
equivariance of the map τ as in Lemma 9.2 together with the surjectivity of the
transfer map from WL,K to CK then show that we have

τ(WL,K(1, a(w))) = CK a
(π(w)), ∀w ∈ ΣL.
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For sαg ∈WL,K, one has

sαg(1, a
(w)) = (α, ga(w)),

since aα,1 = 1. Thus, WL,K(1, a(w)) = G× CLa
(w) and one gets

τ(G× CLa
(w)) = CKa

(π(w)), ∀w ∈ ΣL.

Since the map π is surjective we get the conclusion.
2) The transfer map satisfies t(CL,1) ⊂ CK,1. When restricted to the subgroup
CL the transfer coincides with the norm map n and in particular if |g| = 1 one
has |n(g)| = 1. Thus one obtains a surjection of the quotient spaces

τ : (G× ΞL)/CL,1 → ΞK/CK,1.

Moreover, the right action of the subgroup CL,1 ⊂WL,K is given by

(α, x)g = (α, xg).

This means that we can identify

(G× ΞL)/CL,1 ∼ G× (ΞL/CL,1).

�

9.4. The function field case. Let K = Fq(C) be a global field of positive
characteristic, identified with the field of rational functions on a nonsingular
curve C over Fq. We consider the extensions

(9.19) L = K ⊗Fq Fqn .

The Galois group G is the cyclic group of order n with generator σ ∈ Gal(L/K)
given by σ = id ⊗ Fr, where Fr ∈ Gal(Fqn/Fq) is the Frobenius automorphism.
Given a point x ∈ C(F̄q) we let n be the order of its orbit under the Frobenius.
One then has x ∈ C(Fqn) and evaluation at x gives a well defined place w(x) ∈ ΣL.
The projection π(w(x)) ∈ ΣK is a well defined place of K which is invariant under
x 7→ Fr(x).
In the isomorphism of Z-spaces

ϑL : C(F̄q) → ΞL/CL,1

described in §8.3, we have no ambiguity for places corresponding to points x ∈
C(Fqn). To such a point we assign simply

ϑL(x) = a(w(x)) ∈ ΞL/CL,1.

We now describe what happens with these points of ΞL/CL,1 under the covering
map τ . We first need to see explicitly why the surjectivity only occurs after
crossing by G.

Proposition 9.4. Let K and L = K ⊗Fq Fqn be as above.

(1) The image n(CL) ⊂ CK is the kernel of the morphism from CK to G =
Z/nZ given by

g 7→ ρ(g) = logq |g| mod n.
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(2) One has ρ(t(sσ)) = 1 mod n, where σ ∈ Gal(L/K) is the Frobenius
generator.

Proof. Since L is an abelian extension of K, one has the inclusions

(9.20) K ⊂ L ⊂ Kab ⊂ Lab,

where Kab is the maximal abelian extension of K. Using the class field theory
isomorphisms

CK ∼W (Kab/K) and CL ∼W (Lab/L),

one can translate the proposition in terms of Galois groups. The result then
follows using [39] p.502. �

10. Vanishing cycles: an analogy

We begin by considering some simple examples that illustrate some aspects of the
geometry of the adeles class space, by restricting to the semilocal case of a finite
number of places. This will also illustrate more explicitly the idea of considering
the adeles class space as a noncommutative compactification of the idele class
group.
We draw an analogy between the complement of the idele classes in the adele
classes and the singular fiber of a degeneration. This analogy should be taken
with a big grain of salt, since this complement is a highly singular space and it
really makes sense only as a noncommutative space in the motivic sense described
in sections 4 and 5 above.

10.1. Two real places. We first consider the example of the real quadratic field
K = Q(

√
2) and we restrict to its two real places v1 and v2. Thus, we replace

the adeles AK simply by the product Kv1 ×Kv2 over the real places, which is just
the product of two copies of R. The ideles A∗

K are correspondingly replaced by
K∗

v1
× K∗

v2
and the inclusion of ideles in adeles is simply given by the inclusion

(10.1) (R∗)2 ⊂ R2.

The role of the action of the group K∗ by multiplication is now replaced by the
action by multiplication of the group U of units of K = Q(

√
2). This group is

U = Z/2Z × Z

where the Z/2Z comes from ±1 and the Z is generated by the unit u = 3− 2
√

2.
Its action on R2 is given by the transformation

(10.2) S(x, y) = (ux, u−1y).

Thus, in this case of two real places the semi-local version of the adeles class
space is the quotient

(10.3) Xv1 ,v2 := R2/U

of R2 by the symmetry (x, y) 7→ (−x,−y) and the transformation S.
Both of these transformations preserve the function

(10.4) f̃ : R2 → R, f̃(x, y) = xy,
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which descends to a function

(10.5) f : Xv1,v2 → R.

Moreover one has

(x, y) ∈ (R∗)2 ⊂ R2 ⇔ f(x, y) 6= 0

and the fiber of f over any non zero ε ∈ R is easily identified with a one dimen-
sional torus

(10.6) f−1(ε) ∼ R∗
+/u

Z, ∀ε 6= 0

where one can use the map (x, y) 7→ |x| to obtain the required isomorphism.
The fiber f−1(0) of f over the point ε = 0, on the other hand, is no longer a one
dimensional torus and it is singular. It is the union of three pieces

(10.7) f−1(0) = T1 ∪ T2 ∪ {0}
corresponding respectively to

• T1 is the locus x = 0, y 6= 0, which is a torus T1 ∼ R∗
+/u

Z under the
identification given by the map (x, y) 7→ |y|.

• T2 is the locus x 6= 0, y = 0, which is also identified with a torus T2 ∼
R∗

+/u
Z under the analogous map (x, y) 7→ |x|.

• The last piece is the single point x = 0, y = 0.

One can see that at the naive level that the quotient topology on the singular
fiber (10.7) looks as follows. For any point x ∈ Tj its closure is x̄ = {x} ∪ {0}.
Moreover the point 0 is closed and the induced topology on its complement is
the same as the disjoint union of two one dimensional tori Tj . In fact one can
be more precise and see what happens by analyzing the C ∗-algebras involved.
The C∗-algebra A associated to the singular fiber is by construction the crossed
product

(10.8) A = C0(f̃
−1(0)) o U

with f̃ as in (10.4). One lets

(10.9) Aj = C0(Vj) o U

where we use the restriction of the action of U to the subsets

Vj = {(x1, x2) |xj = 0} ∼ R.

Evaluation at 0 ∈ R gives a homomorphism

εj : Aj → C∗(U) .

Lemma 10.1. One has an exact sequence of the form

0 → C(Tj) ⊗K → Aj
εj→ C∗(U) → 0,

where K is the algebra of compact operators.
The C∗-algebra A is the fibered product of the Aj over C∗(U) using the morphisms
εj.
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Proof. The first statement follows using the fact that the action of U on R∗ is
free. Notice that Aj is not unital, so that it is not the unital algebra obtained
from C(Tj) ⊗K by adjoining a unit.

Since the decomposition of f̃−1(0) as the union of the Vj over their common point
0 is U -equivariant one gets the second statement. �

After collapsing the spectrum of C∗(U) to a point, the topology of the spectrum
of Aj is the topology of Tj ∪ {0} described above. The topology of the spectrum
of A is the topology of f−1(0) of (10.7) described above.

10.2. A real and a non-archimedean place. We now consider another ex-
ample, namely the case of K = Q with two places v1, v2, where v1 = p is a
non-archimedean place associated to a prime p and v2 = ∞ is the real place.
Again, we replace adeles by the product Kv1 ×Kv2 over the two places, which in
this case is just the product

(10.10) Kv1 × Kv2 = Qp × R.

The ideles are correspondingly replaced by K∗
v1
×K∗

v2
= Q∗

p×R∗ and the inclusion
is given by

(10.11) Q∗
p × R∗ ⊂ Qp × R.

The role of the action of the group K∗ by multiplication is now replaced by the
action by multiplication by the group U of elements of K∗ = Q∗ which are units
outside the above two places. This group is

(10.12) U = Z/2Z × Z,

where the Z/2Z comes from ±1 and the cyclic group is pZ generated by p ∈ K∗ =
Q∗.
The action of U of (10.12) on R × Qp is given by the transformation

(10.13) S(x, y) = (px, py).

By comparison with the previous case of K = Q(
√

2), notice how in that case
(cf. (10.2)) the pair (u, u−1) was just the image of the element 3−2

√
2 under the

diagonal embedding of K in Kv1 × Kv2 .
In the present case, the role of the adeles class space XK = AK/K

∗ is then played
by its semi-local version

(10.14) Xp,∞ = (Qp × R)/U

quotient of Qp × R by the symmetry (x, y) → (−x,−y) and the transformation
S. Both of these transformations preserve the function

(10.15) f̃ : Qp × R → R+, f̃(x, y) = |x|p |y| ∈ R+,

which descends to a function

(10.16) f : Xp,∞ → R+.

Moreover, one has

(x, y) ∈ Q∗
p × R∗ ⊂ Qp × R ⇔ f(x, y) 6= 0
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and the fiber of f over any non zero ε ∈ R+ is easily identified with Z∗
p

f−1(ε) ∼ Z∗
p, ∀ε 6= 0.

In fact, one can use the fundamental domain

Z∗
p × R∗

+

for the action of U on Q∗
p × R∗ to obtain the required isomorphism.

The fiber f−1(0) of f over the point ε = 0 is no longer Z∗
p and once again it is

singular. It is again described as the union of three pieces

(10.17) f−1(0) = Tp ∪ T∞ ∪ {0},
which have, respectively, the following description.

• Tp is the locus x = 0, y 6= 0, which is identified with a torus Tp ∼ R∗
+/p

Z,
using the map (x, y) 7→ |y|.

• T∞ is the locus x 6= 0, y = 0, which gives the compact space T∞ ∼ Z∗
p/±1

obtained as quotient of Q∗
p by the action of U .

• The remaining piece is the point x = 0, y = 0.

The description of the topology of f−1(0) is similar to what happens in the case

of Q(
√

2) analyzed above.
What is not obvious in this case is how the totally disconnected fiber f−1(ε) ∼ Z∗

p

can tie in with the torus Tp ∼ R∗
+/p

Z when ε→ 0.
To see what happens, we use the map

(10.18) Xp,∞ 3 (x, y) 7→ g(x, y) = class of |y| ∈ R∗
+/p

Z.

This is well defined on the open set y 6= 0. It is continuous and passes to the
quotient. Thus, when a sequence (xn, yn) ∈ Xp,∞ converges to a point (0, y) ∈ Tp,
y 6= 0, one has g(0, y) = limn g(xn, yn).
The point then is simply that we have the relation

(10.19) g(x, y) = f(x, y) ∈ R∗
+/p

Z.

In other words, g(xn, yn) = εn with (xn, yn) in the fiber f−1(εn) and the point of
the singular fiber Tp towards which (xn, yn) ∈ Xp,∞ converges depends only on
the value of εn in R∗

+/p
Z.

This phenomenon is reminiscent of the behavior of holonomy in the context of
foliations, using a logarithmic scale R∗

+/p
Z ∼ R/(Z log p). It corresponds to what

happens in the limit cycle of the foliation associated to a flow as depicted in
Figure 5.
As we argued in [11] (see also §3.2 and §7.1 here above), the role of Frobenius in
characteristic zero is played by the one parameter group Fr(t) with t ∈ R which
corresponds to the action of R on the adele class space XQ = AQ/Q

∗ given in the
above logarithmic scale, namely

(10.20) Fr(t)(a) = et a, ∀a ∈ XQ.

Its orbit over p ∈ ΣQ is of length log p and it corresponds, in the simplified picture
of Xp,∞, to the component Tp of the singular fiber f−1(0).
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Figure 5. The limit cycle of a foliation.

10.3. Singularities of maps. The simple examples described above illustrate
how one can use the function f(x) = |x| in general, and see the place where it
vanishes as the complement of CK in the adeles class space XK. This provides a
way of thinking of the inclusion of CK in XK in terms of the notions of “singu-
lar fiber” and “generic fiber” as seen in the examples above. The generic fiber
appears to be typically identified with CK,1, with the union of the generic fibers
giving CK as it should. This suggests the possibility of adapting to our noncom-
mutative geometry context some aspects of the well developed theory of nearby
and vanishing cycles. A brief dictionary summarizing this analogy is given here
below.

Total space Adele class space XK = AK/K
∗

The map f f(x) = |x|

Singular fiber XK r CK = f−1(0)

Union of generic fibers CK = f−1({0}c)
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