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Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant

for many industrial processes, remain less well understood in terms of fundamental

fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great de-

tail; buckling instability in viscous jets leads to regular periodic coiling of the jet

that exhibits a non-trivial frequency dependence with the height of the fall. Very few

experimental or theoretical studies exist for continuous viscoelastic jets beyond the

onset of the first instability. Here, we present a systematic study of the effects of vis-

coelasticity on the dynamics of free surface continuous jets of surfactant solutions that

form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of

the jet and uncover a transition from periodic to quasi-periodic to a multi-frequency,

possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses

over to exhibit the "leaping shampoo effect" or the Kaye effect. This enables us to

view seemingly disparate jetting dynamics as one coherent picture of successive in-

stabilities and transitions between them. We identify the relevant scaling variables

as the dimensionless height, flow rate, and the elasto-gravity number and present a

regime map of the dynamics of the jet in terms of these parameters.

PACS numbers: 47.60.kz, 47.50.-d, 47.20.Gv
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I. INTRODUCTION

Free surface continuous jets of viscoelastic fluids are relevant in many industrial processes

like fiber spinning, bottle-filling, oil drilling etc. In many of these processes, an understanding

of the instabilities a jet undergoes due to changes in fluid parameters like Reynolds number

or Deborah number is essential from process engineering point of view. From a fundamental

fluid dynamics point of view, jets of viscoelastic fluids present many challenging problems,

which remain unresolved; the addition of elastic effects on the dynamics of viscous jets is one

such challenging problem. Viscous free surface flows, especially jets, have been extensively

studied in many different contexts. From the earliest studies of breakup of viscous jets by

Rayleigh1 and Taylor2, free surface jets have provided spectacular phenomena like capillary

breakup3, and the coiling instability4. These investigations have enhanced our understanding

of the physics of free surface viscous flows by employing experiments, analytical treatments,

and numerical modeling.

Viscoelastic free surface flows add another dimension to the problem via elasticity of the

fluids and provide equally stunning effects in free surface flows. For example, dripping of

a polymeric fluid gives rise to beads-on-a-string structure due to elasto-capillary thinning5.

While the beads-on-a-string phenomenon occurs at very low flow rates, at high flow rates

and under electric fields a different set of problems occur as in the fiber spinning process6.

In addition, with the advent of microfluidics, an understanding of the jetting properties

of non-Newtonian fluids becomes essential from micro- to macro length scales, and from

low to high Reynolds numbers7–9. In this paper, we focus on buckled viscoelastic jets and

study the interplay of rheology and dynamics in surfactant systems. The problem of buckled

viscoelastic jet has not been studied experimentally so far. This challenging problem is of

interest not only for industrial applications, but also for understanding certain geophysical

flows10.

The description of the phenomenon of coiling is quite simple. When a viscous fluid is

poured from a container or a nozzle and it strikes an obstacle, the jet undergoes bending

instability under certain conditions and performs coiling motion, as seen from pouring honey

on toast. The frequency of this coiling changes with the height of the fall in a non-trivial
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fashion depending on the interplay of viscous, gravitational, and inertial forces. We begin

by reviewing previous research on the problem of viscous coiling and some related problems.

The first study of the coiling instability in viscous jets was done by Barnes and Woodcock

in 195811, who named the instability the “rope-coil effect”. The basic observations regarding

the coiling instability were outlined in this paper. This study was followed by a second study,

where the height dependence of the coiling frequency was measured12. These two papers

described a seemingly simple, liquid column buckling instability, which can be observed

easily in everyday situations like pouring honey on toast. The problem of buckled liquid jets

and sheets has since been investigated by a number of authors, with increasing experimental

accuracy and sophisticated modeling. The next detailed investigation of this problem was

carried out by Cruickshank and Munson in a series of papers4,13–16. These papers established

a rigorous quantitative foundation for the problem of axi-symmetric, and planar viscous

jet bucking. The principal findings in these studies were identification of critical height

and limiting Reynolds number for the coiling instability. It was found that a viscous jet

undergoes buckling only if the Reynolds number is less than 1.2, making it a low Reynolds

number phenomenon. It was also found that the critical aspect ratio at which the buckling

instability appears is H/d = 7.7 for axi-symmetric jets, and H/d = 4.8 for planar jets. Here

H is the drop height and d is the nozzle radius4,16. The additional observation relates to the

variation of frequency of coiling with the aspect ratio. A simple model for this variation was

put forth based on energy dissipation arguments14,15. On the theoretical front, one of the

first investigations that dealt with describing coiling and folding in viscous jets and sheets

were by Tchavdarov et al.17 and Yarin and Tchavdarov18. Using perturbation theory, these

authors were able to model the jet beyond the buckled state and obtain good agreement

with the observations of Cruickshank and Munson.

A resurgence of interest in this problem began as a result of the study by Ryu et al.19,

who revisited the problem of coiling in viscous jets and combined experiments and theoretical

arguments to put forth scaling laws for the dimensionless frequency and dimensionless am-

plitude as a function of fluid parameters and kinematic variables20. This study was extended

by Maleki et al.21 and Habibi et al.22, in which they obtained scaling laws for the frequency

variation in viscosity dominated regime, viscous-gravitational regime, gravito-inertial regime,
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and inertial regime. These scaling laws were obtained by balancing dominant forces acting

in each regime. In the transitional gravito-inertial regime, Ribe et al. found the existence

of multiple steady states, wherein the coiling occured at two different frequencies23. These

frequencies were seen to be eigensolutions to the whirling slender string model proposed

in this paper. Although the theoretical solutions admitted more than two frequencies, the

experiments could capture only two of those frequencies, and the branch connecting these

two frequencies was found to be unstable. Ribe also gave a general theory of coiling and

folding in viscous threads and sheets24,25. Several other related problems of interest have

been studied since then; for example, the coiling of elastic ropes26, instabilities in dragged

viscous threads27, and the meandering instability of viscous threads28. Lastly, a new one di-

mensional model has been proposed by Nagahiro and Hayakawa29, where they obtain many

of the observed features of viscous coiling from a simplified one dimensional flow model.

In contrast to this extensive body of work on the buckling instability of viscous jets and

sheets, no such experiments have been carried out for viscoelastic jets. On the other hand,

there have been numerous theoretical treatments of slender viscoelastic jets, though none

of these studies deal with buckled jets. An early work in this area is by Matovich and

Pearson30, where the authors treated a viscoelastic jet in fiber-spinning geometry. Koesser

and Middleman31 treated slender viscoelastic fibers to assess the stability of such fibers

against breakup. A model of viscoelastic fibers as one dimensional slender body has been

achieved in a series of papers32–34, where the authors reduce the three dimensional problem

to an effectively one dimensional problem, and obtain a set of coupled nonlinear ordinary

differential equations for the system. The practical problems for which this system is solved

is again draw-down of fibers in fiber spinning. Although mathematically rigorous, so far

the model has not been used to examine the dynamics of a buckled jet falling on to a plate

perhaps due to the complexity of the boundary conditions and the large number of coupled

equations that have to be solved simultaneously.

At the higher Reynolds number, viscoelastic fluids, especially surfactant fluids show a

remarkable phenomenon discovered first by A. Kaye35. He observed that when a solution

of polyisobutylene in decalin is poured from a large height on to a plate, the liquid stream

forms a mound, now known to be a mound of coils, but intermittently jumps vertically
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or sideways to large distances. These “leaps” were considered to be a type of “recoil” for

the liquid stream. The next study to address this issue was by Collyer and Fisher36, who

suggested that shear-thinning was an essential property for fluids to exhibit this “leaping

effect”. In addition, they suggested that any polymeric fluid, which was elastic, “pituitous",

and highly shear-thinning would show the Kaye effect. Since then, it is known that many

shampoos or liquid detergents show the same effect.

This problem was examined again, after a gap of thirty years, in a recent study by Versluis

et al.37, who put this problem on a quantitative footing. They examined the effect using high

speed imaging and found that indeed shear-thinning is the most essential property of fluids

that exhibit the Kaye effect. The authors also proposed that elasticity played no role in the

origin or stability of the effect. A simple model based on energetics was put forward, with

a suitable function describing the decrease of viscosity with shear rate and good agreement

was found between experimental observations of the velocity of the leaping jet and those

predicted by the model. They also observed that a minimum flow rate and a critical height

were needed to establish the leaping shampoo effect.

The dynamics of free surface viscoelastic jets cover a wide array of phenomena. Many

questions arise as one crosses over to non-Newtonian fluids; how does fluid elasticity change

the jetting dynamics? What influences do shear and extensional rheology of the fluid have

on the behavior of the jet? Here we try to address some of these issues within the context

of buckling of viscoelastic jets and their subsequent dynamics.

In this paper we report results of a systematic study of continuous jets of shear-thinning

worm-like micellar fluids of varying viscosities and elastic relaxation times. This enables

us to compare the role of viscosity and elasticity on the jetting dynamics. We completely

characterize the rheology of the fluids and the jetting dynamics is observed by digital video

imaging. We identify relevant parameters and define the problem in terms of dimensionless

variables. We cast different jetting regimes in terms of a regime map that combines kinematic,

geometric, and rheological parameters.
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TABLE I. Overview of test fluids used in the present study and relevant physical parameters at

22◦C. Here η is the stated viscosity in the limit of zero shear rate, λ is the elastic relaxation time,

and the Elasto-gravity number is given as: Eg = λ
(
ρg2

η

)1/3

Fluid η λ Rheology Elasto-gravity number (Eg)

S1 9.3 0.03 Shear thinning 0.7

S2 16.5 0.09 Shear thinning 1.7

S3 34.8 0.12 Shear thinning 2.5

II. MODEL FLUID

In order to investigate the effects of viscosity and elasticity on the jet dynamics, we

need a model fluid whose viscosity and elastic relaxation time can be varied in a systematic

fashion. To this end, we choose as our model fluid, the surfactant solution of Sodium Lauryl

Ether Sulphate (SLES). The choice of this fluid as a model fluid stems from the fact that

SLES is the main surfactant in many shampoos and household cleaners. These fluids are

shear thinning and they form worm-like micelles. By adding appropriate amounts of Sodium

Chloride (NaCl), the viscosity and the elastic relaxation time of the resulting fluid can be

varied systematically.

Three different test fluids were prepared in this manner by adding 11.4 gm, 13.4 gm, and

17.8 gm of NaCl to 500 ml of SLES. The salt was added and the fluid was placed on a rotating

mixer for a period of 24 hours, and then allowed to sit for another 24 hours before use. The

resulting fluids were adjusted to be 250 mM/L (S1), 300 mM/L (S2), and 400 mM/L (S3)

solutions of SLES and NaCl. The properties of these model fluids are listed in Table 1. It

can be observed from Table 1 that adding salt to the surfactant solution increases both the

viscosity and the elastic relaxation time (λ). The increase in elastic relaxation time signifies

that the fluid is more elastic. The viscosities and the elastic relaxation times increase linearly

with salt concentration as shown later.
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III. EXPERIMENTAL METHODS

Height H

Initial diameter d

Imposed 

flow rate Q

Amplitude 

2L

Frequency f

Syringe Pump

Green Laser

Bottom View Setup

MirrorCamera

a) b)

c)

d)

e)

FIG. 1. Schematic diagram of the experimental setup and different viewing configurations. a)

Schematic diagram of the bottom-view setup shows a laser light going through a T-junction. The

other end of the the junction is the fluid inlet. The junction is mounted on a linear stage. The

fluid falls on a plexiglas plate. b) An image of the jet in the side-view configuration, where the

jet is backlit with halogen lamp and the camera is placed perpendicular to jet direction. In this

configuration, the laser lighting is not employed. c) An image from the bottom-view setup with

halogen lighting; the light falls onto the plexiglas plate, the mirror at 45◦ projects the jet outline

and the trajectory in two-dimensional space onto the camera. d) An image from the bottom-view

configuration with laser light through the jet. The tip of the jet makes a spot, which moves along

with the jet. e) The profile of the jet with the relevant parameters.

The jetting dynamics was observed using digital video imaging under three different con-

figurations. Figure 1 describes the setup and the experimental arrangement with an example
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of image captured using each view configuration. The reason for imaging the jet dynamics

using three different view-configurations is to be able to resolve the complex spatio-temporal

dynamics. Unlike Newtonian viscous jets, where the principal complexity is in the frequency

of coiling with increasing height, in non-Newtonian jets the dynamics is complex both spa-

tially and temporally.

In Fig. 1(a), we show the schematic diagram of the experimental setup. The fluid is

pumped via a syringe pump (Stoelting). The fluid is pushed at a specified flow rate with an

accuracy of 0.01 ml/min. The fluid is stored in standard disposable plastic syringes (BD),

with a capacity of either 10 cc, or 60 cc. The fluid then passes through Tygon tubing of

fixed length (∼ 18 inches) for each experiment. The other end of the Tygon tubing has a

steel nozzle of length 1 inch and diameter, d = 1.2 mm, attached to it. The fluid exiting the

nozzle falls on a Plexiglas plate. The nozzle is fixed to a linear stage (Velmex) in vertical

orientation. This allows us to vary the height of fall precisely with a resolution of 0.1 mm.

The height of fall in all experiments was varied between 0.5 cm and 20 cm.

The three different imaging configurations give three different views of the jet. The first

case is the traditional side view. In this configuration a digital camera (BlueFox) is placed in

a direction perpendicular to the direction of the flow of the jet, and the jet is backlit with a

500 W halogen lamp, with a diffuser screen placed between the light and the jet. The profile

of the jet in this configuration is shown in Fig. 1(b). The advantage of this view is that the

onset of coiling and the jet diameter are readily observable. The frequency of coiling at the

onset can also be easily calculated using frame counting.

As the jet dynamics becomes more complicated, for example when the trajectory of the jet

follows a complicated two dimensional path, the side view provides insufficient information

regarding the jet dynamics. In order to extract this missing information we employ two more

view configurations; both involve imaging the jet from the bottom but in one case we use

the diffused halogen illumination, and in the other case we use a beam of green laser passing

through the jet. The idea of using a laser through a jet was first employed by Versluis et

al.37.

The bottom view configuration with the laser light is shown in Fig. 1(a). The green

laser light is placed vertically, and the light enters a T-junction. The end of the T-junction
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collinear with the laser is sealed off using a thin transparent acrylic sheet. The fluid from the

syringe enters the second opening of the T-junction, perpendicular to the direction of the

laser. The fluid then moves downwards, and exits out of the remaining end of the T-junction.

The beam of laser passes through the fluid, and acts as a light-guide. In the bottom view,

a mirror is placed at 45◦ below the plexiglas plate on which the jet falls. The point where

the jet strikes the plate shows up as a bright spot, which moves as the jet moves in the x-y

plane. This imaging technique works well for small amplitude and low frequency coiling or

linear oscillations (folding).

When the jet executes a complex two dimensional motion rapidly, the laser spot is unable

to follow the jet in real time. In order to accurately capture the jet dynamics, we employ

the second bottom view configuration, now with diffused light. The principle of the bottom

view with diffused light is the same, except that instead of a bright point, as with a laser,

one observes the edges of the whole fluid thread deposited on the plate, and its subsequent

motion. In Figs. 1(c) and (1d), we show the images of the jet in the bottom-view configuration

with diffused light, and laser light respectively. The digital videos are captured at frame

rates ranging from 50 fps to 300 fps, giving us sufficient resolution to track the jet tip in

two-dimensional space, over time.

IV. EXPERIMENTAL VARIABLES

Figure 1(e) shows a side-view image of the jet with the relevant parameters. These

parameters can be classified into two groups; fluid parameters, and kinematic parameters.

Fluid parameters are the viscosity (η), elastic relaxation time (λ), density (ρ), and surface

tension (σ). Kinematic parameters are the fluid flow rate Q, the height of fall H, acceleration

due to gravity g, and the geometric parameter nozzle diameter d, which determines the aspect

ratio for the problem.

Amongst the fluid parameters, the density, and the surface tension do no change appre-

ciably for the three fluids. The surface tension is around 0.025 N/m, and the density is

1.2 kg/m3. The values for the viscosity and elastic relaxation times are given in Table 1.

The kinematic parameters varied systematically in the experiments are the flow rate, the
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height of fall, and the nozzle diameter. The nozzle diameter does not significantly alter the

behavior of the jet except setting a scale for the aspect ratio. Any change in the behavior

of the jet is a result of an interplay between various forces like viscous force, gravitational

force, inertia and elasticity. The same interplay can also be cast in terms of relevant time

scales.

The behavior of a free surface viscoelastic jet involves at least three distinct time scales;

the elastic relaxation time (λ), the viscous time scale (Tv), and the flow time of the fluid

(Tf ). The last two are given by:

Tv =
ηd

σ
(1)

Tf =
Hπd2

4Q
(2)

From the balance of viscous and gravitational froces one obtains a length scale and a time

scale for the problem:

lgv =

(
η2

ρ2g

)1/3

(3)

τgv =

(
η

ρg2

)1/3

(4)

Many dimensionless variables naturally arise in the problem either due to balance of forces

or due to the time scales involved. In the following we will use lgv and tgv to obtain non-

dimensional parameters relevant to our problem. The first important dimensionless variable

is the Reynolds number (Re), which is the ratio of inertial forces to viscous forces, given as:

Re =
4Qρ

πdη
(5)

The other variables can be cast into dimensionless forms using scalings used in viscous

jet studies. For example the height and the flow-rate, two main control parameters, can be

made dimensionless as follows:

ε =
H

d
(6)

H∗ = H

(
gρ2

η2

) 1
3

(7)

Q∗ = Q

(
gρ5

η5

) 1
3

(8)
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The effects of elasticity can be captured by introducing a suitable dimensionless variable

like the Deborah number De = λγ̇, where γ̇ is the shear rate. It is to be noted here that

the shear rate is not constant throughout the jet, especially in buckled jets. For a jet that

buckles and executes coiling, the shear rate is higher near regions of higher curvature.

V. FLUID RHEOLOGY

In order to decipher the effects of increasing viscosity and elasticity on the jet dynamics,

it is essential to rigorously characterize the rheological properties of our model fluids. The

data presented in Table 1 were obtained in the following manner.

The rheological response of the model fluids was obtained using a conventional stress-

controlled rotational rheometer ARG2 (TA Instruments) or strain-controlled rheometer

ARES (TA instruments). Two types of rheological tests were conducted; steady shear-rate

response, and small amplitude oscillatory shear (SAOS) tests. The steady shear-rate re-

sponse gives the change in viscosity with shear-rate, and SAOS test gives the elastic and the

viscous moduli for the fluids, from which an effective elastic relaxation time constant λ can

be extracted by fitting the data to a single relaxation time Maxwell model.

First we describe the details of the steady shear-rate tests. The fluids were subjected to

steady shear rate tests with shear rates varying from 0.1 s−1 to 1000 s−1, using a parallel

plate geometry, with plate radii of 50 mm, at a gap height of 1 mm . The temperature was

controlled using a Peltier plate at 22.5◦C. In Fig. 2(a), we show the variation of viscosity

with shear rate for the three fluids. Beyond a certain shear rate, the viscosity of each fluid

begins to decrease, signifying a shear-thinning behavior. From this data, we obtain the zero

shear-rate viscosities for each fluid, as stated in Table 1.

The second set of tests performed were small angle oscillatory tests. These tests are

aimed at obtaining the viscous (G′′) and elastic (G′) moduli of the fluids. These tests

were performed on the stress-controlled ARG2 rheometer, using cone-plate geometry. The

diameter of the cone was 40 mm, and the cone angle was 2 ◦. Each fluid was placed within the

cone-plate geometry, and oscillatory shear stress of 0.58 Pa was applied at frequencies ranging

from 1 rad/s to 100 rad/s. We show the results in Figs. 2(b), (2c), and (2d) for the fluids

11



0.1 1 10 100 1000

0.1

1

10

 S1 (! = 9.3 Pa s)
 S2 (! = 16.5 Pa s)
 S3 (! = 34.8 Pa s)

 

 

V
is

co
si

ty
 [P

a 
s]

Shear rate [s-1]

240 260 280 300 320 340 360 380 400 420
5

10

15

20

25

30

35

 

 

V
is

co
si

ty
 [P

a 
s]

Molar Concentration [mM/L]

S1

S2

S3

a) b)

c)

d)

e)

FIG. 2. Fluid Rheology: Viscous and elastic properties of the model fluids. a) Shear rheology of the

three fluids showing variation of viscosity with shear rate. The initial plateau region gives zero-shear

viscosity and each fluid exhibits strong shear-thinning, i.e. decrease in viscosity with increase in

shear rate. The shear-thinning behavior begins at a shear rate of γ̇ = 1 s−1. b),c),and d) Small

angle oscillatory shear response of the three fluids. Elastic (G’), and viscous (G") moduli are shown

as a function of frequency for the fluid S1, S2, and S3 respectively. Each fluid exhibits a crossover

point, beyond which, the elastic modulus becomes larger than the viscous modulus. The inverse of

the frequency at the crossover point gives the elastic relaxation time of the fluid. A more rigorous

approach entails fitting the moduli curves via a single mode Maxwell model, shown by solid lines.

e) Viscosity variation as a function of the salt concentration; viscosity varies linearly as a function

of salt concentration.
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S1, S2, and S3 respectively. As the frequency of oscillation increases, the elastic modulus

G
′ increases. At a certain frequency, the elastic modulus crosses the viscous modulus. From

this crossover point, one can get a rough estimate of the elastic relaxation time scale as the

inverse of cross-over frequency. A more accurate method of obtaining relaxation time is to

fit the single relaxation mode Maxwell model. The results of the relaxation times obtained

in this manner are reported in Table 1.

The effects of adding salt to SLES solutions is shown in Fig. 2(e). The viscosity increases

linearly with salt concentration.

VI. EXPERIMENTAL RESULTS

To understand free surface flows of non-Newtonian fluids, it is important to study the

behavior as the fluid parameters and kinematic parameters are changed. A useful representa-

tion would employ a three dimensional parameter space, where the axes are given in terms of

a triplet of numbers, for example Re, Wi, Ca, or some other suitable set of non-dimensional

parameters38.

In our case, for each fluid, we fix a flow rate and vary the height of fall to investigate the

change in the dynamics of the flow. In this situation, we can employ a 2D representation

of this 3D regime map. We determine the flow behavior in terms of dimensionless height,

and dimensionless flow rate, and by comparing the jetting behavior for the three fluids with

different viscosities and relaxation times, we can arrive at a representation in terms of other

dimensionless variables.

It is instructive to recap the typical behavior of free surface viscous Newtonian jets.

The initial jet dynamics is always stable, stagnation flow, where the jet spreads over the

surface. The critical aspect ratio at which the jet undergoes buckling instability is a well-

characterized4. The critical aspect ratio for a coiling transition is:

ε =
H

d
= 4.8 (9)

Subsequent to this buckling transition, the frequency of coiling changes as the aspect ratio

increases. There is also an upper limit on the Reynolds number above which the jet returns
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to stagnation flow state. This critical Reynolds number is found to be 1.2. In all of our

experiments, the Reynolds number as defined in Eq. 5 is much lower, within the range

Re = [10−4 − 10−3]. There exists another limiting behavior as the height of fall and the flow

rate are varied - jetting to dripping transition39. This transition is determined by the flow

time and the capillary breakup time, and is given by:

ε =
ηQ

σd2
(10)

The interesting dynamics we capture fall beyond these two limiting regimes. For viscous

Newtonian jets, the coiling frequency of the jet varies with height of the fall for a fixed flow

rate. The coiling frequency can be obtained as a function of the height, the flow rate and the

viscosity of the fluid. In different regimes, the scaling laws for the frequency are different, but

for known flow rates and heights, coiling frequency for fluids with different viscosities can be

ascertained using the scaling relations. For visco-elastic fluids, the situation is complicated

by the introduction of elasticity, and its competition with viscous, gravitational, and inertial

forces. Moreover, for shear-thinning fluids, as the height of fall is increased or the flow

rate is varied, the fluid far away from the nozzle or in the coils may have a substantially

different viscosity than the fluid exiting the nozzle. These considerations point to a need for

quantifying the relative effects of elasticity, viscosity and gravity. One important parameter

we use in this study is the elasto-gravity number, which compares these forces:

Eg = λ

(
ρg2

η

)1/3

(11)

The elasto-gravity number increases as the effects of elasticity increase relative to viscous

effects. In other words, Eg increases whenever λ increases or η decreases for a finite value of

λ. The elasto-gravity number has a clear lower limit; Eg = 0 for Newtonian viscous fluids.

For the fluids used in this study, Eg is around 1.0.

A. Instability in Viscoelastic Jets: General Observations.

In this section, we describe some general observations of the jetting dynamics, which are

generic and robust in that they are found for each fluid at different flow rates and heights.
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FIG. 3. Regime Map: Jet dynamics in (H/D −Q∗) space. The behavior of the jet for the three fluids

is shown at four different flow rates, as the height of the fall is varied. The legend is as follows:

� represents the regular coiling state (RPC), the  represents quasi-periodic coiling (QPC), K

represents multifrequency or irregular dynamics (MFC), � represent dripping, and F star represent

the “leaping shampoo" state. a) Fluid S1; for the first two flow rates, the dynamics proceeds from

RPC to QPC to MFC to dripping. For the latter two flow rates, the dripping state is replaced by

an onset of “leaping shampoo" state. b) Fluid S2; the dynamics is similar to fluid S1, except the

dripping state is now found only for the lowest flow rate. The transition boundaries between the

QPC state and MFC state are shifted compared to fluid S1. c) Fluid S3; the regime map shows the

same generic features as for the other two fluids. d) Schematic regime map showing different flow

behaviors. The pictures in the insets show the jet dynamics either under side-view or bottom view.
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For each experiment, a flow rate was chosen, the height of the fall was fixed. The flow was

started and the jet dynamics was captured using a digital CCD camera. The height of the

fall was then increased, and the same procedure repeated. Typically, the height of fall was

varied between 0.5 cm and 15 cm, depending on the nozzle diameter. At each height, the flow

was visualized using one or more of the view-configurations, and the process was repeated

for a different flow rate. These entire set of measurements were performed for each of the

three fluids. These observations are then combined, for each fluid, to produce a regime-map

of the dynamical behavior at different flow rates and heights.

Each fluid exhibits a similar pattern of dynamics as the height of fall is varied at different

flow rates, though the dynamics itself is not always simple. This pattern of dynamics can

be represented in a parameter space of scaled height, and scaled flow rate. These scalings

can be chosen in multiple ways. As one set of scaled variables, we choose the variables

H∗ = H/d, and Q∗ = Q(gρ/η5)
1/3. The dimensional flow rate is scaled with gravitational

and viscous forces. The scaling analysis resulting from this choice of non-dimensional flow

rate has been shown to be useful for viscous jets, though it leads eventually to a complicated

set of relations for the frequency of coiling as a function of flow rate, height, and viscosity

of the fluid. In order to compare our results to the viscous case, we retain this scaling of

the scaled height and the scaled flow rate and report the regime map for each fluid with

appropriate elasto-gravity number.

In Figs. 3(a), (b), and (c), we show the regime maps of jet dynamics in ε−Q∗ space for

the three fluids S1, S2, and S3, respectively. The meanings of different symbols are explained

in the figure legend. It is at once clear that the three fluids show the same type of behavior

across flow rates and heights. Similar to the Newtonian case, the jet is stable below a certain

critical aspect ratio, though it is not possible to always measure this state for long except for

low flow rates, since the fluid heap clogs up the nozzle. For each figure, the four different Q∗

correspond to Q = 1ml/min, Q = 2ml/min, Q = 3ml/min, and Q = 4ml/min, respectively.

For each flow rate a similar pattern of behavior is observed for each fluid as the height of

fall is increased. This pattern can be simply described as follows:

1. Stagnation Flow (SF)
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2. Regular Periodic Coiling (RPC)

3. Quasi-Periodic Coiling (QPC)

4. Multi-frequency Dynamics (MFD)

5. Kaye Effect or the “Leaping Shampoo Effect" (LS)

6. Dripping State (DS)

The generic behavior for each fluid and the entire sequence of transitions is captured in

Fig. 3(d). The pictures in the insets show either the side-view or the bottom-view for each

kind of dynamic.

We now briefly describe our definition of each of these states. Stagnation flow is the case

when then jet is as yet unbuckled, the fluid hits the plate and spreads evenly on it. RPC

state is one in which the jet having undergone buckling instability rotates around a fixed

center, at a fixed frequency, either clockwise or anti-clockwise. This state is similar to the

viscous coiling state in purely viscous jets. What we call QPC here is a state in which the

jet undergoes coiling motion with two or three frequencies. We note here that a subset of

this type of motion has been termed “multiple coexisting states” by Ribe et al. in their study

of viscous jets23. The term QPC more accurately describes this behavior in the context of

nonlinear dynamics exhibited by the jets. The transition to a more complex dynamics is

termed here as MFD, and it designates a meandering jet with multi-frequency behavior; the

behavior is complex in both space and time making it a different class of motion than a

“whirling string” exhibiting discrete multiple eigenfrequencies23. The next type of dynamics

is the well known Kaye effect or more recently termed as the leaping shampoo effect. In this

case, the jet exhibits inertial coiling at a high frequency with intermittent bursts of large

amplitude displacements either in-plane or in a fully three dimensional space. These bursts

may be of a single rope of jet or a fluid loop shooting out and away from the jet axis.

Beyond the initial buckling instability, the jet first shows RPC. Upon increasing the height

further, the jet undergoes a second transition to quasi-periodic coiling with two frequencies.

Within this QPC regime, as the height of fall is increased, one more frequency is added to the

dynamics and we observe behavior with three distinct frequencies. As the height is increased
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further, we obtain a spatio-temporally complex, multi-frequency dynamics. This dynamics

could be chaotic within a small window of dimensionless height. On further increase of

height, this chaotic looking dynamics, crosses over to a different kind of dynamics, where

the irregular meandering of the jet is replaced by the Kaye effect described earlier.

For the lowest flow rate, for each fluid, we also obtain jetting-dripping transition above a

certain height. In this state, while the jet does not breakup, it does not acquire steady flow

conditions. Large beads of fluid tend to fall down along a very thin stretched fluid fiber,

reminiscent of the well-known beads-on-a-string scenario5. This simple examination of the

regime map shows that the dynamics of the jet very quickly becomes quite complicated,

both in space and time. In order to decipher the nature of these regimes and transitions

between them, the motion of the jet has to be accurately determined. With a view to study

the regime map in a more quantitative fashion, we make use of the bottom view imaging

configuration and resolve the motion of the jet in XY plane over time. The data collected

in the form of movies, then allow us to create the jet trajectory in space and over time.

In the QPC regime and beyond, a simple frame counting approach proves to be insufficient.

The measurement of frequencies of coiling and of precession is accomplished by tracking

the jet tip, constructing the time series for the X and Y components of the motion, and

computing the power spectra for each type of motion. The dominant frequencies in the

power spectra correspond to different modes of motion like coiling or precession, provided

the frequencies are independent. In Figure 4, we show a series of jet trajectories and the power

spectra of the X and Y components, for the QPC regime and beyond. The figures shown

are for fluid S2 at a flow rate of Q = 2 ml/min. The choice of analyzing the data in X and

Y components, as opposed to more traditional R and θ components stems from the nature

of dynamics exhibited. Even within the quasi-periodic regime, the jet may execute coiling as

well as folding or linear oscillations. Moreover, the center of the rotation of the jet is also not

fixed, but may execute periodic or aperiodic motion. This produces artificial discontinuities

and additional errors in computing radial and angular coordinates as a function of time. In

the following discussion, we look at each regime with the help of jet trajectory data and

quantify the jet behavior in more detail. We will combine information from Figures 3, and
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4 for each regime to get a better insight into the dynamics in each regime.

B. Regular Periodic Coiling

Beyond the stagnation flow, when the jet undergoes coiling transition, the observed coiling

is highly regular, and periodic in space and time. Each "fluid-rope” falls exactly on top of

the previous coil at fixed intervals, hence with a fixed frequency and amplitude (see ??(d),

inset). Due to lower viscosities of the fluids used in these experiments as compared to earlier

reported experiments in the literature, we do not observe coils stacking on top of one another

in this regime; the time scale of fluid spreading on the plate is comparable to the time scale

at which new fluid element arrives at the plate. The RPC behavior is represented in Figs. 3

(a), (b), (c) as black squares.

The most significant feature of this state, in contrast to Newtonian jets, is the small

window of scaled height in which RPC is observed. For viscous Newtonian jets, one observes

a viscous regime in which the frequency of coiling decreases as the height is increased.

Transition to gravitational regime reverses this trend and the frequency increases with fall

height. For viscoelastic jets there appears to be a very small range of heights for which

we observe RPC with a single frequency. This range is predominantly dependent on the

dimensionless flow rate; higher the flow rate, lower this range. The maximum aspect ratio

up to which RPC is obtained is for the fluid with lowest viscosity and elasticity (ε = 12.5).

The variation of RPC region on the elasto-gravity number also shows an inverse relation;

the size of the RPC region decreases as the elasto-gravity number increases.

The X−Y trajectory of the RPC and the corresponding power spectra of each component

are shown in Figs. 4 a, b, and c respectively. The single frequency periodicity is revealed in

both power spectra, with the peak frequency of f0 = 1.191 Hz.

C. Quasi-periodic Coiling

The next stage in the dynamics of buckled viscoelastic jet is the quasi-periodic region.

The QPC regime is shown in Fig. 3 as red circles. For a given flow rate, as the height
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FIG. 4. Trajectory tracking and power spectra: Top row shows the trajectories of the jets of fluid

S2 at a flow rate of Q = 2ml/min, for different heights. The power spectra of the X(t) component

are in the middle row, and the power spectra of the Y (t) components are in the bottom row.

a) Trajectory of the RPC state, at H/d = 8.33. b,c) The power spectra of the X(t), and Y (t)

coordinates, respectively. A single frequency f0 = 1.19Hz is clearly visible. d) The trajectory of the

QPC regime at H/d = 12.5, showing the “trefoil-pattern”. The orbits are slightly elliptical and the

jet exhibits coiling and precession. e,f) Power spectra of the X(t), Y (t) components, respectively.

The peak frequency at the previous height f0 is still present but at a much lower amplitude. There

are two additional frequencies, f1 = 2.72Hz and f2 = 0.40Hz. g) The trajectory of another type

of QPC dynamics showing coiling and folding states, which always appears after the trefoil-pattern

dynamics. h,i) The power spectra of the components. j) The trajectory corresponding to the

multi-frequency state. The jet exhibits complex coiling, folding and meandering dynamics giving

rise to multiple frequency components. k,l) The power spectra corresponding to the X(t), andY (t)

components, respectively. The multi-frequency nature of the spectra is evident. m) The trajectory

at the onset of the leaping-shampoo state. Localized coiling and folding states are interrupted by

large amplitude leaps in the X−Y plane. n,o) The power spectra have now broadened significantly

and the power is distributed more uniformly among many frequencies.
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of fall is increased, the jet undergoes a second transition; from periodic coiling to quasi-

periodic coiling. In this regime, the jet still undergoes rotatory motion, but with two or

more frequencies. The range of heights for which the motion is quasi-periodic, again depends

strongly on the flow rate; as the flow rate increases, for each fluid, the range of heights for

which the motion is quasi-periodic, decreases.

This quasi-periodic coiling comes about in a few different ways. Immediately following

the transition to quasi-periodicity, the jet undergoes rotatory motion and precession of the

orbit around the center of rotation. This results in a characteristic trefoil-pattern, or a

petal-like trajectory, as shown in Figure 4d. The orbits are elliptical rather than circular.

In figure 4e, and 4f, we show the power spectra of the X(t) and Y (t) components of the

trajectory, respectively. The frequency of RPC, f0 = 1.19 Hz is still present, but it is not

the peak frequency. Instead, the peak frequency is f1 = 2.72 Hz, and another frequency

f2 = 0.40 Hz = f0/3 appears in the spectrum for X(t) (figure 4e). The ratio of the two

frequencies is f1/f2 = 6.86. The faster frequency f1 corresponds to coiling motion, and the

slower one to precession of the jet. A second noteworthy feature is the slight difference in the

power spectra of the X, and the Y components. The lower frequency for the Y component

is f2 = 0.34 Hz. The other two peaks correspond to f0 = 1.19 Hz, and f1 = 2.72 Hz. Two

interesting relationships emerge in the spectrum for the Y (t) component. The first relation

is that f2 = f1/8, and the other is that the fundamental frequency present in RPC (f0)

is related to the two new frequencies by the relation f0 = (f1 − f2)/2. This transition to

quasi-periodicity is a novel feature of viscoelastic jets, and has not been observed in purely

viscous jets. In addition, for each fluid, at every flow rate, the quasi-periodic behavior always

begins with coiling and precession. It demonstrates that elasticity influences the emergence

of rotation-precession mode as the preferred mode once the RPC motion is unstable.

Within the quasi-periodic regime, the trefoil-pattern dynamics transitions to a dynamics

where both coiling and folding/linear motion are present. In this mode, the jet tip executes

coiling motion interrupted by regular events of linear motion, sometimes forming a “figure-

of-eight”. Each time the jet undergoes a folding motion, the frequency of subsequent coiling

switches between two or more steady state values, resulting in multiple frequencies associated

with coiling and folding states. Figure 4g shows the trajectory of the jet, where circular
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coiling regions are present along with a few folding modes. The power spectra of the X(t)

and Y (t) components of this state are shown in Figs. 4(h) and (i), respectively. The spectra

show three frequencies, two of which are coiling, and one for the folding state.

This feature has been observed previously in viscous Newtonian jets, and it gives rise to

multiple coexisting states in gravitational-inertial regime in the experiments of Maleki et al.21.

In the theoretical model for multiple steady states for viscous jets23, the two stable branches

of solutions were connected by an unstable branch; correspondingly, only two frequencies

were observed experimentally for a given height. In contrast, for viscoelastic jets, we have

been able to observe three distinct frequencies in this regime. This suggests that introduction

of elasticity stabilizes the previously unstable branches via an interplay of elastic, viscous,

and gravitational forces.

In addition to this mode, we have also observed a mode in which the jet precesses with a

larger frequency and a smaller radius, and a lower frequency and larger radius, repeatedly.

For each fluid, we observe two distinct frequencies at the same height. Again, this feature is

also present in the viscous jets in the gavito-inertial regime. For viscoelastic jets this mode

is not the preferred multi-frequency mode in the gravito-inertial regime.

D. Irregular Dynamics

As the height of fall is increased further, we see clear deviations from the Newtonian

jet dynamics. In the Newtonian case, once inertial forces dominate the flow, the multiple

coexisting states transition into regular coiling states at very high frequencies. Instead, for

shear-thinning viscoelastic fluids we observe an increasingly irregular and possibly chaotic

dynamics as the height of fall is increased further.

The tip trajectory for this regime is shown in Fig. 4(j). It can be observed that for

irregular dynamics, the trajectory though confined within a certain area, starts to occupy

the area more uniformly. The dynamics now comprises of brief coiling states, interspersed

with linear oscillations, and non-uniform meandering states. It should be emphasized that

this is not a transient dynamic; the combination of coiling, folding, and meandering continues

indefinitely, or in practice for as long as the jetting is observed. Figures 4(k), and 4(l) show
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the power spectra of the X(t) and Y (t) components respectively for irregular dynamics. It

can be clearly seen that the power is distributed over a wider range of frequencies, all of

which are not simple harmonics of some fundamental frequency. Instead, we find that the

peak frequencies have corresponding sub-harmonics. For example, in the spectrum for X(t),

we find that one of the peak frequency f0 = 2.5 Hz has a sub-harmonic f0/2 = 1.25 Hz.

The second frequency f1 = 2.27 Hz has a sub-harmonic of f1/5 = 0.45 Hz. The third

high frequency f2 = 2.665 Hz has no sub-harmonics or harmonics. The non-harmoniacally

related multiple frequencies, and the subharmonics point to a subsequent parameter window

of possibly chaotic behavior.

Unambiguous determination of chaos in this system requires much longer time series,

so that Lyapunov exponents can be calculated and strange attractors can be found. In

addition, other dimensional measures, correlation functions, and return maps need to be

found in order to characterize route to chaos in the system. Such a detailed characterization

though currently under way, is beyond the scope of the present paper, and will be covered

in a future publication. The spatio-temporally irregular behavior is another novel feature of

viscoelastic jets, not seen in purely viscous Newtonian jets.

E. Leaping Shampoo

For viscous Newtonian jets, the inertia dominated regime is characterized by high fre-

quency coiling regime, where the coils stack up on each other until the heap breaks and a

new stack of coils takes its place. In the case of surfactant fluids, there is an additional, visu-

ally striking effect, known as the leaping shampoo effect, or the Kaye effect, first described

by Kaye35. In this behavior, a jet of viscoelastic surfactant solution undergoes rapid coiling

like a viscous jet, but intermittently exhibits large jumps away from the point of impact.

A complete description of the effect, and all the factors affecting this process are not yet

emerged. A recent study37 gave a simplified model based on energy arguments, which de-

scribes the incoming jet causing a dimple in the surface of the pool of liquid, and beyond a

critical height, results in an upward shooting jet. In this work, only shear thinning was seen

as the factor responsible for the Kaye effect. Elasticity did not play a role in their model.
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There are two key rheological features of surfactant solutions; elasticity, and shear-

thinning. Our investigations show that both have a role to play in the development and

subsequent dynamics of the Kaye effect. We have verified (data not shown) that a fluid with

constant viscosity (η = 75 Pa s) and an elastic relaxation time of (λ = 5.5 s) like PS/PS

Boger fluid does not exhibit the Kaye effect. This shows quite clearly that shear-thinning is

absolutely essential for emergence of the Kaye effect, consistent with the analysis by Vesluis

et al. On the other hand, some shear-thinning but highly elastic surfactant fluids like aqueous

solutions of Cetyl Pyridinum Chloride (CPyCl) do not exhibit the Kaye effect40,41. CPyCl

soultions typically have a zero-shear viscosity η = 15 Pa s, and an elastic relaxation time

λ = 0.5 s. The elasto-gravity number for CPyCl solutions Eg ≈ 10, whereas for the shampoo

solutions in the present study, the elasto-gravity number Eg ≈ 1. Thus, only surfactant fluids

within a small parameter window of elasticity and shear thinning rheology exhibit leaping.

This new finding suggests that elasticity does play a role in the development of the Kaye

effect. More quantitatively, we can infer that the Kaye effect is most readily observed for

shear-thinning fluids with elasto-gravity number Eg ∼ O(1). Furthermore, from the regime

maps for each fluid (Fig. 3), it is clear that the onset of the Kaye effect is also dependent on

the flow rate, and is different for each fluid with different Eg. This implies that the critical

height at which the Kaye effect begins is also a function of the viscoelasticity of the fluid.

Consistent with the observations by Versluis et al., we have observed two distinct modes

of leaping; one in which the jet slips off the fluid surface and gets splashed more or less

in-plane, but to a large distance compared to the size of the coiling region, and the other

in which the jet penetrates the fluid bath, and shoots vertically up, which is the traditional

Kaye effect. As the height of the fall is increased, the in-plane leaps of the jet due to slipping

always precede the vertical leaps. The in-plane leaps of the incoming jet show no preferred

angular orientation, and are in random directions with respect to the center of the jet. The

direction of the leap being determined predominantly by the random slip direction of the

incoming jet.

The trajectory of the jet for the leaping shampoo (LS) effect is shown in Fig. 4(m), where

the leaps are predominantly in the XY plane. The dynamics in the center is still irregular

at this stage with multiple frequency components. The jet shoots off from the center either
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as a loop of fluid, or as a single strand of fluid, which impacts the fluid bath a large distance

from the center. These loops of fluid are clearly visible in the XY trajectory of the jet. The

power spectra of the LS regime for the X(t) and Y (t) components are shown in Figs. 4(n),

and 4(o), respectively. The spectra consists of many frequency components. The highest

frequencies corresponds to the most rapid coiling motion around the point of impact. The

other frequencies correspond to different coiling, folding, and leaping modes.

On further increase of height, the jet exhibits vertical leaping, with very high frequency

coiling around the center. From this point onwards, due to the resolution of the imaging,

it was not possible to track the trajectory of the jet close to the center of the jet, although

it is still possible to track the jet-leaps. On the other hand, the dynamics now is fully

three dimensional and the bottom view only gives a projection of the jet motion, and not

its accurate position. The leaping shampoo state continues to occur until the aspect ratio

becomes so large that the jet diameter becomes less than the capillary length of the fluid.

At this point, the jet is no longer steady, and we revert back to the dripping mode.

F. Frequency Transitions

We focus here on one of the flow rates (Q = 2 ml/min, Q∗ = 8 × 10−5), for the fluid

S2. From the power spectra of the X(t) and Y (t) displacements, the frequency components

involved in the dynamics can be found. The zero frequency component is not considered

in this process as it only gives the average displacement. For each height, the dominant

frequency of coiling has the maximum amplitude. Typically, the dominant frequency corre-

sponds to a coiling mode or a folding mode. Each independent frequency in the dynamics

of the jet will also have its corresponding harmonics. This gives an additional measure for

ascertaining the relevant frequencies.

Beyond the quasi-static regime, when multiple frequencies are present, we find frequen-

cies whose ratios are not simple integers or linear combinations of each other. We take these

frequencies as independent frequency components of the spectrum. In addition, we find sub-

harmonics of major frequencies in the spectrum. The sub-harmonics of a given frequency

in the spectrum signifies period-doubling, period-tripling, or in general period-N oscillations

25



a) b)

FIG. 5. Frequency space bifurcation diagram of fluid S2, at a flow rate of Q∗ = 0.9x10−4. a) A plot

of frequency scaled with the elastic relaxation time against the height scaled by the diameter of the

nozzle. Each data point represents an independent frequency in the power spectrum of the X(t)

component of the trajectory. The first point is the single frequency RPC state, which bifurcates

to a QPC state at the next height. At each successive height the peak frequencies change, and

more frequencies get added until at the highest scaled height the spectrum has many frequency

components. b) A different representation of the frequency bifurcation diagram in terms of an

intensity map. Here the spectrum of X(t) component is shown, with the intensities corresponding

to the log of the power at each frequency. This representation reveals the relative power distribution

amongst the frequencies. Again, the bifurcation of the frequencies at lower scaled heights, and the

even distribution of the power at higher scaled heights is readily visible.

(coiling or folding). The entire frequency information can be shown as a bifurcation dia-

gram, which proceeds from zero frequency stagnation flow to period-1 dynamics (RPC), and

transitions to quasi-periodic and possibly chaotic, broad-spectrum dynamics. In Fig. 5(a)

we show the bifurcation diagram for the jet dynamics in terms of frequency scaled by the

elastic relaxation time λ, and the height scaled by the nozzle diameter. The frequencies

plotted are the independent frequencies and the subharmonics found for those frequencies.

The frequency scaling used by Maleki et al.21 in their studies of viscous jets is given by:

f ∗ = f

(
ν

g2

) 1
3

(12)

where, f is the observed frequency, and ν is the kinematic viscosity. This frequency relates
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very simply with the frequency scaling used here by:

De = f × λ (13)

f ∗ =
De

Eg
(14)

The region before the first point in the plot corresponds to zero frequency stagnation

flow. The onset of coiling is the first point, where the jet rotates with a single frequency;

the regime we have called Regular Period Coiling (RPC). As the height increases further,

the jet undergoes quasi-periodic transition, and rotates with two distinct frequencies; one

for coiling, and the other for precession. The quasi-periodic regime continues with addition

of a frequency component as the height of drop is increased. Eventually, the jet executes

coiling, folding, and meandering motion with multiple frequencies.

In Fig. 5(b) we show the whole spectrum for the X(t) component for each height as an

intensity map. Here the intensity of the band scales with the logarithm of magnitude of the

power at that frequency, normalized by the maximum power in the spectrum. The bifurcation

in the frequency spectrum is clearly visible at the second height, which corresponds to

H/d = 12.5, the onset of quasi-periodic transition. The intensity colormap clearly reveals

the power distribution at various frequencies as the height of fall is increased. The power

initially distributed within a narrow band of frequencies, gets more evenly distributed as

the dynamics becomes more irregular at larger drop heights. Beyond the RPC regime, each

higher peak frequency bifurcates into two closely spaced frequencies at the next height, and

other frequencies corresponding to additional folding or meandering modes get added to the

spectrum. This is the most detailed information that can be obtained from the present set

of experiments, based on the resolution of the experiments. It shows that there is a rich

structure of nonlinear transitions in the dynamics of viscoelastic jets, which transforms the

dynamics from simple coiling to the leaping shampoo state via these transitions.

VII. DISCUSSION AND CONCLUSIONS

Free surface flows of viscoelastic fluids have been studied under widely different conditions

and situations; formation and pinch-off of drops, dynamics of viscoelastic filaments and
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their capillary breakup, fiber spinning, and leaping shampoos. Free surface viscous jets are

known to undergo buckling instability and exhibit coiling as a result. In this paper, we have

attempted to shed light on the effects of viscoelasticity on the dynamics of a continuous

jet falling on a rigid plate, specifically relating to the coiling instability and the subsequent

dynamics. We have uncovered a rich array of dynamical behavior beyond the initial coiling

instability. Our study also presents a unifying picture of the seemingly diverse flow situations

like coiling, dripping, and the leaping shampoo effect in terms of transitions between different

stable regimes as the flow rate and the height of fall are varied.

We have shown that viscoelastic fluids also undergo coiling instability similar to viscous

jets. We also show that unique to viscoelastic jets, the flow quickly undergoes a second

instability, that results in quasi-periodic flow with two or more incommensurate frequen-

cies. As the height of fall is increased further, the dynamics becomes more complicated

and irregular, possibly chaotic. Physically the coiling behavior transitions to coiling and

precession, coiling and folding, and ultimately to coiling and meandering with intermittent

leaps of large amplitude, which is known as the Kaye effect or the leaping shampoo effect.

The transition scenario can be made more precise by tracking the jet tip and measuring the

frequencies involved in the dynamics at each stage. Such a tracking shows a sequence of

bifurcations and a re-distribution of power over a larger number of frequencies. In frequency

space, the dynamics bears the hallmark of a nonlinear dynamical system which undergoes

quasi-periodic transition, possibly leading to chaos.

We have carried out experiments on three different fluids, each with a different viscosity

and elasticity. We have also conducted experiments at different flow rates and varying heights

of fall. We find that the transition scenario described above is a robust generic feature of

all the three fluids. We have shown this behavior as a regime map in terms of scaled

frequency and scaled height (figure 3). These scalings have been kept the same as employed

by Maleki et al. In addition, we have introduced a new dimensionless variable called the

elasto-gravity number (Eg), which captures the relative effects of elasticity, viscosity and

gravity. Newtonian fluids have Eg = 0, and the surfactant solutions used in this study have

Eg ∼ 1. Increasing value of Eg signifies larger elastic effects.

The regime map for each fluid reveals a number of interesting features. At the lowest flow
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rate, we always observe dripping beyond a critical height. This critical height is different for

each fluid, or the combination (Eg, Q∗). This is expected since the jetting-dripping transition

or simply the dripping mode in viscous and non-Newtonian fluids itself exhibits a rich, highly

nonlinear dynamics42,43. In the present study we do not undertake a detailed investigation of

the jetting-dripping transition. Beyond the lowest flow rate, we encounter a generic behavior

of sequence of transitions described above.

At larger drop heights we encounter the well-known Kaye effect, which still remains a

mystery. We conclude that shear-thinning rheology is essential for the onset of Kaye effect,

consistent with the observations of Versluis et al. On the other hand, elastic effects are

also important for the onset of the Kaye effect. Shear thinning but highly elastic fluids do

not exhibit leaping40,41, whereas surfactant solutions with Eg ∼ 1 do show leaping readily.

The height at which leaping begins depends on both the flow rate and elasto-gravity number.

This observation suggests that leaping requires a delicate balance between a drop in viscosity

due to shear, and elasticity.

An important observation regarding the sequence of transitions is that the onset of each

state and its duration is strongly dependent on the flow rate. It also depends weakly on

the fluid properties, in particular, the elasto-gravity number. In general, as the flow rate

becomes higher, the onset of quasi-periodic, irregular, and leaping shampoo behavior occurs

at lower heights. These inverse relations may well be power-laws in (ε, Q∗) space with a

weaker dependence on Eg. The resolution in height measurement and the limited number

of flow rates used in this study prevent us from fitting power-laws to the boundaries of each

dynamical state. Although the height between the nozzle and the plate is kept fixed and

measured with an accuracy of 1%, once the jet impacts the plate, there is always a mound of

fluid of varying height throughout the jetting process. The height of the mound is important

at low drop heights and hence for the transition from RPC to QPC, and from QPC to

MFD states. Although an average height of the mound is subtracted from the nozzle-plate

distance, effective error in measured height and actual height can be as large as 10% at low

drop heights.

Two important features are strongly suggested by the present experiments; a nonlinear

transition from periodicity to quasi-periodicity, leading to chaos, and the possible power-law
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dependence of the regime boundaries in ε−Q∗ space. Further insights into the exact nature

of nonlinear transitions and the exponents of the power-laws can not be unambiguously

determined from the present data. In this situation the role of numerical modeling is critical.

Numerical simulations could answer these questions unambiguously. So far there have been

no analytical modeling studies that deal with continuous jets of viscoelastic fluids beyond

the initial coiling instability. Recently a few numerical studies have demonstrated that free

surface jets of viscoelastic fluids can be modeled44,45. Although the goal of these studies was

demonstration and effectiveness of the proposed numerical schemes rather than a detailed

investigation of the transitions in jet dynamics, such transitions were indeed observed and

found to be different compared to Newtonian jets.

We specially note here a numerical study by Tome et al.46, who compared the dynamics

of 3D jets of Newtonian and an Oldroyd-B fluid. Amongst other points of comparison, they

mention briefly that while Newtonian jets showed regular coiling, buckled jets of Oldroyd-B

fluid began coiling initially, but quickly demonstrated “apparently chaotic" motion. This is

highly significant since we have shown here that there is an order to this “apparently chaotic”

motion; it comes about via a sequence of transitions and occurs in a small window of the

parameter space. It would be highly instructive to apply such modeling schemes to the

present problem since the insights gained from such an attempt would be useful for further

experimental studies. Such numerical studies, with enough resolution, can settle questions

regarding the possible power-law dependence of various regimes boundaries and the exact

nonlinear dynamics of the jets all the way from simple coiling to the leaping phenomenon.

We hope that the present study stimulates theoretical and numerical examination of the

problem in more detail and help the next phase of experiments. On the experimental front,

a next step would be to access higher flow rates and flows in confined geometries which would

mimic more closely industrial processes like filling of containers.
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