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Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant
for many industrial processes, remain less well understood in terms of fundamental
fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in great de-
tail; buckling instability in viscous jets leads to regular periodic coiling of the jet
that exhibits a non-trivial frequency dependence with the height of the fall. Very few
experimental or theoretical studies exist for continuous viscoelastic jets beyond the
onset of the first instability. Here, we present a systematic study of the effects of vis-
coelasticity on the dynamics of free surface continuous jets of surfactant solutions that
form worm-like micelles. We observe complex nonlinear spatio-temporal dynamics of
the jet and uncover a transition from periodic to quasi-periodic to a multi-frequency,
possibly chaotic dynamics. Beyond this regime, the jet dynamics smoothly crosses
over to exhibit the "leaping shampoo effect" or the Kaye effect. This enables us to
view seemingly disparate jetting dynamics as one coherent picture of successive in-
stabilities and transitions between them. We identify the relevant scaling variables
as the dimensionless height, flow rate, and the elasto-gravity number and present a

regime map of the dynamics of the jet in terms of these parameters.

PACS numbers: 47.60.kz, 47.50.-d, 47.20.Gv



I. INTRODUCTION

Free surface continuous jets of viscoelastic fluids are relevant in many industrial processes
like fiber spinning, bottle-filling, oil drilling etc. In many of these processes, an understanding
of the instabilities a jet undergoes due to changes in fluid parameters like Reynolds number
or Deborah number is essential from process engineering point of view. From a fundamental
fluid dynamics point of view, jets of viscoelastic fluids present many challenging problems,
which remain unresolved; the addition of elastic effects on the dynamics of viscous jets is one
such challenging problem. Viscous free surface flows, especially jets, have been extensively
studied in many different contexts. From the earliest studies of breakup of viscous jets by
Rayleigh! and Taylor?, free surface jets have provided spectacular phenomena like capillary
breakup?, and the coiling instability*. These investigations have enhanced our understanding
of the physics of free surface viscous flows by employing experiments, analytical treatments,

and numerical modeling.

Viscoelastic free surface flows add another dimension to the problem via elasticity of the
fluids and provide equally stunning effects in free surface flows. For example, dripping of
a polymeric fluid gives rise to beads-on-a-string structure due to elasto-capillary thinning®.
While the beads-on-a-string phenomenon occurs at very low flow rates, at high flow rates
and under electric fields a different set of problems occur as in the fiber spinning process®.
In addition, with the advent of microfluidics, an understanding of the jetting properties
of non-Newtonian fluids becomes essential from micro- to macro length scales, and from
low to high Reynolds numbers”?. In this paper, we focus on buckled wviscoelastic jets and
study the interplay of rheology and dynamics in surfactant systems. The problem of buckled
viscoelastic jet has not been studied experimentally so far. This challenging problem is of

interest not only for industrial applications, but also for understanding certain geophysical

flows!©.

The description of the phenomenon of coiling is quite simple. When a viscous fluid is
poured from a container or a nozzle and it strikes an obstacle, the jet undergoes bending
instability under certain conditions and performs coiling motion, as seen from pouring honey

on toast. The frequency of this coiling changes with the height of the fall in a non-trivial



fashion depending on the interplay of viscous, gravitational, and inertial forces. We begin
by reviewing previous research on the problem of viscous coiling and some related problems.

The first study of the coiling instability in viscous jets was done by Barnes and Woodcock
in 1958, who named the instability the “rope-coil effect”. The basic observations regarding
the coiling instability were outlined in this paper. This study was followed by a second study,
where the height dependence of the coiling frequency was measured!?. These two papers
described a seemingly simple, liquid column buckling instability, which can be observed
easily in everyday situations like pouring honey on toast. The problem of buckled liquid jets
and sheets has since been investigated by a number of authors, with increasing experimental
accuracy and sophisticated modeling. The next detailed investigation of this problem was
carried out by Cruickshank and Munson in a series of papers®!3716. These papers established
a rigorous quantitative foundation for the problem of axi-symmetric, and planar viscous
jet bucking. The principal findings in these studies were identification of critical height
and limiting Reynolds number for the coiling instability. It was found that a viscous jet
undergoes buckling only if the Reynolds number is less than 1.2, making it a low Reynolds
number phenomenon. It was also found that the critical aspect ratio at which the buckling
instability appears is H/d = 7.7 for axi-symmetric jets, and H/d = 4.8 for planar jets. Here
H is the drop height and d is the nozzle radius®!%. The additional observation relates to the
variation of frequency of coiling with the aspect ratio. A simple model for this variation was
put forth based on energy dissipation arguments!*'>. On the theoretical front, one of the
first investigations that dealt with describing coiling and folding in viscous jets and sheets
were by Tchavdarov et al.!” and Yarin and Tchavdarov'®. Using perturbation theory, these
authors were able to model the jet beyond the buckled state and obtain good agreement
with the observations of Cruickshank and Munson.

A resurgence of interest in this problem began as a result of the study by Ryu et al.!?,
who revisited the problem of coiling in viscous jets and combined experiments and theoretical
arguments to put forth scaling laws for the dimensionless frequency and dimensionless am-
plitude as a function of fluid parameters and kinematic variables??. This study was extended
by Maleki et al.?! and Habibi et al.?2, in which they obtained scaling laws for the frequency

variation in viscosity dominated regime, viscous-gravitational regime, gravito-inertial regime,



and inertial regime. These scaling laws were obtained by balancing dominant forces acting
in each regime. In the transitional gravito-inertial regime, Ribe et al. found the existence
of multiple steady states, wherein the coiling occured at two different frequencies®?. These
frequencies were seen to be eigensolutions to the whirling slender string model proposed
in this paper. Although the theoretical solutions admitted more than two frequencies, the
experiments could capture only two of those frequencies, and the branch connecting these
two frequencies was found to be unstable. Ribe also gave a general theory of coiling and

2425 Several other related problems of interest have

folding in viscous threads and sheets
been studied since then; for example, the coiling of elastic ropes?®, instabilities in dragged
viscous threads?”, and the meandering instability of viscous threads?®. Lastly, a new one di-
mensional model has been proposed by Nagahiro and Hayakawa?’, where they obtain many
of the observed features of viscous coiling from a simplified one dimensional flow model.

In contrast to this extensive body of work on the buckling instability of viscous jets and
sheets, no such experiments have been carried out for viscoelastic jets. On the other hand,
there have been numerous theoretical treatments of slender viscoelastic jets, though none
of these studies deal with buckled jets. An early work in this area is by Matovich and
Pearson®, where the authors treated a viscoelastic jet in fiber-spinning geometry. Koesser
and Middleman3' treated slender viscoelastic fibers to assess the stability of such fibers
against breakup. A model of viscoelastic fibers as one dimensional slender body has been

32734 \where the authors reduce the three dimensional problem

achieved in a series of papers
to an effectively one dimensional problem, and obtain a set of coupled nonlinear ordinary
differential equations for the system. The practical problems for which this system is solved
is again draw-down of fibers in fiber spinning. Although mathematically rigorous, so far
the model has not been used to examine the dynamics of a buckled jet falling on to a plate
perhaps due to the complexity of the boundary conditions and the large number of coupled
equations that have to be solved simultaneously.

At the higher Reynolds number, viscoelastic fluids, especially surfactant fluids show a

remarkable phenomenon discovered first by A. Kaye3®.

He observed that when a solution
of polyisobutylene in decalin is poured from a large height on to a plate, the liquid stream

forms a mound, now known to be a mound of coils, but intermittently jumps vertically
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or sideways to large distances. These “leaps” were considered to be a type of “recoil” for
the liquid stream. The next study to address this issue was by Collyer and Fisher®®, who
suggested that shear-thinning was an essential property for fluids to exhibit this “leaping
effect”. In addition, they suggested that any polymeric fluid, which was elastic, “pituitous”,
and highly shear-thinning would show the Kaye effect. Since then, it is known that many

shampoos or liquid detergents show the same effect.

This problem was examined again, after a gap of thirty years, in a recent study by Versluis

et al.3”

, who put this problem on a quantitative footing. They examined the effect using high
speed imaging and found that indeed shear-thinning is the most essential property of fluids
that exhibit the Kaye effect. The authors also proposed that elasticity played no role in the
origin or stability of the effect. A simple model based on energetics was put forward, with
a suitable function describing the decrease of viscosity with shear rate and good agreement
was found between experimental observations of the velocity of the leaping jet and those

predicted by the model. They also observed that a minimum flow rate and a critical height

were needed to establish the leaping shampoo effect.

The dynamics of free surface viscoelastic jets cover a wide array of phenomena. Many
questions arise as one crosses over to non-Newtonian fluids; how does fluid elasticity change
the jetting dynamics? What influences do shear and extensional rheology of the fluid have
on the behavior of the jet? Here we try to address some of these issues within the context

of buckling of viscoelastic jets and their subsequent dynamics.

In this paper we report results of a systematic study of continuous jets of shear-thinning
worm-like micellar fluids of varying viscosities and elastic relaxation times. This enables
us to compare the role of viscosity and elasticity on the jetting dynamics. We completely
characterize the rheology of the fluids and the jetting dynamics is observed by digital video
imaging. We identify relevant parameters and define the problem in terms of dimensionless
variables. We cast different jetting regimes in terms of a regime map that combines kinematic,

geometric, and rheological parameters.



TABLE 1. Overview of test fluids used in the present study and relevant physical parameters at
22°C. Here 7 is the stated viscosity in the limit of zero shear rate, A is the elastic relaxation time,

/
and the Elasto-gravity number is given as: F, = A(%)

Fluid| 7 A Rheology  |Elasto-gravity number (£,)
S1 | 9.3 | 0.03 | Shear thinning 0.7
S2 | 16.5 | 0.09 | Shear thinning 1.7
S3 | 34.8 | 0.12 | Shear thinning 2.5

II. MODEL FLUID

In order to investigate the effects of viscosity and elasticity on the jet dynamics, we
need a model fluid whose viscosity and elastic relaxation time can be varied in a systematic
fashion. To this end, we choose as our model fluid, the surfactant solution of Sodium Lauryl
Ether Sulphate (SLES). The choice of this fluid as a model fluid stems from the fact that
SLES is the main surfactant in many shampoos and household cleaners. These fluids are
shear thinning and they form worm-like micelles. By adding appropriate amounts of Sodium
Chloride (NaCl), the viscosity and the elastic relaxation time of the resulting fluid can be

varied systematically.

Three different test fluids were prepared in this manner by adding 11.4 gm, 13.4 gm, and
17.8 gm of NaCl to 500 ml of SLES. The salt was added and the fluid was placed on a rotating
mixer for a period of 24 hours, and then allowed to sit for another 24 hours before use. The
resulting fluids were adjusted to be 250 mM /L (S1), 300 mM/L (S2), and 400 mM/L (S3)
solutions of SLES and NaCl. The properties of these model fluids are listed in Table 1. It
can be observed from Table 1 that adding salt to the surfactant solution increases both the
viscosity and the elastic relaxation time (A). The increase in elastic relaxation time signifies
that the fluid is more elastic. The viscosities and the elastic relaxation times increase linearly

with salt concentration as shown later.



III. EXPERIMENTAL METHODS
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FIG. 1. Schematic diagram of the experimental setup and different viewing configurations. a)
Schematic diagram of the bottom-view setup shows a laser light going through a T-junction. The
other end of the the junction is the fluid inlet. The junction is mounted on a linear stage. The
fluid falls on a plexiglas plate. b) An image of the jet in the side-view configuration, where the
jet is backlit with halogen lamp and the camera is placed perpendicular to jet direction. In this
configuration, the laser lighting is not employed. ¢) An image from the bottom-view setup with
halogen lighting; the light falls onto the plexiglas plate, the mirror at 45° projects the jet outline
and the trajectory in two-dimensional space onto the camera. d) An image from the bottom-view
configuration with laser light through the jet. The tip of the jet makes a spot, which moves along

with the jet. e) The profile of the jet with the relevant parameters.

The jetting dynamics was observed using digital video imaging under three different con-

figurations. Figure 1 describes the setup and the experimental arrangement with an example
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of image captured using each view configuration. The reason for imaging the jet dynamics
using three different view-configurations is to be able to resolve the complex spatio-temporal
dynamics. Unlike Newtonian viscous jets, where the principal complexity is in the frequency
of coiling with increasing height, in non-Newtonian jets the dynamics is complex both spa-
tially and temporally.

In Fig. 1(a), we show the schematic diagram of the experimental setup. The fluid is
pumped via a syringe pump (Stoelting). The fluid is pushed at a specified flow rate with an
accuracy of 0.01 ml/min. The fluid is stored in standard disposable plastic syringes (BD),
with a capacity of either 10 cc, or 60 cc. The fluid then passes through Tygon tubing of
fixed length (~ 18 inches) for each experiment. The other end of the Tygon tubing has a
steel nozzle of length 1 inch and diameter, d = 1.2 mm, attached to it. The fluid exiting the
nozzle falls on a Plexiglas plate. The nozzle is fixed to a linear stage (Velmex) in vertical
orientation. This allows us to vary the height of fall precisely with a resolution of 0.1 mm.
The height of fall in all experiments was varied between 0.5 cm and 20 cm.

The three different imaging configurations give three different views of the jet. The first
case is the traditional side view. In this configuration a digital camera (BlueFox) is placed in
a direction perpendicular to the direction of the flow of the jet, and the jet is backlit with a
500 W halogen lamp, with a diffuser screen placed between the light and the jet. The profile
of the jet in this configuration is shown in Fig. 1(b). The advantage of this view is that the
onset of coiling and the jet diameter are readily observable. The frequency of coiling at the
onset can also be easily calculated using frame counting.

As the jet dynamics becomes more complicated, for example when the trajectory of the jet
follows a complicated two dimensional path, the side view provides insufficient information
regarding the jet dynamics. In order to extract this missing information we employ two more
view configurations; both involve imaging the jet from the bottom but in one case we use
the diffused halogen illumination, and in the other case we use a beam of green laser passing
through the jet. The idea of using a laser through a jet was first employed by Versluis et
al.%".

The bottom view configuration with the laser light is shown in Fig. 1(a). The green

laser light is placed vertically, and the light enters a T-junction. The end of the T-junction



collinear with the laser is sealed off using a thin transparent acrylic sheet. The fluid from the
syringe enters the second opening of the T-junction, perpendicular to the direction of the
laser. The fluid then moves downwards, and exits out of the remaining end of the T-junction.
The beam of laser passes through the fluid, and acts as a light-guide. In the bottom view,
a mirror is placed at 45° below the plexiglas plate on which the jet falls. The point where
the jet strikes the plate shows up as a bright spot, which moves as the jet moves in the z-y
plane. This imaging technique works well for small amplitude and low frequency coiling or
linear oscillations (folding).

When the jet executes a complex two dimensional motion rapidly, the laser spot is unable
to follow the jet in real time. In order to accurately capture the jet dynamics, we employ
the second bottom view configuration, now with diffused light. The principle of the bottom
view with diffused light is the same, except that instead of a bright point, as with a laser,
one observes the edges of the whole fluid thread deposited on the plate, and its subsequent
motion. In Figs. 1(c) and (1d), we show the images of the jet in the bottom-view configuration
with diffused light, and laser light respectively. The digital videos are captured at frame
rates ranging from 50 fps to 300 fps, giving us sufficient resolution to track the jet tip in

two-dimensional space, over time.

IV. EXPERIMENTAL VARIABLES

Figure 1(e) shows a side-view image of the jet with the relevant parameters. These
parameters can be classified into two groups; fluid parameters, and kinematic parameters.
Fluid parameters are the viscosity (n), elastic relaxation time (), density (p), and surface
tension (¢). Kinematic parameters are the fluid flow rate @, the height of fall H, acceleration
due to gravity g, and the geometric parameter nozzle diameter d, which determines the aspect
ratio for the problem.

Amongst the fluid parameters, the density, and the surface tension do no change appre-
ciably for the three fluids. The surface tension is around 0.025 N/m, and the density is
1.2 kg/m3. The values for the viscosity and elastic relaxation times are given in Table 1.

The kinematic parameters varied systematically in the experiments are the flow rate, the



height of fall, and the nozzle diameter. The nozzle diameter does not significantly alter the
behavior of the jet except setting a scale for the aspect ratio. Any change in the behavior
of the jet is a result of an interplay between various forces like viscous force, gravitational
force, inertia and elasticity. The same interplay can also be cast in terms of relevant time
scales.

The behavior of a free surface viscoelastic jet involves at least three distinct time scales;
the elastic relaxation time (\), the viscous time scale (T,), and the flow time of the fluid

(T¢). The last two are given by:

_nd

T, ==~ 1)
Hd?

=710 2)

From the balance of viscous and gravitational froces one obtains a length scale and a time

Many dimensionless variables naturally arise in the problem either due to balance of forces

scale for the problem:

or due to the time scales involved. In the following we will use l,, and t,4, to obtain non-
dimensional parameters relevant to our problem. The first important dimensionless variable

is the Reynolds number (Re), which is the ratio of inertial forces to viscous forces, given as:

- 2 )

Re =
mdn
The other variables can be cast into dimensionless forms using scalings used in viscous

jet studies. For example the height and the flow-rate, two main control parameters, can be

made dimensionless as follows:

H
€= (6)
Q0 - Q(gnij)é )



The effects of elasticity can be captured by introducing a suitable dimensionless variable
like the Deborah number De = A%, where + is the shear rate. It is to be noted here that
the shear rate is not constant throughout the jet, especially in buckled jets. For a jet that

buckles and executes coiling, the shear rate is higher near regions of higher curvature.

V. FLUID RHEOLOGY

In order to decipher the effects of increasing viscosity and elasticity on the jet dynamics,
it is essential to rigorously characterize the rheological properties of our model fluids. The
data presented in Table 1 were obtained in the following manner.

The rheological response of the model fluids was obtained using a conventional stress-
controlled rotational rheometer ARG2 (TA Instruments) or strain-controlled rheometer
ARES (TA instruments). Two types of rheological tests were conducted; steady shear-rate
response, and small amplitude oscillatory shear (SAOS) tests. The steady shear-rate re-
sponse gives the change in viscosity with shear-rate, and SAOS test gives the elastic and the
viscous moduli for the fluids, from which an effective elastic relaxation time constant A\ can
be extracted by fitting the data to a single relaxation time Maxwell model.

First we describe the details of the steady shear-rate tests. The fluids were subjected to
steady shear rate tests with shear rates varying from 0.1 s~ to 1000 s~!, using a parallel
plate geometry, with plate radii of 50 mm, at a gap height of 1 mm . The temperature was
controlled using a Peltier plate at 22.5°C. In Fig. 2(a), we show the variation of viscosity
with shear rate for the three fluids. Beyond a certain shear rate, the viscosity of each fluid
begins to decrease, signifying a shear-thinning behavior. From this data, we obtain the zero
shear-rate viscosities for each fluid, as stated in Table 1.

The second set of tests performed were small angle oscillatory tests. These tests are
aimed at obtaining the viscous (G") and elastic (G') moduli of the fluids. These tests
were performed on the stress-controlled ARG2 rheometer, using cone-plate geometry. The
diameter of the cone was 40 mm, and the cone angle was 2 °. Each fluid was placed within the

cone-plate geometry, and oscillatory shear stress of 0.58 Pa was applied at frequencies ranging

from 1 rad/s to 100 rad/s. We show the results in Figs. 2(b), (2¢), and (2d) for the fluids
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FIG. 2. Fluid Rheology: Viscous and elastic properties of the model fluids. a) Shear rheology of the
three fluids showing variation of viscosity with shear rate. The initial plateau region gives zero-shear
viscosity and each fluid exhibits strong shear-thinning, i.e. decrease in viscosity with increase in
shear rate. The shear-thinning behavior begins at a shear rate of ¥ = 1 s~!. b).c),and d) Small
angle oscillatory shear response of the three fluids. Elastic (G’), and viscous (G") moduli are shown
as a function of frequency for the fluid S1, S2, and S3 respectively. Each fluid exhibits a crossover
point, beyond which, the elastic modulus becomes larger than the viscous modulus. The inverse of
the frequency at the crossover point gives the elastic relaxation time of the fluid. A more rigorous
approach entails fitting the moduli curves via a single mode Maxwell model, shown by solid lines.
e) Viscosity variation as a function of the salt concentration; viscosity varies linearly as a function

of salt concentration.
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S1, S2, and S3 respectively. As the frequency of oscillation increases, the elastic modulus
G’ increases. At a certain frequency, the elastic modulus crosses the viscous modulus. From
this crossover point, one can get a rough estimate of the elastic relaxation time scale as the
inverse of cross-over frequency. A more accurate method of obtaining relaxation time is to
fit the single relaxation mode Maxwell model. The results of the relaxation times obtained
in this manner are reported in Table 1.

The effects of adding salt to SLES solutions is shown in Fig. 2(e). The viscosity increases

linearly with salt concentration.

VI. EXPERIMENTAL RESULTS

To understand free surface flows of non-Newtonian fluids, it is important to study the
behavior as the fluid parameters and kinematic parameters are changed. A useful representa-
tion would employ a three dimensional parameter space, where the axes are given in terms of
a triplet of numbers, for example Re, Wi, Ca, or some other suitable set of non-dimensional
parameters®.

In our case, for each fluid, we fix a flow rate and vary the height of fall to investigate the
change in the dynamics of the flow. In this situation, we can employ a 2D representation
of this 3D regime map. We determine the flow behavior in terms of dimensionless height,
and dimensionless flow rate, and by comparing the jetting behavior for the three fluids with
different viscosities and relaxation times, we can arrive at a representation in terms of other
dimensionless variables.

It is instructive to recap the typical behavior of free surface viscous Newtonian jets.
The initial jet dynamics is always stable, stagnation flow, where the jet spreads over the
surface. The critical aspect ratio at which the jet undergoes buckling instability is a well-
characterized®. The critical aspect ratio for a coiling transition is:

62324.8 (9)

Subsequent to this buckling transition, the frequency of coiling changes as the aspect ratio

increases. There is also an upper limit on the Reynolds number above which the jet returns

13



to stagnation flow state. This critical Reynolds number is found to be 1.2. In all of our
experiments, the Reynolds number as defined in Eq. 5 is much lower, within the range
Re = [107* — 1073]. There exists another limiting behavior as the height of fall and the flow
rate are varied - jetting to dripping transition®. This transition is determined by the flow
time and the capillary breakup time, and is given by:

Q@
= %

-z (10)
The interesting dynamics we capture fall beyond these two limiting regimes. For viscous
Newtonian jets, the coiling frequency of the jet varies with height of the fall for a fixed flow
rate. The coiling frequency can be obtained as a function of the height, the flow rate and the
viscosity of the fluid. In different regimes, the scaling laws for the frequency are different, but
for known flow rates and heights, coiling frequency for fluids with different viscosities can be
ascertained using the scaling relations. For visco-elastic fluids, the situation is complicated
by the introduction of elasticity, and its competition with viscous, gravitational, and inertial
forces. Moreover, for shear-thinning fluids, as the height of fall is increased or the flow
rate is varied, the fluid far away from the nozzle or in the coils may have a substantially
different viscosity than the fluid exiting the nozzle. These considerations point to a need for
quantifying the relative effects of elasticity, viscosity and gravity. One important parameter

we use in this study is the elasto-gravity number, which compares these forces:

B ()" -

n
The elasto-gravity number increases as the effects of elasticity increase relative to viscous

effects. In other words, F, increases whenever \ increases or 7 decreases for a finite value of
A. The elasto-gravity number has a clear lower limit; E, = 0 for Newtonian viscous fluids.

For the fluids used in this study, E, is around 1.0.

A. Instability in Viscoelastic Jets: General Observations.

In this section, we describe some general observations of the jetting dynamics, which are

generic and robust in that they are found for each fluid at different flow rates and heights.
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FIG. 3. Regime Map: Jet dynamics in (H/D —Q*) space. The behavior of the jet for the three fluids
is shown at four different flow rates, as the height of the fall is varied. The legend is as follows:
B represents the regular coiling state (RPC), the @ represents quasi-periodic coiling (QPC), A
represents multifrequency or irregular dynamics (MFC), 4 represent dripping, and % star represent
the “leaping shampoo" state. a) Fluid S1; for the first two flow rates, the dynamics proceeds from
RPC to QPC to MFC to dripping. For the latter two flow rates, the dripping state is replaced by
an onset of “leaping shampoo" state. b) Fluid S2; the dynamics is similar to fluid S1, except the
dripping state is now found only for the lowest flow rate. The transition boundaries between the
QPC state and MFC state are shifted compared to fluid S1. ¢) Fluid S3; the regime map shows the
same generic features as for the other two fluids. d) Schematic regime map showing different flow

behaviors. The pictures in the insets show the jet dynamics either under side-view or bottom view.
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For each experiment, a flow rate was chosen, the height of the fall was fixed. The flow was
started and the jet dynamics was captured using a digital CCD camera. The height of the
fall was then increased, and the same procedure repeated. Typically, the height of fall was
varied between 0.5 cm and 15 cm, depending on the nozzle diameter. At each height, the flow
was visualized using one or more of the view-configurations, and the process was repeated
for a different flow rate. These entire set of measurements were performed for each of the
three fluids. These observations are then combined, for each fluid, to produce a regime-map
of the dynamical behavior at different flow rates and heights.

Each fluid exhibits a similar pattern of dynamics as the height of fall is varied at different
flow rates, though the dynamics itself is not always simple. This pattern of dynamics can
be represented in a parameter space of scaled height, and scaled flow rate. These scalings
can be chosen in multiple ways. As one set of scaled variables, we choose the variables
H* = H/d, and Q* = Q(gp/n5)1/3. The dimensional flow rate is scaled with gravitational
and viscous forces. The scaling analysis resulting from this choice of non-dimensional flow
rate has been shown to be useful for viscous jets, though it leads eventually to a complicated
set of relations for the frequency of coiling as a function of flow rate, height, and viscosity
of the fluid. In order to compare our results to the viscous case, we retain this scaling of
the scaled height and the scaled flow rate and report the regime map for each fluid with
appropriate elasto-gravity number.

In Figs. 3(a), (b), and (c), we show the regime maps of jet dynamics in € — Q* space for
the three fluids S1, S2, and S3, respectively. The meanings of different symbols are explained
in the figure legend. It is at once clear that the three fluids show the same type of behavior
across flow rates and heights. Similar to the Newtonian case, the jet is stable below a certain
critical aspect ratio, though it is not possible to always measure this state for long except for
low flow rates, since the fluid heap clogs up the nozzle. For each figure, the four different Q*
correspond to @ = 1ml/min, @ = 2ml/min, ) = 3ml/min, and @ = 4ml/min, respectively.

For each flow rate a similar pattern of behavior is observed for each fluid as the height of

fall is increased. This pattern can be simply described as follows:

1. Stagnation Flow (SF)
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2. Regular Periodic Coiling (RPC)

3. Quasi-Periodic Coiling (QPC)

4. Multi-frequency Dynamics (MFD)

5. Kaye Effect or the “Leaping Shampoo Effect" (LS)
6. Dripping State (DS)

The generic behavior for each fluid and the entire sequence of transitions is captured in
Fig. 3(d). The pictures in the insets show either the side-view or the bottom-view for each
kind of dynamic.

We now briefly describe our definition of each of these states. Stagnation flow is the case
when then jet is as yet unbuckled, the fluid hits the plate and spreads evenly on it. RPC
state is one in which the jet having undergone buckling instability rotates around a fixed
center, at a fixed frequency, either clockwise or anti-clockwise. This state is similar to the
viscous coiling state in purely viscous jets. What we call QPC here is a state in which the
jet undergoes coiling motion with two or three frequencies. We note here that a subset of
this type of motion has been termed “multiple coexisting states” by Ribe et al. in their study
of viscous jets?®. The term QPC more accurately describes this behavior in the context of
nonlinear dynamics exhibited by the jets. The transition to a more complex dynamics is
termed here as MFD, and it designates a meandering jet with multi-frequency behavior; the
behavior is complex in both space and time making it a different class of motion than a
“whirling string” exhibiting discrete multiple eigenfrequencies?®. The next type of dynamics
is the well known Kaye effect or more recently termed as the leaping shampoo effect. In this
case, the jet exhibits inertial coiling at a high frequency with intermittent bursts of large
amplitude displacements either in-plane or in a fully three dimensional space. These bursts
may be of a single rope of jet or a fluid loop shooting out and away from the jet axis.

Beyond the initial buckling instability, the jet first shows RPC. Upon increasing the height
further, the jet undergoes a second transition to quasi-periodic coiling with two frequencies.
Within this QPC regime, as the height of fall is increased, one more frequency is added to the

dynamics and we observe behavior with three distinct frequencies. As the height is increased
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further, we obtain a spatio-temporally complex, multi-frequency dynamics. This dynamics
could be chaotic within a small window of dimensionless height. On further increase of
height, this chaotic looking dynamics, crosses over to a different kind of dynamics, where

the irregular meandering of the jet is replaced by the Kaye effect described earlier.

For the lowest flow rate, for each fluid, we also obtain jetting-dripping transition above a
certain height. In this state, while the jet does not breakup, it does not acquire steady flow
conditions. Large beads of fluid tend to fall down along a very thin stretched fluid fiber,
reminiscent of the well-known beads-on-a-string scenario®. This simple examination of the
regime map shows that the dynamics of the jet very quickly becomes quite complicated,
both in space and time. In order to decipher the nature of these regimes and transitions
between them, the motion of the jet has to be accurately determined. With a view to study
the regime map in a more quantitative fashion, we make use of the bottom view imaging
configuration and resolve the motion of the jet in XY plane over time. The data collected

in the form of movies, then allow us to create the jet trajectory in space and over time.

In the QPC regime and beyond, a simple frame counting approach proves to be insufficient.
The measurement of frequencies of coiling and of precession is accomplished by tracking
the jet tip, constructing the time series for the X and Y components of the motion, and
computing the power spectra for each type of motion. The dominant frequencies in the
power spectra correspond to different modes of motion like coiling or precession, provided
the frequencies are independent. In Figure 4, we show a series of jet trajectories and the power
spectra of the X and Y components, for the QPC regime and beyond. The figures shown
are for fluid S2 at a flow rate of @ = 2 ml/min. The choice of analyzing the data in X and
Y components, as opposed to more traditional R and € components stems from the nature
of dynamics exhibited. Even within the quasi-periodic regime, the jet may execute coiling as
well as folding or linear oscillations. Moreover, the center of the rotation of the jet is also not
fixed, but may execute periodic or aperiodic motion. This produces artificial discontinuities
and additional errors in computing radial and angular coordinates as a function of time. In
the following discussion, we look at each regime with the help of jet trajectory data and

quantify the jet behavior in more detail. We will combine information from Figures 3, and
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4 for each regime to get a better insight into the dynamics in each regime.

B. Regular Periodic Coiling

Beyond the stagnation flow, when the jet undergoes coiling transition, the observed coiling
is highly regular, and periodic in space and time. Each "fluid-rope” falls exactly on top of
the previous coil at fixed intervals, hence with a fixed frequency and amplitude (see ??(d),
inset). Due to lower viscosities of the fluids used in these experiments as compared to earlier
reported experiments in the literature, we do not observe coils stacking on top of one another
in this regime; the time scale of fluid spreading on the plate is comparable to the time scale
at which new fluid element arrives at the plate. The RPC behavior is represented in Figs. 3
(a), (b), (c) as black squares.

The most significant feature of this state, in contrast to Newtonian jets, is the small
window of scaled height in which RPC is observed. For viscous Newtonian jets, one observes
a viscous regime in which the frequency of coiling decreases as the height is increased.
Transition to gravitational regime reverses this trend and the frequency increases with fall
height. For viscoelastic jets there appears to be a very small range of heights for which
we observe RPC with a single frequency. This range is predominantly dependent on the
dimensionless flow rate; higher the flow rate, lower this range. The maximum aspect ratio
up to which RPC is obtained is for the fluid with lowest viscosity and elasticity (e = 12.5).
The variation of RPC region on the elasto-gravity number also shows an inverse relation;
the size of the RPC region decreases as the elasto-gravity number increases.

The X —Y trajectory of the RPC and the corresponding power spectra of each component
are shown in Figs. 4 a, b, and c respectively. The single frequency periodicity is revealed in

both power spectra, with the peak frequency of fo = 1.191 Hz.

C. Quasi-periodic Coiling

The next stage in the dynamics of buckled viscoelastic jet is the quasi-periodic region.

The QPC regime is shown in Fig. 3 as red circles. For a given flow rate, as the height
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FIG. 4. Trajectory tracking and power spectra: Top row shows the trajectories of the jets of fluid
S2 at a flow rate of @ = 2ml/min, for different heights. The power spectra of the X (¢) component
are in the middle row, and the power spectra of the Y (t) components are in the bottom row.
a) Trajectory of the RPC state, at H/d = 8.33. b,c) The power spectra of the X(¢), and Y (¢)
coordinates, respectively. A single frequency fy = 1.19Hz is clearly visible. d) The trajectory of the
QPC regime at H/d = 12.5, showing the “trefoil-pattern”. The orbits are slightly elliptical and the
jet exhibits coiling and precession. e,f) Power spectra of the X (t),Y (¢) components, respectively.
The peak frequency at the previous height fj is still present but at a much lower amplitude. There
are two additional frequencies, fi = 2.72Hz and fo = 0.40Hz. g) The trajectory of another type
of QPC dynamics showing coiling and folding states, which always appears after the trefoil-pattern
dynamics. h,i) The power spectra of the components. j) The trajectory corresponding to the
multi-frequency state. The jet exhibits complex coiling, folding and meandering dynamics giving
rise to multiple frequency components. k,1) The power spectra corresponding to the X (t), andY (t)
components, respectively. The multi-frequency nature of the spectra is evident. m) The trajectory
at the onset of the leaping-shampoo state. Localized coiling and folding states are interrupted by
large amplitude leaps in the X —Y plane. n,0) The power spectra have now broadened significantly

and the power is distributed more uniformly among many frequencies.
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of fall is increased, the jet undergoes a second transition; from periodic coiling to quasi-
periodic coiling. In this regime, the jet still undergoes rotatory motion, but with two or
more frequencies. The range of heights for which the motion is quasi-periodic, again depends
strongly on the flow rate; as the flow rate increases, for each fluid, the range of heights for
which the motion is quasi-periodic, decreases.

This quasi-periodic coiling comes about in a few different ways. Immediately following
the transition to quasi-periodicity, the jet undergoes rotatory motion and precession of the
orbit around the center of rotation. This results in a characteristic trefoil-pattern, or a
petal-like trajectory, as shown in Figure 4d. The orbits are elliptical rather than circular.
In figure 4e, and 4f, we show the power spectra of the X (¢) and Y (¢) components of the
trajectory, respectively. The frequency of RPC, fy = 1.19 Hz is still present, but it is not
the peak frequency. Instead, the peak frequency is f; = 2.72 Hz, and another frequency
fa = 0.40 Hz = f;/3 appears in the spectrum for X (¢) (figure 4e). The ratio of the two
frequencies is f1/fo = 6.86. The faster frequency f; corresponds to coiling motion, and the
slower one to precession of the jet. A second noteworthy feature is the slight difference in the
power spectra of the X, and the Y components. The lower frequency for the Y component
is fo = 0.34 Hz. The other two peaks correspond to fy = 1.19 Hz, and f; = 2.72 Hz. Two
interesting relationships emerge in the spectrum for the Y (¢) component. The first relation
is that fo = f1/8, and the other is that the fundamental frequency present in RPC (fp)
is related to the two new frequencies by the relation fy = (f; — f2)/2. This transition to
quasi-periodicity is a novel feature of viscoelastic jets, and has not been observed in purely
viscous jets. In addition, for each fluid, at every flow rate, the quasi-periodic behavior always
begins with coiling and precession. It demonstrates that elasticity influences the emergence
of rotation-precession mode as the preferred mode once the RPC motion is unstable.

Within the quasi-periodic regime, the trefoil-pattern dynamics transitions to a dynamics
where both coiling and folding/linear motion are present. In this mode, the jet tip executes
coiling motion interrupted by regular events of linear motion, sometimes forming a “figure-
of-eight”. Each time the jet undergoes a folding motion, the frequency of subsequent coiling
switches between two or more steady state values, resulting in multiple frequencies associated

with coiling and folding states. Figure 4g shows the trajectory of the jet, where circular
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coiling regions are present along with a few folding modes. The power spectra of the X ()
and Y (t) components of this state are shown in Figs. 4(h) and (i), respectively. The spectra
show three frequencies, two of which are coiling, and one for the folding state.

This feature has been observed previously in viscous Newtonian jets, and it gives rise to
multiple coexisting states in gravitational-inertial regime in the experiments of Maleki et al.2!.
In the theoretical model for multiple steady states for viscous jets?3, the two stable branches
of solutions were connected by an unstable branch; correspondingly, only two frequencies
were observed experimentally for a given height. In contrast, for viscoelastic jets, we have
been able to observe three distinct frequencies in this regime. This suggests that introduction
of elasticity stabilizes the previously unstable branches via an interplay of elastic, viscous,
and gravitational forces.

In addition to this mode, we have also observed a mode in which the jet precesses with a
larger frequency and a smaller radius, and a lower frequency and larger radius, repeatedly.
For each fluid, we observe two distinct frequencies at the same height. Again, this feature is
also present in the viscous jets in the gavito-inertial regime. For viscoelastic jets this mode

is not the preferred multi-frequency mode in the gravito-inertial regime.

D. Irregular Dynamics

As the height of fall is increased further, we see clear deviations from the Newtonian
jet dynamics. In the Newtonian case, once inertial forces dominate the flow, the multiple
coexisting states transition into regular coiling states at very high frequencies. Instead, for
shear-thinning viscoelastic fluids we observe an increasingly irregular and possibly chaotic
dynamics as the height of fall is increased further.

The tip trajectory for this regime is shown in Fig. 4(j). It can be observed that for
irregular dynamics, the trajectory though confined within a certain area, starts to occupy
the area more uniformly. The dynamics now comprises of brief coiling states, interspersed
with linear oscillations, and non-uniform meandering states. It should be emphasized that
this is not a transient dynamic; the combination of coiling, folding, and meandering continues

indefinitely, or in practice for as long as the jetting is observed. Figures 4(k), and 4(1) show
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the power spectra of the X (¢) and Y (¢) components respectively for irregular dynamics. It
can be clearly seen that the power is distributed over a wider range of frequencies, all of
which are not simple harmonics of some fundamental frequency. Instead, we find that the
peak frequencies have corresponding sub-harmonics. For example, in the spectrum for X (¢),
we find that one of the peak frequency f; = 2.5 Hz has a sub-harmonic f,/2 = 1.25 Hz.
The second frequency f; = 2.27 Hz has a sub-harmonic of f;/5 = 0.45 Hz. The third
high frequency fo = 2.665 Hz has no sub-harmonics or harmonics. The non-harmoniacally
related multiple frequencies, and the subharmonics point to a subsequent parameter window
of possibly chaotic behavior.

Unambiguous determination of chaos in this system requires much longer time series,
so that Lyapunov exponents can be calculated and strange attractors can be found. In
addition, other dimensional measures, correlation functions, and return maps need to be
found in order to characterize route to chaos in the system. Such a detailed characterization
though currently under way, is beyond the scope of the present paper, and will be covered
in a future publication. The spatio-temporally irregular behavior is another novel feature of

viscoelastic jets, not seen in purely viscous Newtonian jets.

E. Leaping Shampoo

For viscous Newtonian jets, the inertia dominated regime is characterized by high fre-
quency coiling regime, where the coils stack up on each other until the heap breaks and a
new stack of coils takes its place. In the case of surfactant fluids, there is an additional, visu-
ally striking effect, known as the leaping shampoo effect, or the Kaye effect, first described
by Kaye®. In this behavior, a jet of viscoelastic surfactant solution undergoes rapid coiling
like a viscous jet, but intermittently exhibits large jumps away from the point of impact.
A complete description of the effect, and all the factors affecting this process are not yet
emerged. A recent study®” gave a simplified model based on energy arguments, which de-
scribes the incoming jet causing a dimple in the surface of the pool of liquid, and beyond a
critical height, results in an upward shooting jet. In this work, only shear thinning was seen

as the factor responsible for the Kaye effect. Elasticity did not play a role in their model.
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There are two key rheological features of surfactant solutions; elasticity, and shear-
thinning. Our investigations show that both have a role to play in the development and
subsequent dynamics of the Kaye effect. We have verified (data not shown) that a fluid with
constant viscosity (n = 75 Pa s) and an elastic relaxation time of (A = 5.5 s) like PS/PS
Boger fluid does not exhibit the Kaye effect. This shows quite clearly that shear-thinning is
absolutely essential for emergence of the Kaye effect, consistent with the analysis by Vesluis
et al. On the other hand, some shear-thinning but highly elastic surfactant fluids like aqueous
solutions of Cetyl Pyridinum Chloride (CPyCl) do not exhibit the Kaye effect'®4l. CPyCl
soultions typically have a zero-shear viscosity 7 = 15 Pa s, and an elastic relaxation time
A = 0.5 s. The elasto-gravity number for CPyCl solutions E, ~ 10, whereas for the shampoo
solutions in the present study, the elasto-gravity number £, ~ 1. Thus, only surfactant fluids
within a small parameter window of elasticity and shear thinning rheology exhibit leaping.
This new finding suggests that elasticity does play a role in the development of the Kaye
effect. More quantitatively, we can infer that the Kaye effect is most readily observed for
shear-thinning fluids with elasto-gravity number £, ~ O(1). Furthermore, from the regime
maps for each fluid (Fig. 3), it is clear that the onset of the Kaye effect is also dependent on
the flow rate, and is different for each fluid with different £,. This implies that the critical
height at which the Kaye effect begins is also a function of the viscoelasticity of the fluid.

Consistent with the observations by Versluis et al., we have observed two distinct modes
of leaping; one in which the jet slips off the fluid surface and gets splashed more or less
in-plane, but to a large distance compared to the size of the coiling region, and the other
in which the jet penetrates the fluid bath, and shoots vertically up, which is the traditional
Kaye effect. As the height of the fall is increased, the in-plane leaps of the jet due to slipping
always precede the vertical leaps. The in-plane leaps of the incoming jet show no preferred
angular orientation, and are in random directions with respect to the center of the jet. The
direction of the leap being determined predominantly by the random slip direction of the
incoming jet.

The trajectory of the jet for the leaping shampoo (LS) effect is shown in Fig. 4(m), where
the leaps are predominantly in the XY plane. The dynamics in the center is still irregular

at this stage with multiple frequency components. The jet shoots off from the center either
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as a loop of fluid, or as a single strand of fluid, which impacts the fluid bath a large distance
from the center. These loops of fluid are clearly visible in the XY trajectory of the jet. The
power spectra of the LS regime for the X (¢) and Y (¢) components are shown in Figs. 4(n),
and 4(o), respectively. The spectra consists of many frequency components. The highest
frequencies corresponds to the most rapid coiling motion around the point of impact. The
other frequencies correspond to different coiling, folding, and leaping modes.

On further increase of height, the jet exhibits vertical leaping, with very high frequency
coiling around the center. From this point onwards, due to the resolution of the imaging,
it was not possible to track the trajectory of the jet close to the center of the jet, although
it is still possible to track the jet-leaps. On the other hand, the dynamics now is fully
three dimensional and the bottom view only gives a projection of the jet motion, and not
its accurate position. The leaping shampoo state continues to occur until the aspect ratio
becomes so large that the jet diameter becomes less than the capillary length of the fluid.

At this point, the jet is no longer steady, and we revert back to the dripping mode.

F. Frequency Transitions

We focus here on one of the flow rates (Q = 2 ml/min,Q* = 8 x 1079), for the fluid
S2. From the power spectra of the X (¢) and Y'(¢) displacements, the frequency components
involved in the dynamics can be found. The zero frequency component is not considered
in this process as it only gives the average displacement. For each height, the dominant
frequency of coiling has the maximum amplitude. Typically, the dominant frequency corre-
sponds to a coiling mode or a folding mode. Each independent frequency in the dynamics
of the jet will also have its corresponding harmonics. This gives an additional measure for
ascertaining the relevant frequencies.

Beyond the quasi-static regime, when multiple frequencies are present, we find frequen-
cies whose ratios are not simple integers or linear combinations of each other. We take these
frequencies as independent frequency components of the spectrum. In addition, we find sub-
harmonics of major frequencies in the spectrum. The sub-harmonics of a given frequency

in the spectrum signifies period-doubling, period-tripling, or in general period-N oscillations
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FIG. 5. Frequency space bifurcation diagram of fluid S2, at a flow rate of @* = 0.921074. a) A plot
of frequency scaled with the elastic relaxation time against the height scaled by the diameter of the
nozzle. Each data point represents an independent frequency in the power spectrum of the X (¢)
component of the trajectory. The first point is the single frequency RPC state, which bifurcates
to a QPC state at the next height. At each successive height the peak frequencies change, and
more frequencies get added until at the highest scaled height the spectrum has many frequency
components. b) A different representation of the frequency bifurcation diagram in terms of an
intensity map. Here the spectrum of X (¢) component is shown, with the intensities corresponding
to the log of the power at each frequency. This representation reveals the relative power distribution
amongst the frequencies. Again, the bifurcation of the frequencies at lower scaled heights, and the

even distribution of the power at higher scaled heights is readily visible.

(coiling or folding). The entire frequency information can be shown as a bifurcation dia-
gram, which proceeds from zero frequency stagnation flow to period-1 dynamics (RPC), and
transitions to quasi-periodic and possibly chaotic, broad-spectrum dynamics. In Fig. 5(a)
we show the bifurcation diagram for the jet dynamics in terms of frequency scaled by the
elastic relaxation time A, and the height scaled by the nozzle diameter. The frequencies
plotted are the independent frequencies and the subharmonics found for those frequencies.

The frequency scaling used by Maleki et al.?! in their studies of viscous jets is given by:

fr= f(é)é (12)

where, f is the observed frequency, and v is the kinematic viscosity. This frequency relates
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very simply with the frequency scaling used here by:

De = fx A\ (13)
.  De
=2 (14

g

The region before the first point in the plot corresponds to zero frequency stagnation
flow. The onset of coiling is the first point, where the jet rotates with a single frequencys;
the regime we have called Regular Period Coiling (RPC). As the height increases further,
the jet undergoes quasi-periodic transition, and rotates with two distinct frequencies; one
for coiling, and the other for precession. The quasi-periodic regime continues with addition
of a frequency component as the height of drop is increased. Eventually, the jet executes
coiling, folding, and meandering motion with multiple frequencies.

In Fig. 5(b) we show the whole spectrum for the X (¢) component for each height as an
intensity map. Here the intensity of the band scales with the logarithm of magnitude of the
power at that frequency, normalized by the maximum power in the spectrum. The bifurcation
in the frequency spectrum is clearly visible at the second height, which corresponds to
H/d = 12.5, the onset of quasi-periodic transition. The intensity colormap clearly reveals
the power distribution at various frequencies as the height of fall is increased. The power
initially distributed within a narrow band of frequencies, gets more evenly distributed as
the dynamics becomes more irregular at larger drop heights. Beyond the RPC regime, each
higher peak frequency bifurcates into two closely spaced frequencies at the next height, and
other frequencies corresponding to additional folding or meandering modes get added to the
spectrum. This is the most detailed information that can be obtained from the present set
of experiments, based on the resolution of the experiments. It shows that there is a rich
structure of nonlinear transitions in the dynamics of viscoelastic jets, which transforms the

dynamics from simple coiling to the leaping shampoo state via these transitions.

VII. DISCUSSION AND CONCLUSIONS

Free surface flows of viscoelastic fluids have been studied under widely different conditions

and situations; formation and pinch-off of drops, dynamics of viscoelastic filaments and
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their capillary breakup, fiber spinning, and leaping shampoos. Free surface viscous jets are
known to undergo buckling instability and exhibit coiling as a result. In this paper, we have
attempted to shed light on the effects of viscoelasticity on the dynamics of a continuous
jet falling on a rigid plate, specifically relating to the coiling instability and the subsequent
dynamics. We have uncovered a rich array of dynamical behavior beyond the initial coiling
instability. Our study also presents a unifying picture of the seemingly diverse flow situations
like coiling, dripping, and the leaping shampoo effect in terms of transitions between different
stable regimes as the flow rate and the height of fall are varied.

We have shown that viscoelastic fluids also undergo coiling instability similar to viscous
jets. We also show that unique to viscoelastic jets, the flow quickly undergoes a second
instability, that results in quasi-periodic flow with two or more incommensurate frequen-
cies. As the height of fall is increased further, the dynamics becomes more complicated
and irregular, possibly chaotic. Physically the coiling behavior transitions to coiling and
precession, coiling and folding, and ultimately to coiling and meandering with intermittent
leaps of large amplitude, which is known as the Kaye effect or the leaping shampoo effect.
The transition scenario can be made more precise by tracking the jet tip and measuring the
frequencies involved in the dynamics at each stage. Such a tracking shows a sequence of
bifurcations and a re-distribution of power over a larger number of frequencies. In frequency
space, the dynamics bears the hallmark of a nonlinear dynamical system which undergoes
quasi-periodic transition, possibly leading to chaos.

We have carried out experiments on three different fluids, each with a different viscosity
and elasticity. We have also conducted experiments at different flow rates and varying heights
of fall. We find that the transition scenario described above is a robust generic feature of
all the three fluids. We have shown this behavior as a regime map in terms of scaled
frequency and scaled height (figure 3). These scalings have been kept the same as employed
by Maleki et al. In addition, we have introduced a new dimensionless variable called the
elasto-gravity number (E,), which captures the relative effects of elasticity, viscosity and
gravity. Newtonian fluids have E, = 0, and the surfactant solutions used in this study have
E, ~ 1. Increasing value of E, signifies larger elastic effects.

The regime map for each fluid reveals a number of interesting features. At the lowest flow
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rate, we always observe dripping beyond a critical height. This critical height is different for
each fluid, or the combination (E,, Q*). This is expected since the jetting-dripping transition
or simply the dripping mode in viscous and non-Newtonian fluids itself exhibits a rich, highly
nonlinear dynamics*?43. In the present study we do not undertake a detailed investigation of
the jetting-dripping transition. Beyond the lowest flow rate, we encounter a generic behavior
of sequence of transitions described above.

At larger drop heights we encounter the well-known Kaye effect, which still remains a
mystery. We conclude that shear-thinning rheology is essential for the onset of Kaye effect,
consistent with the observations of Versluis et al. On the other hand, elastic effects are
also important for the onset of the Kaye effect. Shear thinning but highly elastic fluids do

not exhibit leaping?®4!

, Whereas surfactant solutions with £, ~ 1 do show leaping readily.
The height at which leaping begins depends on both the flow rate and elasto-gravity number.
This observation suggests that leaping requires a delicate balance between a drop in viscosity
due to shear, and elasticity.

An important observation regarding the sequence of transitions is that the onset of each
state and its duration is strongly dependent on the flow rate. It also depends weakly on
the fluid properties, in particular, the elasto-gravity number. In general, as the flow rate
becomes higher, the onset of quasi-periodic, irregular, and leaping shampoo behavior occurs
at lower heights. These inverse relations may well be power-laws in (¢, Q*) space with a
weaker dependence on E,. The resolution in height measurement and the limited number
of flow rates used in this study prevent us from fitting power-laws to the boundaries of each
dynamical state. Although the height between the nozzle and the plate is kept fixed and
measured with an accuracy of 1%, once the jet impacts the plate, there is always a mound of
fluid of varying height throughout the jetting process. The height of the mound is important
at low drop heights and hence for the transition from RPC to QPC, and from QPC to
MFD states. Although an average height of the mound is subtracted from the nozzle-plate
distance, effective error in measured height and actual height can be as large as 10% at low
drop heights.

Two important features are strongly suggested by the present experiments; a nonlinear

transition from periodicity to quasi-periodicity, leading to chaos, and the possible power-law

29



dependence of the regime boundaries in € — QQ* space. Further insights into the exact nature
of nonlinear transitions and the exponents of the power-laws can not be unambiguously
determined from the present data. In this situation the role of numerical modeling is critical.
Numerical simulations could answer these questions unambiguously. So far there have been
no analytical modeling studies that deal with continuous jets of viscoelastic fluids beyond
the initial coiling instability. Recently a few numerical studies have demonstrated that free
surface jets of viscoelastic fluids can be modeled**#>. Although the goal of these studies was
demonstration and effectiveness of the proposed numerical schemes rather than a detailed
investigation of the transitions in jet dynamics, such transitions were indeed observed and
found to be different compared to Newtonian jets.

We specially note here a numerical study by Tome et al.*®, who compared the dynamics
of 3D jets of Newtonian and an Oldroyd-B fluid. Amongst other points of comparison, they
mention briefly that while Newtonian jets showed regular coiling, buckled jets of Oldroyd-B
fluid began coiling initially, but quickly demonstrated “apparently chaotic" motion. This is
highly significant since we have shown here that there is an order to this “apparently chaotic”
motion; it comes about via a sequence of transitions and occurs in a small window of the
parameter space. It would be highly instructive to apply such modeling schemes to the
present problem since the insights gained from such an attempt would be useful for further
experimental studies. Such numerical studies, with enough resolution, can settle questions
regarding the possible power-law dependence of various regimes boundaries and the exact
nonlinear dynamics of the jets all the way from simple coiling to the leaping phenomenon.
We hope that the present study stimulates theoretical and numerical examination of the
problem in more detail and help the next phase of experiments. On the experimental front,
a next step would be to access higher flow rates and flows in confined geometries which would

mimic more closely industrial processes like filling of containers.
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