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in granular materials: statistical mechanics
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In this work, we first review some general properties of dense granular materials. We
are particularly concerned with a statistical description of these materials, and it is
in this light that we briefly describe results from four representative studies. These
are: experiment 1: determining local force statistics, vector forces, force distributions
and correlations for static granular systems; experiment 2: characterizing the jamming
transition, for a static two-dimensional system; experiment 3: characterizing
plastic failure in dense granular materials; and experiment 4: a dynamical transition
where the material ‘freezes’ in the presence of apparent heating for a sheared and
shaken system.

Keywords: granular materials; jamming; disordered solids

1. Introduction

This work begins with a few basic ideas concerning the whats and whys of
granular materials. In particular, we consider where granular materials and
molecular matter part company, which involves open questions of relevant
scales. An important point that we emphasize is that fluctuations in granular
systems can be large, although their nature is not well established. Here, we
present evidence for the idea that well-defined statistically stationary
configurations exist. The idea is that if the external control parameters—
things like stresses at the boundaries, or strain rates—are held fixed then there
exist well-defined distributions for important internal variables as the granular
system is taken through a set of states consistent with the external controls.
The extent to which this is generally applicable is unknown. Hence, statistical
characterizations of real experimental systems are very important. To the
extent that distributions for inter-particle contact forces or correlations
between forces, displacements or other standard variables are determined

* Author for correspondence (bob@phy.duke.edu).

One contribution of 14 to a Theme Issue ‘Experimental chaos I,

493 This journal is © 2007 The Royal Society


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org on November 1, 2010

494 R. P. Behringer et al.

solely by a small set of well-defined control parameters, a statistical description
should be viable. Then, the task is to determine the relevant ensembles and
structures that determine the relations between control parameters and the
resulting distributions.

Here, we turn to a series of experiments that emphasize the statistical
properties of dense granular systems. These are: experiment 1: determining
local force statistics, including vector forces, force distributions and
correlations for static granular systems that are subject to simple deformations,
pure shear and isotropic compression; experiment 2: characterizing the
jamming transition, contact numbers and pressures near the point where a
static system becomes mechanically rigid; experiment 3: plastic failure—what
happens when a dense granular system is sheared to the point that particles are
irreversibly displaced; experiment 4: a dynamical transition: freezing by
heating in a sheared and shaken system—how does a dense system respond
to different kinds of energy input, and how do these inputs allow the system to
explore a phase space of different states. Each of these illustrates some of the
recent issues that involve the physics of dense granular materials and, in
particular, their statistical nature.

Granular materials are collections of macroscopic ‘hard’ (but not necessarily
rigid) particles whose interactions are dissipative. The particles can be described
perfectly well by classical mechanics, although this may lead to mathematical
complexity if Coulomb friction between grains is involved. Interactions between
grains are dissipative, so that left alone, moving granular systems come to a state
of rest. If there is a steady input of energy, motion can be sustained. Such a
system may resemble a molecular state. But the granular case is far from
equilibrium. Despite this last property, it may be possible to draw on such
thermodynamically fundamental concepts as entropy or temperature and to
apply or modify these concepts to ensembles of granular particles. It is also clear
that fluctuations in granular systems, be they in space or time, can be large. In
the dense state, fluctuations in space are associated with force chains,
filamentary structures that carry a disproportionately large fraction of the
forces within the system. In time-varying systems, these chains form and break.
The energy for fluctuations typically comes from the mean flow, which must be
sustained by an external source.

There are many fascinating and deep statistical questions associated with
granular materials. Perhaps the most important is whether there is indeed an
underlying granular statistical description that has the same level of predictive
power as statistical mechanics for thermal systems. There are many related
questions that need to be addressed. These include: what is the nature of
granular friction? What is the nature of granular fluctuations and what is their
range? Is there a granular temperature? A granular entropy (Edwards &
Oakeshott 1989)7 Do fluctuation dissipation relations hold? How does a granular
system change from flowing to mechanically rigid? This last question addresses
the issue of jamming (Cates et al. 1998; Liu & Nagel 1998). Since many systems
undergo such a transition, it seems probable that there are connections to other
systems, e.g. colloids, foams, glasses, all of which exhibit jamming. Other
important questions: what happens at mesoscopic scales? How do we understand
granular plasticity, and is it similar to molecular plasticity?
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Figure 1. (@) Schematic of biaxial tester. Particles are confined within a rectangular enclosure,
which has two independently movable walls. (b) Images of granular samples that have been
(i) isotropically compressed and (ii) subject to pure shear. (¢) Photoelastic image of a single disc.

The continuum limit has routinely been assumed in soil mechanics
(Nedderman 1992). But there is at best a partial justification for this
assumption. Engineers must design, and so need a reliable continuum
description. Granular handling devices collapse at an alarming rate, and solids
handling devices typically work well below design. Despite much work on
continuum models for dense granular systems, current models are complex, and
their underlying physical basis is still in considerable need of development. Until
the underlying physics is well understood, the design of practical particulate
handling devices will remain problematic.

Granular phases can be separated into relatively dilute and dense phases. The
dilute phase is typically modelled by the same methods as molecular gases.
Kinetic theory provides a rather good description of many phenomena in the
granular gas state. Granular solids and dense granular fluids are much less well
understood. For dense granular states, theory is far from settled, and under
intensive debate and scrutiny. It is this set of states that is the focus of the
remainder of this work.

Before turning to the experiments discussed above, we document some of the
properties that are important for dense granular materials. First, forces are
carried preferentially on force chains. A clear example of force chains, seen in a
two-dimensional shearing experiment, has been given by Howell et al. (1999).
These structures (shown in figure 1) indicate that multiscale phenomena are at
play. In addition, as a dense granular system is deformed, force chains form and
break, leading to large fluctuations in force. These fluctuations are intrinsically of
a spatio-temporal character, as seen for instance in the large stress fluctuations in
three-dimensional shear flow reported by Miller et al. (1996). For real granular
materials, friction and extra contacts, beyond what is needed for mechanical
stability, are important issues. Typically, due to these effects, preparation
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history matters. Indeed, owing to these issues, in most cases, a statistical
approach may be the only possible description.

Before turning to our discussion of experiments, we note some interesting
approaches and concepts. These include the idea of jamming for behaviour near
the solid-fluid transition. This has been discussed by Cates et al. (1998), Liu &
Nagel (1998), O’Hern et al. (2003), Donev et al. (2005) and Henkes &
Chakraborty (2005) among others. Connections to plasticity in disordered solids
have been considered by Falk & Langer (1998), Lemaitre (2002) and Maloney &
Lemaitre (2004). Granular ‘elasticity’ has been extensively discussed, and here
we note several relevant works by Bouchaud et al. (1995), Goldenberg &
Goldhirsch (2005) and Tighe et al. (2005).

2. Experiment 1: determining force statistics

We now turn to an overview of several experiments, beginning with the
experiment 1: determining force statistics (see Majmudar & Behringer 2005).
Here, the goal is to characterize granular force statistics and correlations. The
basic experimental set-up involves two-dimensional particles, discs, that are
confined to a biaxial test apparatus (as sketched in figure 1a). This apparatus
allows us to control the boundaries very precisely and, therefore, to prepare
states that have a well-known state of deformation. The experiments use
photoelastic particles which allow us to determine forces between the grains.
The basic technique involves several parts: we obtain images with and without
polarizers and use the second set of images to obtain particle centres and
contacts. Using images of individual particles obtained with polarizers, we
invoke an exact mathematical solution of stresses within a disc subject to
localized forces along its circumference. Specifically, we make a nonlinear fit to
photoelastic pattern, whose intensity is given by I= I, sin 2[(gy— a1)CT/A],
using the known elastic solution; the contact forces are then the fit
parameters. Here, g; and oo are the principal stresses within the disc, C is
a material-dependent parameter, T is the thickness of the discs and A is the
wavelength of light. In the previous step, we invoke force and torque balance
on each particle. Newton’s third law, which requires equal and opposite forces
on the two different particles at a contact, provides error checking. In figure 2
we give examples of experimental and ‘fitted’ images; in general, the
agreement is very good.

Several results from these studies are interesting. First, we consider the
force distributions, which depend on the preparation history of the sample.
Specifically, we contrast inter-particle contact force data for pure shear and
isotropic compression in figure 3, where we show the normal and tangential
(frictional) forces separately. Notably, only for the case of pure shear do we
see an exponential tail at large forces. We note that these results are
consistent with Edwards entropy-inspired models for P(f) by Snoeijer et al.
(2004) and Tighe et al. (2005) who consider the effect of anisotropic loading on
the force distribution.

Addressing the issue of spatial correlations is also important. In figure 4, we
show force—force correlation functions computed for two independent
directions. In other words, we maintain directional information in the
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Figure 2. Comparison between (a,c) two experimental photoelastic images and (b,d) the
corresponding images, that are computed based on fits to forces at the particle contacts.
(a,b) Correspond to a case of pure shear and (¢,d) correspond to isotropic compression.

correlation function, rather than averaging over all angles. In the isotropic
compressional case, the correlation function is independent of orientation and
falls rapidly to zero in a few particle diameters. By contrast, for the case of
pure shear, starting from an uncompressed state, we see roughly power-law
correlation up to the range of the calculation (approx. 20D) along the strong
force chain direction, and short-range correlation in the direction transverse to
the force chains.

3. Experiment 2: the jamming transition

Experiment 2 provides a characterization of the jamming transition. In these
experiments, we once again use the two-dimensional biaxial system and slowly
move through a range of packings (for solid area fractions of ¢ =0.84), where our
two-dimensional system just becomes mechanically rigid. Here, one expects from
several simulations and models that: (i) the contact number, Z, will increase
(nominally discontinuously) at a critical packing fraction ¢., (ii) above the
jamming point, Z will continue to increase as a power-law in ¢ — ¢, and (iii) the
pressure will also increase as a power-law in ¢ — ¢, above ¢.. In results to be
detailed elsewhere (Majmudar et al. 2007), we do indeed find a rapid increase in
Z near ¢=0.84. Above this point, Z continues to increase as a power-law with
exponent about 0.55, and the pressure also rises as a power-law with an exponent
of about 1.1. These results are consistent with recent simulations by O’Hern et al.
(2003) and Donev et al. (2005) as well as with a novel mean-field model proposed
by Henkes & Chakraborty (2005).
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Figure 3. Distributions for contact forces and the mobilization of friction, defined as the ratio
S=|F;|/uFy, where F; is the tangential or frictional force, Fy is the normal force and u is
the inter-particle coefficient of static friction. (a,b) A system that has been subject to pure
shear from an initial state where the particles are just in contact. (¢,d) A similar initial
state that has then been subject to isotropic compression. The deformation in a given
direction is é=AL/L. For the pure shear case, the z and y deformations are equal but
opposite and have magnitude 0.042. For the compressional case, they are equal and have the
value 0.016.

4. Experiment 3: plastic failure

Experiment 3 involves the characterization of plastic failure as a granular
sample is subjected to increasing shear. The basic question is: what is the
nature of microscopic deformation (plasticity)? This process is described
classically for granular materials by (continuum) soil mechanics models. An
interesting recent proposition is that the microscopic nature of plastic
behaviour in granular materials mimics that seen in other disordered jammed
materials (Lemaitre 2002; Maloney & Lemaitre 2004), such as metallic glasses.
For instance, we might expect models, such as shear transformation zone
pictures, developed for molecular plasticity to apply to granular plasticity. This
type of model, which has been explored recently by Falk & Langer (1998) and
developed more fully by Lemaitre (2002) for granular-like systems, seeks to
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Figure 4. Contact data corresponding to figure 3. (a,b) The angular distribution of contacts for
particles carrying forces above the mean, for respectively pure shear and isotropic compression.
(¢,d) The mean normal force as a function of angle, for pure shear and isotropic
compression, respectively. (e,f) Correlation functions of the force for pure shear and isotropic
compression, respectively. The two lines in each sub-figure correspond to orthogonal orientations
of the relative displacement vector for calculating the correlation function. (€) The dark curve is
along the strong force chain direction, and the light curve is normal to that direction. The insets
in (e, f) give a greyscale three-dimensional representation of the correlation function. Here, bright
corresponds to large values of the correlation function.
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Figure 5. Particle displacement vectors following a small shear deformation of the
biaxial experiment.

understand the role of non-affine particle displacements, i.e. the extent to which
local micro- or mesoscopic displacements depart from a smooth local
transformation. We are currently testing to see whether this type of picture
applies to granular systems. At this point, we note some preliminary results,
although the story is not yet complete.

In an initial set of measurements, we consider the local displacements and
stress changes that occur as our two-dimensional photoelastic granular system is
sheared first in a forward and then in a reverse direction. Figure 5 shows
representative displacement fields for the particles as the result of small
differential shearing. It is immediately obvious that the deformation occurs in a
central shear band, in which there are relatively large-scale vortex-like
structures. An inspection of the stress—strain curves (figure 6) shows that there
are large jumps in stress at localized plastic events.

5. Experiment 4: freezing by heating

The final experiment that we consider here involves a dynamical study of order
and disorder in a dense granular system. Results for these experiments have
been presented in Daniels & Behringer (2005, 2006). These experiments explore
concepts such as temperature and heating in the dense granular state by
considering the competition between shearing and vibration. The basic
configuration of the experiment is given in figure 7. A layer of polypropylene
spherical particles of diameter D=2.3440.05 mm is contained in an annular
channel. The particles are subject to vibration from below, which is a nominal
source of heating, and they are sheared from above by a roughened ring that is
rotating at an angular rate, Q. The strength of the shaking is characterized by
the dimensionless acceleration, I’ =Au)2/ g, where A is half the peak-to-peak
shaker amplitude, w is the (angular) vibration frequency and ¢ is the
acceleration of gravity. Ordinarily, we think of vibratory motion as leading
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Figure 6. Mean pressure in the biaxial experiment as a function of shear strain, e=AL/L. The
system is deformed from ¢=0 to a value slightly greater than 0.11, and then cycled back to a net
strain of e=0.08. Note the stress drops at local failure events, and the overall stress drop after the
system has been returned to e=0.08.

QO shear

R t force

vibration sensor
IfA load N\
Lk shaker

Figure 7. (a) Schematic of combined shear and vibration apparatus. Particles contained in an
annulus are sheared from above and vibrated from below. See main text for parameter definitions.
(b(i)) Ordered and (b(ii)) disordered states as seen from the outside of the shear apparatus.

to disorder. But in this system, it does something else: it provides a mechanism
for the system to explore a broader range of possible states, i.e. packings, than
might otherwise occur. In other words, if the system were left undisturbed, it
would obviously remain in whatever configuration formed when the particles
were put into the container. However, the applied vibration, if it is not too
strong, provides enough energy for the particles to explore ‘nearby’ states, i.e.
states with slightly different packings. Only for rather vigorous shaking would
the vibration be strong enough to lead to disorder. One way to estimate the I'
for which vibrational disorder, e.g. vibrationally induced melting, would occur,
is to set the force provided on a particle at the bottom of the layer by shaking
equal to the force needed to overcome the overload of particles on top. This
leads to an estimate of I'=H/D, where H is the height of the layer. In the
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Figure 8. Phase diagram for the combined shaking/shearing system. For a given vibratory
strength, the system exists in a three-dimensional crystalline ordered state (with a small number of
defects) for low shear rate, Q, and in a disordered state for high Q.

experiments described here, H/D=20, which is below any of the I's that are
explored in the present experiments. By contrast, shearing of dense granular
materials tends to lead to disorder, although a notable exception is contained in
recent studies by Tsai & Gollub (2004). As a result, there is a competition
between disordering from the shearing, and ordering which is enhanced
by vibration.

Specifically, there is a hysteretic order—disorder transition, which we
document in figure 8. For a non-zero I', the low-Q states are ordered three-
dimensional crystals (with a handful of defects), whereas the high-Q states are
disordered throughout the system. Typical states, as seen from the outside of the
annulus, are shown in figure 7. The force measured at the bottom of the layer
(figure 9) shows several interesting features. For ordered states, there is a two-
peaked structure that reflects the sinusoidal oscillations of the base. Thus, the
force is varying sinusoidally at the shaker frequency, and the probability
distribution of a sinusoid is two peaked. For the disordered higher Q states, the
probability distribution function (PDF) for the force shows a roughly exponential
tail, as well as a roll-off at low forces. A particularly interesting aspect of the
distribution in this latter case is that the length of the tail stretches out as
the transition region is approached from above. This behaviour is reflected in the
moments of the force PDF. In this case, the kurtosis is a particularly good
example. Here, there is a sharp cusp at the transition point. This same cusp is
present in the variance of the height fluctuations. Such fluctuations would be
given as a second derivative of the entropy in an appropriate Edwards entropy
picture. Hearkening back to traditional phase transitions in molecular matter, it
is the second derivatives of an appropriate thermodynamic potential that are
singular at ordinary phase transitions.
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Figure 9. Probability distributions for the force, measured at the bottom of the layer for the
indicated shear rates, Q. Two-peaked distributions pertain to the ordered state, and single-peaked
distributions to the disordered state. The tail of the distributions stretches out at the transition
point. This feature leads to cusps in various moments for the force distribution, such as the
kurtosis, which is given in the inset.

6. Conclusions

To sum up, dense granular systems exhibit rich structures, and in particular,
fluctuations in such systems can be large. It is our contention that to provide a basic
description of granular matter, one should take a statistical approach. Here, we have
worked towards developing a statistical description by obtaining simple measures
such as contact force distributions, and force correlations in static and highly
controlled experimental systems. For systems near jamming, we find general
agreement with theoretical predictions: a jump in contact number at the transition,
and power-law variation of the mean contact number, Z, and the pressure as the
packing fraction, ¢, increases above its critical value. We have explored measures of
elastic (not discussed here, for space reasons) and plastic deformation. In regard to
plastic failure, we have obtained initial results characterizing failure at a microscopic
level, where we see a characteristic vortex-like pattern in the displacement field. We
have also pursued a dynamic transition between ordered/disordered states in a
sheared and shaken system. This system shows a striking ordering of the system
under shaking and moderate shear. We understand this transition as being induced
by the ability of the system to find a preferred state, which is ordered, and hence
densely packed, due to the presence of vibration. This state is not usually accessible to
the system if the particles are simply poured into the container. It is interesting to
speculate about what drives this transition, i.e. what roles are played by energetic and
entropic effects in terms of the system’s ability to find this state.
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