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Abstract

The problem of buckling and coiling of jets of viscous, Newtonian liquids
has received a substantial level of attention over the past two decades, both
from experimental and theoretical points of view. Nevertheless, many indus-
trial fluids and consumer products are non-Newtonian, and their rheological
properties affect their flow behavior. The present work aims at studying
the dynamics of cylindrical jets of a viscoelastic, shear-thinning solution of
cetylpyridinium salt (CPyCl). In concentrated solutions, CPyCl surfactant
molecules have been shown to assemble in long wormlike micellar structures,
which gives the fluid its non-Newtonian properties. Jets of this fluid show
novel features compared to their Newtonian counterparts, including a type of
motion, in which the jet folds back and forth on itself in a fashion similar to
sheets of viscous fluids, instead of coiling around the vertical axis as cylindri-
cal Newtonian jets do. Another novel feature of CPyCl micellar fluid jets is a
widening of the jet above the plate reminiscent of the die-swell phenomenon
that we call reverse swell. We propose physical mechanisms for both folding
and reverse swell, and compare theoretical predictions to experimental mea-
surements. In addition, we systematically explore different flow regimes in
the parameter space of the height of fall and flow rate and compare regime
maps of a CPyCl micellar solution and a Newtonian silicone oil.
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1. Introduction

Situations where a continuous stream of material is flowing downward at a
moderate velocity onto a plane surface occur in both everyday life and indus-
trial applications. Honey poured on a toast, the filling of a shampoo bottle
in an automated line, as well as numerous other examples in the oil, food,
and cosmetic industries, are similar problems in which the stability of the
streaming jet is a crucial feature. From an industrial point of view, stable jet
spreading homogeneously on the support, is almost always preferred. Indeed,
jet instabilities can lead to problems such as the entrapment of air bubbles in
the folds of a buckled planar jet as described by Pouligny [1] or the stacking
and mounding of yielding materials such as pastes or emulsions. There is
therefore a strong practical motivation for understanding the emergence of
different flow regimes in this situation and the relevant control parameters.

Depending on the fluid properties, and the control parameters such as
the flow rate Q and the height of fall H, a jet can exhibit different behaviors
or regimes. At low heights of fall, the jet spreads homogeneously on the
plate forming a steady stagnation flow, as shown in Fig. 1(a). Cruickshank
and Munson [2] have provided an analytical solution for the shape of the jet,
driven by a balance between the imposed flow rate, gravitational acceleration,
and the viscous resistance to deformation of the fluid. The shape of the jet is
controlled by the parameter β = Ha0

√
g/6Qν, where a0 is the nozzle radius,

ν is the kinematic viscosity and g is the acceleration of gravity. For β > π/2,
the jet starts to thin under the influence of gravity instead of monotonically
enlarging while spreading on the plate. For heights of fall large enough so
that β � π/2, the jet radius reaches a limit a1 for which the acceleration
of gravity is balanced by the viscous resistance, and the balance of the two
forces leads to

a1 ∼

√
3νQ

HglV G
(1)

where lV G = (ν2/g)1/3 is the characteristic length scale over which gravi-
tational and viscous effects balance each other.

As the height of fall is increased, the jet leaves the stagnation flow regime
and starts buckling under the compressive viscous stress, as shown in Fig. 1(b).
This situation was first described by Taylor [3] and was studied experimen-
tally by Cruickshank and Munson [4] for planar and axisymmetric jets. The
theoretical framework developed by Cruickshank [5] and Tchadarov [6] for
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the axisymmetric geometry and by Yarin and Entov [7] for the planar case
is in good agreement with these experimental results. Cruickshank showed
[5] that the axisymmetric jet can buckle according to two modes, azimuthal
and non-azimuthal (called coiling and folding respectively, in this article).
They derived a critical buckling height for each mode, given by the following
geometrical conditions

H

2a0
= 7.663 (coiling) (2)

H

2a0
= 4.810 (folding) (3)

The validity of Eqs. (2) and (3) have been confirmed experimentally by
Cruickshank and Munson [4]. They showed that a cylindrical jet of New-
tonian fluid transitions from a steady jet to a coiling one (Fig. 1(c)) at a
height given by Eq. (2), and that a planar jet starts folding when the con-
dition in Eq. (3) is satisfied. However, it was also observed that these tran-
sitions are suppressed at higher Reynolds numbers [4, 5]. Beyond a critical
Reynolds number, an axisymmetric or planar jet exhibits stagnation flow for
all nozzle-to-plate distances. The Reynolds number is defined here as the
ratio of viscous timescale tV = a20/ν to convective timescale tI = πa30/Q:

Re =
tV
tI

=
Q

πνa0
(4)

For axisymmetric jets, the critical Reynolds number above which coiling
of the jet disappears is given by:

Recrit =
Q

πνa0
= 1.2 (5)

For planar jets, the critical Reynolds number above which folding of the
jet disappears is given by:

Recrit =
Q

πνas
= 0.56 (6)

where, as is the slit radius.
Furthermore, in the cylindrical case, they reported that below this limit,

for 0.1 < Re < 1, two transitions were observed as the height of fall was pro-
gressively increased; from a stable jet to folding, and from folding to coiling.
The first buckling transition happens roughly at the critical height predicted
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by Eq. 3, and the height of the folding-coiling transition is approximately
given by Eq. 2. These subtle transitions are difficult to observe experimen-
tally for two reasons; the first reason is that the flow rates required to reach
this range of Reynolds number are high, and the second reason is that the
values of the scaled height H/2a0, where these transitions occur, are very
low. Both of these factors create a situation where a jet whose diameter
is almost the same as the nozzle diameter, oscillates under high flow rates
at very low nozzle-to-plate distances, making it very difficult to distinguish
between coiling and folding.

After the onset of buckling, the jet of a viscous Newtonian fluid starts to
coil around the vertical axis, as can be seen in Fig. 2(a). In the limit of large
heights of fall, Mahadevan and co-workers [8, 9] derived expressions for the
coiling radius and frequency by balancing viscous and inertial forces in the
coil; the viscous forces arise from the curvature and bending of the jet in that
region. Ribe [10] showed that this analysis was a subset of a broader picture,
with three distinct regimes, viscous, gravitational and inertial, depending on
which forces were dominant. Ribe’s simulations for the frequency of coiling
as a function of height, at a given flow rate, were in good agreement with
experiments by Maleki and coworkers and showed multi-valued frequencies
at the transition between gravitational and inertial regimes [11].

Under the assumption that the jet radius is constant in the coil, the
frequency, coiling radius, and the final radius of the jet, are connected by the
conservation of volume

Q = πΩRa21 (7)

Figure 2(b) schematically details all the relevant forces along the jet
length. The resisting torque is always due to viscosity. Viscous bending
stresses arise because of the velocity gradient between the inner part of the
curved jet, where the velocity is smaller, and the outer part where it is max-
imum. The velocity gradient scales like U1a1/R

2, where U1 = Q/πa21 is the
axial velocity just before the coil. In a fashion similar to beam-bending in
solid mechanics, the viscous stress ηQ/πR2a1 integrated over the jet cross-
section vanishes, but the integrated torque remains non-zero and scales as
[9]

Tcoil ∼
ηQa21
R2

(8)
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1.1. Viscous regime

At low heights of fall, the whole tail of the jet is bent sideways and the
viscous torque caused by the fixed vertical orientation of the nozzle controls
the motion of the jet (the first driving force in Fig. 2(b)). This is also a
shear-induced torque, with a characteristic curvature 1/H, that scales like
ηQa21/H

2. The torque balance leads to the scaling laws for the coiling radius
RV and the coiling frequency ΩV [10] given by:

RV ∼ H (9a)

ΩV ∼
Q

a20H
(9b)

In this regime, the jet motion is controlled by external parameters such
as the height of fall and imposed flow rate, whereas in the other two regimes
the fluid jet selects its own dynamics through a balance of forces involving
intrinsic fluid properties as well as external parameters.

1.2. Gravitational regime

At larger heights of fall, only the lowest part of the tail is bent, on a length
scale of the radius of the coil (R). The weight of the fluid in this part is of
the order of ρgRa21, the lever arm is of the order R, and hence the buckling
torque is ρgR2a21. Using the scaling in Eq. (1) for a1, the torque balance
gives the following scaling laws for the coiling radius RG and the frequency
ΩG [10]:

RG ∼
(
νQ

g

) 1
4

(10a)

ΩG ∼ H2

(
g5

ν5Q

) 1
4

(10b)

The transition from viscous to gravitational regime happens [10] for ΩG '
2ΩV , or HV G ' (Qν/g)5/12a

−2/3
0 . Note that if this height HVG is lower than

the buckling height Hbuckling = 7.663×2a0, then coiling simply starts in grav-
itational mode. Indeed, for typical experimental values of ν = 200 cm2/s,
a0 = 1.25 mm, and Q = 3 mL/min, HVG ' 0.5 cm, while HBuckling ' 1.9
cm. Note also that a simpler force balance between gravitational and vis-
cous forces given by β ≈ 1, leads to the qualitatively similar result of
H ' (Qν/g)1/2a−10 .
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1.3. Inertial regime

When the rotational inertia in the coil becomes important, it can drive
the coiling as well. The inertial force in a rotational reference frame scales per
unit volume as ρΩ2R, so the torque scales as ρΩ2R3a21. The torque balance
together with Eqs. (1) and (7) lead to the following scaling laws for the coiling
radius RI and frequency ΩI [9]:

RI ∼ νg

(
Q

H4

) 1
3

(11a)

ΩI ∼
1

ν2

(
g5H10

Q

) 1
3

(11b)

This regime becomes the most stable one when ΩI > 2ΩG [10], i.e. for

HGI ' (Qν9/g5)
1/16

. For the values used above, this represents a height of
approximately H = 11.0 cm. Note that for ΩG < ΩI < 2ΩG, the system
is multivalued, with the solution oscillating between the two possible fre-
quencies. In all of the above analyses the relevant surface tension parameter
comparing the capillary thinning process to gravity is much smaller than
unity σ/ρga20 << 1, where σ is the surface tension of the fluid. Cruickshank
and Munson have reported experimental data for a surface tension parame-
ter slightly larger than one [4], but never to a point where the destabilizing
action of capillary forces breaks the jet into droplets.

So far, the research on jets impacting a plate has mostly focused on
Newtonian fluids, for example with viscous fluids such as silicone oil. Nev-
ertheless, real-life fluids are almost always more complex: pastes, gels, and
surfactants are ubiquitous in the healthcare, cosmetic, and food industries.
Rheologically complex fluids are used in many aspects of everyday life; from
ketchup and mayonnaise to foaming detergents, skin creams, and hair condi-
tioners. Beyond the industrial interest toward extending the field of study to
non-Newtonian fluids, the motivation for this work is to connect the rheology
of the fluid to its jetting properties. We focus on jets of wormlike micellar
solutions of cetylpyridinium chloride (CPyCl). Wormlike micellar fluids are
non-Newtonian fluids that have recently attracted a lot of attention for their
strong, tailorable viscoelastic and shear-thinning properties, their ease of use,
and the possibility they offer as model fluids for surfactant-based consumer
products [12].

Wormlike micellar fluids are concentrated aqueous solutions of one or
more ionic surfactants, as well as a counter-ion salt. At very low surfactant
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concentration, the solution is homogeneous, but when the concentration in-
creases above a critical threshold, denoted the critical micellar concentration
or CMC, the surfactant molecules spontaneously assemble in spherical struc-
tures. In these spherical micelles the surfactants orient their organic tails
towards the center and bear their ionic heads outside, satisfying both tail
segregation and ionic repulsion. Adding a large enough counter-ion reduces
the curvature of the optimal shape, by screening the ionic interactions. The
change of optimal curvature leads, for some combinations of surfactants and
counter-ions, to changes in the shape of the assembly [13]. In some parts
of their phase diagrams [14], some carefully chosen systems exhibit long lin-
ear structures, called wormlike micelles. The formation of wormlike micellar
structure is schematically represented in Fig. 3. In studies of extensional
flow of these fluids, Yesilata and co-workers [15] have used solutions of erucyl
bis(2-hydroxyethyl) methyl ammonium chloride (EHAC), and Rothstein [16]
used cetyltrimethylammonium bromide (CTAB). Rehage and Hoffmann [12],
as well as Berret and co-workers [17] have used a solution of CetylPyridinium
Chloride (CPyCl) and a salicylic salt (NaSal) in brine and we employ this
well characterized system in the present study.

Wormlike structures at high enough concentrations in surfactant and salt
are long enough to entangle, therefore giving pronounced viscoelastic prop-
erties to the solution. Stress relaxation with wormlike micelles can operate
via two processes: the first one is reptation, similar to the stress relaxation
process of polymers described by de Gennes [18], and the second one is a
breakup-recombination process that is unique to these polymer systems. The
characteristic timescales for stress relaxation and breakup-recombination pro-
cesses are λr and λb, respectively, and Cates showed that, for λb � λr, the
linear viscoelastic properties are well described by a single-relaxation-time
Maxwell model with a characteristic timescale λ given by [19]:

λ = (λrλb)
1
2 (12)

In steady shear flow, wormlike micellar solutions are strongly nonlinear
fluids, with a characteristic shear rate 1/λ and a zero-shear-rate viscosity η0
that is strongly dependent on the salt concentration. For shear rates above
1/λ, it is found that the shear stress exhibits a plateau and remains almost
constant at a critical stress of the order of λη0. In addition, both λ and
η0 are observed to be strongly temperature dependent, with an Arrhenius-
type dependence with a very large activation energy. The strong variations
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of rheological properties with temperature come from two effects acting in
the same direction. The first is a polymer-like behavior in which reptation, a
thermally activated process, occurs more rapidly at higher temperature. The
second is specific to supramolecular structures: the breakup rate increases
with temperature, which is not only a stress relaxation process on its own, but
also tends to shorten the average length of wormlike micelles, thus resulting
in a shorter path-length for reptation to occur.

Extensional rheological studies of wormlike micellar solutions conducted
using capillary breakup experiments (CaBER) ([15], [20]) have shown a sig-
nificant extension strengthening of the fluid, likely due to the alignment of
the wormlike micelles in the extensional flow [16], quite like what happens
for dilute polymer solutions. For example, in the case of CPyCl micellar
solutions, Bhardwaj and co-workers have shown [20] that the fluid first un-
dergoes an initial phase of Newtonian visco-capillary thinning [15]. As the
liquid bridge thins, the extension rate (ε̇) increases, until the local Weis-
senberg number Wimid = λε̇ = 0.5. At that point the wormlike micelles
are stretched too rapidly to relax, which leads to extension thickening, with
elastic stress buildup resisting the breakup of the thin filament. In contrast
to polymer solutions however, when the local tensile stresses become too
large for the micelles to resist, en masse rupture of the entangled chains re-
sults in filament breakup [16]. In addition, thin liquid bridges and jets have
a large area-to-surface ratio, and therefore solvent evaporation can tend to
cool the fluid and increase the surfactant concentration, both effects increase
the viscosity and lower the thinning rate.

Jets of CPyCl wormlike micellar solution falling on a plate show two novel
features. The shape of the jet is different from its Newtonian counterpart,
with a widening of the jet immediately above the plate, as we have shown
in Fig. 4(a). This feature is reminiscent of the well studied die-swell phe-
nomenon [21], in which jets of non-Newtonian fluids swell at the exit of a
nozzle, and we refer to it as reverse swell. The first goal of this paper is to
understand this novel phenomenon and to predict the amount of swell mea-
sured experimentally. The second feature observed in the viscoelastic CPyCl
micellar jets is a novel type of dynamic behavior, in which the buckled cylin-
drical jet remains in a vertical plane and folds back and forth on itself, as
shown in Fig. 4(b). For Newtonian fluids the folding motion is observed only
for planar jets and never for cylindrical jets. This new type of motion dom-
inates in most experimental cases, but for some values of the experimental
parameters, jets of CPyCl micellar solutions can coil instead (see Fig. 4(c)).
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The second goal of this paper is to map these different types of instabilities
onto a suitable non-dimensional parameter space, and describe a mechanism
for this viscoelastic folding. We then derive scaling laws for the amplitude
and frequency of folding based on the proposed mechanism, and compare
them to the experimental data.

This paper is divided in two sections, theoretical and experimental. We
first begin by defining a suitable non-dimensionalization scheme, that allows
us to compare CPyCl solutions at different concentrations and contrast the
response with other fluids. We then propose a mechanism for the reverse
swell phenomenon and the folding behavior of CPyCl jets. We also derive
appropriate scaling laws for the amplitudes and frequencies of folding states.
Then, we describe the details of the experiments, and compare theoretical
predictions to experimental data.

2. Theoretical analysis

2.1. Dimensional analysis

The forces in balance along the flow in the jet are (i) gravity that tends
to accelerate and stretch the jet, and (ii) viscosity that resists the process,
provided that the height of fall is large enough so that β � π/2. This compe-

tition can be characterized by a time scale tVG = (ν0/g
2)

1
3 and a length scale

lVG = (ν20/g)
1
3 , where ν0 is the zero-shear-rate kinematic viscosity. These

scalings will typically be relevant as long as strain-hardening does not occur;
a condition true in most cases, which will be discussed below. For length
and time scales larger than these estimates, the jet thins by an amount de-
termined by the balance of the two forces. Therefore, it is reasonable to
non-dimensionalize the experimental parameters with these scales to obtain
dimensionless heights and flow rates:

H∗ =
H

lVG

= H

(
g

ν20

) 1
3

(13)

Q∗ =
Q tVG

l3VG

= Q

(
g

ν50

) 1
3

(14)

At lower heights of fall the relevant scaling for the height is the aspect
ratio that is used in Eqs. (2) and (3):
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ε =
H

2a0
(15)

This aspect ratio will also be used as a dimensionless height.
The ratio of the elastic relaxation timescale λ to tVG gives rise to an

elasto-gravitational number. Non-Newtonian effects arise in the jet when
the stretch rate, driven by gravity and resisted by viscosity, becomes larger
than the relaxation rate of the wormlike micelles. Therefore, the elasto-
gravitational number characterizes the magnitude of these effects

Eg =
λ

tVG

= λ

(
g2

ν0

) 1
3

(16)

In a similar fashion, the radius of the jet at points along its stream (i =
0, 1, 2) (Fig. 1 and Fig. 4) can be scaled by the same length scale

a∗i =
ai
lVG

= ai

(
g

ν20

) 1
3

(17)

In the folding regime, the dimensionless measured quantities that we re-
port (i.e. the frequency f and the amplitude L) are scaled in the same fashion:

f ∗ = f tVG = f

(
ν0
g2

) 1
3

(18)

L∗ =
L

lVG

= L

(
g

ν20

) 1
3

(19)

The Reynolds number defined in Eq. (4) can also be rewritten using these
expressions as:

Re =
Q

a0ν
=
Q∗

a∗0
(20)

2.2. Reverse swell

The reverse swell (Fig. 4(a)) is a very peculiar feature of jets of wormlike-
micellar fluids, in which the jet widens two to three times its initial radius
near the plate, as compared to the thinnest part of the tail. For Newtonian
fluids, the jet constantly thins, down to the coil region, beyond which the
radius becomes constant. In the case of CPyCl micellar jets, this reverse
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swell effect arises from the non-Newtonian viscoelastic character of the fluid.
As the fluid accelerates under the effect of gravity, the fluid elements stretch,
the wormlike micelles become aligned and store elastic energy. When the
local stretching rate becomes weaker, because of the deceleration imposed
by the presence of the plate, the stretched molecules recoil, which leads to
the observed lateral dilation. A noticeable reverse swell is therefore possible
for a Weissenberg number Wi = λ(U1 − U0)/H = Eg(H

∗ − Q∗/a∗20 ) greater
than approximately unity. Note that this condition requires H∗ ≥ Q∗/a∗20 ,
which means that the fluid particles must be accelerated during the fall.
For practical purposes (in order to get a measurable reverse swell), a more
realistic condition is H∗ � Q∗/a∗20 , which simplifies the condition for reverse
swell to

Wi = EgH
∗ � 1 (21)

For example, the jet shown in Fig. 4(a) is characterized by a large value
of Wi = 11.3 and exhibits significant reverse swell. The reverse swell is
strongly reminiscent of the die-swell phenomenon, and a derivation similar
to that given by Tanner [21] can be used to predict the amount of swelling.
The assumption is that no external force acts on the fluid element over the
length scale of recoil h, thus we neglect gravity on the scale of h � lVG,
as well as the reaction of the bottom plate. If N1 is the first normal stress
difference in the fluid just before the swell, P the hydrostatic pressure in the
jet, I the identity matrix, and α = a2/a1 is the swell ratio, the force balance
can be written as

−PI +

 3G 0 0
0 3G 0
0 0 3G+N1

 α2 0 0
0 α2 0

0 0 1
α

4

 = 0

This corresponds to three equations with four unknowns. Eliminating P
among these equations leads to

α =

(
1 +

N1

3G

) 1
6

(22)

To proceed further, viscoelastic material elements will be considered as
purely elastic during the stretch process in the tail of the jet. This does not
imply that the elastic component of the total tensile stress in the jet is more
important than the viscous part, which would not be true, but only that the
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elastic part does not relax during the time of fall, which is legitimate for
moderate residence time in the jet and Wi � 1. We can therefore estimate
N1 from the tensile stresses expected from rubber elasticity theory, given by

N1 = 3G

((
a0
a1

)4

−
(
a1
a0

)2
)

(23)

We have already assumed that a1 � a0 (significant thinning), therefore
a first order approximation of Eq. (23) combined with Eq. (22) gives a swell
ratio of

α =

(
a0
a1

) 2
3

(24)

In dimensionless form, and using the value for a1 given by Eq. (1), one
finds that the swell ratio α should vary as

α =
a2
a1
∼
(
a∗20

H∗

Q∗

) 1
3

(25)

Equation (1), which has the form a1 ∼ (Q/H)1/2(ν/g2)1/6 when omitting
the multiplicative constant, can be rewritten in dimensionless terms as

a∗1 ∼
√
Q∗

H∗
(26)

Combining Eqs. (25) and (26) leads to the following scaling for the final
radius:

a∗2 ∼

(
a∗ 2
0

√
Q∗

H∗

) 1
3

(27)

Or in dimensional terms, this becomes

a2 ∼

(
a20

√
Q

H

) 1
3 (

ν0
g2

)1/18

(28)

In addition, the reverse swell process takes place over a vertical length h,
determined by the balance between the characteristic speed of the downward
flow in the swollen region, which can be averaged to Q/πa1a2, and the upward
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propagation of viscous effects, ν/h. Using Eq. (27), this leads to the following
dimensionless expression for h

h∗ =
h

lVG

∼
(

a∗40
H∗2Q∗

)1/3

(29)

This can be written in dimensional terms as

h ∼
(

a40
H2Q

)1/3(
ν70
g2

)1/9

(30)

Everything else being equal, the height h over which the swell occurs
scales as ν

7/9
0 . This means that viscoelastic fluids with low viscosities will

display a sharp reverse swell, whereas for very viscous viscoelastic fluids it
may be gradual and hard to discern. Another way to say the same thing is
to derive the slope in the swell region, s = (a2 − a1)/h, using Eqs. (28) and
(30). In the limit of a2 � a1 (a rather strong approximation) we obtain

s = (a2 − a1)/h ∼
(HQ)1/2g1/9

a
2/3
0 ν

13/18
0

(31)

Equation (31) is of limited validity because the assumption a2 � a1 is
not true in most cases, however, it underlines that experimentally notice-
able reverse swell requires a fluid with a viscosity as low as possible. Since
elasticity is important (from the condition (21)), strongly elastic fluids such
as wormlike micellar solutions are ideally suited for observing reverse swell,
as opposed to very viscous viscoelastic fluids such as Boger fluids or weakly
elastic fluids such as commercial shampoos. Larger values of h also mean
that an increased time in the swell is available for the macromolecules to
relax, which may invalidate the purely elastic recovery assumption used to
derive Eq. (24). As a result, it is not possible at the present time to be cer-
tain whether very viscous elastic fluids (such as Boger fluids) are not prone
to reverse swell at all, or if it is simply not experimentally noticeable. For
example, Chai and Yeow [22] studied the shape of jets of a Boger fluid and
found a small widening at the base, although the bottom boundary condition
was somewhat different from here: the jet was falling straight into a pool of
the same liquid and was not subject to buckling. Testing the mechanism
described in this section would require using another wormlike micellar fluid
(different from CPyCl) but with comparable features of significant elasticity,
especially large elastic component of extensional stress, and moderate or low
viscosity.
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2.3. Scaling laws for folding dynamics

Next, we seek to investigate the folding motion of CPyCl wormlike mi-
cellar jets. The goal is to understand why this in-plane jet motion (never
observed for cylindrical jets of Newtonian fluids) is possible for this shear-
thinning viscoelastic fluid. In addition, we derive scaling laws for the folding
amplitude L and frequency f that will be compared to experimental mea-
surements.

2.3.1. Mechanism of folding

The mechanism of folding of CPyCl wormlike micellar solution has dif-
ferent roots from Newtonian coiling. Even when the jet is pushed sideways,
experimental observations show that it remains relatively straight (Fig. 5(a)),
whereas Newtonian jets get bent and twisted over a significant height from
the bottom plate. This is allowed by the shear-thinning properties of the
fluid, which limit the shear stress in the curved region, as shown in Fig. 5(c),
and it is likely that some variant of shear banding takes place in this re-
gion. The shear stress η(γ̇)γ̇ in the curved region is bounded by the plateau
stress η0/λ, regardless of the curvature, whereas it scales with the curvature
squared in the Newtonian case (Eq. (8)). The point of contact of the jet with
the lower layer of fluid can therefore be in line with the centerline of the jet,
and move at the same pace as the rest of the jet. Since it is not twisted the
jet does not coil and follows a straight motion.

As the jet translates further and further sideways, the weight of the in-
clined jet tends to provide a restoring force directed towards the vertical axis.
This creates a bending torque within the jet, and it is resisted by a viscous
torque that appears when the lower part of the jet bends (Fig. 5(d)). When
the lateral displacement reaches its maximum amplitude L, the gravitational
torque becomes larger than the viscous torque, and the jet buckles back to-
ward the center line. Such a situation is shown in Fig. 5(b). The jet then
makes a new contact point with the layer of liquid, continues its movement
because of the steady incoming flow of new fluid from above, and the process
repeats itself.

In order to derive scaling laws for the amplitude L and frequency f of
folding we have to analyze what happens at the extremal point of this motion.
This analysis is similar to the scaling laws developed in Skorobogatiy and
Mahadevan (2000) [23] for viscous sheets (i.e. planar jets), except that here,
the fact that the jet is straighter, changes the relevant scales.
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2.3.2. Connection between amplitude and frequency

In order to connect the frequency of folding to the amplitude we need to
obtain an equation for conservation of volume similar to Eq. (7). In contrast
to the coiling jet, shown in Fig. 2(a), the radius of the jet during the folding
motion is not constant in the bent part, as can be seen in Fig. 5(a). The small
horizontal velocity U3 can be roughly estimated as the horizontal component
of U2 = Q/πa22: it is approximately zero when the jet is vertical, and largest
when it approaches L. Taking an average over one period, we find that this
velocity scales as U2a2/L. As a result f and L are linked by

fL ∼ U2
a2
L
⇒ f ∼ Q

L2a2
(32)

Various regimes exist depending on which force dominates in the jet.
The possible driving forces are either viscosity (V), gravity (G), or inertia
(I). The resisting force is always viscous. Table 1 summarizes the scaling laws
for frequency as a function of H∗ and Q∗ for the coiling motion in viscous
Newtonian fluids, folding motion in viscoelastic fluids, and the scaling laws
for the CPyCl solutions obtained via experiments. In the subsequent analy-
ses the dominant force in each regime will be identified via the appropriate
subscripts V, G, or I to the frequencies and amplitudes.

2.3.3. Viscous regime

Analogous to Newtonian fluids, at low heights of fall, the driving force
for folding is the viscous stress in the fluid near the nozzle. As in the case of
viscous coiling, the range of heights of fall for viscous folding will be limited
by both the buckling height of the column and transition to gravitational
folding. In the cases where viscous folding occurs, no gravitational stretching
occurs, so a0 = a1 = a2. In this regime the jet amplitude is geometrically
constrained by the nozzle-plate distance H, which means that

LV ∼ H (33)

The expression for the viscous folding frequency is found using Eq. (32):

fV ∼
Q

H2a0
(34)

In the viscous regime the motion of the jet is therefore totally constrained
by the external parameters of the experimental setup, rather than by the fluid
properties.
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2.3.4. Gravitational regime

For larger heights of fall, the driving torque is the gravitational torque
acting on an arm given by the extremal lateral displacement L This torque
scales as

Tdriving ∼ ρgHa21LG (35)

At the maximum amplitude L the jet falls backward, bending on the
length scale lVG, typical of the opposing influences of gravity and viscosity.
The typical curvature of the jet just at that moment is of the order of κ =
1/L. This leads to local shearing deformation within the curved region of
the column, with viscous stresses developing between the outer region (of
larger velocity) and the inner region. In this situation, the viscous stress
τxz is the direct analog of the elastic stress in beam bending: it vanishes in
the middle of the jet and increases linearly outwards throughout the cross-
section. Following this analogy in the fashion developed in [23], the stress is
found to be:

τxz = η0γ̇ ∼ η0xκ̇ ∼ η0
x

LG

Q

a21lVG

(36)

Note that at the very onset of bending, the liquid is not sheared, there-
fore the zero-shear viscosity is used. As expected, the viscous force d2FV =
τxzdxdy integrated over the jet cross-section vanishes. The elementary vis-
cous torque, δ2TV = xτxzdxdy, nevertheless, remains non-zero after integra-
tion. Approximating the cross-section to a square, the resulting torque is

Tresisting ∼
a1∫

−a1

a1∫
−a1

xτxzdxdy = η0
a21Q

lVGLG

(37)

The balance between the two torques gives the scaling law for the ampli-
tude of folding

LG ∼
(

ν0Q

lVGgH

)1/2

(38)

In dimensionless form, we obtain the following expression

L∗G ∼
(
Q∗

H∗

)1/2

(39)
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The expression for a2 in Eq. (32) is found using Eq. (27), which leads to
a dimensionless expression for the frequency in this regime:

f ∗G ∼
(Q∗5H∗)

1/6

a
∗2/3
0 L∗2G

(40)

Eliminating the amplitude using Eq. (38), we can derive the following
expression for the dimensionless folding frequency in the gravitational regime:

f ∗G ∼
1

a
∗2/3
0

(
H∗7

Q∗

)1/6

(41)

The transition between viscous and gravitational regimes takes place for
β = Ha0

√
g/6Qν > π/2. For the CPyCl 100 wormlike micellar solution

(described in detail below), with a0 = 1.25 mm and Q = 3 mL/min, this
is equivalent to H = 3.3 cm. Once again, at low flow rates, the jet may
transition directly from steady flow to gravitational folding.

2.3.5. Inertial regime

In contrast to the inertial regime for coiling ([8], [10]), the type of inertia
that drives folding is not the centrifugal (rotational) inertia but the linear,
axial inertia. The fluid in the jet tends to travel along a vertical path, which
provides a restoring force returning the folded part of the jet toward the
center. The inertial force per unit length is ρQ2/a21, which leads to a torque
that scales as

Tdriving ∼
ρLIQ

2

a21
(42)

In this regime the length of the bent region is much smaller than for the
gravitational regime, and scales with L rather than lVG. This leads to a
viscous torque that scales as

Tresisting ∼ η0
a21Q

L2
I

(43)

This leads to a folding amplitude that scales as

LI ∼
(
ν0
a41
Q

)1/3

(44)
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In dimensionless terms and using Eq. (26), this can be written in the form

L∗I ∼
(
Q∗

H∗2

)1/3

(45)

The volume conservation condition, Eq. (40), is once again used to obtain
the scaling law for the folding frequency:

f ∗I ∼
H∗3/2Q∗1/6

a
∗2/3
0

(46)

The inertial regime is expected to appear at large heights, of the order of
heights required to have ρQ2/a21 ∼ ρgHa21; with CPyCl 100 fluid parameter
values, that height corresponds to H ≈ 9ν20/(gl

2
V G) = 26.5 cm. At these

heights, thermal effects due to the evaporative cooling of water can also
become very important and dramatically alter the viscosity. For this reason,
no systematic quantitative measurement has been conducted in this regime.

3. Experimental procedure

3.1. Fluid formulations

The main focus of the study is the behavior of jets of wormlike micellar
solutions. In addition, we use a silicone oil as a reference fluid to facilitate
qualitative comparison with a viscous Newtonian fluid.

The type of fluids we use for this study are solutions of CPyCl and NaSal
in brine (100 mM of NaCl salt solution). Following the study in [20], a
fluid in the desired range of viscosity and elasticity is obtained with the
concentrations [CPyCl] = 100 mM, and [CPyCl]:[NaSal] = 2:1. For the sake
of comparison, two other fluids were prepared with the same brine and the
same [CPyCl]/[NaSal] ratio, but [CPyCl] = 75 mM and [CPyCl] = 150 mM,
respectively. The three fluids will be denoted as CPyCl 100, CPyCl75, and
CPyCl150, respectively, in the rest of the study. CPyCl and NaSal were
obtained in dry form from MP Biomedicals, and Sigma-Aldrich, respectively.

As a comparison fluid with Newtonian properties, we used a silicone oil
T41 from Gelest Inc.
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3.2. Rheological characterization

3.2.1. Shear Rheology

The linear viscoelastic tests were performed on all fluids on a stress-
controlled ARG2 rheometer, in a cone-plate geometry of 40 mm diameter,
at 22.5oC. We obtain the values of important fluid parameters such as the
zero-shear rate viscosity η0 and the characteristic relaxation time λ, which
are summarized in Table 2. The CPyCl solutions exhibit a strong viscoelastic
behavior, which is well characterized by small-amplitude oscillatory experi-
ments at low frequencies. A single-mode Maxwell model fits the data well
as shown in Fig. 6(a). The relaxation time λ in this model is directly re-
lated to the characteristic time of the stress relaxation processe in wormlike
micellar solution, as shown in Eq. (12). All the CPyCl solutions are also
strongly shear-thinning (Fig. 6(b)), which translates into a critical stress or
plateau shear stress (in Fig. 6(c), we show the example of CPyCl 100). This
plateau stress corresponds to a stress level that is sufficient to break the weak
intermolecular bonds holding the surfactant molecules in the wormlike mi-
celles, leading to their breakup in smaller aggregates. This apparent strong
shear-thinning, with η ∼ 1/γ̇, can also indicate the onset of shear banding,
as predicted by Spenley and co-workers [24], and verified by Berret and co-
workers [25]. As we show in Fig. 6(b), below a critical shear rate of the order
of γ̇c ' 1/λ, CPyCl solutions show a plateau or zero-shear-rate viscosity
(reported in Table 2).

Another non-Newtonian effect is the first normal stress difference that
arises because the shear flow tends to deform and align the wormlike micellar
network, which leads to a streamline tension resulting in a normal stress
difference [26]. In Fig. 6(c), we show that the first normal stress difference
increases approximately linearly with the shear rate over the measured range.
At low shear rates (γ̇c � 1/λ), where the first normal stress difference is
expected to scale quadratically with the shear rate [26], the measured value
are below the sensitivity threshold of the ARG2 rheometer.

3.2.2. Extensional rheology

In Fig. 7(a), we show a sequence of snapshots of a typical CaBER exper-
iment conducted on a CPyCl 100 solution. The diameter of the plates is 6
mm, and they are initially separated by 1.2 mm. A step-strain is imposed,
pulling the plates apart in 50 ms to 4.8 mm, which represents a Hencky strain
ε = ln(4.8/1.2) = 1.4.
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As we show in Fig. 7(b), the three solutions behave in a qualitatively
different manner in this experiment. CPyCl 75 has such a small viscosity
that it almost immediately enters a regime of elasto-capillary exponential
thinning. At the other end of the spectrum, CPyCl 150 is almost gel-like,
and the liquid filament is sustained for an extended period of time. Breakup
eventually occurs, but usually not at the mid-plane [20], thus the typical
analysis used in CaBER is not applicable. The CPyCl 100 fluid shows the
most interesting behavior with strong non-Newtonian effects.

The first part of the thinning is dominated by a balance between capillary
and viscous effects. The mid-plane diameter decreases linearly in time. As
this diameter decreases, the extension rate increases, until it starts triggering
non-Newtonian effects. The wormlike micelles become increasingly aligned
by the extensional flow, building up elastic stresses, which lead to extension-
thickening. In Fig. 7(c), we show the first normal stress difference τzz − τrr
as a function of time (scaled by λ) for the three fluids. The main feature
exhibited by each fluid is the strong extension thickening as seen from the
rapid rise in the first normal stress difference beyond the Newtonian regime.
More extensive and detailed studies of capillary thinning experiments with
wormlike micellar solutions are discussed by [20] and [27].

3.3. Temperature dependence

The rheological properties of wormlike micelles solutions are highly tem-
perature dependent, for two reasons. The first reason is that the two char-
acteristic timescales of the relaxation processes, λr and λb evolve with tem-
perature. Here, λr refers to the reptating motion of the chain segments and
λb represents a thermally-activated breakup process. Everything else held
constant, both decrease exponentially with temperature. The second source
of temperature dependence is the variation of the characteristic length of the
micelles, which are dynamic structures. Their average length depends ex-
ponentially on the thermally-activated processes of association/dissociation
of the surfactant molecules at the ends of the micelles [19]. This affects λr
through a power law dependence according to the reptation theory of de
Gennes [18]: if we denote the characteristic entanglement length of the mi-
celles as Le, λr scales as L3.4

e . The temperature dependence of each timescale
contributes towards the temperature dependence of λ, the Maxwell model fit
parameter for the small angle oscillatory stress data, through the connection
given by Eq. (12).
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The temperature dependence of λ can be fitted with an Arrhenius equa-
tion of the form

λ(T) = λT = λTref exp

(
∆H

R

(
1

T
− 1

Tref

))
(47)

The ratio λT/λTref is called the shift factor, denoted by aT. In Fig. 8(a),
we show that the temperature dependence of the shift factors aT = λT/λTref
with Tref = 21.5◦C follows the Arrhenius model with a very large activation
energy. This in turns leads to a large temperature dependence of the viscosity
of the fluid.

As a first approximation, the viscosity of a viscoelastic fluid such as CPyCl
100 is related to its elastic modulus and longest relaxation time by η0 = G0λ.
Provided that the length of the micelles is long enough for them to entan-
gle, the elastic modulus depends mostly on the surfactant concentration;
G0 ∼ νekbT , where νe is the number density of the entanglements. Rubber
elasticity theory suggests that G0 varies only linearly with temperature [28].
An estimate of G0, the norm of the complex modulus |G∗| =

√
G′ 2 +G′′ 2,

is indeed found to be approximately constant with temperature, as can be
seen on the right-hand side of Fig. 8(b). As a result, the zero-shear-rate vis-
cosity of the solution varies exponentially with temperature. This is found to
be true experimentally, with an exponential factor of the same order as the
elastic relaxation time. The viscosity of the CPyCl 100 solution drops from
25.2 Pa.s at 20◦C to 9.3 Pa.s at 25◦C. This means that in order to get mean-
ingful experiments with this type of fluid, the temperature must be either
carefully controlled, or measured for each experiment in order to correct and
re-evaluate the fluid properties in accordance with Eq. (47). Another affect
of the temperature can be seen in capillary breakup and filament stretching
experiments, as well as during the breakup of the jet falling on a plate at
very low flow rates. In these cases, the liquid, initially transparent at ambi-
ent temperature (22-23◦C), becomes increasingly turbid. Direct temperature
measurement with a thermocouple immersed in the small mound of white
liquid falling on the bottom plate shows that its temperature can be as low
as 16◦C. This suggests that the turbidity is caused by the Krafft transition,
i.e. the precipitation of surfactant from the solution when the temperature
becomes lower than a critical temperature called the Krafft temperature [29].
The Krafft temperature can be measured either by visual observation of tur-
bidity or by the drastic change in most physical properties when the precip-
itation occur. Figure 8(b) offers one example of such a measurement, with
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the abrupt change of the slope of the norm of the complex modulus |G∗| as a
function of T in a small angle oscillatory shear test. This leads to an estimate
of the Krafft temperature for CPyCl 100 of 18.0oC, which is consistent with
estimates from direct visual observations.

The cooling in itself is likely due to the evaporative cooling of water, which
has a strong effect on the temperature of thin filaments because of their di-
vergent surface area to volume ratio. The smaller radius also increases the
local capillary pressure, which in turn makes the chemical potential of the
solvent higher and accelerates evaporation. Another possibility connecting
evaporation and visual appearance of turbidity could simply be that the fila-
ment dries, leaving only solid surfactant. These extreme cooling and drying
effects tend to appear only the limit of very large jet heights and low flow
rates (for example H = 25 cm, Q = 2 mL/min). The evaporation-driven
cooling and concentration increase leads to a large increase in viscosity when
the residence time of a fluid particle in the jet becomes of the order of the
typical time for the temperature change to take place. In other words, as
the height of fall increases and the flow rate decreases, the variability in the
local viscosity increases.

The silicone oil shows the typical features of a purely Newtonian fluid,
with a constant viscosity. It is a fairly viscous fluid, with values of viscosity
similar to those of CPyCl 100, which make it suitable for jetting experiments.

3.4. Experimental setup for jet analysis

Two setups were used for the jetting studies in this research. The first
setup simply involves the fluid being pumped by a syringe pump to a nozzle,
from where the jet falls onto a plate. Direct observation of the jet profile and
dynamics is sufficient to obtain the flow regime, and a video camera is used
for quantitative measurements. The second setup is a different view configu-
ration, where we use a laser projected along the fluid column, which helps in
precise evaluation of the motion of the jet. Advantages and disadvantages of
each method are discussed below. We also discuss the precise definition and
possible variants of the bottom plate condition.

3.4.1. Direct observation

The fluid is pumped by a Stoelting syringe pump (Stoelting 53130) with
a controlled flow rate. The fluid is placed in a 60 mL syringe, and a flexible
plastic tube is attached to it. The other end of the tube has a nozzle attached
to it, through which the fluid exits as a jet. The nozzle is attached to a
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vertical-axis linear stage, and the liquid falls onto a plate below the nozzle
(see Fig. 9(a)). The plastic tube is approximately 20 cm long, which implies
that the residence time of fluid particles in the tube is between 10 and 20
seconds, greatly exceeding the relaxation times listed in Table 2. This ensures
the relaxation of any stress occurring at the exit of the syringe. We mostly
report results obtained with a circular nozzle of diameter a0 = 1.25 mm,
but the influence of the nozzle radius has also been investigated with two
additional sizes, a0 = 0.775 mm and a0 = 2.40 mm. The motion of the
jet was recorded using a BlueFox digital videocamera at frame rates from
30 to 50 fps. Frequency measurements were done by frame counting, and
amplitude measurement were done using the image analysis software ImageJ,
using an image of a ruler as reference. A high-speed videocamera (Phantom
V from Vision Research) was also used to capture rapid phenomena such as
jet breakup and the Kaye effect, at frame rates from 500 to 800 fps.

3.4.2. Trajectory tracking with laser

A second setup was used to follow the trajectory of the jet, inspired from
an experimental technique used by Versluis [30] to study the Kaye effect. A
red He-Ne laser beam shines through the jet using a T-shaped nozzle and is
guided along the jet like in an optic fiber (Fig. 9(b)). The camera records
the position of the beam spot through the transparent bottom plate, using
a mirror at a 45◦ angle. An image analysis code then evaluates the precise
position of the spot. The technique allows for the quantitative understanding
of the trajectory of the jet in folding motion, including tracking over many
periods that reveals the stability of the folding regime. The shortcomings of
this technique are that the liquid jet is an imperfect waveguide, and therefore
allows the laser beam to be transmitted through the free surface of the jet
when the angle of incidence is too large, which happens at large amplitude.
Conversely, at very small amplitudes of the jet motion changes in the position
of the laser spot are smaller than the size of the spot and hence difficult to
quantify.

3.4.3. Discussion of the bottom-plate condition

Two questions regarding the bottom-plate conditions must be addressed
to ensure that the problem is correctly defined. First of all, the jet does not
fall directly on the plate, but on a thin layer of fluid that is covering the plate.
We are only interested here in steady state regimes, for which the jet falls on
a layer of fluid, as opposed to the initial transients when the jet falls on the

23



clean plate. The thickness of this layer is “chosen” by the fluid, to balance
the viscous stresses between the upper, free layer and the no-slip plate-fluid
interface, with the incoming flow rate. This thickness is taken into account
in the measurement of the height of fall, which is defined as the distance
between the fluid layer and the nozzle. The spreading fluid is either allowed
to collect into in a secondary reservoir when it reaches the end of the plate,
or the plate is cleaned before being the next run.

The second point to note is that other geometries beyond the flat plate
could be envisioned, which may be relevant for industrial applications. The
jet could fall on a bath of the same or of a different fluid, on an inclined plane,
or on a curved surface. Different plate sizes could also influence how fast the
fluid layer drains into the secondary reservoir. In the present study, we are
interested in planar geometries. The drainage mechanism does not play a
significant role, because of the fact that the layer thickness is taken into
account for the measurement of the height of fall, and the short duration
of the measurement. The liquid bath, in the end, is the only alternative
that could lead to dramatically different behavior such as air entrainment
[31], at least for large incoming speed. Nevertheless, for the moderate jet
speeds involved in most parts of the parameter space studied in this paper,
all phenomena of interest occur on timescales shorter than the spreading
time for the viscous fluids used. As a result, the jet motion studied in our
experiments always occurs on a small mound of fluid that has not spread
completely.

3.5. Experimental results

We first begin by a qualitative description of the different jetting regimes
involved, which are mapped onto the parameter space described earlier. This
helps in understanding what experimental conditions are required for the
novel regimes of CPyCl solution jets to take place. Then, we investigate
quantitatively the reverse swell and folding phenomenon, and the results are
compared to theoretical predictions.

3.5.1. Regime maps

We map the different jetting regimes for the Newtonian silicone oil (see
Fig. 10(a)) and for the wormlike micellar solution CPyCl 100 (see Fig. 10(b)).
The maps presented in Fig. (10) are drawn in the dimensionless (Q∗ =
Q(g/ν5)1/3, ε = H/2a0) parameter space. The scaling of Q∗ allows for
comparisons with different fluid viscosities, which is especially important for
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comparing experiments with CPyCl solutions conducted at different ambient
temperatures. The choice of ε as a relevant dimensionless height is due to the
fact that the predictions for jet buckling (Eqs. (2) and (3)) use this geometri-
cal parameter. Nevertheless, the other dimensionless height H∗ = H(g/ν2)1/3

becomes more relevant when the focus is on large-height behavior.

Steady jet

In this regime, the jet is steady over time, and the fluid spreads at a
uniform rate on the plate. This regime occurs when the jet is not buckled,
which means at low heights of fall, and is similar for all the test fluids. This
flow state is commonly known as the stagnation slow.

Non-continuous jets

In this regime, which occurs at low flow rates and moderate heights, the
jet is non-continuous. This means, for the Newtonian silicone oil, that the
fluid will drip from the nozzle rather than form a jet, or form a jet that
periodically breaks under the effect of surface tension. For viscoelastic fluids
with large extensional viscosity such as the CPyCl solutions, it may also
mean the formation of persistent thinning filaments between the nozzle and
the plate with beads of fluids periodically sliding down the filament. This
transient situation is a direct application of CaBER experiments, and is also
reminiscent of the beads-on-a-string [32] and gobbling phenomena [33].

Coiling

Coiling is the typical mode of motion for buckled jets of Newtonian fluids.
As reported in the regime map of Fig. 10(b), jets of CPyCl solutions can also
show coiling, although the range of experimental parameters for which it
happens is more limited than in the Newtonian case. In addition, the shape
and curvature of coiling jets of CPyCl jets (see Fig. 4(c)) is different from
their Newtonian counterpart (see Fig. 1(c)) and the equations for Newtonian
coiling may not apply.

Folding

The folding regime of CPyCl jets is studied in detail because it is quali-
tatively different from the dynamical motion of Newtonian jets. In Fig. 11,
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we show two snapshots of the same jet of CPyCl 100 at different instants
during a folding period. In Fig. 11(a), we show the jet when it is almost
vertical, whereas in Fig. 11(b) the lateral jet displacement is at its maximum
amplitude L and is about to fall back. In addition, in Fig. 11(c), we show
an example of the jet trajectory obtained by the laser tracking system. One
can see the oscillatory motion is confined primarily to a fixed plane, thus
justifying the concept of folding. We can also see the events of coiling, that
occurs when the fluid builds up a secondary mound from which the jet tends
to be deflected. Nevertheless, after two coils, the jet returns spontaneously
to its folding motion, because this regime is more stable under these specific
experimental conditions.

Bistable regime

In this regime the jet either coils or folds, depending on the history of the
flow and the boundary conditions at the bottom plate. Small perturbations
such as the presence of a heap of fluid on the bottom plate can trigger the
switch between the regimes. In this case both regimes are stable and the
system can be forced from one to another. In the same way coiling jets
of Newtonian fluids can also display bistable states over a limited range of
impact height or flow rate.

High-flow-rate ductile failure

At large flow rates and high extension rate, micellar fluids tend to break
in a rubber-like ductile failure [16]. This happens when the weight of the
fluid column pulling on a particular cross-section of the jet, usually close to
the nozzle, becomes larger than the stress the micelles can sustain. As a
result, the micelles break locally, leading to a local weakening of the jet, in
turn leading to rupture of the entangled micelles. This creates a fracture
pattern reminiscent of rubber failure in solid mechanics, as can be seen in
Fig. 12. The dynamics of this ductile pinch-off for a micellar network have
been considered by Cromer et al. [34].

3.6. Comparison of the regime maps

Figure 10(a) shows the regime map for the viscous Newtonian oil (silicone
oil T41), for which only three regimes are typically observed: steady jetting,
dripping, and coiling. Note that sub-classification of coiling in viscous, grav-
itational and inertial regimes is not taken in account here, since it is hard
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to determine without actually measuring the coiling frequency. This can be
done by frame counting using the setup of Fig. 9(a) and has already been
performed in the studies by Ribe [10]. The buckling transition at moderate
flow rates is consistent with Eq. (2) (dashed line). At large flow rates, the
increased compressive stress favors buckling, and the transition happens at
a lower height.

The dripping-jetting transition (solid line) is observed to obey the scaling
law ε ∼ Q∗1.7. Using Eq. (14) and Eq. (15), we find that the flow rate required
to maintain a continuous jet increases with height of fall and scales as

Q ∼ H1/1.7 ' H0.6 (48)

Figure 10(b) shows the corresponding experimental regime map for CPyCl
100. Several features can be noted in comparison to the Newtonian diagram.
Some features are somewhat similar to the Newtonian regime map; a stable
axisymmetric jet is maintained at low heights of fall, and a non-continuous
jet develops at low flow rates. Most of the parameter space is occupied by
time-dependent buckled jets. Nevertheless, significant changes are also no-
ticeable compared to Newtonian fluids, such as the existence of the folding
regime, the ductile failure at large flow rates, the coexistence of bistable
folding and coiling regimes, and the different slope of the dripping-jetting
transition. Measurements with CPyCl 75 and 150 show a behavior very sim-
ilar to CPyCl 100 and the corresponding regime maps are not shown here
for brevity.

3.7. Experimental scaling laws for the regime transitions of CPyCl solutions

In this section we report detailed investigations of the transitions between
different regimes. The experiments are for different CPyCl solutions and
experimental conditions (flow rate, height of fall, and nozzle size). In Fig. 13,
we present the data for one transition each, with respect to the relevant
dimensionless parameters at that transition. The horizontal axis is always
Q∗ = Q(g/ν5)1/3, which scales for the effect of viscosity and allows a direct
comparison between the different solutions. The vertical axis is either ε =
H/2a0 or H∗ = H(g/ν2)1/3, depending on which variable allows for a better
collapse of the data set. The column aspect ratio ε is expected to be more
relevant at low heights, whereas H∗ should be the more relevant variable at
larger heights, when gravitational thinning takes place. The nozzle radius
was corrected to take into account the die-swell observed experimentally [21],
which is especially important at large flow rates and small nozzle radii.
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Buckling limit

In Fig. 13(a), we show that the jet buckles and starts folding when the
aspect ratio ε ≈ 4.8. This value is in good agreement with the prediction
given by Eq. (3), ε = 4.81 (solid line). There is a strong hysteresis between
the unbuckled and folding regimes when the height of the fall is varied con-
tinuously. This explains in part the scatter of the data. Nevertheless, the
transition happens for 3 < ε < 8 when Q∗ is varied across three orders of
magnitude. Newtonian fluids buckle at a higher value of ε, ε ' 7.66 as given
by Eq. (2).

The first Folding-Coiling transition

Above the limit given by Eq. (2), the jet switches to the azimuthal mode of
instability and begins to coil. In Fig. 13(b), we show this transition from
folding to coiling, which occurs at ε ' 7.66. This is the limit at which
Newtonian jets usually buckle and start coiling. It immediately suggests that
the analysis that led to the limits (Eq. (2)) and (Eq. (3)) for the Newtonian
fluids is still valid for the CPyCl solutions, although in the case of CPyCl
solutions the folding mode is stabilized by mechanisms that do not exist
in the Newtonian case. Experiments show that the transition between the
folding and coiling occurs over a somewhat broad range of heights for which
the two modes alternate; the switching between the two being triggered by
random events such as the jet impacting a heap of liquid that has not evenly
spread out. Cruickshank [5] also noted this problem in the narrow parameter
range where folding was observed with Newtonian fluids. It is interesting
to note that when the ambient temperature is closer to 25◦C, so that the
viscosity is lower, the heaps of liquid are less pronounced, and the frequent
switching is replaced by a bistable region (shown in Fig. 10(b)), leading to a
large hysteresis in the transition. Overall, there is some scatter around the
predicted value of ε ' 7.66 for this transition, with 4 < ε < 12, but once
again this remains valid over three orders of magnitude for Q∗.

Second Folding-Coiling transition

When the height of fall is raised even more, a second transition occurs,
from coiling back to folding, with an even more pronounced bistability than
the first transition (see Fig. 10(b)). We measured the transition from coiling
to bistable folding and coiling. In other words, starting from a well-developed
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coiling state and for a given flow rate, we raised the height until we saw the
first events of folding. For this transition, the parameter that allowed the
best collapse of the data was the dimensionless height of fall H∗ rather than
the aspect ratio ε. In contrast to the measurements of the previous two
boundaries, the critical height for this transition varies with the flow rate.
As the flow rate increases over three orders of magnitude, the height at which
the transition occurs also increases, but as a power-law. Experimentally, the
scaling is close to H∗ ∼ Q∗1/3, as shown in Fig. 13(c).

Jet rupture at large flow rate: ductile failure

At very large flow rates, the entangled wormlike micellar network cannot
sustain the axial stresses anymore and break en masse, leading to the solid-
like ductile failure of the jet. The flow rate required to observe jet rupture
decreases with height, and scales as Q∗ ∼ H∗−1/1.54 = H∗−0.65, as shown in
Fig. 13(d). There is an overlap between the coiling and jet rupture zones, for
which the jet has enough time to coil a few times before breaking. Since the
weight of the column of fluid is the driving force for this mode of jet breakup,
it happens at large flow rates and heights of fall, in the upper-right corner of
the stability diagram shown in Fig. 10(b).

Dripping-Jetting transition at low flow rates

We now describe the dripping to jetting transition boundary, which occurs
at low flow rates and large heights. Dripping occurs when the height is large
enough at a given flow rate such that a continuous jet can not be maintained.
Instead of Newtonian dripping and capillary breakup, the non-continuous
regime for CPyCl 100 is observed to consist of long, thin filaments, which
are prevented from breakup by elastic forces. A significant difference with the
Newtonian regime map is that the transition between the non-continuous and
continuous jet happens at a constant flow rate, Q∗ > Q∗min, for all heights,
above a minimum height (see Fig. 10(a) and (b), non-continuous regime).
Since it is the elasticity of the entangled micellar network that holds the
thread and prevents breakup, a continuous jet is sustained above a threshold
flow rate.

3.7.1. Measurements of Jet Radius

For the wormlike micellar fluids, we have shown that the jet radius in-
creases near the plate and the minimum radius is achieved at a certain height
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above the plate. In order to measure the amount of swelling with respect
to the experimental parameters H∗ and Q∗, we use the setup described in
Fig. 9(a). We perform three sets of experiments, one with a constant flow
rate of Q∗ = 7.1× 10−5, and two sets of complementary experiments with a
constant height of fall, with H∗ = 1.7 and H∗ = 3.4. The relevant conjugate
variable (H∗ or Q∗, respectively) was then slowly varied. The measurements
are shown in Fig. 14. Here, a∗1 = a1(g/ν

2)1/3 is the scaled radius of the jet
just above the swell, α = a2/a1 is the swelling ratio, and h∗ = h(g/ν2)1/3

is the scaled height of the swollen region. We compare the experimental
values of these parameters to the theoretical predictions of Eqs. (26), (25)
and (29), respectively. In Fig. 14(a), we show the jet profile along with the
definitions of different length scales. In Fig. 14(b), we show the dimension-
less radius just above the swell. In Fig. 14(c), we show the swelling ratio
and in Fig. 14(d), we show the height of the swollen region. The data for
the different experiments collapse well with the theoretical scaling. The only
departure from theory is the value of h∗ for one of the data sets, for which
the onset of swelling was difficult to detect.

3.7.2. Jet dynamics

The variations of folding frequency f and amplitude L with respect to
experimental parameters are presented in Fig. 15. Multiple series of exper-
iments were performed to fully capture the folding dynamics, in two sets.
In the first set, three series of amplitude and frequency measurements were
made with a fixed flow rate and varying height. The imposed flow rate was
Q = 2 mL/min for the first two series and Q = 5 mL/min for the third
one. The series of tests were conducted at different ambient temperatures,
22.5oC, 20.6oC, and 21.5oC, which also affects the viscosity of the fluid,
leading to three values of imposed dimensionless flow rates: Q∗ = 4.3×10−5,
Q∗ = 7.1× 10−5, and Q∗ = 1.7× 10−4, respectively. For each series, the flow
rate was held constant, while the fall height of the jet was varied from 1.2 to
20 cm (0.4 < H∗ < 6.7). Note that amplitude data were difficult to collect
at low values of H∗ and are therefore reported over a smaller range than
the corresponding frequency data. In the second set of tests, four series of
experiments were performed with a fixed height of fall and varying flow rate.
The heights of fall were H = 5, 6, 9 and 10 cm (with temperatures of 22.5oC,
21.3oC, 21.8oC, and 22.5oC, respectively, and dimensionless heights given by
H∗ = 1.7, 1.9, 3.2, 3.4, respectively). The flow rate Q was varied between 0.5
and 9 mL/min (1.5 × 10−5 6 Q∗ 6 2.1 × 10−4). All experiments were done
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using the CPyCl 100 fluid, because it is better suited for studying continu-
ous jets as discussed earlier and it helps in eliminating other factors affecting
the dynamics, especially fluid rheology. The elasto-gravitational number for

this fluid at 22.5oC is Eg = λ (g2/ν0)
1
3 = 12.4. The high elasto-gravitational

number implies that significant elastic effects are expected to occur at fall
heights when gravitational thinning is important.

Experimental results and the associated scaling laws are reported in
Fig. 15. In Figs. 15(a) and (b), we show the frequency measurements, while
in Figs. 15(c) and (d) we show the corresponding amplitude data. Panels
(a) and (c) are the first set of experiments with fixed flow rate, while (b)
and (d) are the second set with fixed height of fall. Data points for each set
of experiments are collapsed using experimental scaling laws obtained from
the other set iteratively until self-consistency is achieved. Eventually, the
following experimental scaling laws for folding motion are found:

For frequency, f ∗ ∼ H∗0.66Q∗−0.19 (49a)

For amplitude, L∗ ∼ H∗0.50Q∗0.60 (49b)

where, as defined in the non-dimensionalization scheme, H∗ = H(g/ν2)1/3,
Q∗ = Q(g/ν5)1/3, f ∗ = f(ν/g2)1/3, and L∗ = L(g/ν2)1/3.

We note that the power laws in Eqs. (49a) and (49b) are obtained from
global regression of all experiments taken together, whereas each series of
experiments give scaling exponents that are different from the overall trend.
The causes for these variations are difficult to control and result from experi-
mental conditions, such as the effect of temperature on extensional viscosity,
the effect of ambient humidity on evaporation and cooling, or rheological
aging of the solution. These parameters are constant for a given series of ex-
periments, but vary systematically from series to series, therefore a statistical
analysis based on the hypothesis of stochastic deviation from a trend is not
applicable. It is only possible to give the range of scaling exponents obtained
from different series, which are provided in Table 3. Within this range of
uncertainty, theoretical prediction for the folding amplitude and frequency
and experimental measurement (all gathered in Table 1) agree.

4. Conclusion

The jetting dynamics of viscoelastic shear-thinning fluids impacting on
a plate are qualitatively different from their viscous analog. Cylindrical jets
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of CPyCl wormlike micellar solutions falling on a plate from a sufficient
height tend to exhibit a folding transition with a periodic oscillating lateral
motion. This contrasts with Newtonian fluids for which this folding motion
is only observed for planar sheets. We can understand this phenomenon by
noting the pronounced shear-thinning of the fluid, which allows a local drop in
viscosity at the most curved part of the jet, reducing the local viscous torque.
While the Newtonian jets deal with this viscous torque by twisting and coiling
out of plane, wormlike micellar jets can remain planar and fold backwards
and forwards. Another novel feature of these jets of wormlike micellar fluids is
the widening or “reverse swell” at the base. We have shown that this feature
can be interpreted in terms of the extensional elastic stress, stored during the
stretching of fluid elements in the portion of the jet accelerated by gravity,
and partially recovered in the compressive part close to the bottom plate.
We have provided scaling laws for these two features that agree broadly with
experimental measurements. In addition, we have documented the locations
of the different jetting regimes on dimensionless regime maps (see Fig. 10),
and studied in more detail the transitions between the different regimes for
CPyCl micellar jets.

Many other classes of filling operations exploit jetting of complex fluids.
Surfactant-based fluids like Sodium Lauryl Ether Sulphate (SLES) are an
important ingredient in many consumer products including shampoos and
liquid detergents. Some other consumer products like conditioners, tooth-
pastes, and food products exhibit finite yield stresses. Future work will
involve these classes of non-Newtonian fluids to examine the differences in
their jetting behavior. For example, in addition to coiling, fluids exhibiting
yielding behavior tend to show pronounced mounding [35]. In addition to
using different fluids, other possible extensions include a study of the jetting
behavior in confined geometries, replicating container filling process [35], and
the jetting behavior at higher speeds and consequently higher shear rates,
which are closer to actual industrial filling process in terms of the relevant
dimensionless operating parameters.
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Figure Captions

Figure 1: Instabilities of a fluid jet impacting a plate. a) The jet remains
axisymmetric at low heights. b) Compressive forces in the jet lead to buckling
at a critical aspect ratio. c) Coiling jet. Panels a) and b) are jets of CPyCl,
a wormlike micellar fluid, which is described in detail in the text. Panel c)
is a silicone oil jet, a Newtonian fluid.
Figure 2: Instabilities in the jet of a Newtonian fluid. a) Coiling jet of
Newtonian silicone oil. b) Schematic view of the coiling motion of an ax-
isymmetric jet of Newtonian fluid.
Figure 3: Schematic view of the assembly process of wormlike micelles.
Figure 4: Jets of a wormlike micellar fluid. a) Close-up of the reverse swell
for a jet of CPyCl 100 with H = 6 cm and Q = 0.5 mL/min (H∗ = 1.8,
Q∗ = 1.3×10−5, Wi = 11.3); the measured variables are also indicated. The
black bar is approximately 1 cm. b) Snapshot and schematic view of the
folding jet of CPyCl 100 with H = 6 cm and Q = 3 mL/min (H∗ = 1.8,
Q∗ = 8.0× 10−5). c) Snapshot of a coiling jet of CPyCl 100 with H = 3 cm
and Q = 5 mL/min (H∗ = 0.9, Q∗ = 1.3× 10−4).
Figure 5: Different views of folding mechanism. a) A CPyCl jet at the
farthest position. b) Schematic view of the folding mechanism: the jet tends
to fall vertically under its own weight, which is resisted by a viscous torque.
c) At the farthest position of the oscillation, just at the onset of buckling of
the main part of the jet under the weight of the jet, the fluid is not sheared,
whereas the contact zone with the fluid layer is in highly shear-thinning or
shear-banding conditions. d) Close-up of the buckled region of the jet, in
which curvature induces shear stress τxz.
Figure 6: Rheological properties of micellar solutions. a) Small amplitude
oscillatory test of CPyCl 100, fit by a single-mode Maxwell model (similar
fits were found for CPyCl 75 and CPyCl 150). Here, λ = 0.72s, and G0 =
26.04Pa. b) Steady shear viscosity of CPyCl 75 (N), CPyCl 100 (�) and
CPyCl 150 (•), as a function of shear rate. c) Steady shear first normal
stress difference as a function of shear rate.
Figure 7: Capillary Breakup Extensional Rheology (CaBER) experiments,
with plates of 6 mm diameter and an imposed Hencky strain of 1.4. a) Side
view of an experiment with CPyCl 100 (τBreak = 15.8 s). b) Evolution of the
diameter with time scaled by the solution relaxation time measured in shear
and reported in Table 2, for CPyCl 75, 100, and 150. Each solution behaves
in a qualitatively different fashion. c) First normal stress difference for the
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same three fluids.
Figure 8: Temperature dependence of the viscometric properties of CPyCl
100 micellar solution. a) Shift factors with Tref = 294.65 K. b) Krafft
transition at T = 18oC shown as change of slope of the complex modulus
|G∗| =

√
G′ 2 +G′′ 2 as a function of T , in an oscillatory shear experiment

at a frequency of ω = 1 s−1.
Figure 9: Experimental setups. a) Experimental setup for regime diagram
and quantitative measurements. b) Experimental setup for trajectory visu-
alization.
Figure 10: Experimental regime maps for silicone oil (Panel a) and CPyCl
100 (Panel b) in the ε = H/2a0 and Q∗ = Q(g/ν5)1/3 space. a) The sili-
cone oil shows only three behaviors in the ranges of heights and flow rates
investigated: steady jet (N), dripping (�), and coiling (•). b) CPyCl 100
also shows folding (�), bistable coiling and folding (∅), elastic rupture (F).
Solid lines are guide to the eye for regime transitions, while the dashed lines
are Cruickshank’s prediction for buckling transition (2) and (3).
Figure 11: Different views of the folding motion. a) Folding jet as it reaches
the central vertical position. b) The same jet at its farthest lateral displace-
ment, at the onset of buckling under the jet’s weight. c) An example of the
trajectory of the laser spot (viewed from below), for a jet of CPyCl 100,
from a height H = 11.4 cm (H∗ = 3.86), with a flow rate Q = 3 ml/min
(Q∗ = 1.06 × 10−4). The values of the Reynolds and Ohnesorge number Re
= 10−3 and Oh2 = 10−4 are typical of the jetting experiments in this paper.
Figure 12: Successive views of the high-flow-rate rupture of a jet of CPyCl
100, at H∗ = 4.8 and Q∗ = 2.7 × 10−4 (H = 16 cm, Q = 10 mL/min).
a) Onset of the ductile failure. All snapshots are separated by δt = 24 ms,
which corresponds to δt/λ = 0.033.
Figure 13: The transitions between different flow regimes with CPyCl 100
and a∗0 = 2.6 × 10−2 (�); CPyCl 75 and a∗0 = 4.2 × 10−2(•); CPyCl 100
and a∗0 = 4.2 × 10−2(N); CPyCl 150 and a∗0 = 4.2 × 10−2(�); and CPyCl
100 and a∗0 = 8.1×10−2(H). a) The critical condition for transition between
steady axisymmetric flow and folding (buckling) at ε = 4.8± 2 b) Transition
from folding to coiling when the height of fall is increased from a low height
for a given flow rate at ε = 7.6± 1 c) Transition from folding to coiling when
the height of fall is decreased from a large height for a given flow rate. d)
Appearance of jet rupture event when increasing flow rate for a given height
of fall.
Figure 14: Quantitative measurements of the dynamics in the tail. Here,
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Q∗ = 7.1 × 10−5, 0.4 6 H∗ 6 6.8 (N); H∗ = 1.7, 2.8 × 10−5 6 Q∗ 6 3.2 ×
10−4(•); and H∗ = 3.4, 2.8 × 10−5 6 Q∗ 6 2.1 × 10−4(�). a) Definitions of
the measured variables. For this jet H∗ = 2.4, Wi = 29.8. b) Dimensionless
radius just above the swell. c) Swelling ratio α = a2/a1 d) Height of the
swollen region.
Figure 15: Quantitative measurements of folding properties, frequency (a
and b) and amplitude (c and d). The first set of experiments with fixed
flow rate (a and c): Q = 2 ml/min (Q∗ = 4.3 × 10−5) (•); Q = 2 ml/min
(Q∗ = 7.1 × 10−5) (�); Q = 5 ml/min (Q∗ = 1.7 × 10−4) (N). The second
set of experiments with fixed height of fall H = 5 cm (H∗ = 1.7) (◦); H = 6
cm (H∗ = 1.9) (�); H = 9 cm (H∗ = 3.2) (4); H = 10 cm (H∗ = 3.4) (O).
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Tables

Type of Motion Frequency Radius/Amplitude
Viscous Coiling H−1Qa−20 H

Gravitational Coiling H2Q−1/4 Q1/4

Inertial Coiling H10/3Q−1/3 H−4/3Q1/3

Viscous Folding H−2Qa−10 H

Gravitational Folding H7/6Q−1/6a
−2/3
0 H−1/2Q1/2

Inertial Folding H3/2Q1/6a
−2/3
0 H−2/3Q1/3

Experiments Folding H0.66Q−0.19 H−0.50Q0.60

Table 1: Theoretical scaling laws for the different flow regimes, with respect
to the height of the fall, the flow rate and the radius, as well as the experi-
mental results (the last row).

54



CPyCl 75 CPyCl 100 CPyCl 150 Silicone oil
λ (s) 0.61 0.72 0.90 0

η0 (Pa.s) 8.98 18.8 54.0 9.97
Eg 13.3 12.4 10.9 0

Table 2: Viscometric properties of the three CPyCl solutions studied in this
work and the silicone oil at 22.5 oC.

Overall exponent Range of exponents
H∗ dependence of f ∗ 0.66 0.4 < − > 1.2
Q∗ dependence of f ∗ −0.19 −0.18 < − > − 0.5
H∗ dependence of L∗ −0.50 −0.1 < − > − 0.7
Q∗ dependence of L∗ 0.60 0.45 < − > 0.8

Table 3: Range of scaling exponents obtained for various series of experi-
ments, compared to global scaling exponents obtained from regression of full
data set.
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