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Abstract This work focuses on the evolution of structure
and stress for an experimental system of 2D photoelastic
particles that is subjected to multiple cycles of pure shear.
Throughout this process, we determine the contact network
and the contact forces using particle tracking and photoelastic
techniques. These data yield the fabric and stress tensors and
the distributions of contact forces in the normal and tangential
directions. We then find that there is, to a reasonable approx-
imation, a functional relation between the system pressure,
P , and the mean contact number, Z . This relationship applies
to the shear stress τ , except for the strains in the immediate
vicinity of the contact network reversal. By contrast, quan-
tities such as P, τ and Z are strongly hysteretic functions
of the strain, ε. We find that the distributions of normal and
tangential forces, when expressed in terms of the appropri-
ate means, are essentially independent of strain. We close by
analyzing a subset of shear data in terms of strong and weak
force networks.

Keywords Cyclic shear · Jamming · Photoelastic
materials · Force chain

1 Introduction

The nature of jamming in granular and other disordered sys-
tems of particles has been the subject of intense scrutiny at
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least since the time of the proposed jamming diagram of
Liu and Nagle [1]. In this work, Liu and Nagle considered a
state space with axes corresponding to temperature, inverse
density and shear stress. In the context of this space, they
proposed the existence of a region near the origin where a
diverse array of systems would be jammed, i.e. mechani-
cally stable. Since then, there have been numerous studies
that have probed the nature of jamming, particularly near
point-J. At this point, under zero shear stress and temperature,
one would expect that particulate systems would transition
from unjammed to jammed as their density is increased. One
of the appealing aspects of this picture is that it would pro-
vide a unified approach for describing such seemingly diverse
materials as glasses, colloids, foams, and granular materials.
A complete review of jamming is beyond the scope of this
paper, but we note several important milestones. O’Hern et
al. [2] carried out extensive particle scale simulations for
frictionless particles that mapped out the behavior of such
systems near point-J. Blumenfeld et al. [3] have considered
the behavior of force transmission very near the jamming
point. Torquato et al. [4] have considered more precise char-
acterizations of jamming. Henkes et al. [5] have developed
mean field models that predict stress behavior near jamming,
based on novel ensemble approaches in which stress rather
than energy is the basis for the ensemble. The idea of stress
ensembles dates to Edwards et al. [6] and it has been used to
compute useful properties such as contact force distributions,
by Snoeijer et al. [7] and Tighe et al. [8] Song et al. [9] have
considered the role played by friction near jamming. A more
detailed review of jamming have been given by Chakraborty
and Behringer [10] and by van Hecke [11].

Much effort has been focused on the isotropic case for
which the shear stress, τ , is zero. However, the case for which
|τ | > 0 has not been addressed. In addition, with the excep-
tion of the work by Song et al. noted above, relatively little is
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Fig. 1 Sequence of
photoelastic images showing the
evolution of the force chains as
the system is sheared in the
forward (images (a) and (b)),
then the reverse direction (image
(c) and (d)). These four images
are chosen at different steps
from the 1st shear cycle, with
ε = 0.033, 0.267, 0.267, and
0.033, respectively. The axial
strain ε is defined below. In
images (b) and (c), the sidewall
of the biax has moved into view,
creating dark bands at the
bottom of the images

known about the difference between frictional and friction-
less particles. A key goal of this work is to address the lack
of knowledge concerning the effects of shear for a system of
physical grains, hence, one that is inherently frictional.

In this work, we describe experiments that probe the
microscopic properties of sheared granular materials, with
an eye towards understanding the statistical properties and
small-scale phenomena which strongly influence larger scale
behavior. The application of shear leads to the evolution of a
strong force network, as shown in Fig. 1, sometimes referred
to as force chains. These mesoscopic structures are filamen-
tary networks that carry forces at or above the mean, and that
extend, in the case of shear, over distances of a few to perhaps
many tens of grains. During shear, the force network evolves,
with force chains strengthening, and then ultimately failing.

The present studies explore the structural evolution of sys-
tem during shear by means of fabric, stress and related ten-
sors. Associated with the evolution of the fabric and stress
tensors are a number of complex phenomena, including shear
bands, particle rotation, failure and buckling of the force
chains, among other effects. We have recently shown the
importance of rotation for the failure of force chains, partic-
ularly in shear bands [12]. In general, all quantities measured
here show fluctuations, and, of course sensitivity to the direc-
tion of the shear (forward and reverse). In particular, when
the shear direction is switched, the system undergoes struc-
tural reconstruction, causing changes in the average contact
number, the mean orientation of the contacts, and the stress
tensor.

We focus on a path corresponding to pure shear strain,
starting from a packing fraction where there is no observable

stress. As we strain the system, the detected stresses and
mean contact number Z increase, and the system reaches a
jammed state for Z ’s above Z � 3. As we further deform the
system, including reversal of the strain, Z tends to remain
at or above 3 for much of the time. Throughout multiple
shear cycles, the packing fraction φ remains at a fixed value,
φ = 0.795 ± 0.003, that is below the observed jamming
value for isotropic compression [13]. When the shear strain
is reversed, the original force network largely vanishes, and
a new strong network forms. This process is strongly hyster-
etic in the strain, but we find that the stresses can be charac-
terized rather well in terms of the system-averaged contact
number, Z .

In the remainder of this work, we first describe basic fea-
tures of the experimental techniques. We then present results
from cyclic pure shear experiments, in which we explore the
structural and stress changes within each shear cycle and in
particular during shear reversals. We then analyze the force
network in terms of strong and weak components.

2 Experimental techniques

The experiments described here use a ‘biaxial’ apparatus, as
depicted in the upper parts of Fig. 2. This device allows us
to deform a rectangular sample of particles into any other
desired rectangular shape, hence apply pure shear (compres-
sion in one direction, but equal dilation in the other), uniax-
ial compression, isotropic compression, etc. Here, we focus
uniquely on shear deformations, which maintain a fixed area
for the system.
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Fig. 2 Top-left: Sketch of top
view of the experimental
apparatus, a 2D ‘biax’,
consisting of pairs of facing
boundaries that can be moved
precisely under computer
control so as to produce desired
strains. Particles rest on a
smooth slippery sheet of
Plexiglas and are confined
laterally by the walls of the biax.
Strains are applied
quasi-statically, in small discrete
steps. Top-right: Side view of
apparatus. Imaging is carried
out by a camera mounted above
the biax, and for each step, we
obtain three images: one with
crossed polarizers (bottom left),
one without polarizers (bottom
center), and one without
polarizers but with UV
illumination (bottom right)

The studies are carried out effectively in 2D by using disks
which are made of photoelastic material. When under stress,
and when viewed between crossed polarizers, photoelastic
materials exhibit a series of light and dark bands, as in the
bottom left image of Fig. 2. These bands encode the detailed
stress within each particle, and these stresses are in turn,
determined by the forces at contacts on each particle. In the
past, this technique has been used in several different studies
[14–16]. What makes our current approach unique is that,
for large collections of particles, we solve the inverse prob-
lem which starts from the photoelastic image and yields as
output, the inter-particle contact forces. More details have
been given elsewhere [17,18]. The particles are also typi-
cally marked with a small bar, which allows us to track the
rotation and displacement of individual particles. In our cur-
rent tracking approach, the bars are drawn on with fluores-
cent ink, which is invisible under ordinary light but glows
strongly under UV light. In this way, it is possible to have
both photoelastic images for force/stress measurement and
separate images for tracking rotation and displacement of a
given set of particles, without mutual interference. In earlier
versions of this approach [19–23], we used solid black bars
drawn on the particles. In this case, we imaged separate sets
of particles for determining forces and for tracking motion.

The initial boundaries of the system form a square filled
with 1,568 bidisperse photoelastic disks at a packing fraction
φ = 0.795 ± 0.003. A bidisperse mixture is used explicitly

to avoid crystallization, i.e. long-range spatial order of the
packing. There are roughly 80% smaller particles having a
diameter of ≈ 0.74 cm, and 20% larger particles having a
diameter of ≈ 0.86 cm.

We determined the packing fractions by a multi-step pro-
cess. The first step involved determining the mass of a given
sample, and then dividing by the area density (mass/area)
of the bulk material from which the disks were made. This
provided the area occupied by the disks. We then divided
this area by the area available within the biax in order to
obtain φ. We determined the area density by two indepen-
dent determinations of the mass density of the bulk material,
and a measurement of the disk thickness. We estimate that
the resulting φ’s are accurate to ±0.003.

The initial state is prepared as close to isotropic as possi-
ble and is stress-free. The system is then subjected to shear
by compression along the y-direction and expansion along
the x-direction, as in Fig. 2 (top-left), keeping the system
area constant. Since the area is fixed, the deformation can
be simply defined using the strain ε along the x-axis with
ε = (x−x0)/x0. Here, x0 is the initial size of the square. Once
a maximum deformation εmax is reached, shear is reversed
by compression along the x-axis and expansion along the
y-axis. After this first shear reversal, the shear continues
until the system domain returns to a square, and then fur-
ther deforms in the negative strain direction. Once ε reaches
a minimum εmin < 0, a second shear reversal is applied,
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Table 1 A list of εmax and εmin for different shear cycles

Shear cycle εmax εmin

1 0.2867 −0.15

2 0.29 −0.15

3 0.2333 −0.15

4 0.2 −0.15

5 0.1833 −0.1667

6 0.15 N/A

N/A No negative strain is reached

eventually returning the system domain to a square with
ε = 0. This completes one shear cycle. The second shear
cycle continues from the final state of the first shear cycle and
the same procedure is applied for a total of six shear cycles.
Note that the actual values of εmax and εmin are different for
each shear cycle and the possible extreme values for these
are determined by the spatial limit of the apparatus. A list of
εmin and εmax is given in Table 1. The whole shear process is
carried out in small incremental quasi-static steps. From one
step to the next, ε increases or decreases by a small amount
δε = ±3.3 × 10−3, depending on the shear direction. After
each step, the motion is paused and images are acquired. The
three images in the bottom row Fig. 2 show close-ups of the
three different image types. The left-most of these is taken
with polarizers in place, the middle is without polarizers and
with ordinary light, and the right-most is without polarizers
and with UV light.

Before we turn to detailed results we note an experimen-
tal issue of importance. During the parts of the cycle where
the overall stresses in the system are low, the photoelastic
response at some contacts falls below our limit of resolu-
tion. Because, as discussed below, the experiments indicate
a distribution of normal contact forces of the form

P(Fn) = 〈Fn〉−1 f (Fn/〈Fn〉), (1)

where f is to a reasonable approximation, the same func-
tion for all mean forces, we can estimate the number of the
missed contacts reasonably well. Non-zero contact forces
below our experimental resolution also affect our measure-
ments of stress and, in particular, P . However, the effect on
stress components is much lower, since the contact forces
appear linearly in the appropriate sums.

We expect that we miss a fraction

Fc∫

0

P(Fn)d Fn/

∞∫

0

P(Fn)d Fn (2)

of contacts, where Fc is a small known cut-off force, roughly
the weight of a particle, below which we cannot detect the
photoelastic response. This means that the measured Z ’s are
lower than their true values by

∞∫

Fc

P(Fn)d Fn/

∞∫

0

P(Fn)d Fn . (3)

We also underestimate the pressure by a factor of

∞∫

Fc

Fn P(Fn)d Fn/

∞∫

0

Fn P(Fn)d Fn . (4)

In this last expression, we assume that all particles have the
same radius, which is a reasonably good assumption. In this
regard, the correction can be as much as 15% in Z very near
jamming, but then becomes negligible for Z a bit above 3.0.
The correction to P is much smaller, only 1–2% close to the
jamming transition. In order to simplify the correction, we
assume that the force distribution is an exponential. This is
roughly right, and produces a reasonable correction, given
the statistical variability of the data. Except as noted, the
results of P and Z presented in this paper have been cor-
rected accordingly. We use the same correction factor for
shear stresses, τ , although in this case, the correction is not
as rigorous.

3 Experimental results

We are concerned with the evolution of the force and contact
networks. Both are typically strongly anisotropic, and the
direction of the anisotropy switches quickly when the direc-
tion of strain is reversed. The force anisotropy is evident in
Fig. 1, which shows representative photoelastic images dur-
ing different phases of a single cycle. The structural changes
of the contact network during cyclic shear are also strongly
anisotropic. These can be captured by the fabric tensor, Ri j ,
defined as

Ri j = 1

N

N∑
k=1

ck∑
c=1

nc
iknc

jk . (5)

Here, the summation and N include only non-rattler disks,
and as illustrated in Fig. 3, ck is the number of contacts on
disk k, and nc

lk is the lth component of the unit branch vec-
tor pointing from the center of the disk k to a contact c. We
consider a rattler disk to have less than two detectable con-
tacts. The average contact number Z is simply the trace of the
fabric tensor Ri j . The principal eigendirection of Ri j is also
a useful measure of the prevailing orientation of the force
network.

Figures 4 and 5 show how Z changes in each shear cycle
as a function of step number Ns for all cycles, and as a
function of strain ε for one cycle. In Fig. 4, the individual
shear cycles are distinguished using different colors. We will
maintain this color scheme throughout to identify the various

123



Statistical properties of a 2D granular material subjected to cyclic shear 163
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Fig. 3 Sketch illustrating the notation for calculating the fabric, force-
moment and stress tensors

cycles. Arrows in Fig. 4 indicate the shear reversals. Z fluc-
tuates between a minimum value of around 2.5 and a maxi-
mum value of around 3.5. The first shear cycle, the red curve,
begins with a nearly stress-free and isotropic state. The force
chains build up steadily. As a consequence, Z increases as
more force chains develop. Z barely exceeds 3 before the
first shear reversal. Immediately after the reversal, Z drops.
The relatively rapid decrease of Z after a switch of the shear
direction is common to all shear reversals because the force
network/force chains switch direction during this transition.
With continued strain after a reversal, Z again increases as a
new strong network, orthogonal to its predecessor, emerges.
Note that Z = 3 corresponds to jamming for infinitely fric-
tional particles in two dimensions. We note, however, that for
the same particles used in the present experiments, isotropic
jamming occured [13] for Z � 3. Fig. 4 shows that the sys-
tem remains mostly in a jammed state after the first cycle, but
that it may leave a jammed state briefly after shear reversal.
As we show below, shear bands form in response to the shear.
Hence, these states are not spatially homogeneous. However,
it is the presence of a mechanically rigid but dilated region
in the shear bands that helps to allow for jammed states at
φ’s lower than the isotropic value. We also emphasize that Z
is strongly hysteretic when viewed with respect to strain. To
demonstrate this point, we show one shear cycle, the second,
as a function of strain in Fig. 5.

At various steps, the fraction, ρ, of detectable non-rattler
particles also fluctuates, as displayed in Fig. 6. This ratio
changes from 0.2 up to 0.90. Both Figs. 4 and 6 show sim-
ilar trends, although ρ is noisier at the step where shear is
reversed.

We characterize the mean anisotropy of the contact net-
work in terms of ϑ , the system-averaged value of the angle
between the eigenvector of the maximum eigenvalue of R and
the x axis. Here, we restrict 0 < ϑ ≤ 180◦. Figure 7 shows
that ϑ switches quickly, shortly after each strain reversal.
That is, after a very small strain, ϑ aligns with the compres-
sive direction. In order to see how quickly the angle changes
after a shear reversal, we have plotted ϑ on a much finer
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Z

Fig. 4 Evolution of the average contact number Z versus step number
Ns . Each shear cycle is colored differently. Arrows indicate the steps
where the shear direction is switched
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Fig. 5 Mean contact number Z versus strain ε for the second cycle
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Fig. 6 Evolution of the ratio, ρ, versus step number, Ns . ρ is defined
as the number of non-rattler particles over the total number of particles

scale. The results are presented in Fig. 8, where the graphs are
organized from top to bottom, as a function of step number,
Ns . The typical number of steps required for the readjust-
ment of the orientation is roughly �Ns � 10. However, we
note that there is often a lag between the strain reversal, and
the switch in ϑ , which may occur in only a few strain steps.
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Fig. 7 Fabric orientation angle ϑ versus step number, Ns . ϑ is defined
as the absolute angle between the eigenvector of the maximum eigen-
value of the fabric tensor R and the x axis. This angle measures the
dominant contact orientation

The stress tensor σi j and the force moment tensor, σ̂i j pro-
vide additional measures of anisotropy, in this case for the
forces. We define a local force moment tensor as

σ̂i j =
ck∑

c = 1

f c
ikrc

jk . (6)

The globally averaged stress tensor is then

σi j = 1

A

N∑
k=1

σ̂i j . (7)

Here, A is the system area; N , ck, i, rc
jk and j have the same

meaning as in the expression of Ri j (e.g. Fig. 3). f c
ik is the

i th component of the contact force on particle k at contact c.
The two eigenvalues of the stress tensor are σ1 and σ2, where
σ1 ≤ σ2 by definition. The pressure is then P = 1

2 (σ1 + σ2)

and the shear stress is τ = 1
2 (σ2 − σ1).

Figures 9 and 10 show the evolution of the pressure and
the shear stress versus step number, Ns , and Figs. 14 and 15
show P and τ over the second cycle vs. strain. Both P and
τ vary significantly with strain, but unlike ϑ , both quantities
evolve steadily, modulo some significant fluctuations, up to
the maximum of a given cycle. The fluctuations evident in the
stress evolution are due to failure events, which are associated
with a continual collapse of old and formation of new force
chains. To show the scale of the fluctuations more clearly, we
present in Fig. 11, the changes δP and δτ in P and τ , respec-
tively, between successive steps. The curves exhibit random
spikes in the positive and negative directions. It is perhaps
worth emphasizing that the fluctuations, even for these sys-
tem-averaged stress differences, can be large relative to the
locally averaged step sizes, which cannot be distinguished
from zero on these plots. Figure 12 shows the probability
distribution functions (PDF’s) of δP and δτ , after normaliz-
ing by their respective standard deviations. The two PDF’s for
δpn and δτn are virtually indistinguishable, and decay expo-
nentially for positive and negative values, with a somewhat
more rapid decay for positive values. Sharp drops of P and τ

occur at steps where the shear is reversed. Each drop is asso-
ciated with the release of stored mechanical energy. Interest-
ing issues include the nature of the energy dissipated, and
the relation to the evolution of the force network [12,24,25].
For instance, recently, we have found that buckling of force

Fig. 8 Fabric orientation angle
ϑ versus step number Ns on a
fine scale near shear reversals.
Arrows in each graph indicate
the beginning of the shear
reversals. The readjustment of ϑ

after a shear reversal takes about
10–20 steps
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Fig. 9 Pressure P versus step number Ns
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Fig. 10 Shear stress τ versus step number Ns
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Fig. 11 δP (top) and δτ (bottom) versus step number Ns . δP and δτ

are respective differences between two neighboring steps of P and τ as
given in Figs. 9 and 10

chains [12] is an important mechanism leading to the loss
of energy in shear. We will address these questions in future
work.

To further examine the fluctuations of P and τ , we ana-
lyzed their power spectra from the curves in Figs. 9 and 10.
Here, we use step number, Ns as a time-like variable, and
(Ns/1,000)−1 as a frequency-like variable. The spectra ver-
sus frequency variable, shown in Fig. 13 are similar for P
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Fig. 12 PDFs of δpn (circles), and δτn (squares). δpn and δτn are made
dimensionless through normalization by their corresponding standard
deviations
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Fig. 13 Power spectra, on log-log scales, for δpn , (inset) and δτn com-
puted from the data given in Figs. 9 and 10 versus frequency corre-
sponding to inverse step number, where a frequency of 1.0 corresponds
to a 1/1,000 steps. The solid line is a guide to the eye, and corresponds
to a power law with an exponent of −2

and τ , and are typically broad-band. They suggest a power
law decay with an exponent close to −2 for both P and τ .
Similar behavior for the high-frequency part of the spectrum
has been reported in previous experiments on continuously
sheared 3D granular systems [26].

It is clear from Figs. 5, 14 and 15 that the stresses and Z are
hysteretic in the strain, i.e., that the strain does not provide a
unique characterization of a state. It is then interesting to ask
whether there is some other quantity that better characterizes
the nature of a given state, and in particular whether there is a
relation among Z and P and τ . For jamming of spherical (cir-
cular in 2D) particles under isotropic stress conditions, the
key control parameter is the density (or packing fraction).
Then, both Z and P are functions of φ, and consequently,
P is a function of Z . Here, however, the packing fraction is
constant. Yet, starting from an unjammed state, we arrive at
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Fig. 14 Pressure, P versus strain, ε, for the second cycle, showing
strong hysteresis
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Fig. 15 Shear stress τ versus strain, ε for the second cycle

a state which is jammed when we apply sufficient shear. In
order to address what might control jamming in this case, we
note that Figs. 5, 14 and 15 show similar shapes. Drawing
on the isotropic stress case, we ask whether a relation exists
between Z and the stresses.

Indeed, Figs. 16 and 17 show that data for P versus Z
fall on a nearly common curve. The first of these figures
gives data that has not been corrected for weak contacts.
Note that the correction is important, i.e. ∼ 15%, for data

where Z
<∼ 3.0, but not important for larger Z . The effect

on the pressure is much weaker than on Z . In a similar fash-
ion, data for τ versus Z falls on a nearly common curve.
For τ versus Z , the relative scatter is higher. However, there
is a systematic part of the τ versus Z data that fall below
the weight of the curve. These data correspond to relatively
small ranges of strain following a reversal. As ϑ switches
direction, the system passes through a more nearly isotropic
state. In addition, τ versus Z data from the first cycle start
from an isotropic state for which τ = 0. For the first part
of that cycle, the system retains some memory of its initial
state. If the data from the first cycle and immediately after
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Fig. 16 Pressure, P , versus average contact number, Z , without cor-
rections for very weak contacts. Different colors correspond to data from
different shear cycles. Data points from the first shear cycle, shown in
red, deviate slightly from other shear cycles
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Fig. 17 Pressure, P , versus average contact number, Z . Same data as
the previous figure, but with a correction applied for weak contacts.
Different colors correspond to data from different shear cycles

reversals are removed, the results for τ versus Z yield a col-
lapse that is comparable to that for P versus Z , as seen in
Figs. 18 and 19. Although P and Z do collapse, the spread of
the data points around the curve is still quite big. This spread
reflects statistical fluctuations, which as shown above, can be
large even for the system-averaged P and τ . An interesting
observation is that except for the switching regimes, in the
mean, the ratio τ/P = constant . In this case, the relation
follows because τ and P are separately (essentially) linear
functions of Z and both vanish at the common value Z � 3
where the system first jams.

Additional statistical measures are include the distribu-
tion of contact forces, including the normal force distribution
given in Fig. 20 and the tangential force distribution given
in Fig. 21. In these figures, we have organized the data by
cycle number, and we have combined data for different steps
within a cycle. Here, we normalized the data for Fn or Ft

for each step by the the mean normal force 〈Fn〉 at that step.
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Fig. 18 Shear stress, τ versus average contact number, Z
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Fig. 19 Shear stress, τ versus average contact number, Z after removal
of data points from the first shear cycle and data points where the strong
network direction, as measured by ϑ , is switching directions, as in Fig. 8
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Fig. 20 Data for the distribution of normal forces, Fn , expressed as
Fn/〈Fn〉 of all six shear cycles. We show data from all strain steps col-
lectively for each cycle. Here, data for Fn/〈Fn〉 are normalized by 〈Fn〉
for the given step

To justify that this is legitimate, we plot the distributions of
Fn/〈Fn〉 and Ft/〈Fn〉 for different strain steps within the first
shear cycle in Figs. 22 and 23. Several neighboring steps, ten
for most data points and three to five for data near a reversal,
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Fig. 21 Data for the distribution of normalized tangential forces,
Ft/〈Fn〉 of all six shear cycles. As for the distribution of normal forces,
the statistics are combined for all steps within each cycle, where the
normalization, 〈Fn〉 is made for each step

are combined for each data point on the plots. The details
are summarized in Table 2. Some strain steps may have a
longer tail than others but their general shapes are more or
less similar, and in particular, there is no systematic differ-
ence between distributions for different steps. As always, the
tails show bigger scatter due to limited statistics.

The distributions of normal forces show a common form
consisting of a nearly exponential fall-off at large Fn/〈Fn〉
and a peak at low Fn/〈Fn〉. At the extreme tails, the distri-
butions differ somewhat, but this is to be expected because
the statistics are limited there. P(Ft/〈Fn〉) also shows an
exponential decay, except that the tangential force distribu-
tion, as a function of P(Ft/〈Fn〉), decays faster than that
for the normal forces. However, this is simply due to the
choice of normalization. That is, if the tangential forces
were normalized by 〈Ft 〉, then the rate of exponential fall-off
would be comparable to that for the normal force distribu-
tions. For small Fn/〈Fn〉 and Ft/〈Fn〉, both distributions fall
below exponentials. Although some of the fall-off is due to
the experimental lower limit of force detection, we believe
that this is a relatively minor effect. Specifically, the shape
of the distribution is not particularly sensitive to the mean
force.

4 Connection to shear localization and force chain
evolution

We next explore possible connections between the hysteresis
observed in these experiments and the two defining aspects of
material behavior under shear: shear banding and stick-slip
(e.g. [24,27]). Note that we use the term ‘stick-slip’ to sig-
nify fluctuations in the macroscopic stress, in particular, that
of the stress ratio, τ/P . Specifically, stick and slip events are
periods where the stress ratio increases and decreases, respec-
tively, with increasing strain. A slip event is most often due
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Fig. 22 Data for the distribution of normal forces, Fn , expressed as
Fn/〈Fn〉 in the first shear cycle. a distribution P(Fn/〈Fn〉) for forward
shear, ε > 0. b P(Fn/〈Fn〉) for reverse shear when ε ≥ 0. c P(Fn/〈Fn〉)
for reverse shear when ε < 0. d P(Fn/〈Fn〉) for forward shear when

ε ≤ 0. To improve statistics, each data point on the graph includes a
set of Fn/〈Fn〉 from 10 neighboring steps in most cases. A summary of
each data point and its corresponding steps and strains can be found in
Table 2
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Fig. 23 Data for the distribution of tangential forces, Ft , expressed as
Ft/〈Fn〉 in the first shear cycle. a distribution P(Ft/〈Fn〉) of the forward
shear when the strain ε > 0. b P(Ft/〈Fn〉) of the inverse shear when
ε ≥ 0. c P(Ft/〈Fn〉) of the inverse shear when ε < 0. d P(Ft/〈Fn〉) of

the forward shear when ε ≤ 0. To improve statistics, each data point on
the graph includes a set of Ft/〈Fn〉 from ∼10 neighboring steps. See
details in Table 2
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Table 2 Summary of step numbers and strains for each group labeled
datai in Figs. 22 and 23

Panel Datai Steps ε

a 1 2–11 0.0067 ∼ 0.0367

2 12–21 0.04 ∼ 0.07

3 22–31 0.0733 ∼ 0.1033

4 32–41 0.1067 ∼ 0.1367

5 42–51 0.14 ∼ 0.17

6 52–63 0.1733 ∼ 0.21

7 64–73 0.2133 ∼ 0.2433

8 74–83 0.2467 ∼ 0.2767

9 84–86 0.28 ∼ 0.2867

b 9 88–97 0.28 ∼ 0.25

8 98–107 0.2467 ∼ 0.2167

7 108–117 0.2133 ∼ 0.1833

6 118–127 0.18 ∼ 0.15

5 128–137 0.1467 ∼ 0.1167

4 138–147 0.1133 ∼ 0.0833

3 148–157 0.08 ∼ 0.05

2 158–167 0.0467 ∼ 0.0167

1 168–177 0.0133 ∼ −0.0167

c 1 178–187 −0.02 ∼ −0.05

2 188–197 −0.0533 ∼ −0.0833

3 198–207 −0.0867 ∼ −0.1167

4 208–217 −0.12 ∼ −0.15

d 5 218–227 −0.1467 ∼ −0.1167

4 228–237 −0.1133 ∼ −0.0833

3 238–247 −0.08 ∼ −0.05

2 248–257 −0.0467 ∼ −0.0167

1 258–302 −0.0133 ∼ 0

to the collapse of force chains by buckling. In general, it is
accompanied by the release of stored energy, accumulated in
force chains during the preceding stick event.

We confine our attention to the different time steps for the
initial forward shear. These data are from a different run with
a slightly higher density, φ = 0.82 ± 0.01. There is no sub-
stantive difference between these data and those described
earlier, except that here, we carried out only forward strain.
As shown earlier, the force network evolution in the for-
ward and reverse shear cycles exhibit fairly universal statis-
tics. Deformation of the sample through the different loading
cycles occurs in the presence of intermittent strain localiza-
tion, i.e. marked by a single dominant shear band inclined
along either the forward or the backward diagonal, and strong
fluctuations are evident in the macroscopic shear stress and
pressure. Shear banding and macroscopic stress fluctuations
are related, being both governed by force chain/force net-
work evolution. Hence the objective here is to demonstrate
the interconnections between force chain collapse via buck-
ling, shear banding and fluctuations in the macroscopic stress.

To proceed, we employ two algorithms. The first identi-
fies force chain particles via a so-called particle load vec-
tor. For each particle, the local force moment tensor, σ̂i j ,
as defined earlier, is computed. The largest eigenvalue of
this tensor and its associated eigenvector are then used to
define, respectively, the magnitude and direction of the parti-
cle load vector. The direction of force transmission is dictated
by the direction of the particle load vector. Groups of parti-
cles whose particle load vectors line up within a predefined
narrow angular range, and whose particle load magnitude
is above the global average value, constitute a force chain.
This procedure has been incorporated into an algorithm that

Fig. 24 Displacement fields
showing shear bands in forward
and reverse shear. These four
fields correspond to the small
particle displacement right after
applying small deformations to
the four images shown in Fig. 1.
The red lines drawn in (b) (d)
are a guide to the eye, indicating
the regions of shear localization.
Note that in parts (c) and (d) one
or more side walls occupies part
of the image. The strains of each
image are a ε = 0.033,
b ε = 0.267, c ε = 0.267, and
d ε = 0.033

a

c d

b
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Fig. 25 Force chains in the shear band regime. This image is a slice of
the main diagonal regime, indicated using a white rectangle, of image
(b) in Fig. 1. Here the image is rotated to make the original diagonal
line horizontal

takes contact force data as the known input, and provides the
force chain particles, and hence the force chain particle net-
work, as the output. Complete details of this procedure and
its associated algorithm are provided elsewhere [28,29].

The second algorithm was developed for the purposes of
identifying parts of the force chain particle network that have
undergone buckling, i.e. buckled force chain “BFC” seg-
ments [24]. A strain interval of interest, [εA, εB] is chosen:
for example, that which spans a drop in stress ratio or a fail-
ure/ “unjamming event”, or a single time step in a DEM
simulation. A set of three filters is then applied: (a) eliminate
all particles not in force chains at εA; (b) out of those remain-
ing, eliminate those which have not decreased in potential
energy; (c) out of those remaining, identify and isolate all 3-
particle segments which have buckled. To determine if a seg-
ment has buckled, we consider the angle between the branch
vectors from the central particle to the two outer particles.
The decrease in this angle over the interval in question is
defined as being twice the buckling angle, θb. Then, a buck-
ling segment is simply one where θb > 0. The set of parti-
cles remaining after all three filters have been applied is the
set referred to hereafter as BFCs. Later, we consider pop-
ulations of BFCs in distinct subsets, where each subset is
distinguished by a predefined nonzero buckling threshold θ∗

b
that member BFCs must satisfy over the given strain inter-
val. Complete details of this entire procedure and associated
algorithm are provided elsewhere [24].

The specimen deforms in the presence of a shear band,
as shown in Fig. 24. The shear band is backward inclined in
the forward shear and forward inclined in the reverse shear.
As the material is sheared in a given direction, two triangu-
lar blocks slide over the shear band in opposing directions,
effectively leading to simple shear across the shear band [30].

Although the material is dilated in the shear band, the force
chains pass right through these bands, without substantial
changes, due to force balance (Fig. 25). During ‘stick events’,
regimes of strain where the force network is stable, the pri-
mary force chains provide the major resistance to motion in
the compressive direction. Weak secondary force chains still
exist in the dilation direction and serve to ‘prop up’ the pri-
mary force chains. Primary force chains, laterally confined
by weak network neighbors, are subject to axial compression
and often fail via buckling. Secondary force chains, being in

Fig. 26 Evolution with axial strain, ε22 = ε, of the population of force
chain particles, N FC

the dilation direction, tend to fail by extension. A detailed
analysis of the co-evolution of these two classes of force
chains under cyclic shear is the subject of ongoing research.

As mentioned earlier (see discussion around Figs. 9 and
10), there is evidence of local failure events in the force net-
work throughout the loading, both in the forward and reverse
shear. These failure events are due to the continual collapse
of old and formation of new force chains. The failures are
concentrated mainly in the shear band where the mode of
deformation of the material is essentially one of simple shear
[30]. To unravel the mechanisms behind the hysteresis in the
normal and shear components of stress, we examine the con-
tribution to these stresses from force chains versus weak net-
work particles. Recall that we confine our attention to the
forward shear starting from an isotropic state. In Fig. 26, we
show the strain evolution of the population of force chain
particles. As expected, there is an initial increase in the pop-
ulation as load is increased, followed by a near constant value
for large strains. Note here, that the threshold value for the
particle load vector (i.e. the global average) of each particle
classified as a force chain is increasing with strain, hence
the force chains are not only increasing in population but are
also becoming stronger (i.e. bearing an increasing compres-
sive load).

In light of Figs. 24b, d, the relative rotations between
force chains are particularly relevant here. Discrete element
simulations and photoelastic disk experiments of Oda and
co-workers [31–34], by Veje et al. [20], and by Utter et al.
[21] have shown that particle rotations concentrate in the
shear band. More recent studies confirm this, but addition-
ally found that rotational motions dominate during slip events
inside the shear band [12,24,25]. These slip events are gov-
erned by the failure of force chains by buckling. The location
and deformation periods during which relatively large parti-
cle rotations occur do indeed coincide with the location and
incidences of force chain buckling: see Figs. 27 and 28. Rota-
tion is a key mechanism in force chain buckling as is evident
in Fig. 29 which shows that the greatest relative rotations
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Fig. 27 Spatial distribution of force chain particles undergoing buck-
ling (red) across the strain interval ε22 = ε = 0.060 to 0.077, together
with their confining neighbors (blue). A buckling threshold of θ∗

b = 2◦
is used. Data shown here correspond to the central portion of the sample
in the early stages of shear band development. We note that the width
of the shear band narrows for higher strains

Fig. 28 Evolution with axial strain, ε22 = ε, of population of buck-
led force chain segments, N B FC , for various buckling thresholds, θ∗

b .
Green, blue and red lines correspond to θ∗

b = 1◦, 2◦ and 3◦, respectively.
Also shown is stress ratio (black). sin θ = (σ2 − σ1)/(σ2 + σ1) = τ/P

are sustained at contacts between particles in buckling force
chains.

In summary, the data presented above demonstrate the
build-up of force chains in response to shear, their failure
via buckling, the key role that particle rotations play in buck-
ling, and the confinement of force chain buckling to the shear
band. These results corroborate earlier findings by Oda and
co-workers [31–34] and lend support to constitutive models
which are based on Cosserat (Micropolar) theory, since these
account for relative rotations via the curvature and couple
stress. Indeed, key mechanisms such as force chain buck-
ling can be accounted for in these formulations explicitly:
see, for example [25,35]. Predictions of this Cosserat model
concerning shear band properties, e.g. thickness as well as
the emerging contact and contact force anisotropies inside
the band, are consistent with this and earlier experimental
observations. We note also that recent studies on the local-
ised buckling of force chains demonstrate that the thickness
of the shear band may be governed by the critical buckling

Fig. 29 Evolution with axial strain, ε22 = ε, of the relative rotation
at contacts per step, θ , for various types of contacts. Black, green, blue
and red correspond to FC (force chain) to FC, FC to WN (weak net-
work), WN to WN and BFC (buckling force chain) to BFC contacts,
respectively. The unit of θ is radians

load and its corresponding mode, with the relative rotation
at particle contacts playing a key role [36].

5 Conclusions

In this work, we have explored the evolution of force and
contact networks for cyclic shear of a dense granular mate-
rial. Starting from an initially unjammed low-density state,
jamming occurs for sufficiently large shear. This is, in fact,
associated with the phenomena of Reynolds dilatancy. In par-
ticular, during the first shear cycle, the system reaches Z = 3
around step 70 corresponding to a shear strain of ε = 23.3%.
During much of each cycle, the system is above a jamming
threshold for which the mean contact number is Z � 3.
Although the stress components, Z , etc. are strongly hyster-
etic in strain, we empirically find that P is strongly correlated
with the mean contact number when the system is jammed.
The same is true for τ versus Z except immediately after
a strain reversal, when τ can become small. Again, exclud-
ing regions immediately following reversals, the mean values
for P(Z) and τ(Z) approach zero linearly, within our reso-
lution, as Z → 3 from above. In this case, the ratio τ/P is,
on average, constant.

We have applied a correction to the data to account for con-
tacts which are below the experimental detection threshold.
This correction was most important for very low stress states.
For Z , the correction could reach ∼15%, although it was also
applied to the pressure and the shear stress, τ . The correction
was implemented by assuming that the force distributions
have (close to) universal exponential forms. A more accurate
correction technique will be implemented in future work, but
the present approximation is reasonable, given the statistical
scatter of the data. We note that the jammed states are gen-
erally inhomogeneous in the density/packing fraction, since
these are characterized by shear bands where the material is
locally dilated and where much of the motion occurs.
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We then analyzed the evolving force network in the for-
ward shear using algorithms that distinguish contributions
to macroscopic stress of particles from the strong and weak
contact force network. Interconnections between force chain
collapse via buckling, shear banding and fluctuations in the
macroscopic stress are uncovered. Relatively large rotations
develop during the buckling of force chains. These buckling
events, which are present throughout the loading history, are
primarily confined to the shear band and dominate during slip
events or periods where stress ratio decreases with increasing
strain. This behavior strongly suggests that continuum mod-
els of dense granular media must account for relative particle
rotations and, in particular, force chain buckling—mecha-
nisms that call for the framework of Cosserat or micropolar
theory. A detailed analysis of such internal failure events and
their connection to the structural evolution of the force and
contact networks in cyclic shear loading is the subject of an
ongoing investigation.
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