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Abstract

Undulatory locomotion of microorganisms through geometrically complex, fluidic environments is ubiquitous in
nature and requires the organism to negotiate both hydrodynamic effects and geometric constraints. To understand
locomotion through such media, we experimentally investigate swimming of the nematode Caenorhabditis elegans
through fluid-filled arrays of micro-pillars and conduct numerical simulations based on a mechanical model of the
worm that incorporates hydrodynamic and contact interactions with the lattice. We show that the nematode’s
path, speed, and gait are significantly altered by the presence of the obstacles and depend strongly on lattice
spacing. These changes and their dependence on lattice spacing are captured, both qualitatively and quantitatively,
by our purely mechanical model. Using the model, we demonstrate that purely mechanical interactions between
the swimmer and obstacles can produce complex trajectories, gait changes, and velocity fluctuations, yielding
some of the life-like dynamics exhibited by the real nematode. Our results show that mechanics, rather than

biological sensing and behavior, can explain some of the observed changes in the worm’s locomotory dynamics.

1 Introduction

Undulatory locomotion, as induced by the propagation of a traveling bending wave, is a mode of self-propulsion
utilized by many species of terrestrial and aquatic organisms [1-6]. As typified by the swimming of spermatozoa,
this mode of locomotion is particularly prevalent among swimming cells and small organisms moving through fluidic
environments at low Reynolds number where viscous forces dominate over inertia [7-9]. While undulatory locomotion
at low Reynolds numbers has been studied extensively using computational, experimental, and theoretical approaches,
it is often only considered in unbounded domains, or in the presence of planar boundaries [10]. There are, however,
many instances in nature where swimming organisms must make their way through a fluid embedded with obstacles
that are comparable in size to the swimmers themselves. One example is nematodes moving through wet soil. Another

is that of mammalian sperm that swim through cervical mucus composed of an aqueous fluid matrix containing a



polymeric fiber network [11]. In bovine vaginal and cervical fluids, these fibers have a mean diameter of 0.3 wm and
the network mesh size ranges from 0.7 pm to 27 pm. This creates a meso-structure of pores 0.1 — 0.5 times the length
L of the bull sperm (L = 60 pm) [12] through which the bull sperm must swim. Yet another example is the male
gametocyte of the malaria parasite Plasmodium, which must navigate a dense suspension of red blood cells in the
digestive tract of the mosquito as it searches for its female counterpart [13, 14]. In this case, the male gametes have
a length L &~ 15 pm while the red blood cells are 6 — 8 um in diameter [15] and make up > 50% of the volume, a
percentage higher than the typical hematocrit [16]. While both the mucus and red blood cell suspension themselves
are examples complex fluids that can be modeled as continuous materials, the undulating body must interact with
discrete elements of the embedded microstructure. These interactions lead to local hydrodynamic and contact forces
experienced by the swimmer that are not incorporated into the continuum-level models.

Although each organism (mentioned above) has some locomotory features unique to its particular physiology,
there are many open questions regarding the general nature of the motion of an undulating body swimming through
a complex, obstacle-laden environment. For example, how does an organism manage to successfully navigate around
the obstacles while still restricted by the reversibility constraints associated with viscously dominated swimming [7]?
What path will it take through this composite medium and how might it vary with obstacle size or spacing? Does
the organism modify its kinematics in response to the embedded structure and if so what are these changes? To
what extent are changes in kinematics due to biological sensing, or due to a passive response induced by geometric
constraints and hydrodynamic interactions? To answer these questions, possibly applicable to many different or-
ganisms, we not only need the kinematics of their motion, but also the hydrodynamic forces, torques, and contact
interactions between the organism and the obstacles.

In this study, we begin to address these questions through a comprehensive set of experiments and numerical
simulations by examining the changes experienced by an undulating swimmer when moving through a fluid-filled
array of obstacles arranged on a square lattice. We explore in detail the changes in swimming path, wave kinematics,
and locomotion speed due to the geometric constraints and hydrodynamic forces introduced by the obstacles. For the
experiments, we employ the soil-dwelling nematode Caenorhabditis elegans as our model undulatory swimmer and
observe its motion in lattices of micro-pillars constructed from PDMS. For our simulations, we construct a mechanical
worm (MW) model from a chain of elastically linked beads whose undulations are driven by a wave of torques along
its length. The MW model incorporates contact interactions with the obstacles and goes beyond simple drag-based
approximations [17-21] of the hydrodynamic forces. We capture the swimmer-obstacle hydrodynamic interactions by
solving the Stokes equations numerically and obtain the flow field generated by the undulations and the constraints
imposed by the obstacles. Another key aspect of this model is that we model the forces and torques experienced by
the swimmer rather than prescribing the wave kinematics directly. This allows the MW dynamics to be modified by

the interactions with the lattice.



There are several reasons for choosing C. elegans as our model organism. C. elegans is a small nematode,
approximately 1 mm in length and 60 pym in diameter, that in the wild lives in wet soil - a geometrically complex
fluid-filled environment. An adult hermaphrodite is comprised of 959 cells of which 302 are neurons [22]. Due to its
simple structure and ease of use in laboratory settings, C. elegans is one of the most widely used model organisms
in modern biology. In addition, the basic characteristics of C. elegans locomotion are well classified. When crawling
on a gel surface, C. elegans undulates at a mean frequency of fequ; =~ 0.7 £ 0.1 Hz with a wavelength A¢pqui = 1
mm and is able to move at a velocity of verauw = 0.2 mm/s [21, 23, 24]. When swimming in buffer solution with
viscosity 7 = 0.001 Pa s, the nematode has a higher frequency, fswim ~ 1.5-2 Hz, wavelength Agyim =~ 1.5mm,
but the resulting speed can have the range vgyim =~ 0.1— 0.35 mm/s [18-21, 23, 25] depending on the experimental
conditions.

There have also been a number of recent studies examining C. elegans locomotion in more complex environ-
ments where the worm must interact with obstacles or channel walls in the plane of locomotion [26, 27]. In such
environments, significant, and sometimes surprising, changes in the locomotory behavior of the nematode have been
observed. For example, in a wet granular medium C. elegans is found to have a lower undulation frequency, but
rather than hindering its motion, the grains allow the nematode to move in a more efficient manner, traveling a
greater distance per stroke [28, 29]. Park et al. [25] considered the locomotion of C. elegans through square lattices
of round, short (h ~ 100 pm) posts created on the surface of an agar gel. Similar to [28, 29], they found that obstacles
assist in locomotion, enabling the nematode to achieve speeds ten times its normal swimming speed in featureless
fluids.

Although these studies have shed some light on the complex navigational traits exhibited by these nematodes, a
general understanding of the mechanisms that allow the worm to change the kinematics of its motion, particularly an
increase in its speed, is still lacking. While there has been some theoretical work demonstrating that hydrodynamic
interactions can increase swimming speeds [30], most theoretical studies of undulatory locomotion in complex media
[31-35] focus primarily on the continuum limit where the fluid microstructure is small compared to the swimming
body. Our study not only provides a theoretical model that includes swimmer-obstacle interaction to describe
locomotion of an undulating swimmer through structured environments, but we also show a direct comparison of
these results with experimental data. By considering a simple square lattice of pillars, our experiments are similar
to those of Park et al. [25]. However, we differ in our design. Firstly, we construct the arrays from PDMS rather
than agar; C. elegans have a strong affinity to crawl on agar surface, whereas PDMS in not conducive to crawling.
Moreover, the height of the pillars (h = 350 pum) in our experiments is much larger compared to the thickness of the
worm (d ~ 60 pm), which ensures that the worm remains between the pillars and does not swim above them. We
compare directly the experimental and numerical results, and use both to quantify changes in the locomotion speed

and swimming dynamics as the lattice spacing and undulation frequency vary. Since the MW simulations incorporate



only the mechanical interactions between the undulator and the lattice, we can accurately determine their role at
every stage in the dynamics. We show that not only do the mechanical interactions play a major role in the observed
changes in locomotion, particularly in allowing undulatory swimmers to reach exceptionally high speeds, but they
can also yield complex, “life-like” paths through the lattice environment. These paths incorporate rapid fluctuations
in speed, as well as changes in gait, that are characteristic to the actual worm. By comparing experiments and
simulations, we show that much of the resultant behavior observed in the experiments can be attributed purely to
mechanics rather than biological sensing. On this point, we emphasize to the reader that viewing the movies in the

Supplementary Material while reading this work will be illuminating.

Materials and Methods

1.1 Experiments
1.1.1 Materials

In this study we use the wild type C. elegans N2. Worms are grown on Nematode Growth Medium plates (NGM
agar) at 20° C, with a lawn of the bacteria OP150 as the food source. All experiments are performed with adult
3-day old worms [22]. The lattices of micro-pillars were fabricated using standard soft photo-lithographic methods
[36]. In particular, we use a photo-mask of white circles on a black background (Advanced Reproductions, MA)
arranged on a square lattice. We use the negative photoresist SU-8 2075 (MicroChem Inc., MA) to first create a
positive pattern of pillars on a silicon wafer. This SU-8 template is then used to create a negative array of PDMS
holes, which is finally used to create a positive array of PDMS micro-pillars. The radii and the heights of the pillars
across all lattices are the same (R = 175 uym, H = 350 pum). The center-to-center distance or the lattice spacing
between the pillars changes from ¢ = 430 pm to ¢ = 700 pm (see Fig. 1), i.e. for each lattice spacing we create a

separate array and each array has a total area A ~ 4 cm?.

1.1.2 Methods

The experimental protocol consists of recording the worm locomotion in lattices via a stereo microscope (Olympus
SZ 61T), under bright-field configuration (Fig. 1(a)). For this, an adult worm is transferred from the culture plate
into a small Plexiglas box containing 5 ml of M9 buffer solution for washing. In this phase the swimming worm
sheds bacteria attached to its body. After 5 minutes, the worm is transferred to a second box containing fresh M9
solution. The free swimming of the washed worm is recorded for 5 minutes at a frame rate of 10 frames per second
(FPS). The worm is then transferred to a lattice of micro-pillars. The lattice has open boundaries (top and sides)

and is filled with M9 buffer almost up to the height of the pillars, while ensuring that the level of fluid never reaches



above the pillars. This is done so that the nematodes always swim between the pillars and not above. In practice,
this is achieved by depositing a fixed volume of fluid using a micropipette. Each worm in a lattice is observed for 30
minutes. The worm-picker used to transfer the worm to the lattice stimulates the worm. As a result, during the first
three to five minutes in the lattice, the worm will either remain stationary or travel within a small neighborhood. We
discard the initial 3 — 5 minutes of data from any subsequent analyses. Thus, we have 25 minutes of data for each
worm in a lattice, where the worm has acclimated itself. At the end of this data collection, the worm is picked out of
the lattice and placed in fresh M9 buffer and then back to a fresh agar plate with food. The process is repeated for
other worms, and also for the same set of worms in other lattices. In this manner we acquire data for an ensemble

of worms of different lengths, moving in lattices with different spacing.

1.1.3 Image Processing

The movies are processed via scripts written in Matlab. The main steps involved in processing each movie consist of
reading each frame, background subtraction to remove pillars from the images, thresholding the greyscale image to
create a binary image of the worm, and erosion of the binary worm image to obtain the “skeleton” or the centerline of
the worm. Figure 1(b) show representative images after each step. The main panel shows a representative example of
the motion of the worm by superimposing multiple centerlines. The inset (Fig. 1(b)) shows the binary image of the
worm after background subtraction, which is used to find the centerline. The centroid of the worm is also obtained
to measure linear displacements and velocities, and the centerline is used to calculate the amplitude of the gait. The
frequencies are obtained by frame counting. The quantities of interest that describe the mechanics of locomotion,
such as the velocity and undulation frequency, are averages over multiple runs. We emphasize again that the first

3 — 5 minutes of any run is not included in the data analyses.

1.2 Numerical Simulations

In our mechanical worm (MW) simulations, C. elegans is represented by an inextensible chain of N elastically linked
spherical particles (Fig. 1(c)) subject to forces and torques as described here and in the Supplementary Material. By
modeling the forces and torques on the worm segments rather than prescribing their motion, the MW will change its
dynamics in response to the hydrodynamic and contact interactions with nearby obstacles. The inclusion of these
interactions is essential to providing an accurate characterization of the motion of the undulating body in the lattice.

In the MW, each bead, indexed by n, has radius a, is centered at Y, and has an orientation t,; see Fig. 1(c).

The vector t,, is also used as the unit tangent to the worm’s centerline, making the Ansatz that this vector varies



linearly between each successive pair of beads,

top1 —tn, -
t(l) = %l + (1)

where [ € [0, AL] and AL is the distance between the beads. The total length of the chain is therefore L = NAL.
Since the Reynolds number associated with C. elegans swimming is small, Re ~ 10~!, and the mass density of
the worm is close to that of the surrounding fluid, we ignore the forces of inertia and gravity in our simulation model.

Accordingly, the forces and torques on each bead sum to zero

FC+FZLFE = o (2)

Tf—l—T,?—l—T,?—f—Tf = 0. (3)

In Egs. (2) & (3), F$ and 7€ are constraint forces and torques respectively, introduced to keep AL fixed. The

torques TF

- are the elastic torques associated with the worm’s flexural rigidity and are induced by curvature of the

centerline. The force FZ is a pairwise-repulsive force between the worm and the obstacles due to solid-body contact.
Finally, F and 7/ are the viscous forces and torques on the beads due to the surrounding fluid. Finally, the torques
7P drive the undulation of the chain and mimic the worm’s muscular contractions. These torques are captured using

a target curvature model [37] where the worm attempts to achieve a preferred time-dependent shape with curvature

K(s,t) = —ko(s) sin(ks — 2 ft) 4)
where s € [0, L], and
Ko, s <05L
ro(s) = { ()
2Ko(L —s)/L, s> 0.5L.

Each of these forces and torques are depicted in Fig. 1(d), and a detailed description of the methods used to calculate
them is provided in the Supplementary Material.
As shown in Fig. 1(c), the obstacles are spherical particles of radius R that lie in the plane of locomotion. For

each obstacle n, the force and torque balance is

FC+FIELFE = o (6)

C 41 = 0. (7)

FH FB and 7 represent the same forces and torques as those in the MW model. Here, the constraint forces and



torques, F¢ and 7€, keep the obstacles from translating and rotating, i.e. V,, = 0 and €2,, = 0.

To capture the hydrodynamic interactions between the worm and the obstacles, we first solve the Stokes equations
numerically to determine the fluid flow, u, resulting from the forces and torques on the MW and obstacles (see
Supplementary Material). The particle velocities, V,,, and angular velocities, €2, are then extracted from u using
the force-coupling method [38, 39]. The proximity of the obstacles affects the hydrodynamic forces experienced by
the worm. These effects are captured approximately by the force-coupling method, though near-field lubrication
forces are neglected. On the latter, a proper characterization of the lubrication layer that takes into account the
compliance and corrugation of the worm cuticle is a difficult and open issue. Nonetheless, as we show in Results,
when compared with experimental data, our simple numerical model appears to capture the basic dynamics quite
well.

After computing V,, and €2,,, we then integrate the equations of motion

dY,
= Vn
o (8)
dt,
— = Q, xt,
o x (9)

using a second-order explicit multi-step scheme described in [40].
An important parameter in the simulations is related to what is sometimes termed the Sperm number, Sp [41],
but we refer to here as the Worm number, W = fnL*/K, = Sp*. The Worm number provides the ratio of the

viscous to elastic forces, and lyy = L/(W)Y/*

is the characteristic length scale over which bending occurs when a
passive elastic filament is oscillated at one end [42]. Here, however, since 7, L, and K}, are fixed values, W functions
as the dimensionless undulation frequency in the simulations.

Before examining the dynamics of the MW in the lattice, we must first tune our model in the absence of the
obstacles. To match the aspect ratio, { = L/a, of C. elegans (¢ ~ 16), we take N = 15 and AL = 2.2a. We adjust
the Worm number, W, as well as the wave number, k& and amplitude, Ky, of the preferred curvature wave (Egs. (4)
& (4)) to replicate both the wave mechanics and the swimming speed of actual worms. We find that with W = 22.6,
k = 1.57/L, and Ky = 8.25/L, the amplitude and speed of the resulting curvature waves closely match those
measured in experiments [19]. Fig. 2 (left) shows the resulting waveform over one period for the free-swimming MW
and (right) the propagation of curvature waves along its length. The intensity, as shown in the colorbar, corresponds

to the value of the curvature scaled by the length of the worm. For these parameters the distance the MW travels

per stroke V/(fL) = 0.0664 is very close to our experimental value V/(fL) ~ 0.07.



2 Results

The motion, dynamics, and speed of C. elegans swimming in a lattice of obstacles differ remarkably from those in
a featureless viscous fluid. During free-swimming, C. elegans executes strokes that have the appearance of repeated
concave-convex body-bends at a frequency of 1.5-2.0Hz [18-21, 23]. The resulting swimming speed can range from
0.1-0.35 mm/s [19, 25, 28], depending on the worm’s distance from the boundaries of the channel. In the micro-pillar
arrays, however, the gait and speed of the worm alters due to the geometric constraints and modifications of the
hydrodynamic forces imposed by the lattice structure. In this section, we present data from our experiments and MW
simulations characterizing these effects and quantifying how the gait, the locomotory path, and the speed vary as a
function of the spacing between the micro-pillars. The quantitative and qualitative similarities in the experimental
and MW simulation data demonstrate that mechanics and hydrodynamics, rather than biological sensing, may play
a strong role in the observed phenomena.

We begin by examining the variations in the worm’s trajectory through the lattice for different values of the
micro-pillar spacing relative to the worm'’s length, ¢/L (This choice stems from the fact that the number of pillars
the worm comes in contact with depends both on the spacing between the pillars and its length). Figure 3 shows
experimental data for the paths traversed by the worm in lattices with ¢/L = 0.35 (panels a, b, c), ¢/L = 0.47
(panels d, e, f), and q/L = 0.55 (panels g, h, i). It is readily apparent that there are distinct qualitative differences in
the trajectories for the different values of ¢/L. In the lattice with the smallest scaled spacing, where ¢/L = 0.35 (Fig.
3 a—c and Supplementary Movie 1), the worm is in constant contact with one or more pillars and executes higher
curvature, shorter wavelength undulations compared to the free-swimming gait. The typical locomotion paths consist
primarily of “trapped” motion in a small neighborhood, interspersed with high velocity motion along the diagonals
of the lattice. As the scaled spacing increases to q/L = 0.47, we observe a combination of extended high velocity
diagonal tracks and looped trajectories (see Fig. 3 d—f and Supplementary Movie 2). Here, contacts with obstacles
are less frequent, and the worm can more readily weave its way through the lattice. At ¢/L = 0.55, the lattice spacing
becomes comparable to the amplitude of a free-swimming worm and we find that the worm predominantly swims
between rows or columns of pillars, occasionally moving along the diagonal directions (Fig. 3 g-h and Supplementary
Movie 3). The contact between the worm and the pillars occurs very rarely and typically results in a turn and hence
a change in the direction of motion.

While forward locomotion is the worm’s primary gait in the lattice, we observe instances where it exhibits other
behaviors (Supplementary Movie 1). For example, the worm may reverse its direction of motion when it becomes
“trapped” between pillars or when it encounters a pillar head-on. We also observe the worm wrapping itself around
a pillar and then unwrapping and moving in a different direction. We suspect the worm is attempting to execute an

omega turn [22], but the presence of pillars constrains the extent to which it can bend its body.



Accompanying the changes in the swimming path are changes in the worm’s speed of locomotion. Figure 4(a)
shows the distribution of speeds relative to the free-swimming value, V/V;, for the three lattices shown in Fig. 3. We
measure the swimming speed in the absence of obstacles to be in the range Vy = 0.1 — 0.15 mm/s, depending on the
specific worm used in the experiment. The data are averages over multiple runs for each lattice spacing and includes
all types of locomotory behaviors.

The wide range of speeds the worm achieves in different lattices is immediately apparent, particularly for the
cases where ¢/L = 0.35 and ¢/L = 0.47. These speeds range from values that are less than the swimming speed,
V/Vy < 1, when the worm is “trapped” and localized to a small neighborhood, to values that are significantly greater
than its free-swimming speed. The latter is the more prevalent case for all lattices spacings. For ¢/L = 0.55, the
strong peak centered around V/V, &~ 2 corresponds to the worm swimming between rows and columns of pillars.
Although during this motion the worm attains speeds greater than its free-swimming value, we find that in a given
lattice, the highest speeds are achieved when it moves along the lattice diagonals. The arrows in Fig. 4(a) indicate
the peaks corresponding to diagonal paths. These tracks are particularly prevalent when ¢/L = 0.47, and it fact, we
find that it is here that the worm achieves its highest speed V/Vy &~ 9. When ¢/L = 0.35, motion along the lattice
diagonals still commonly occurs, but it does so at a speed V/V, = 6, less than when ¢/L = 0.47. For ¢q/L = 0.55,
the peak corresponding to diagonal tracks is dwarfed by the one corresponding to swimming along rows. Therefore,
even though the worm can achieve much higher speeds by moving along the lattice diagonals, it is more often found
moving between the rows and columns of pillars.

These diagonal trajectories are of particular interest since they are where the worm achieves the highest speeds.
In the subsequent analyses for motion on the diagonals, we only consider forward diagonal motion and discard
any instances where the worm pauses, becomes trapped, or wraps itself around a pillar, from the analyses. Before
analyzing how this speed enhancement varies with lattice spacing, it is important to note that the worm’s undulation
frequency also depends on the micro-pillar arrangement. Figure 4(b) shows the undulation frequency measured
along the diagonal trajectories as a function of /L. We see that f steadily increases from values that are close to
the crawling frequency at the lowest ¢/L to values that approach the free-swimming frequency at high ¢/L. This
variation in undulation frequency is evidence that the worm responds to different geometric constraints imposed by
the lattice through changes in the rate at which it flexes its musculature. Therefore, Fig. 4(b) shows the particular
curve in /L — f parameter space over which C. elegans chooses to operate. Since the speed of locomotion will depend
on both of these quantities and they can be varied independently in the simulations, the MW model serves as an
important platform with which to explore the effects of undulation frequency and the lattice spacing independently
and understand C. elegans’ particular choice of frequency when placed in a lattice with a given spacing.

As noted above and observed in [25], we find that when the nematode moves along the lattice diagonals, rather

than being hindered by the micro-pillars it achieves speeds that are much greater than its free-swimming value.



Figure 4(c) shows the experimentally measured speed relative to the free-swimming value, V/Vj, over the diagonal
tracks, as a function of the scaled lattice spacing ¢/L. The data shown here are from averages taken over multiple
diagonal tracks of 5 different worms for each lattice spacing. We see that the speed depends non-monotonically on
q/L where it first rises steadily to the peak value of V' =~ 9V}, for ¢/L ~ 0.47, then rapidly decays to V =~ 2V} for
q/L ~0.6.

Now we begin to make a detailed comparisons with our numerical MW model. In the simulations, we find that
for the experimental obstacle size R/L = 0.177, the MW moves exclusively along the lattice diagonals regardless of
the value of ¢/L. The speed at which the MW moves along this path, however, does depend on the value of ¢/L.
In Fig. 4(b), we compare the experimental values of V/V, with those determined from the MW simulations for two
different values of W. The simulation data is represented by the two solid curves with squares (W = 11.3) and
circles (W = 15.1), while the experimental data from Panel (a) is superimposed as triangles. There is an excellent
agreement between the experiments and the MW simulations regarding both the g/L-location of the peak velocity
and the magnitude of enhanced velocity (V/V,). Such an agreement with the MW underscores the important role
of the mechanical interactions between the worm and the micro-pillars in determining the speed at which it moves
through the environment. This variation in the speed of locomotion along diagonal tracks can be understood as
follows. At low values of ¢/L, we find that the locomotion speed is governed exclusively by the geometry of the
lattice and the worm’s frequency of undulation. In fact, before reaching its peak value, the velocity of the MW worm
follows closely the relation V = /2¢f (dashed lines in Fig. 4(d)), which signifies that the worm travels one row
and one column per stroke. In this regime, the worm is in constant contact with the lattice, pushing off each pillar
it encounters and meeting another on its back stroke. In the frame of reference attached to the worm, the rate of
arrival of the pillars is “in resonance” with the frequency of undulations. The peak in enhanced velocity is achieved
when ¢/L is such that the natural body-bends of the worm manage to partially wrap around the pillars at every
half-stroke (see Supplementary Movie 4). The MW simulations show that the ¢/L where the peak speed is realized
shifts to lower values as the undulation frequency (W) increases. Beyond the peak value, the rate at which the worm
encounters the obstacles no longer matches its undulation frequency, and the worm now requires multiple strokes
to move a single diagonal lattice spacing. This leads to the decay in speed observed in both the experiments and
MW simulations (see Supplementary Movie 5). It is important to note that even at high values of ¢/L the speed is
still twice the free-swimming value, V/V; &~ 2. Even occasional contacts with the obstacles significantly increase the
speed at which the worm moves.

An important quantity that indicates the effectiveness of each of the worm’s strokes is the scaled velocity, or
stroke efficiency V/(fL). The value of V/(fL) measures the fraction of body length the worm travels in one stroke.
This quantity, therefore, will vary with both the changes in the locomotion speed as well as undulation frequency.

The scaled velocity as a function of ¢/L is shown in Fig. 5(a). The triangles show the experimental data and the
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open symbols with solid lines show the data from simulations for three different values of W: W = 8.5 (diamonds),
W = 14.1 (squares), and W = 17.0 (circles). We observe that in the experiments, up to ¢/L = 0.47 where the worm
achieves its peak velocity, the scaled velocity is roughly constant with V/fL = 0.75 (i.e. the worm travels about
75% of its body length per stroke). Beyond this, V/fL decays with increasing lattice spacing and for the highest
q/L = 0.60, it travels only about 10% of its body-length per stroke. For each of the constant W simulations, there is
an initial linear increase in the scaled velocity for low q/L. For these values of /L, the MW moves along the lattice
diagonals and its velocity follows the relation V = v/2¢f. The scaled velocity is therefore V/(fL) = v/2¢q/L. This
relationship between V/(fL) and ¢/L is indicated by the dashed line in Fig. 5(a). For each W, the scaled velocity
follows this relation until its peak value is reached; the peak value itself is achieved at higher ¢/L as W increases.
As in the experiments, the MW simulation data shows a decrease in V/(fL) over larger values of ¢/L.

As the worm modifies its undulation frequency in response to changes in the lattice spacing, it is important to
also examine the dependence of the stroke efficiency on the undulation frequency. In Fig. 5(b), we show the variation
of the scaled velocity with respect to frequency for both the experiments and simulations. Here, the frequency is
normalized by its free-swimming value, fo. For the experiments the lattice spacing ¢/L is different for each data
point whereas each line corresponds to MW simulations with fixed ¢/ L. We find, however, that both the experiments
(triangles) and simulations (solid symbols + dashed lines), have the same trend in the data: an initial plateau region
followed by a decrease in scaled velocity with increasing frequency. This plateau region corresponds to cases where
the MW moves one diagonal lattice spacing in a single stroke and V' = v/2¢f. From the MW simulations, we also
see that the value f/fy where the plateau region ends shifts to higher values as the ¢/L increases.

In comparing the experimental and MW simulation data, we find that not only the changes in worm dynamics,
but also quantities such as the locomotion speed are captured by our simple mechanical model. With the MW model,
we may extend our results beyond the range parameters available to the experiments as well as examine quantities
that are of physical relevance, but which are not easily measurable in experiments, like the viscous dissipation and
hydrodynamic efficiency. Recall that C. elegans moves on the particular curve in the ¢/L — f parameter space
depicted in Fig. 4(b). With the MW simulation, we can explore the complete parameter space and determine how
quantities such as locomotion speed vary with respect to both parameters. To do so, we compile the simulation data
taken over a range of (¢/L, W) values and assemble the phase diagram shown in Fig. 6(a). In this figure, the color
of each marker indicates the value of V/(qf) for that point in ¢/L — W parameter space. We find that enhanced
locomotion along the diagonals with V = v/2¢f is realized over a significant portion of ¢/L —W space as indicated in
the region below the diagonal line in the diagram. As discussed above, this corresponds to the worm traversing one
diagonal lattice spacing in one stroke. The gait of the MW in this regime is shown in Fig. 6(c) where the centerline of
the worm is plotted every half undulation period. We designate this stroke as a 1 —1 stroke, signifying that the worm

moves 1 row and 1 column per period of undulation (see Supplementary Movie 4). The diagonal line also indicates
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the values of W where the peak speed is realized for fixed q/L. Above the line, the MW requires multiple strokes to
traverse one diagonal lattice spacing (see Fig. 6(d)). The lowest V/(qf) are realized when the worm requires many
strokes to move one spacing (see Supplementary Movie 5). These values are found at the upper-right hand corner of
the diagram where both ¢/L and W are the largest considered.

With the MW simulations, we may also examine quantities that are not readily accessible from the experiments.
One important quantity which we consider here is the hydrodynamic efficiency. The hydrodynamic efficiency, £ =
nLV?/D [4, 5], where D is the average viscous dissipation over one period, provides a measure of the speed of
locomotion achieved for a fixed power output per stroke. The values of £ are shown in Fig. 6(b) over the ¢/L — W
parameter space. We find that £ attains its maximum along the transition boundary of the enhanced locomotion
region identified as the diagonal line in Fig. 6(a). Recall that this line also coincides with the W values that yield
the highest speed for fixed ¢/L. This indicates that as the lattice spacing increases, the undulation frequency must
decrease in order for the hydrodynamic efficiency or speed to continue to realize its peak value. This is, in fact, the
opposite of the trend observed in the experiments where we found that C. elegans undulation frequency increases
with lattice spacing (Fig. 4(d)). This suggests that C. elegans is not adjusting its frequency to maximize its speed
or efficiency, as what might have been suspected beforehand.

While these simulations with obstacle size R/L = 0.177 accurately capture the important features of diagonal,
high-velocity locomotion in different lattices, we observe that the MW moves exclusively along the lattice diagonals.
The experiments, not surprisingly, show that C. elegans exits from these diagonal tracks repeatedly and changes
its direction of motion, resulting in a wide variety of paths including loops, turns, and swimming between rows or
columns (see Fig. 3). Next, we examine the motion of the MW in lattices with smaller obstacles by reducing the
radius of the obstacles from R/L = 0.177 to R/L = 0.121. We show that this simple modification in the geometry
reveals a regime in the parameter space where the MW exhibits a rich variety of dynamics similar to those observed
in the experiments (see Supplementary Movie 6).

The data for these MW simulations are shown in the phase diagram in Fig. 7. We again find two regions of
parameter space; one where the MW requires a single stroke to move one diagonal lattice spacing (V = v/2¢f) and
the other where multiple strokes are necessary (V' < v/2qf). The (¢/L, W) points corresponding to these two regions
are the blue triangles in the lower right corner, and the cyan triangles on the upper right, respectively. For this
obstacle size, we also see a third region at low values of ¢/L. Here, the MW is able to move out of locked diagonal
tracks and exhibits the remarkable variety of complex trajectories (see Supplementary Movie 6). The square markers
in the phase diagram indicate the (¢/L, W) where these non-diagonal trajectories are observed and the color of the
marker designates the type of trajectory. The side panels of Fig. 7 show the centerline of the worm at half-period
intervals for each of the different non-diagonal tracks. The light blue squares indicate parameter values where the

MW executes looped trajectories. The comparable experimental paths are shown in Fig. 3(d)—(f). The green squares
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correspond to swimming between rows of obstacles, which again was seen in the experiments, see Fig. 3(g) and (h).
The black squares indicate cases where the mechanical worm initially moves through the lattice, but eventually
undulates without translating. The pink squares indicate an asymmetric 2 — 1 diagonal motion where the worm
moves two rows up and one column sideways. As in the 1 — 1 gait (Fig. 6(c) and (d)), the MW can take one or
multiple strokes to move along the 2 — 1 diagonal. Both of these cases are shown in the side panel with the pink
square. We also find another interesting type of motion, designated by red squares, and it is not observed in the
experiments. Here, the worm weaves its way along a single column of obstacles as shown in the bottom panel of Fig.
7 with the red square. This mode is prevalent at very low values of both ¢/L and W. As shown in the panel, this
type of dynamics can manifest in several different ways. We find the MW can weave around one row per half-stroke
(1 —1 mode), or it moves in steps of two rows (2 — 2 mode), or it can alternate between one and two row steps (2—1
mode). All the three cases are depicted in the bottom panel of Fig. 7.

The rich variety of gaits demonstrated by the MW are brought out fully when we consider the remaining data
points in the parameter space, those designated by orange squares in Fig. 7. For these cases, the motion of the MW
through the lattice is significantly more complex, resulting in non-periodic trajectories where the worm switches,
seemingly at random, between the gaits already discussed. This gives rise to trajectories that appear “life-like” but
are solely the result of the contact and hydrodynamic interactions between the undulating body and the lattice of
obstacles, not stochasticity or behavioral response to sensing (Supplementary Movie 7).

Figure 8 shows an example of one of these trajectories and the non-periodic and “life-like” nature of the path is
strikingly clear (see Supplementary Movie 7). The track in the main panel shows the MW in full-period intervals
and the star denotes its starting point. The MW initially establishes a high velocity, 2 — 1 diagonal track. Box A
encloses a segment of this 2 — 1 gait and the details of the centerline dynamics over this window are shown in the
corresponding side panel. Instead of repeating this gait indefinitely, the MW now turns and reverses its direction
of motion. This portion is enclosed in box B and shown in detail in the side panel B. The MW then transitions to
swimming between two columns of obstacles, as shown within box C. The centerlines of this gait are shown in side
panel C, where a number of almost in-place undulations can be observed. The MW continues to move in complex,
non-periodic fashion, even beyond the time segment shown here. This behavior is quite remarkable considering that
such a realistic motion emerges from our purely mechanistic model and, moreover, accurately replicates the motion
of the worm observed in the experiments. For comparison, Fig. 9 shows a segment of the experimental track depicted
in Fig. 3(a). The main panel is formed by taking frames at half-period intervals from the experimental video and
superimposing them over a digitally generated lattice. The boxes marked A, B, and C indicate three different gaits
and correspond to those exhibited by the MW: box A shows a 2—1 diagonal motion, box B shows the worm swimming
in-between two columns, and box C shows a turn and transition from inter-column swimming to a 2 — 1 diagonal

motion. The side panels marked A, B, and C, show images of the centerlines of the worm plotted every half-period,
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for the corresponding areas in the main panel. While in a different order, we see the simulations exhibit both the
gaits and transitions between them to yield an overall path that is comparable to that observed in the experiments.

Contributing to the “life-like” quality of the MW’s dynamics are the abrupt changes in speed that take place as
it changes gaits. The bottom panel of Fig. 8 shows the scaled velocity V/fL of the MW, as a function of time scaled
by the period of the undulations. The shaded areas correspond to time windows shown in A, B, and C. The scaled
velocity increases from V/(fL) = 0.25 to V/(fL) = 0.7 for window A and reaches an average of V/(fL) ~ 0.75 for
window B where the MW turns through the lattice. The velocity then drops rapidly to V/(fL) ~ 0.1 for window C,
where the worm swims between columns. Likewise, the bottom panel in Fig. 9 shows the scaled velocity V/fL as a
function of time for the experimental track. The shaded areas correspond to time windows shown in A, B, and C
(notice that the regions B and C in this figure are reversed with respect to Fig. 8). While the times spent executing
the particular gaits are different, the experiments and simulations have similar average values scaled velocity over
the time period indicated for each gait. Both also exhibit characteristic fluctuations in speed that might off-hand
be associated with behavioral changes, but in the case of the MW, we observe that they can occur simply from the
interactions with obstacles. Further, the simulations reproduce quite well the rapid changes in speed seen in the
experimental data as the worm transitions between gaits. These stop-and-go features combined with the changes
in gait exhibited by the MW simulations result in overall dynamics that capture the character of the motion of

C. elegans in this environment.

3 Discussion and Conclusions

In this study, we have examined in detail the dynamics of locomotion of the model organism C. elegans through
a square lattice of micro-pillars. Our experiments demonstrate that even this simple arrangement of obstacles
significantly affects the nematode’s wave kinematics; the speed and path of locomotion through this environment
strongly depends on the lattice spacing and the degree of confinement. In particular, we found that when the worm
moves along the lattice diagonals, it does so with speeds much higher than the free-swimming values and can be as
much as an order of magnitude greater for certain lattices. We examined these changes using the mechanical worm
(MW) model that incorporates the hydrodynamic and contact interactions between the undulating worm and the
obstacles. The MW model quantitatively reproduces both the high speeds observed along lattice diagonals, and its
dependence on lattice spacing and undulation frequency. The obstacles function as points against which the worm
can push and pull. Perhaps more surprising is that like the actual C. elegans worm, the MW is able to exhibit
complex trajectories through the lattice where it transitions between gaits, constantly changing its direction and
modifying its speed. The correspondence between the experiments and simulations reveal that some of the changes

in locomotory dynamics that might, through visual inspection, be attributed to stochasticity or biophysical sensing
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mechanisms, are primarily due to geometric constraints and hydrodynamics.

Variations in the C. elegans undulation frequency has been a topic of current research, examined primarily in
Newtonian fluids with different viscosities [18-21]. In these studies, the wave-form remains fixed but the frequency
is found to decrease with increasing viscosity of the fluid. These experimental observations, in conjunction with the
drag-based resistive force model, suggest that C. elegans may be utilizing these frequency variations to maintain a
constant mechanical load or power output as the viscosity of the medium changes. Similar frequency changes have
been observed in wet granular media, where the frequency decreases as the volume fraction of grains is increased
[28, 29]. In our experiments, a similar increase in mechanical load is to be expected as the lattice spacing decreases.
We found that when placed in the lattice, C. elegans lowers its undulation frequency, approaching its crawling value
in the lattice with the smallest spacing (¢/L = 0.37) and steadily increasing toward the free-swimming value as the
lattice spacing increases. While this modulation of frequency is exhibited by C. elegans in response to the changes
in its surroundings, the MW simulations show that it does not correlate with maximizing hydrodynamic efficiency
or locomotion speed.

As it is the mechanical interactions between C. elegans and the micro-pillars that lead to the increase in its speed
and a modification in its path, similar changes are to be expected in other, more complex obstacle-laden environments.
In random environments, for example, these mechanical interactions could allow undulatory organisms to search a
greater area in a given period of time. This has indeed been observed for C. elegans crawling on an agar gel substrate
covered with randomly distributed sand particles [43]. Speed enhancement and an increase in stroke efficiency have
also been observed in C. elegans locomotion through wet granular media [28, 29]. Here, the interactions not only
produce variations in the worm’s dynamics, but also allow the worm to rearrange the surrounding grains. The
effects brought about by the mechanical interactions are also not limited to C. elegans. Sperm cells interacting with
the fiber network comprising cervical mucus may rely on these interactions to enhance their speed. In fact, the
porosity of the network varies over the course of the menstrual cycle [44, 45], affecting the spacing of the fibers and,
consequently, changing the speed at which the sperm can swim. This mechanism of speed enhancement may also
be essential to gametes of the malaria parasite, which swim through a dense suspension of red blood cells while
under assault from human anti-bodies [13, 14]. Gamete synthesis to fertilization takes under thirty minutes [13] and
enhanced locomotion through mechanical interactions with the red blood cells could certainly contribute to the speed
of this process as well. It is also interesting to note that even for terrestrial locomotion in higher organisms, such as
cockroaches [46], it has been shown that mechanics plays a significant role in gait stabilization and, as in our study,
speed selection.

In conclusion, we have established a combined experimental and theoretical platform, to investigate questions
regarding locomotion of undulating microorganisms in realistic, structured environments. Our approach of com-

bining experiments and hydrodynamic simulations allow us not only to address questions regarding the locomotory
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behavior of a large class of microorganisms, but also extract information about quantities like viscous dissipation
and hydrodynamic efficiency, which are usually difficult to measure experimentally. As a result, we can accurately
determine the competing effects of geometry, hydrodynamics, and contact interactions on the ultimate behavior of
an undulating swimmer. In addition, our results may also have important implications for the behavior of C. elegans
in a realistic soil-like environment, not only in terms of its ability to navigate obstacles, but also for its overall motion
in structured environments.

There are several key areas that are being investigated currently. We are experimentally investigating more
complex obstacle arrangements to quantify how gradients in the obstacle locations can further affect the dynamics
and speed of undulatory swimmers. We are also experimentally investigating the locomotory behavior of a variety
C. elegans mutants, which extend the range of geometric and kinematic parameters. Additionally, we are conducting
experiments to examine the kinematics of mechano-sensory deficient C. elegans mutants to ascertain the role of
mechano-sensation on end behavior. On the simulations front, we are currently exploring in more detail the worm’s
power output in the lattice by allowing the MW model to freely adjust its frequency and operate with a constant
power output. Through these mutant and modified MW studies, we aim to examine the role of neural feedback,
especially with regard to the frequency modulation observed in our experiments. We are also extending our MW
model to explore undulatory locomotion in more complex environments by incorporating both randomness in the

obstacle locations as well as obstacle compliance, bringing our MW model closer to realistic soil-like environments.
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Figure 1: Experimental system and numerical model. (a) An experimental image showing C. elegans in a lattice
of PDMS micro-pillars. (b) Experimental centerline of the worm in a lattice produced by superimposing multiple
frames from a movie (pillars not shown). The centerline is obtained from the binarized image after background
subtraction (Inset). (c¢) The schematic diagram of the simulation model showing the mechanical worm (MW) in
a lattice of obstacles and the relevant geometric parameters. Here, R is the radius of the obstacles, ¢ the lattice
spacing, AL the distance between consecutive worm segments, t the tangent to the centerline, and Y gives the
position of the center of a segment. (d) A force and torque diagram detailing the forces and torques experienced by
each segment of the mechanical worm. For the forces, F? is the repulsive contact barrier force between the segment
and the obstacles, FC the constraint force due to the inextensibility of the chain, and F¥ the hydrodynamic force,
or drag on the segment. In the case of torques, 7% is the elastic torque that arises due to curvature of the centerline,
7€ the constraint torque associated with centerline inextensibility, 77 the active torque that drives the undulation,
and 7 the viscous torque on the segment.
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Figure 2: Wave motion and curvature of the simulated mechanical worm (MW) in the absence of obstacles. The
left image shows the wave motion over one period for the MW model tuned to reproduce free-swimming worm-like
kinematics. The parameters specifying the driving torque that yield this motion are W = 22.6, k = 1.57/L, and
Ky =8.25/L. In this image, the MW is moving downward and the gray level fades as time progresses. The contour
image on the right shows the propagation of the curvature waves for this free-swimming MW. These waves closely
match experimentally measured values for speed and amplitude [19].
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Figure 3: Experimental tracks of the worm in lattices with scaled spacings. Panels (a)—(c) ¢/L = 0.37; Panels (d)—(f)
q/L = 0.47, and Panels (g)—(i) ¢/L = 0.55. The radius of the pillars is 175 ym. The scale bar in each panel is 4 mm
and each lattice is 2 em x 2 ¢m in size. The time duration for each track is also shown. In each panel, the open
square represents the starting point and the open circle represents the end point of the path. At low values of ¢/L,
the worm moves consistently along lattice diagonals, but becomes localized to small neighborhoods after colliding
with an obstacle. At intermediate values, along with high velocity diagonal tracks, loop-like trajectories are more
common. At large values, we observe motion that is predominantly long straight-line segments, either in horizontal
or vertical direction (panels (g) and (h)) or along the diagonals (panel (i)).
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Figure 4: Velocity and frequency variations in experiments and simulations. Panel (a) shows the fractional count
of V/V, from the experiments. Each curve corresponds to one of the different values of ¢/L: ¢/L = 0.35 (dash-dot
line), ¢/L = 0.47 (solid line), and q/L = 0.55 (dashed line). The arrows point to the peaks associated with swimming
along the lattice diagonals. Values below V/Vj = 1 correspond to situations when the worm is “trapped” and moves
even slower than the free-swimming case. (b) Experimental data for the nematode’s average undulation frequency
f as a function of ¢/L; f monotonically increases with increasing ¢/L. (c¢) The experimentally measured values of
enhanced velocity, V/Vp, when the worm moves along the diagonal, are shown as a function of ¢/L. V/V} exhibits
non-monotonic behavior and reaches a peak value of V/Vy ~ 9 when ¢/L = 0.47. (d) The solid lines with markers
show the enhanced velocity given by the MW model and are compared to the corresponding experimental values
(solid triangular markers). The solid line with square markers indicates the enhanced velocity for the simulations
where W = 11.3, whereas the solid line with the circular markers corresponds to those where W = 15.1. The dashed
lines indicate speeds given by V' = v/2¢f; for both values of W, the simulations data for V/Vj follows this relation
until V/V; reaches its peak value.
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Figure 5: Variation of the scaled speed, V/(fL), with ¢/L and f in experiments and simulations. The scaled speed
provides the stroke efficiency, or the distance the worm travels in one stroke relative to its length. Panel (a) shows
V/(fL) as a function of ¢/L. The solid triangular markers show the experimental data, whereas the solid lines with
hollow markers show the data from simulations for three different values of W: W = 8.5 (diamonds), W = 14.1
(squares), and W = 17.0 (circles). The dashed line shows the value of V/(fL) when V = v/2¢L. (b) The plot
shows V/(fL) as a function of undulation frequency normalized by the free-swimming value, fy. The solid triangular
markers again correspond to the experimental data, while the dashed lines with solid markers show simulation data
for three different values of ¢/L: q/L = 0.43 (diamonds), ¢/L = 0.46 (squares), and ¢/L = 0.51 (circles). In both
panels, we see a good agreement between the experiments and simulations regarding the trends in the variation of
V/(fL) as a function of ¢/L and f/fo, respectively.
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Figure 6: Simulation data over the ¢/L — W parameter space. Panel (a) shows the values of the speed normalized
by the product of the lattice spacing and frequency. (b) The hydrodynamic efficiency & = nLV?/D given by the
mechanical worm model is shown over the parameter space. Below the solid black line in (a), the worm requires a
single stroke to move one diagonal lattice spacing and consequently V = v/2¢f. The gait of the mechanical worm in
this regime is shown in panel (c¢) where the centerline of the worm is plotted every half undulation period. Above
the line, the worm needs multiple strokes and consequently, V' < v/2¢f, as shown in panel (d). The hydrodynamic
efficiency (panel (b)) attains its maximum values along the solid-line shown in panel (a).
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Figure 7: The phase diagram shown in the upper left-hand corner indicates the behavior of the mechanical worm
in lattices with obstacle size R/L = 0.121 over the ¢/L — W parameter space. In addition to finding regions where
the worm moves exclusively along the lattice diagonals and requiring either one (blue triangles) or multiple (cyan
triangles) strokes (see Fig. 6), the mechanical worm also exhibits a remarkable variety of trajectories which are
sensitive to the specific values of ¢/L and W. The red squares indicate cases where the worm weaves its way around
a single row or column of pillars, the pink square correspond to an asymmetric 2—1 diagonal motion, green squares
correspond to swimming between rows of obstacles, and the light blue squares indicate parameter values where the
mechanical worm executes closed loop trajectories. The motions of the mechanical worm corresponding to each
of these cases are depicted in the panels where the centerline of the worm is shown at half-period intervals. The
black squares indicate cases where the mechanical worm initially moves through the lattice, but eventually undulates
without translating. More complex non-periodic motion is also observed, indicated here by orange squares, where
the worm constantly changes the way it moves through the lattice demonstrating many of the motions depicted in
the panels. This case is shown in detail in Fig. 8.
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Figure 8: Complex trajectory of the MW model through a lattice where R/L = 0.121, ¢/L = 0.331, and W = 14.1
(orange squares Fig. 7). In the main image, the position of the centerline is plotted every undulation period and the
asterisk indicates the MW’s initial position. The accompanying panels show the details of the centerline motion for
the indicated portions of the trajectory where the MW moves (A) along the 2-1 diagonal, (B) turning and weaving
through the lattice, and (C) swimming in-between the rows of pillars. The inset panels show the details of the
undulations in these three modes. The plot on the lower portion of the figures shows the scaled speed, V/(fL), as
a function of time scaled by the period of undulations. The shaded areas correspond to the time windows shown in
each of the insets A, B, and C, respectively.
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Figure 9: Complex locomotory gaits from the experiments. The top panel shows the trajectory of the nematode
through a lattice with ¢/L = 0.37 for 32 periods of undulation. As with the previous simulation results (Fig. 8), the
worm moves (A) along the 2-1 diagonal, (B) straight between rows of pillars, and (C) transitioning between these
two modes. The graph on the bottom shows the scaled speed, V/(fL), as a function of time scaled by the average
period of undulation. The shaded regions correspond to the time windows associated with the worm motions detailed
in the panels.
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