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Abstract
We study the Green-Wins Solitaire game, which is a single player edge flipping game played on
a given edge-colored geometric triangulation. An edge is flippable if it is a diagonal of a convex
quadrilateral, and a flip replaces it by the other diagonal of that quadrilateral. Initially all edges
are colored black. A move consists of flipping a black edge and coloring the resulting new edge
along with all four edges of the surrounding convex quadrilateral green. The goal is to maximize
the number of green edges. We show that in every triangulation on n vertices, for n sufficiently
large, at least a fraction of 5/18 ≈ 0.277 edges can be colored green. On the other hand, there
exist infinitely many triangulations in which no more than a 1/3 fraction of edges can be colored
green. These results improve earlier bounds of Aichholzer et al. [1].

1 Introduction

In this paper, the term triangulation denotes a maximal geometric plane graph: all edges are
realized as straight-line segments and all bounded faces are triangles. Conversely, a triangle
in a triangulation is a bounded facial triangle. Aichholzer et al. [1] studied various games
related to triangulations, in particular, the Green-Wins Solitaire game. This game is played
on a given triangulation, which we consider as edge-colored.

Edge flips. An edge in a triangulation is flippable if the union of the two incident faces
forms a convex quadrilateral. Flipping a flippable edge amounts to replacing said edge
by the other diagonal of the surrounding convex quadrilateral; see Figure 1. We say that
these five edges, the flipped edge and the four edges of the surrounding quadrilateral, are
affected by the flip. Edge flips are among the most prominent and well-studied operations
for local modification of triangulations and, more generally, planar subdivisions. They serve
as a crucial tool in many applications, such as counting and sampling, or optimization, for
instance, to compute Delaunay triangulations; see, e.g., the survey by Bose and Hurtado [2].
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Figure 1 A sequence of moves in Green-Wins Solitaire. The flipped edge is shown red dotted.

Green-Wins Solitaire. Initially all edges are colored black. A move consists of picking
a flippable black edge. This edge is flipped, and then all edges that are affected by the
flip are colored green; see Figure 1. As green edges cannot be picked anymore, the set of
edges flipped over the course of the game is simultaneously flippable [3], that is, the convex
quadrilaterals surrounding the flipped edges are pairwise interior-disjoint. It also follows
that the order of edge flips in a game is irrelevant, and we can describe every strategy as a
set of (simultaneously flippable) edges.

For a triangulation T let γ(T ) denote the ratio of edges of T that can be colored green.
Similarly, let γ := infT γ(T ), where T is sufficiently large so as to exclude trivial cases like
a single triangle or a K4 (where no edge can be flipped). Aichholzer et al. [1] show that
1/6 ≤ γ ≤ 5/9 and specifically ask whether γ ≥ 1/2. They also show that an optimal set of
edges to flip can be computed in linear time for convex point sets.

Improvements. The lower bound γ ≥ 1/6 uses a lower bound for the number of simulta-
neously flippable edges in any triangulation by Galthier et al. [3]. Later Souvaine et al. [7]
improved this bound by showing that in any (geometric) triangulation on n vertices at least
(n− 4)/5 edges are simultaneously flippable, which is best possible in general [3]. Plugging
this bound into the argument of Aichholzer et al. [1] immediately gives γ ≥ 1/5 = 0.2. Our
goal in the following is to further improve this lower bound to 5/18 ≈ 0.277 > 1/4.

I Theorem 1. In every triangulation of n points, for n sufficiently large, there exists a
simultaneously flippable set of edges that affects at least a 5/18 fraction of all edges.

Before attacking the lower bound, let us note that the upper bound γ ≤ 5/9 can be easily
improved by considering families of triangulations for which the lower bound on the number
of simultaneously flippable edges is tight (see Figure 2). It must have been an oversight that
this was not observed by Aichholzer et al. [1] because the upper bound on the number of
simultaneously flippable edges [3] was already known at that time.

I Observation 2. For infinitely many n ∈ N, there exists a triangulation on n points such
that every simultaneously flippable set of edges affects at most n− 4 out of 3n− 6 edges.

In summary we have 5/18 ≤ γ ≤ 1/3. The rest of the paper is devoted to derive the
lower bound and prove Theorem 1.

2 Preliminaries

Sets of triangles. Consider a triangulation T on n ≥ 5 vertices and a set U of triangles in
T . The unbounded face is bounded by a cycle of r vertices that form the convex hull, where
3 ≤ r ≤ n. By the Euler Formula, T has 3n− r − 3 edges and 2n− r − 1 faces, all but one
of which are triangles. A vertex or edge of T is interior if it is not on the convex hull.

A vertex or edge of T is (1) internal to U if all incident faces are in U , (2) external to U
if no incident face is in U , or (3) on the boundary of U if it is incident to at least one face
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(a) (b) (c)

Figure 2 The upper bound construction for the number of simultaneously flippable edges by
Souvaine et al. [7]. Recursively the central vertex of K4 subconfigurations is replaced by a hexagon,
connected as shown in (b). All flippable edges are shown in red; they appear in triangles. In each
such triangle, no more than one edge can be selected for any simultaneous flip.

in U and at least one face that is not in U . Note that a vertex or edge on the convex hull
is not internal to U by definition. See Figure 3a for illustration.

(a) U (b) T ∗|U

Figure 3 (a) A set U of gray triangles with 1 internal vertex (red), 16 internal edges, 3 compo-
nents, 1 hole, and 19 boundary edges (red). Confirming Alpaca 3 we have 3 ·1+3 ·1+19 = 16+3 ·3.

Let T ∗|U denote the following graph on the triangles of T : Two triangles of T are
connected in T ∗|U if (1) they share an edge and are both in U or (2) they share a vertex
and are both not in U . A component of U is a component of U in T ∗|U . A hole in U is
a component of T ∗|U \ U that is contained inside a cycle of triangles from U in T ∗|U . We
obtain the following variation of the Euler Formula for sets of triangles in a triangulation.1

I Alpaca 3. Consider a triangulation T and a subset U of triangles of T . Then

3h+ 3vi + eb = ei + 3c,

where h denotes the number of holes in U , vi denotes the number of internal vertices of U ,
eb denotes the number of boundary edges of U , ei denotes the number of internal edges of U
and c denotes the number of components of U in T ∗|U .

Strategy. Let F denote a maximum size set of simultaneously flippable edges in T , and let
U denote the set of triangles in T that are incident to an edge in F . We flip the f := |F |

1 It is named after the cute animals that the authors watched when working on this problem and they
realized: It is not a lama but an alpaca. . .
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edges in F and color them green. For every flip, the four edges of the bounding quadrilateral
are also colored green. However, each of these edges may be colored green twice overall in
case the edge is incident to two triangles from U . Exactly the eb edges on the boundary of
U are colored once only. Therefore, the number of green edges after flipping F is

f + 4f/2 + eb/2 = 3f + eb/2. (GF)

In order to bound this quantity, we want to obtain a good lower bound for eb to combine
with the known lower bound f ≥ (n− 4)/5.

I Lemma 4. We have eb ≥ 4c.

Proof. As T is a triangulation, every component of U in T ∗|U is bounded by at least three
edges. Furthermore, every component of U consists of pairs of triangles and hence an even
number of triangles. A triangulation whose outer boundary forms a triangle corresponds to
a maximal planar graph, which has 2n − 5 bounded faces—an odd number. Therefore, no
component of U has a triangle as an outer boundary. J

3 Counting black edges: Proof of Theorem 1

We color the edges of T as follows. An edge e of T is colored green if it is incident to a triangle
from U ; otherwise, e is colored black. Note that we work with the original triangulation T ,
no edges are flipped. If a black edge was flippable, then we could flip it to color more edges
green, contradicting the maximality of F . Hence no black edge is flippable. As a first step
we observe that not too many vertices, relatively speaking, are on the convex hull.

I Lemma 5. For every α ∈ (0, 1) and r ≥ 3α
1+αn, at least an (α− ε) fraction of the edges in

T are green, where ε = ε(n) tends to zero when n→∞.

Proof. At least r−3 edges are flippable in T [4]. Clearly, every flippable edge can be colored
green: if it is not, then flip it. Hence, at least a fraction of (r − 3)/(3n − r − 3) edges is
colored green. This expression is monotonically increasing in r, for 3 ≤ r ≤ n. Therefore,

r − 3
3n− r − 3 ≥

3α
1+αn− 3

3n− 3α
1+αn− 3

= αn− (1 + α)
n− (1 + α) ≥ α−

2
n− 2

which converges to α, for n→∞. J

In the following, we investigate the subgraph B of T that is induced by the black edges.
The vertices of B fall into three groups: vertices on the convex hull, vertices on the boundary
of U , and internal vertices (vertices that are not on the convex hull and not incident to any
green edge). An edge of B is internal if it is incident to two triangles in B. In particular,
an internal edge is not a convex hull edge.

Following standard terminology [6], we call an edge e = uv of T separable at its endpoint
u if there exists a line ` through u so that e is the only edge of T incident to u on one side
of `. In other words, u is pointed (has a free angle ≥ π) in T \ e. We observe (cf. [5, 6]):

(S1) Every unflippable edge is separable at one of its endpoints and only the convex hull
edges are separable at both endpoints.

(S2) At an interior vertex v of degree ≥ 4, at most two incident edges are separable; if two
incident edges are separable, then they are consecutive in the circular order around v.
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In particular, (S1) implies that an edge that is incident to two convex hull vertices is
either a convex hull edge or flippable. So no internal edge of B connects two convex hull
vertices. By the following lemma, all internal vertices of B have degree 3 (in B and T ).

I Lemma 6 ([5, Lemma 4.2]). In a triangulation, every interior (not on the convex hull)
vertex of degree four or higher is incident to a flippable edge.

In a triangulation, no two interior degree three vertices are adjacent. Let us bound the
number of black edges. Every black edge connects two vertices from the abovementioned
three groups: At most r edges are convex hull edges, and every edge that is incident to an
internal vertex is incident to exactly one internal vertex (because every internal vertex has
degree three). All remaining edges are incident to at least one vertex on the boundary of U
but not on the convex hull (because there is no internal black edge between any two convex
hull vertices). Denote the number of these remaining edges by ei, denote by d3 the number
of internal (hence degree-3) vertices of B, and denote by eC the number of convex hull edges
on the boundary of U . We select F so that the number d3 is smallest over all maximum size
sets of simultaneously flippable edges in T .

I Lemma 7. We have 3d3 + eC ≤ 2eb.

Let us derive a bound for ei by applying Alpaca 3 to T \ U . The boundary of T \ U
is formed by edges that are on the convex hull or on the boundary of U , and there are
(eb− eC) + (r− eC) = eb+ r−2eC such edges. The edges incident to the d3 internal vertices
of B are not counted in ei, and so we have no internal vertices to consider. Every hole
in T \ U corresponds to at least one separate component of U , which in turn corresponds
to a separate component of U in T , and so the number of holes is upper bounded by c.
Altogether we obtain

3c+ eb + r − 2eC ≥ ei. (1)

I Lemma 8. There are no more than 3eb + 3c+ 2r − 4eC black edges.

Proof. We have exactly r− eC black convex hull edges, exactly 3d3 edges that are incident
to an interior vertex, and exactly ei other edges. Using Lemma 7 and (1), we can bound the
number of black edges as (r−eC)+3d3 +ei ≤ (r−eC)+(2eb−eC)+(3c+eb+r−2eC). J

I Lemma 9. There are at least 3(n− r − eb − c− 1) + 4eC green edges.

Proof. The total number of edges in T is 3n− r − 3. Thus, by Lemma 8, we have at least
(3n− r − 3)− (3eb + 3c+ 2r − 4eC) = 3(n− r − eb − c− 1) + 4eC green edges. J

If we head for a bound of γ ≥ α, then we may assume that

c ≤ 3n
(
α

2 −
1
10

)
− α

2 r.

Otherwise, by Lemma 4 and the lower bound f ≥ (n− 4)/5, we have

3f + 1
2eb ≥

3
5n+ 2c ≥ 3

5n+ 3n
(
α− 1

5

)
− αr ≥ α(3n− r − 3),

and we are done. In combination with (GF) and Lemma 9 we get

3f + 1
2eb ≥ 3(n− r − eb − c)
7
2eb ≥ 3(n− r − f − c)
1
2eb ≥

3
7(n− r − f − c)
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and, therefore,

3f + 1
2eb ≥ 3f + 3

7(n− r − f − c)

= 18
7 f + 3

7(n− r − c)

≥ 18
35n+ 3

7(n− r − c)

= 33
35n−

3
7(r + c)

≥ 33
35n−

3
7r −

3
7

(
3n
(
α

2 −
1
10

)
− α

2 r
)

= 1
70

(
(75− 45α)n− (30− 15α)r

)
.

Thus, the fraction of green edges is at least

3f + 1
2eb

3n− r ≥
(75− 45α)n− (30− 15α)r

70(3n− r) = 1
70

(
30− 15α− 15n

3n− r

)
.

The fraction −15n
3n−r is monotonically decreasing as a function of r and so it is minimized for

r maximal, that is, r = 3α
1+αn, due to Lemma 5. In this case, we obtain a fraction of

1
70

(
30− 15α− 15n

3n− 3α
1+αn

)
= 1

70

(
30− 15α− 5(1 + α)

)
= 1

14(5− 4α).

Optimizing for α yields γ ≥ α = 5/18 > 0.277, which completes the proof of Theorem 1.

References
1 Oswin Aichholzer, David Bremner, Erik D. Demaine, Ferran Hurtado, Evangelos Kranakis,

Hannes Krasser, Suneeta Ramaswami, Saurabh Sethia, and Jorge Urrutia. Games on
triangulations. Theoret. Comput. Sci., 343(1–2):42–71, 2005. URL: https://doi.org/10.
1016/j.tcs.2005.05.007.

2 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom. Theory Appl.,
42(1):60–80, 2009. URL: https://doi.org/10.1016/j.comgeo.2008.04.001.

3 Jérôme Galtier, Ferran Hurtado, Marc Noy, Stephane Perennes, and Jorge Urrutia. Simul-
taneous edge flipping in triangulations. Internat. J. Comput. Geom. Appl., 13(2):113–133,
2003. URL: https://doi.org/10.1142/S0218195903001098.

4 Michael Hoffmann, André Schulz, Micha Sharir, Adam Sheffer, Csaba D. Tóth, and Emo
Welzl. Counting plane graphs: Flippability and its applications. In János Pach, editor,
Thirty Essays on Geometric Graph Theory, pages 303–325. Springer-Verlag, 2013. URL:
https://doi.org/10.1007/978-1-4614-0110-0_16.

5 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
Comput. Geom., 22(3):333–346, 1999. URL: https://doi.org/10.1007/PL00009464.

6 Micha Sharir and Emo Welzl. Random triangulations of planar point sets. In Proc. 22nd
Internat. Sympos. Comput. Geom., pages 273–281, 2006. URL: https://doi.org/10.
1145/1137856.1137898.

7 Diane L. Souvaine, Csaba D. Tóth, and Andrew Winslow. Simultaneously flippable edges
in triangulations. In Computational Geometry—XIV Spanish Meeting on Computational
Geometry, volume 7579 of Lecture Notes Comput. Sci., pages 138–145. Springer-Verlag,
2011. URL: https://doi.org/10.1007/978-3-642-34191-5_13.

https://doi.org/10.1016/j.tcs.2005.05.007
https://doi.org/10.1016/j.tcs.2005.05.007
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1142/S0218195903001098
https://doi.org/10.1007/978-1-4614-0110-0_16
https://doi.org/10.1007/PL00009464
https://doi.org/10.1145/1137856.1137898
https://doi.org/10.1145/1137856.1137898
https://doi.org/10.1007/978-3-642-34191-5_13

	Introduction
	Preliminaries
	Counting black edges: Proof of Theorem 1

