Colorings with only rainbow arithmetic progressions
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Abstract

If we want to color 1,2,...,n with the property that all 3-term arithmetic progressions are
rainbow (that is, their elements receive 3 distinct colors), then, obviously, we need to use at least
n/2 colors. Surprisingly, much fewer colors suffice if we are allowed to leave a negligible proportion
of integers uncolored. Specifically, we prove that there exist «, 8 < 1 such that for every n, there
is a subset A of {1,2,...,n} of size at least n — n®, the elements of which can be colored with
n? colors with the property that every 3-term arithmetic progression in A is rainbow. Moreover,
B can be chosen to be arbitrarily small. Our result can be easily extended to k-term arithmetic
progressions for any k > 3.

As a corollary, we obtain a simple proof of the following result of Alon, Moitra, and Sudakov,
which can be used to design efficient communication protocols over shared directional multi-channels.

There exist o/, 8’ < 2 such that for every n, there is a graph with n vertices and at least (72‘) —n®

edges, whose edge set can be partitioned into at most n? induced matchings.

Dedicated to the 80th birthday of Endre Szemeréd;.

1 Introduction

Szemerédi’s regularity lemma [14] started a new chapter in extremal combinatorics and in additive
number theory. In particular, it was instrumental in proving a famous conjecture of Erdds and
Turan, according to which, for every real number § > 0 and every integer k& > 0, there exists a
positive integer n = n(d, k) such that every subset of [n] = {1,2,...,n} that has at least dn elements
contains an arithmetic progression of length £ (in short, a k-AP); see [13]. The k = 3 special case of
this theorem, originally proved by Roth [11], also follows from the celebrated triangle removal lemma
[12], which is another direct consequence of the regularity lemma. It has several other closely related

formulations and consequences:
1. If A is subset of [n] with no 3-AP, then |A| = o(n).

2. If G is a graph on n vertices whose edge set can be partitioned into n induced matchings, then

|E(G)| = o(n?).
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3. If G is a graph on n vertices which has o(n?) triangles, then one can eliminate all triangles by
removing o(n?) edges of G.

4. If H is a system of triples of [n] such that every 6-element subset of [n] contains at most 2
triples in H, then |H| = o(n?).

More precisely, the above statements apply to any infinite series of sets A, graphs G, and triple
systems H, resp., where n — oo.

An old construction of Behrend [5] shows that there are 3-AP-free sets A C [n] of size at least
ne~OW1081) 5o that 1 is not far from being tight. Ruzsa and Szemerédi [12] observed, that Behrend’s
construction can be used to show the existence of graphs G with n vertices and |E(G)| > n2e=©(Viogn)
edges that can be partitioned into n induced matchings. Hence, 2 is also nearly tight, and the same
is true for 3 and 4.

Szemerédi’s theorem on arithmetic progressions immediately implies van der Waerden’s theorem
[15]: For any integer k > 3, let c¢x(n) denote the minimum number of colors needed to color all
elements of [n] without creating a monochromatic k-AP. Then we have lim,,_,o, cx(n) = oco.

How many colors do we need if, instead of trying to avoid monochromatic k-term arithmetic
progressions, we want to make sure that every k-term arithmetic progression is rainbow, that is, all
of its elements receive distinct colors? For instance, it is easy to see that for k = 3, we need at least
n/2 colors. Surprisingly, it turns out that much fewer colors suffice if we do not insist on coloring all
elements of [n]. In particular, there is a subset of A C [n] with |A| = (1 —o(1))n whose elements can
be colored by n®) colors with the property that all 3-term arithmetic progressions in A are rainbow.

More precisely, we prove the following result.

Theorem 1. There ezist a, 5 < 1 with the following property. For every sufficiently large positive
integer n, there is a set A C [n] with |A| > n —n® and a coloring of A with at most n® colors such
that every 3-term arithmetic progression in A is rainbow.

Moreover, for every 8 > 0, we can choose o < 1 satisfying the above conditions.

n
2

partitioned into a small number of induced matchings. The first such constructions were found by

Theorem 1 can be used to construct graphs with n vertices and (1 —o(1))(5) edges which can be

Alon, Moitra, and Sudakov [2]. Theorem 1 easily implies the main result of [2], which is as follows.

Corollary 2. There exist o', 3 < 2 with the following property. For every sufficiently large positive
integer m, there is a graph with n vertices and at least (g) —n® edges that can be partitioned into
n? induced matchings.

Moreover, for every 8/ > 1, we can choose o/ < 2 satisfying the above condition.

Dense graphs that can be partitioned into few induced matchings have been extensively studied,
partially due to their applications in graph testing [1, 3, 4, 9] and testing monotonicity in posets [7].
The graphs satisfying the conditions in Corollary 2 can be used to design efficient communication
protocols over shared directional multi-channels [6, 2]. Some other interesting graphs decomposable
into large matchings were constructed and studied in [8].



Our proof of Theorem 1 is inspired by the construction of Behrend [5], but it also has a lot in
common with one of the two constructions given by Alon, Moitra, and Sudakov [2]. Roughly, the
idea of Behrend is to identify the elements of [n] with a high dimensional grid [C]¢, in which we
find a sphere passing through many grid points. These points will correspond to a dense 3-AP-free
set in [n]. We proceed similarly, but instead of taking a sphere, we take a small neighborhood S of
a sphere. If we choose the radii properly, it follows by standard concentration laws that almost all
points of the grid [C]? are contained in S. On the other hand if 3 points form a 3-AP in S, then they
must be close to each other. This observation can be explored to give a coloring of SN [C]? with the
desired properties.

In Sections 2 and 3, we prove Theorem 1 and Corollary 2, respectively. In the last section, we
indicate how to extend Theorem 1 to k-term arithmetic progressions for any k& > 3; see Theorem 6.

2 Rainbow 3-AP’s—Proof of Theorem 1

We start by setting a few parameters. Let C' be a sufficiently large integer. Suppose for simplicity
that n = C? for some integer d. The general case can be treated in a similar manner. In the sequel,
log will stand for the natural logarithm.

Set € = % and let B = {0,1,...,C —1}%, so that |B| = C?. We view B as a subset of the vector
space R? endowed with the Euclidean norm |.|. For x € B, let x(i) € {0,1,...,C — 1} denote the
ith coordinate of x, where 1 < i < d. Clearly, the map ¢ : B — [n] defined as

d

G(x) =1+ x(i)C"!

=1

is a bijection.
Let z be an element chosen uniformly at random from the set B, and let r = (E[|z[?])Y/2. We

have .
. d(C —-1)(2C -1
2 = B[] = 3 Blafiy? = WO,
i=1
Therefore,
6 3

Let A’ consist of the set of all points in B that lie in the spherical shell between the spheres of
radii (1 — €) and r(1 + €) about the origin. That is, let

S={xecRi:r(l—e¢) <|x|<r(l+6)},

and let A’ = BN S. Finally, set A = ¢(A’). Next we show, using standard concentration laws, that
A’ contains almost all elements of B and, hence, A contains almost all elements of [n].

2

Claim 3. |A| = |A'| > CU1 — 2¢18%") = p — 2p! " TlezC .



Proof. Note that |z|? = Z‘Zflzl z(i)? is the sum of d independent random variables taking values in
{0,...,(C — 1)?}. We have r? = E[|z|?] < C?d. On the other hand, if x ¢ A’, then ||x|? — r?| >
er? > (1/6)edC?. Thus, by Hoeffding’s inequality [10], we obtain

A e
AL <P [l 12> (1/6)edC?] < 2~ = on wiee.

1—
O

Therefore, with the choice « =1 — ﬁ, we have |A| > n — n®, provided that n is sufficiently
large.

It remains to define a coloring ¢ of A with the desired properties. Using the bijection ¢ between B
and [n], this corresponds to a coloring of A’ C B. We would like to guarantee that for every a,b € A
with a # b and c(a) = ¢(b), we have %t and 2a — b ¢ A. (By swapping a and b, the latter condition
also implies that 2b — a ¢ A.) Equivalently, we want that if c(a) = ¢(b) and 242, 2a — b € [n], then

ot (“;b> and ¢ ' (2a—b) & A'.

To achieve this, we would like to use the identities

4! <a - b) _ o a) +471(h)

5 5 and ¢ '(2a —b) = 20" (a) — o L(b).

However, these equations hold if and only if

¢~ '(a)+ o1 (b)

5 € B and 2¢ (a)— ¢ (b) € B,

respectively.

To overcome this problem, we first give an auxiliary coloring f of B such that if f(x) = f(y),

then
X+y

2
We define f as follows. For any x € B, let f(x) = (a1,...,aq,b1,...,bq), where, for every i € [d], we
have

and 2x—y € B.

a; =

0 if x(7) is even,
1 if x(7) is odd.
and
and 2F-1 — 1 <x(i) < 28 — 1,

b — Eoif x(i) <
b and 281 — 1 <O —1—x(i) < 2F — 1.

—k if x(i) >

n|Q vIQ

Then f uses at most 2¢(21og, C)? colors, and it is easy to verify that f satisfies the desired properties.

Next, we define a coloring g of A’ such that any 3-AP in A’ is rainbow. Then, the coloring (f,g)
induces a coloring on A for which every 3-AP is rainbow. In order to define g, we need a simple
geometric observation; see Figure 1.



Figure 1: An illustration for Claim 4.

Claim 4. Ifx,y,z € S such thaty = x;z, then |x — z| < 4./er.

™
2
generality that Oyx is such an angle. Then we have |y|? + |y — x|? < |[x|2. On the other hand,
x| < (14 ¢€)%r? and |y|? > (1 — €)%r2, so that we obtain

Proof. At least one of the angles Oyx and Oyz is at least see Fig. 1. Assume without loss of

[x —2* = dly — x| < 4(]x]* — |y[*) < 16er”.
O

Define a graph G on the vertex set A, as follows. Join x,y € A’ by an edge if at least one of the
3 vectors 2x —y, ’“LT‘V, 2y — x belongs to A’.

Claim 5. Let A denote the maximum degree of the vertices of G. Then we have
A < 2d16edC?

Proof. Fix any x € A’. By Claim 4, every neighbor of x is at distance at most 4\/er < 4,/e\/dC
from x. If |x — y| < 4/eV/dC for some y € A’, then there are at most 16edC? indices i € [d] such
that x(i) # y(i). The number of vertices y with this property is smaller than 2d(16edC? Indeed,
there are fewer than 2¢ ways to choose the indices i for which x(i) # y(i) and, for each such index
i, there are fewer than C' different choices for y(i). Therefore, we have

A < 2d0166d02.
]

It follows from Claim 5 that G has a proper coloring with at most A + 1 colors. By the definition
of G, if in such a coloring two elements are colored with the same color, then this pair is not contained
in any 3-AP in A'.

In th end, we obtain the coloring (f,g) of A’ with at most

(A +1)2%(21og, C)* < (10C15C° Jog, C)*

colors such that every 3-AP in A’ is rainbow. The coloring ¢ on A induced by (f,g) has the same
property.



Using that ¢ = %, we have D = 10C16<C” logy, C' < C, provided that C' is sufficiently large.
Letting 3 = loge D, the number of colors used by c is at most n”.
Increasing C, [ tends to zero. Thus, in view of Claim 3, we obtain that for every 8 > 0, there is

a suitable positive o < 1 which satisfies the conditions of Theorem 1. O

3 Induced matchings—Proof of Corollary 2

Let v > 0, s = nY and m = n'~7 (for simplicity, we omit the use of floors and ceilings). Let V be
a set of size n, and partition V into s sets Vi,..., Vs of size m. Let o, < 1 denote two constants
meeting the requirements of Theorem 1. We will show that Corollary 2 is true with suitable constants
o =max{l+a—ay,2—7}+o(l)and 8/ =1+ B+~ — v+ o0(1), as n — oco. This illustrates that
by chosing v sufficiently small, we can guarantee that 5’ can be arbitrarily close to 1.

Let A C [2m] be a set of size at least 2m — (2m)®, and let ¢ be a coloring of A with at most
(2m)? colors such that every 3-AP in A is rainbow.

Construct a graph G on the vertex set V', as follows. Identify each V; with the set [m] and, for
every 1 <i < j<sandx € V;,yecVj connect z and y by an edge of G if and only if z +y € A. If

xy is an edge, color it with the color
c/(a:y) = (i’j’ r—y, C(I + y))

Note that the same symbol x denotes a different vertex in each V;. Also, the third coordinate of the
color ¢(zy) can be negative, zero, or positive.

First, we show that each color class is an induced matching. In other words, we show that if
xy # wv are distinct edges of G such that ¢ (xy) = /(uv) = ¢, then zy and uv do not share a vertex
and none of zu, zv, yu, yv can be an edge of G having color ¢/. The first two coordinates of the color
d(zy) = ¢ (uv) = ¢ determine the pair of indices (4, j),7 < j, such that both zy and uv run between
V; and V;. Suppose without loss of generality that xz,u € V; and y,v € V;. If x = u, say, then
d(zy) = ¢ (uv) implies that © — y = u — v, so that y = v, contradicting our assumption that xy and
uv are distinct edges. Therefore, zy and uv cannot share a vertex. By definition, there is no edge
between = and u, and there is no edge between y and v.

It remains to show that neither zv, nor yu can be an edge of color ¢. Let d =z —y = u — v.
Suppose, for example, that zv is an edge of color ¢’. Then z + v € A, and we have

(x+y)+ (w+v) (2z—d)+ (2v+4d)

5 = 5 =x+.

Comparing the left-hand side and the right-hand side, it follows that « + y, z + v, u 4+ v are distinct
numbers that form a 3-AP in A. However, the fourth coordinate of the color ¢(zy) = ¢/(uv) = ¢
guarantees that c(x + y) = ¢(u 4+ v). Thus, we have found a non-rainbow 3-AP in A, contradicting
our assumptions. A symmetric argument shows that yu cannot be an edge of color ¢’ either.

Let us count the number of edges of G. For every pair (i,j5),1 < i < j < s, there are at least

m? —m(2m)® > m? — 2m!*T* edges between V; and V;. Indeed, for every t € [2m] \ A, there are at



most m pairs (z,y) € [m]? such that x +y = ¢, and the number of such elements ¢ is at most (2m)®.
Hence, we have

‘E(GN > <;> (m2 _ 2m1+o¢) > <Z> _ 2 plta—ay

The number of colors used by ¢ and, therefore, the number of induced matchings G can be
partitioned into, is at most s2(2m)(2m)? < 4nP+7=57. This completes the proof of Corollary 2. [

4 Concluding remarks

Let us remark that in order to prove Corollary 2, it is enough to find a coloring of a large subset
of [n] such that in any 3-AP, the first and last elements have different colors. This can be achieved
with slightly fewer colors: in the proof of Theorem 1, it is enough to define the coloring f as
f=(a1,...,aq) instead of f = (a1,...,aq4,b1,...,bq).

Our proof of Theorem 1 can be easily extended to longer arithmetic progressions.

Theorem 6. For any positive integer k, there exist o, 8 < 1 with the following property. For every

sufficiently large positive integer n, there is a set A C [n] with |A| > n—n® and a coloring of A with

at most n® colors such that every arithmetic progression of length at most k in A is rainbow.
Moreover, for every 8 > 0, we can choose o < 1 satisfying the above conditions.

In order to establish Theorem 6, we need to modify the proof of Theorem 1 at the following two
points.

1. We should construct an auxiliary coloring f on B such that if f(x) = f(y), then gx + (1 -
%)y € B for every p,q € [k]. Color (z1,...,z4) with the color (ai,...,aq,b1,...,bq), where
a; € {0,...,k! — 1} such that a; = x; mod k!, and

- {j if x() < § and ()77 -1 x() < () -1,
—j if x(4) > § and ()T -1<0 -1 —x(i) < () — 1.
Then f uses (k*log C')°@ colors.
2. Instead of Claim 4, we can show that if x1,...,x} is a k-term arithmetic progression in S, then

|x1 — xi| < 104/er.

After these changes, the proof can be completed by straightforward calculations, in the same way
as in the case of Theorem 1.
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