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Abstract. Given a family of curves C in the plane, its disjointness graph
is the graph whose vertices correspond to the elements of C, and two
vertices are joined by an edge if and only if the corresponding sets are
disjoint. We prove that for every positive integer r and n, there exists a
family of n curves whose disjointness graph has girth r and chromatic
number Ω( 1

r
logn). In the process we slightly improve Bollobás’s old

result on Hasse diagrams and show that our improved bound is best
possible for uniquely generated partial orders.
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1 Introduction

There are two important, seemingly unrelated, concepts that play important
roles in Geometric Graph Theory and in Graph Drawing: Hasse diagrams and
string graphs.

Hasse diagrams were introduced by Vogt [26] at the end of the 19th century
for concise representation of partial orders. Today they are widely used in graph
drawing algorithms. Let P be a partially ordered set with partial ordering ≺.
For any x, y ∈ P , we say that y covers x if x ≺ y and there is no z ∈ P such that
x ≺ z ≺ y. The Hasse diagram of P is the directed graph on the elements of P ,
where there is an edge from y to x if and only if x covers y. If we disregard the
direction of the edges, we obtain the cover graph of P . The graph on P whose
two elements are connected by an edge if and only if they are related by ≺ is the
comparability graph of P . The cover graph is a subgraph of the comparability
graph.

A string, or curve, γ is the image of a continuous function f : [0, 1] → R2.
A curve γ is grounded if one of its endpoints is on the y-axis, and γ lies in the
nonnegative half-plane. The intersection graph of a family of sets C is the graph
whose vertices correspond to the elements of C and two vertices are joined by
an edge if and only if the corresponding sets have a nonempty intersection. The
disjointness graph of C is the complement of the intersection graph of C. See
Figure 1 for an illustration of a grounded family of curves and its disjointness
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graph. A string graph is the intersection graph of curves. The notion was in-
troduced by Benzer [2] and Sinden [24] to describe the incidence structures of
intervals in chromosomes and metallic layers in printed networks, respectively.
The systematic study of string graphs was initiated in [5] and [10].
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Fig. 1. A family of grounded curves and its disjointness graph.

The first sign that the above concepts are intimately related was the following
simple fact discovered by Golumbic, Rotem, Urrutia [9], and Lovász [15]: Every
comparability graph is the disjointness graph of a collection of curves in the
plane. A partial converse of this statement was established in [8].

A useful characterization of cover graphs in terms of strings follows directly
from Corollary 2.7 of Middendorf and Pfeiffer [16] and Theorem 1 in [24]. See
also [13] and [23] (page 2).

Theorem 1. [16], [24] A triangle-free graph is a cover graph of a partially or-
dered set if and only if it is isomorphic to the disjointness graph of a family of
grounded curves.

The girth of a graph G is the length of the shortest cycle in G. Obviously,
every triangle-free graph has girth at least four. According to a classical result
of Erdős [6], for every r ≥ 3, there exist graphs with n vertices and girth at
least r which have arbitrarily large chromatic numbers. Erdős’s construction is
probabilistic and does not posses any geometric structure.
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For geometrically defined graphs, the situation is more complicated. The
chromatic number of intersection graphs of axis-parallel rectangles [1] or chords
of a cycle [11, 12, 4] and disjointness graphs of segments in the plane [21, 25] can
be bounded from above by a function of their clique numbers. In sharp contrast to
this, Pawlik et al. [22] proved that there exist triangle-free intersection graphs of
n segments with chromatic number Ω(log log n). In [19], triangle-free disjointness
graphs of n curves were constructed, with chromatic number Ω(log n), cf. [17].
This construction is based on shift graphs, defined by Erdős and Hajnal [7]. It
appears to be difficult to extend this method to obtain disjointness graphs of
curves with high girth and high chromatic number.

The aim of the present note is to construct such graphs.

Theorem 2. For every positive integer r and for every n, there exists a family
of n curves whose disjointness graph has girth at least r and chromatic number
at least Ω( 1

r log n).

This result does not remain true if we are allowed to use only x-monotone
curves, that is, if every vertical line meets each curve in at most one point. In
this case, the chromatic number of the cover graph is bounded from above by a
constant [21, 20].

In view of Theorem 1, in order to prove Theorem 2, it is sufficient to establish
the following.

Theorem 3. For every positive integer r and for every n, there exists a poset
on n vertices whose cover graph has girth at least r and chromatic number
Ω( 1

r log n).

The study of combinatorial properties of cover graphs (Hasse diagrams) is an
extensive area of research in the theory of partial orders. Bollobás [3] was the first
to show the existence of partial orders (actually, lattices) whose cover graphs have
arbitrarily large girth and chromatic number. Alternative constructions were
found by Nešetřil et al. [18, 14]. Bollobás’s proof, which gives the best known
asymptotic bound, builds on Erdős’s probabilistic construction [6] mentioned
above. It shows that for a fixed girth r and n → ∞, the chromatic number of
a cover graph with n vertices can be as large as Ω( logn

log logn ). Our Theorem 3
improves on this bound.

It is possible that Theorem 3 can be further improved. However, we can
show that our bound is tight for an interesting family of cover graphs. A partially
ordered set P is called uniquely generated if for every comparable pair of vertices
x ≺ y, there exists a unique sequence of vertices x = v1 ≺ · · · ≺ vk = y such
that vi+1 covers vi for i = 1, . . . , k − 1. Obviously, if there is no chain of length
3 in P , then P is uniquely generated and its cover graph is bipartite.

Theorem 4. (i) If P is a uniquely generated poset on n vertices, then the chro-
matic number of its cover graph is at most blog2 nc+ 1.

(ii) For every integer r > 3 and for every sufficiently large n, there exists a
uniquely generated poset on n vertices whose cover graph has girth at least r and
chromatic number at least Ω( 1

r log n).
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2 Cover graphs with large chromatic number

In this section, we prove Theorem 4. Theorem 3 immediate corollary of part (ii)
of Theorem 4.

In the sequel, we omit floors and ceilings, for easier readability.

Proof of Theorem 4, part (i). Let G be the cover graph of P , let <P be the
partial ordering on P , and let ≺ be a linear extension of <P . For any x ∈ P , let
C(x) denote the set of vertices of P covered by x.

We prove that the greedy coloring of G with respect to ≺ uses at most
1 + blog2 nc colors. Let v1 ≺ · · · ≺ vn be the vertices of G. Color them with the
elements of Z+, as follows. For i = 1, . . . , n, if v1, . . . , vi−1 have already been
colored, then color vi with the smallest positive integer k that does not appear
among the colors of C(vi).

For each vertex v ∈ V (G), let T (v) denote the set of vertices u ∈ V (G) such
that u ≤P v. As P is uniquely generated, the subgraph of G induced by T (v)
is a tree. We claim that if v received color k, then |T (v)| ≥ 2k−1. This clearly
implies (i), because if the total number of colors used by our coloring is K, then
we have n ≥ 2K−1.

We prove the claim by induction on k. For k = 1, the statement is trivial.
Suppose that k ≥ 2 and that the claim has already been verified for all posi-
tive integers smaller than k. As v received color k, we can find k − 1 vertices
u1, . . . , uk−1 ∈ C(v) such that the color of ui is i, for i = 1, . . . , k− 1. By the in-
duction hypothesis, we have |T (ui)| ≥ 2i−1. Since the trees T (u1), . . . , T (uk−1) ⊂
T (v) are pairwise disjoint, we obtain |T (v)| ≥ 1+

∑k−1
i=1 2i−1 = 2k−1, as required.

�

For the proof of part (ii) of Theorem 4, we need the following technical
lemma.

Lemma 1. Let A and B be two m-element sets and let G be the random graph
on A ∪B, in which every a ∈ A and b ∈ B are joined by an edge independently
with probability p = d

m .
Then the probability that there exist X ⊂ A and Y ⊂ B such that |X||Y | ≥

3m2/d and there is no edge between X and Y is at most 2−m.

Proof. Let N = 3m2

d . For any X ⊂ A and Y ⊂ B, let I(X,Y ) denote the
event that X and Y are not connected by any edge of G. Obviously, we have
P(I(X,Y )) = (1− p)|X||Y | ≤ e−p|X||Y |. This yields

P

 ⋃
X⊂A,Y⊂B
|X||Y |≥N

I(X,Y )

 ≤ ∑
X⊂A,Y⊂B
|X||Y |≥N

e−p|X||Y | ≤ 22me−pN < 2−m. �

Proof of Theorem 4, part (ii). Assume that n ≥ 210r, and let N = 3n, k = log2 N
10r ,

and m = N
k . If G is a graph whose vertex set is a subset of the integers, a
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monotone path in G is a path with vertices c0 < c1 < · · · < ct and edges cici+1

for i = 1, . . . , t− 1. A pair of vertices {a, b} of G is called bad, if there exist two
edge-disjoint monotone paths whose endpoints are a and b.

Our goal is to construct a graph G on the vertex set {1, ..., N} satisfying the
following three conditions:

1. G has no independent set of size larger than 7m,
2. G has at most N

3 bad pairs of vertices,

3. the number of cycles in G of length smaller than r is at most N
3 .

Suppose that such a graph G exists. Let G′ denote the graph obtained from G
by deleting 2N

3 vertices: at least one vertex from every bad pair and at least one
vertex from every cycle of length smaller than r. Then G′ has n vertices and
girth at least r. Condition 1 implies that the chromatic number of G′ is at least
n
7m > 1

103r log2 n. Define a partially ordered set P with partial ordering <P on
V (G′) in such a way that a <P b if and only if a < b and there exists a monotone
path in G′ with endpoints a and b. Then P meets all the requirements of part
(ii) of the theorem. Indeed, as G′ has no bad pair of vertices, the cover graph of
P is equal to G′, and P is uniquely generated.

We construct a graph G with the above three properties, as follows. Suppose
for simplicity that N is a multiple of k. Divide {1, . . . , N} into k intervals of size
m, denoted by A1, ..., Ak. For every 1 ≤ i < j ≤ k and for any x ∈ Ai, y ∈ Aj ,

join x and y by an edge independently with probability pij = 2j−i

m . Denote the
resulting graph by G.

First, we show that, with probability larger than 2
3 , condition 1 is satisfied:

G does not contain an independent set of size larger than 7m. Let A denote
the event that for every pair (i, j) with 1 ≤ i < j ≤ k, and for every pair of
subsets X ⊂ Ai and Y ⊂ Aj with no edge running between X and Y , we have
|X||Y | < 3m22i−j . By Lemma 1, for a fixed pair (i, j) with 1 ≤ i < j ≤ k,
with probability at least 1− 2−m there exists no X ⊂ Ai and Y ⊂ Aj such that
|X||Y | ≥ 3m22i−j and there is no edge between X and Y . As there are fewer
than k2 different pairs (i, j) with 1 ≤ i < j ≤ k, we have P(A) ≥ 1−k22−m > 2

3 .
We show that if A happens, then G has no independent set of size larger

than 7m. Suppose for contradiction that I ⊂ V (G) is an independent set with
|I| > 7m. For i = 1, ..., k, let Ii = I∩Ai. Clearly, there exists an index 1 ≤ h ≤ k
such that

∑h
i=1 |Ii| ≥ 3m and

∑k
i=h+1 |Ii| ≥ 3m. Then we have

9m2 ≤

(
h∑

i=1

|Ii|

)(
k∑

i=h+1

|Ii|

)
=

h∑
i=1

k∑
j=h+1

|Ii||Ij | ≤
h∑

i=1

k∑
j=h+1

3m22i−j , (1)

where the last inequality holds if A occurs. However,

h∑
i=1

k∑
j=h+1

2i−j ≤
k∑

l=1

l2−l < 2,

which contradicts the left-hand side of (1).
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Next, we prove that the probability that G satisfies condition 2 is larger than
2
3 . Let X stand for the number of bad pairs of vertices in G, and let B denote

the event that X ≤ N
3 . Let x ∈ Ai and y ∈ Aj , where 1 ≤ i < j ≤ k. Let x =

v0, v2, . . . , vl = y such that vt ∈ Ait for t = 0, . . . , l, where i = i0 < · · · < il = j.
The probability that v0, . . . , vl is a monotone path in G is

l−1∏
t=0

2il+1−il

m
=

2j−i

ml
<

2k

ml
.

There are
(
j−i−1
l−1

)
ml−1 < 2kml−1 ways to choose the vertices of a monotone

path of length l with endpoints x and y. Hence, the probability that there exist
two edge-disjoint monotone paths with endpoints x and y, where one of these
paths has length l and the other has length l′, is at most

(2kml−1)(2kml′−1)
2k

ml

2k

ml′
=

24k

m2
.

There are fewer than k2 ways to choose (l, l′), so the probability that {x, y} is

a bad pair is less than k224k

m2 < 1
9n . Therefore, we have E(X) < N2 1

9N = N
9 .

Applying Markov’s inequality, we obtain that 1− P(B) = P(X > N
3 ) < 1

3 .
Finally, we show that G satisfies condition 3 with probability larger than 2

3 .
Let Y be the number of cycles of length at most r − 1 in G, and let C denote
the event that Y ≤ N

3 . Let p = n−(r−1)/r. Note that each pair of vertices in G

is joined by an edge with probability at most 2k

m < p. Then we have

E(Y ) <

r−1∑
l=3

N lpl < rN
r−1
r <

N

9
.

Indeed, there are (l−1)!
2

(
N
l

)
< N l possible copies of the cycle of length l, and the

probability that a fixed copy of the cycle of length l appears in G is at most pl.
Applying Markov’s inequality, we get 1− P(C) = P(Y > N

3 ) < 1
3 .

In conclusion, we proved that P(A),P(B),P(C) > 2
3 . Thus, the probability

that the event A∧B∧C occurs is nonzero. This means that there exists a graph
G satisfying conditions 1,2, and 3. This completes the proof of the theorem. �
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B.:Triangle-free intersection graphs of line segments with large chromatic number.
J. Combin. Theory Ser. B 105, 6–10 (2014)

23. Rok, A., Walczak, B.: Outerstring graphs are χ-bounded.
https://arxiv.org/abs/1312.1559

24. Sinden, F. W.: Topology of thin film RC-circuits. Bell System Technical Journal
45, 1639–1662 (1966)



8 János Pach and István Tomon
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