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Abstract

Given a sequence of positive integers p = (p1, . . . , pn), let Sp denote the set of
all sequences of positive integers x = (x1, . . . , xn) such that xi ≤ pi for all i. Two
families of sequences (or vectors), A,B ⊆ Sp, are said to be r-cross-intersecting if
no matter how we select x ∈ A and y ∈ B, there are at least r distinct indices i such
that xi = yi. We show that for any pair of 1-cross-intersecting families, A,B ⊆ Sp,
we have |A|·|B| ≤ |Sp|2/k2, where k = mini pi. We also determine the minimal value
of |A| · |B| for any pair of r-cross-intersecting families and characterize the extremal
pairs for r > 1, provided that k > r+1. The case k ≤ r+1 is quite different. We have
a conjecture for this case, which we can verify under additional assumptions. Our
results generalize and strengthen several previous results by Berge, Borg, Frankl,
Füredi, Livingston, and Moon, and answers a question of Zhang.

1 Introduction

The Erdős-Ko-Rado theorem [EKR61] states that for n ≥ 2k, every family of pairwise
intersecting k-element subsets of an n-element set consists of at most

(
n−1
k−1

)
subsets, as

many as the star-like family of all subsets containing a fixed element of the underlying
set. This was the starting point of a whole new area within combinatorics: extremal set
theory; see [GK78], [Bol86], [DeF83], [F95]. The Erdős-Ko-Rado theorem has been ex-
tended and generalized to other structures: to multisets, divisors of an integer, subspaces
of a vector space, sets of permutations, etc. It was also generalized to “cross-intersecting”
families, i.e., to families A and B with the property that every element of A intersects
all elements of B; see Hilton [Hi77], Moon [Mo82], and Pyber [Py86].

For any positive integer k, we write [k] for the set {1, . . . , k}. Given a sequence of
positive integers p = (p1, . . . , pn), let

Sp = [p1]× · · · × [pn] = {(x1, . . . , xn) : xi ∈ [pi] for i ∈ [n]}.
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We will refer to the elements of Sp as vectors. The Hamming distance between the
vectors x, y ∈ Sp is |{i ∈ [n] : xi ̸= yi}| and is denoted by d(x, y). Let r ≥ 1 be an
integer. Two vectors x, y ∈ Sp are said to be r-intersecting if d(x, y) ≤ n − r. (This
term originates in the observation that if we represent a vector x = (x1, . . . , xn) ∈ Sp

by the set {(i, xi) : i ∈ [n]}, then x and y ∈ Sp are r-intersecting if and only if the
sets representing them have at least r common elements.) Two families A,B ⊆ Sp

are r-cross-intersecting, if every pair x ∈ A, y ∈ B is r-intersecting. If (A,A) is an
r-cross-intersecting pair, we say A is r-intersecting. We simply say intersecting or cross-
intersecting to mean 1-intersecting or 1-cross-intersecting, respectively.

The investigation of the maximum value for |A| · |B| for cross-intersecting pairs of
families A,B ⊆ Sp was initiated by Moon [Mo82]. She proved, using a clever induction
argument, that in the special case when p1 = p2 = · · · = pn = k for some k ≥ 3, every
cross-intersecting pair A,B ⊆ Sp satisfies

|A| · |B| ≤ k2n−2,

with equality if and only if A = B = {x ∈ Sp : xi = j}, for some i ∈ [n] and
j ∈ [k]. In the case A = B, Moon’s theorem had been discovered by Berge [Be74], Liv-
ingston [Liv79], and Borg [Bo08]. See also Stanton [St80]. In his report on Livingston’s
paper, published in the Mathematical Reviews, Kleitman gave an extremely short proof
for the case A = B, based on a shifting argument. Zhang [Zh13] established a somewhat
weaker result, using a generalization of Katona’s circle method [K72]. Note that for
k = 2, we can take A = B to be any family of 2n−1 vectors without containing a pair
(x1, . . . , xn), (y1, . . . , yn) with xi + yi = 3 for every i. Then A is an intersecting family
with |A|2 = 22n−2, which is not of the type described in Moon’s theorem.

Moon also considered r-cross-intersecting pairs in Sp with p1 = p2 = · · · = pn = k
for some k > r + 1, and characterized all pairs for which |A| · |B| attains its maximum,
that is, we have

|A| · |B| = k2(n−r).

The assumption k > r + 1 is necessary.

Zhang [Zh13] suggested that Moon’s results may be extended to arbitrary sequences
of positive integers p = (p1, . . . , pn). The aim of this note is twofold: (1) to establish such
an extension under the assumption mini pi > r + 1, and (2) to formulate a conjecture
that covers essentially all other interesting cases. We verify this conjecture in several
special cases.

Theorem 1. Let p = (p1, . . . , pn) be a sequence integers and let A,B ⊆ Sp be two
cross-intersecting families of vectors.

We have |A| · |B| ≤ |Sp|2/k2, where k = mini pi. Equality holds for the case A =
B = {x ∈ Sp : xi = j}, whenever i ∈ [n] satisfies pi = k and j ∈ [k]. For k ̸= 2, there
are no other extremal cross-intersecting families.
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We say that a coordinate i ∈ [n] is irrelevant for a set A ⊆ Sp if, whenever two
elements of Sp differ only in coordinate i and A contains one of them, it also contains
the other. Otherwise, we say that i is relevant for A.

Note that no coordinate i with pi = 1 can be relevant for any set. Each such
coordinate forces an intersection between every pair of vectors. So, if we delete it, every
r-cross-intersecting pair becomes (r − 1)-cross-intersecting. Therefore, from now on we
will always assume that we have pi ≥ 2 for every i.

We call a sequence of integers p = (p1, . . . , pn) a size vector if pi ≥ 2 for all i.
The length of p is n. We say that an r-cross-intersecting pair A,B ⊆ Sp maximal if it
maximizes the value |A| · |B|.

Using this notation and terminology, Theorem 1 can be rephrased as follows.

Theorem 1’. Let p = (p1, . . . , pn) be a sequence positive integers with k = mini pi > 2.
For any maximal pair of cross-intersecting families, A,B ⊆ Sp, we have A = B,

and there is a single coordinate which is relevant for A. The relevant coordinate i must
satisfy pi = k.

See Section 5 for a complete characterization of maximal cross-intersecting pairs
in the k = 2 case. Here we mention that only the coordinates with pi = 2 can be
relevant for them, but for certain pairs, all such coordinates are relevant simultaneously.
For example, let n be odd, p = (2, . . . , 2), and let A = B consist of all vectors in
Sp which have at most ⌊n/2⌋ coordinates that are 1. This makes (A,B) a maximal
cross-intersecting pair.

Let H ⊆ [n] be a subset of the coordinates, let x0 ∈ Sp be an arbitrary vector, and
let k be an integer satisfying 0 ≤ k ≤ |H|. The Hamming ball of radius k around x0 in
the coordinates H is defined as the set

Bk = {x ∈ Sp : |{i ∈ H : xi ̸= (x0)i}| ≤ k}.

Note that the pair (Bk, Bl) is (|H| − k − l)-cross-intersecting. We use the word ball to
refer to any Hamming ball without specifying its center, radius or its set of coordinates.
A Hamming ball of radius 0 in coordinates H is said to be obtained by fixing the
coordinates in H.

For the proof of Theorem 1, we need the following statement, which will be estab-
lished by induction on n, using the idea in [Mo82].

Lemma 2. Let 1 ≤ r < n, let p = (p1, . . . , pn) be a size vector satisfying 3 ≤ p1 ≤ p2 ≤
· · · ≤ pn and let A,B ⊆ Sp form a pair of r-cross-intersecting families. If

2

pr+1
+

r∑
i=1

1

pi
≤ 1,
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then |A| · |B| ≤
∏n

i=r+1 p
2
i . In case of equality, we have A = B and this set can be

obtained by fixing r coordinates in Sp.

By fixing any r coordinates, we obtain an r-intersecting family with r relevant coor-
dinates. As was observed by Frankl and Füredi [FF80], not all maximal r-intersecting
families can be constructed in this way. For instance, a Hamming ball of radius 1 in r+2
coordinates is r-intersecting, it has r+2 relevant coordinates and, depending on the vec-
tor p, it may have strictly more elements than the set obtained by fixing r coordinates.
We have the following general conjecture.

Conjecture 3. Let 2 ≤ r ≤ n and let p be a size vector of length n. If A,B ⊆ Sp form
a maximal pair of r-cross-intersecting families, then they are balls.

It is not hard to narrow down the range of possibilities for maximal r-cross-intersecting
pairs that are formed by two balls, A and B. In fact, the following simple lemma implies
that all such pairs are determined up to isomorphism by the radii of A and B. Assuming
that Conjecture 3 is true, finding all maximal pairs of r-cross-intersecting families in Sp

boils down to making numeric comparisons for pairs of balls obtained by all possible
radii.

Lemma 4. Let 1 ≤ r ≤ n and let p = (p1, . . . , pn) be a size vector. If A,B ⊆ Sp form a
maximal pair of r-cross-intersecting sets, then either of them determines the other. In
particular, A and B have the same set of relevant coordinates. Moreover, if A is a ball
of radius l around x0 ∈ Sp in a set of coordinates H ⊆ [n], then |H| ≥ l+ r, B is a ball
of radius |H| − l − r around x0 in the same set of the coordinates, and we have pi ≤ pj
for i ∈ H and j ∈ [n] \H.

We cannot prove Conjecture 3 in its full generality, but we can prove it in several in-
teresting special cases. We will proceed in two steps. First we argue, using entropies, that
the number of relevant coordinates in a maximal r-cross-intersecting family is bounded.
Then we apply combinatorial methods to prove the conjecture under the assumption
that the number of relevant coordinates is small.

Using entropies, we can show that neither of the families in a maximal cross-intersecting
pair can have arbitrarily many elements.

Theorem 5. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, let A,B ⊆ Sp form a
maximal pair of r-cross-intersecting families and let H be the set of coordinates that are
relevant for A or B. Then neither the size of A nor the size of B can exceed

|Sp|∏
i∈H(pi − 1)1−2/pi

.

We use this theorem to bound the number of relevant coordinates i with pi > 2. The
number of relevant coordinates i with pi = 2 can be unbounded, provided that r = 1
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(in which case, the statement of the conjecture is false.) However, we believe that for
r > 1, that total number of relevant coordinates is also bounded from above.

.
Theorem 6. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector and let A,B ⊆ Sp form
a maximal pair of r-cross-intersecting families.

For the set of coordinates H relevant for A or B, we have

r∏
i=1

pi ≥
∏
i∈H

(pi − 1)1−2/pi ,

which implies that |{i ∈ H : pi > 2}| < 5r.

We can characterize the maximal r-cross-intersecting pairs for all size vectors p sat-
isfying min pi > r + 1, and in many other cases.

Theorem 7. Let 2 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector with p1 ≤ p2 ≤ · · · ≤ pn
and let A,B ⊆ Sp form a pair of r-cross-intersecting families.

1. If p1 > r + 1, we have |A| · |B| ≤
∏n

i=r+1 p
2
i . In case of equality, A = B holds and

this set can be obtained by fixing r coordinates in Sp.

2. If p1 = r + 1 > 7, we have |A| · |B| ≤
∏n

i=r+1 p
2
i . In case of equality, A = B

holds and this set can be obtained either by fixing r coordinates in Sp or by taking
a Hamming ball of radius 1 in r + 2 coordinates, all satisfying pi = r + 1.

3. If p1 ≥ 2r/3+ t(r) and (A,B) is a maximal r-cross-intersecting pair, then the sets
A and B are balls of radius 0 or 1 in at most r+2 coordinates. Here the function
t(r) satisfies t(r) = o(r).

The proof of Theorem 7 relies on the following result.

Theorem 8. Let 2 ≤ r ≤ n and let p be a size vector. If A,B ⊆ Sp is a maximal pair
of r-cross-intersecting families and at most r+2 coordinates are relevant for them, then
A and B are balls of radius 0 or 1.

With an involved case analysis, Theorem 8 can be extended to pairs with r + 4
relevant coordinates (or possibly even further). Any such an improvement carries over
to Theorem 7.

All of our results remain meaningful in the symmetric case where A = B. For
instance, in this case, Theorem 1 states that every intersecting family A ⊆ Sp has at
most |Sp|/k members, where k = mini pi. In case k > 2, equality can be achieved only
by fixing some coordinate i with pi = k.
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2 Proof of Theorem 1

The aim of this section is to establish Theorem 1. First, we verify Lemma 4 and an-
other technical lemma (see Lemma 9 below), which generalizes the corresponding result
in [Mo82]. Our proof is slightly simpler. Lemma 9 will enable us to deduce Lemma 2,
the main ingredient of the proof of Theorem 1, presented at the end of the section.

Proof of Lemma 4. The first statement is self evident: if A,B ⊆ Sp form a maximal
r-cross-intersecting, then

B = {x ∈ Sp : x r-intersects y for all y ∈ A}.

If a coordinate is irrelevant for A, then it is also irrelevant for B defined by this formula.
Therefore, by symmetry, A and B have the same set of relevant coordinates.

If A is the Hamming ball around x0 of radius l in coordinates H, then we have B = ∅
if |H| < l+r, which is not possible for a maximal cross-intersecting family. If |H| ≥ l+r,
we obtain the ball claimed in the lemma. For every i ∈ H, j ∈ [n] \ H, consider the
set H ′ = (H \ {i}) ∪ {j} and the Hamming balls A′ and B′ of radii l and |H| − l − r
around x0 in the coordinates H ′. These balls form an r-cross-intersecting pair and in
case pi > pj , we have |A′| > |A| and |B′| > |B|, contradicting the maximality of the pair
(A,B) pair. 2

The following lemma will also be used in the proof of Theorem 5, presented in the
next section.

Lemma 9. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, and let A,B ⊆ Sp form
a maximal pair of r-cross-intersecting families.

If i ∈ [n] is a relevant coordinate for A or B, then there exists a value l ∈ [pi] such
that

|{x ∈ A : xi ̸= l}| ≤ |A|/pi,

|{y ∈ B : yi ̸= l}| ≤ |B|/pi.

Proof. Let us fix r, n, p, i, A and B as in the lemma. By Lemma 4, if a coordinate is
irrelevant for A, then it is also irrelevant for B and vice versa.

In the case n = r, we have A = B and this set must be a singleton, so that the
lemma is trivially true. From now on, we assume that n > r and hence the notion of
r-cross-intersecting families is meaningful for n− 1 coordinates.

Let q = (p1, . . . , pi−1, pi+1, . . . , pn). For any l ∈ [pi], let

A′
l = {x ∈ A : xi = l},

B′
l = {y ∈ B : yi = l},
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and let Al and Bl stand for the sets obtained from A′
l and B′

l, respectively, by dropping
their ith coordinates. By definition, we have Al, Bl ⊆ Sq, and |A| =

∑
l |Al| and |B| =∑

l |Bl|. Furthermore, for any two distinct elements l,m ∈ [pi], the families Al and Bm

are r-cross-intersecting, since the vectors in A′
l differ from the vectors in B′

l in the ith
coordinate, and therefore the r indices where they agree must be elsewhere.

Let Z denote the maximum product |A∗|·|B∗| of an r-cross-intersecting pair A∗, B∗ ⊆
Sq. We have |Al| · |Bm| ≤ Z for all l,m ∈ [pi] with l ̸= m. Adding an irrelevant
ith coordinate to the maximal r-cross-intersecting pair A∗, B∗ ⊆ Sq, we obtain a pair
A∗′, B∗′ ⊆ Sp with |A∗′| · |B∗′| = p2iZ. Thus, using the maximality of A and B, we have
|A| · |B| ≥ p2iZ. Let l0 be chosen so as to maximize |Al0 | · |Bl0 |, and let c = |Al0 | · |Bl0 |/Z.

Assume first that c ≤ 1. Then we have

p2iZ ≤ |A| · |B| =
∑

l,m∈[pi]

|Al| · |Bm| ≤
∑

l,m∈[pi]

Z = p2iZ.

Hence, we must have equality everywhere. This yields that c = 1 and that Al and Bm

form a maximal r-intersecting pair for all l,m ∈ [pi], l ̸= m. This also implies that
|Al| = |Am| for l,m ∈ [pi], from where the statement of the lemma follows, provided
that pi = 2.

If pi ≥ 3, then all sets Al must be equal to one another, since one member in a max-
imal r-cross-intersecting family determines the other. This contradicts our assumption
that the ith coordinate was relevant for A.

Thus, we may assume that c > 1.

For m ∈ [pi], m ̸= l0, we have |Al0 | · |Bm| ≤ Z = |Al0 | · |Bl0 |/c. Thus,

|Bm| ≤ |Bl0 |/c, (1)

which yields that |B| =
∑

m∈[pi] |Bm| ≤ (1+(pi−1)/c)|Bl0 |. By symmetry, we also have

|Am| ≤ |Al0 |/c (2)

for m ̸= l0 and |A| ≤ (1 + (pi − 1)/c)|Al0 |. Combining these inequalities, we obtain

p2iZ ≤ |A| · |B| ≤ (1 + (pn − 1)/c)2|Al0 | · |Bl0 | = (1 + (pi − 1)/c)2cZ.

We solve the resulting inequality p2i ≤ c(1 + (pi − 1)/c)2 for c > 1 and conclude that
c ≥ (pi − 1)2. This inequality, together with Equations (1) and (2), completes the proof
of Lemma 9. 2

Proof of Lemma 2. We proceed by induction on n.
Let A and B form a maximal r-cross-intersecting pair. It is sufficient to show that

they have only r relevant coordinates. Let us suppose that the set H of their relevant
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coordinates satisfies |H| > r, and choose a subset H ′ ⊆ H with |H ′| = r + 1. By
Lemma 9, for every i ∈ H there exists li ∈ [pi] such that the set Xi = {x ∈ B : xi ̸= li}
has cardinality |Xi| ≤ |B|/pi.

If we assume that
2

pr+1
+

r∑
i=1

1

pi
< 1

holds (with strict inequality), then this bound of |Xi| would suffice. In order to be able
to deal with the case

2

pr+1
+

r∑
i=1

1

pi
= 1,

we show that |Xi| = |B|/pi is not possible. Considering the proof of Lemma 9, equality
here would mean that the sets Al = {x ∈ A : xi = l} and Bl = {y ∈ B : yi = l}
satisfy the following condition: by dropping the ith coordinate from the pairs (Ali , Bm)
and (Am, Bli), we obtain maximal r-cross-intersecting pairs for m ̸= li. By the induction
hypothesis, this would imply that Ali = Bm and Am = Bli , contradicting that |Am| <
|Ali | and |Bm| < |Bli | (see (1), in view of c > 1). Therefore, we have |Xi| < |B|/pi.

Let C = {x ∈ Sp : xi = 1 for all i ∈ [r]} be the r-intersecting set obtained by fixing
r coordinates in Sp. In the set D = B \ (

∪
i∈H′ Xi), the coordinates in H ′ are fixed.

Thus, we have

|D| ≤
∏

i∈[n]\H′

pi ≤
n∏

i=r+2

pi = |C|/pr+1.

On the other hand, we have

|D| = |B| −
∑
i∈H′

|Xi| > |B|(1−
∑
i∈H′

1/pi) ≥ |B|(1−
r+1∑
i=1

1/pi).

Comparing the last two inequalities, we obtain

|B| < |C|
pr+1(1−

∑r+1
i=1 1/pi)

.

By our assumption on p, the denominator is at least 1, so that we have |B| < |C|. By
symmetry, we also have |A| < |C|. Thus, |A| · |B| < |C|2 contradicting the maximality
of the pair (A,B). This completes the proof of Lemma 2. 2

Now we can quickly finish the proof of Theorem 1.

Proof of Theorem 1. Notice that Lemma 2 implies Theorem 1, whenever k = mini pi ≥ 3.
It remains to verify the statement for k = 1 and k = 2. For k = 1, it follows from the fact
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that all pairs of vectors in Sp are intersecting, thus the only maximal cross-intersecting
pair is A = B = Sp.

Suppose next that k = 2. For x ∈ Sp, let x
′ ∈ Sp be defined by x′i = (xi + 1 mod pi)

for i ∈ [n]. Note that x 7→ x′ is a permutation of Sp. Clearly, x and x′ are not
intersecting, so we either have x /∈ A or x′ /∈ B. As a consequence, we obtain that
|A| + |B| ≤ |Sp|, which, in turn, implies that |A| · |B| ≤ |Sp|2/4, as claimed. It also
follows that all maximal pairs satisfy |A| = |B| = |Sp|/2. 2

3 Using entropy: Proofs of Theorems 5 and 6

Proof of Theorem 5. Let r, n, p, A,B and H be as in the theorem. Let us write y for a
randomly and uniformly selected element of B. Lemma 9 implies that, for each i ∈ H,
there exists a value li ∈ [pi] such that

Pr[yi = li] ≥ 1− 1/pi. (3)

We bound the entropy H(yi) of yi from above by the entropy of the indicator variable
of the event yi = li plus the contribution coming from the entropy of yi assuming yi ̸= li:

H(yi) ≤ h(1− 1/pi) + (1/pi) log(pi − 1) = log pi − (1− 2/pi) log(pi − 1),

where h(z) = −z log z − (1 − z) log(1 − z) is the entropy function, and we used that
1− 1/pi ≥ 1/2.

For any i ∈ [n] \H, we use the trivial estimate H(yi) ≤ log pi. By the subadditivity
of the entropy, we obtain

log |B| = H(y) ≤
∑
i∈[n]

H(yi) ≤
∑
i∈H

(log pi − (1− 2/pi) log(pi − 1)) +
∑

i∈[n]\H

log pi,

or, equivalently,

|B| ≤
∏
i∈H

pi

(pi − 1)1−2/pi

∏
i∈[n]\H

pi =
|Sp|∏

i∈H(pi − 1)1−2/pi

as required. The bound on |A| follows by symmetry and completes the proof of the
theorem. 2

Theorem 6 is a simple corollary of Theorem 5.

Proof of Theorem 6. Fixing the first r coordinates, we obtain the set

C = {x ∈ Sp : xi = 1 for all i ∈ [r]}.
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This set is r-intersecting. Thus, by the maximality of the pair (A,B), we have

|A| · |B| ≥ |C|2 = (
n∏

i=r+1

pi)
2. (4)

Comparing this with our upper bounds on |A| and |B|, we obtain the first inequality
claimed in the theorem.

To prove the required bound on the number of relevant coordinates i with pi ̸= 2,
we assume that the coordinates are ordered, that is p1 ≤ p2 ≤ · · · ≤ pn. Applying the

above estimate on
∏

i∈[r] pi and using (pi−1)1−2/pi > p
1/5
i whenever pi ≥ 3, the theorem

follows. 2

4 Monotone families: Proofs of Theorems 8 and 7

Given a vector x ∈ Sp, the set supp(x) = {i ∈ [n] : xi > 1} is called the support of
x. A family A ⊆ Sp is said to be monotone, if for any x ∈ A and y ∈ Sp satisfying
supp(y) ⊆ supp(x), we have y ∈ A.

For a family A ⊆ Sp, let us define its support as supp(A) = {supp(x) : x ∈ A}. For
a monotone family A, its support is clearly subset-closed and it uniquely determines A,
as A = {x ∈ Sp : supp(x) ∈ supp(A)}.

The next result shows that if we want to prove Conjecture 3, it is sufficient to prove
it for monotone families. This will enable us to establish Theorems 8 and 7, that is,
to verify the conjecture for maximal r-cross-intersecting pairs with a limited number of
relevant coordinates.

Lemma 10. Let 1 ≤ r ≤ n and let p be a size vector of length n.
There exists a maximal pair of r-cross-intersecting families A,B ⊆ Sp such that both

A and B are monotone.
If r ≥ 2 and A,B ⊆ Sp are maximal r-cross-intersecting families that are not balls,

then there exists a pair of maximal r-cross-intersecting families that consists of monotone
sets that are not balls and have no more relevant coordinates than A or B.

Proof of Lemma 10. Consider the following shift operations. For any i ∈ [n] and
j ∈ [pi] \ {1}, for any family A ⊆ Sp and any element x ∈ A, we define

ϕi(x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn),

ϕi,j(x,A) =

{
ϕi(x) if xi = j and ϕi(x) /∈ A

x otherwise,

ϕi,j(A) = {ϕi,j(x,A) : x ∈ A}.
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Clearly, we have |ϕi,j(A)| = |A| for any set A ⊆ Sp. We claim that for any pair
of r-cross-intersecting sets A,B ⊆ Sp, the sets ϕi,j(A) and ϕi,j(B) are also r-cross-
intersecting. Indeed, if x ∈ A and y ∈ B are r-intersecting vectors, then ϕi,j(x,A) and
ϕi,j(y,B) are also r-intersecting, unless x and y have exactly r common coordinates, one
of them is xi = yi = j, and this common coordinate gets ruined as ϕi,j(x,A) = x and
ϕi,j(y,B) = ϕi(y) (or vice versa). However, this is impossible, because this would imply
that the vector ϕi(x) belongs to A, in spite of the fact that ϕi(x) and y ∈ B are not
r-intersecting.

If (A,B) is a maximal r-cross-intersecting pair, then so is (ϕi,j(A), ϕi,j(B)). When
applying one of these shift operations does change the sets A or B, then the total sum
of all coordinates of all elements decreases. Therefore, after shifting a finite number of
times we arrive at a maximal pair of r-intersecting families that cannot be changed by
further shifting. We claim that this pair (A,B) is monotone. Let y ∈ B and y′ ∈ Sp \B
be arbitrary. We show that B is monotone by showing that supp(y′) is not contained in
supp(y). Indeed, by the maximality of the pair (A,B) and using the fact that y′ /∈ B,
there must exist x′ ∈ A such that x′ and y′ are not r-cross-intersecting, and hence
|supp(x′) ∪ supp(y′)| > n − r. Applying “projections” ϕi to x′ in the coordinates i ∈
supp(x′)∩ supp(y), we obtain x with supp(x) = supp(x′)\ supp(y). The shift operations
ϕi,j do not change the set A, thus A must be closed for the projections ϕi and we
have x ∈ A. The supports of x and y are disjoint. Thus, their Hamming distance
is |supp(x) ∪ supp(y)|, which is at most n − r, as they are r-intersecting. Therefore,
supp(x)∪supp(y) = supp(x′)∪supp(y) is smaller than supp(x′)∪supp(y′), showing that
supp(y′) ̸⊆ supp(y). This proves that B is monotone. By symmetry, A is also monotone,
which proves the first claim of the lemma.

To prove the second claim, assume that r ≥ 2 and let A,B ⊆ Sp form a maximal
r-cross-intersecting pair. By the previous paragraph, this pair can be transformed into
a monotone pair by repeated applications of the shift operations ϕi,j . Clearly, these
operations do not introduce new relevant coordinates. It remains to check that the
shifting operations do not produce balls from non-balls, that is, if A,B ⊆ Sp are maximal
r-cross-intersecting families, and A′ = ϕi,j(A) and B′ = ϕi,j(B) are balls, then so are A
and B. In fact, by Lemma 4 it is sufficient to prove that one of them is a ball.

We saw that A′ and B′ must also form a maximal r-cross-intersecting pair. Thus,
by Lemma 4, there is a set of coordinates H ⊆ [n], a vector x0 ∈ Sp, and radii l and
m satisfying |H| = r + l + m and that A′ and B′ are the Hamming balls of radius l
and m in coordinates H around the vector x0. We can assume that i ∈ H, because
otherwise A = A′ and we are done. We also have that (x0)i = 1, otherwise A′ = ϕi,j(A)
is impossible. The vectors x ∈ Sp such that xi = j and

|{k ∈ H : xk ̸= (x0)k}| = l + 1
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are called A-critical. Analogously, the vectors y ∈ Sp such that yi = j and

|{k ∈ H : yk ̸= (x0)k}| = m+ 1

are said to be B-critical. By the definition of ϕi,j , the set A differs from A′ by including
some A-critical vectors x and losing the corresponding vectors ϕi(x). Symmetrically,
B \ B′ consists of some B-critical vectors y and B′ \ B consists of the corresponding
vectors ϕi(y). Let us consider the bipartite graph G whose vertices on one side are the A-
critical vectors x, the vertices on the other side are the B-critical vectors y (considered as
disjoint sets, even if l = m), and x is adjacent to y if and only if |{k ∈ [n] : xk = yk}| = r.
If x and y are adjacent, then neither the pair (x, ϕi(y)), nor the pair (ϕi(x), y) is r-
intersecting. As A and B are r-cross-intersecting, for any pair of adjacent vertices x and
y of G, we have x ∈ A if and only if y ∈ B.

The crucial observation is that, since r > 1, the graph G is connected and thus
either all A-critical vectors belong to A or none of them does. In the latter case, we have
A = A′, in the former case A is the Hamming ball of radius l in coordinates H around
the vector x′0, where x

′
0 agrees with x0 in all coordinates but in (x′0)i = j. In either case,

A is a ball as required. 2

Proof of Theorem 8. By Lemma 10, it is enough to restrict our attention to monotone
sets A and B. We may also assume that all coordinates are relevant (simply drop the
irrelevant coordinates), and thus we have n ≤ r + 2.

We denote by Ul the Hamming ball of radius l around the all-1 vector in the entire
set of coordinates [n]. Notice that the monotone sets A and B are r-cross-intersecting
if and only if for a ∈ supp(A) and b ∈ supp(B) we have |a ∪ b| ≤ n− r. We consider all
possible values of n− r, separately.

If n = r, both sets A and B must coincide with the singleton set U0.
If n = r + 1, it is still true that either A or B is U0. Otherwise both supp(A) and

supp(B) have to contain at least one non-empty set, and these sets has to be the same
singleton set (otherwise their union has more than n − r = 1 elements). So we have
supp(A) = supp(B) = {∅, {i}} for some i ∈ [n], but this contradicts our assumption
that the coordinate i is relevant for A.

If n = r+2, we are done if A = B = U1. Otherwise, we must have a two-element set
either in supp(A) or in supp(B). Let us assume that a two-element set {i, j} belongs to
supp(A). Then each set b ∈ supp(B) must satisfy b ⊆ {i, j}. This leaves five possibilities
for a non-empty monotone set B, as supp(B) must be one of the following sets:

1. {∅},

2. {∅, {i}},

3. {∅, {j}},

12



4. {∅, {i}, {j}}, and

5. {∅, {i}, {j}, {i, j}}.

Cases 2, 3, and 5 are not possible, because either i or j would not be relevant for B.
In case 1, we have B = U0, and thus A = U2. In this case, A and B are balls, but

the radius of A is 2. This is impossible, as U1 is r-intersecting and |U1|2 > |U0| · |U2|
always holds, so (A,B) is not maximal.

It remains to deal with case 4. Here supp(A) consists of the sets of size at most 1
and the two-element set {i, j}. Define

C = {x ∈ Sp : xk = 1 for all k ∈ [n] \ {i, j}}.

Note that |A|+ |B| = |U1|+ |C|, because each vector in Sp appears in the same number
of sets on both sides. Thus, we have either |A|+ |B| ≤ 2|U1| or |A|+ |B| ≤ 2|C|. Since
|A| > |B|, the above inequalities imply |A|·|B| < |U1|2 or |A|·|B| < |C|2. This contradicts
the maximality of the pair (A,B), because both U1 and C are r-cross-intersecting. The
contradiction completes the proof of Theorem 8. 2

Now we can prove our main theorem, verifying Conjecture 3 in several special cases.
Proof of Theorem 7. The statement about the case p1 > r + 1 readily follows from
Lemma 2, as in this case the condition

2

pr+1
+

r∑
i=1

1

pi
≤ 1

holds.
We can assume that A and B form a maximal r-cross-intersecting pair. We also

assume without loss of generality that all coordinates are relevant for both sets (simply
drop the irrelevant coordinates).

By Theorem 6, we have
∏r

i=1 pi ≥
∏n

i=1(pi − 1)1−2/pi , and thus

r∏
i=1

pi

(pi − 1)1−2/pi
≥

n∏
i=r+1

(pi − 1)1−2/pi .

Here the function x/(x−1)1−2/x is decreasing for x ≥ 3, while (x−1)1−2/x is increasing,
and we have pi ≥ p1 ≥ 3. Therefore, we also have

r∏
i=1

p1

(p1 − 1)1−2/p1
≥

n∏
i=r+1

(p1 − 1)1−2/p1 ,

pr1 ≥ (p1 − 1)n(1−2/p1),
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n ≤ r log p1
(1− 2/p1) log(p1 − 1)

.

It can be shown by simple computation that the right-hand side of the last inequality is
strictly smaller than r+3 if p1 ≤ 2r/3+ t(r) for some function t(r) = O(r/ log r) and, in
particular, for p1 = r+1 ≥ 8. In this case, we have n ≤ r+2 relevant coordinates. Thus,
Theorem 8 applies, yielding that A and B are balls. This proves the last statement of
Theorem 7.

For the middle statement, we use Lemma 4 to calculate the sizes of A in B in the three
possible cases. The product |A| · |B| is z1 =

∏n
i=r+1 p

2
i if A and B are balls of radius 0.

The same product is z2 = (
∑r+1

i=1 pi−r)
∏n

i=r+2 p
2
i if one of them is a ball of radius 0 while

the other is a ball of radius 1. Finally, the product is z3 = (
∑r+2

i=1 pi − r− 1)2
∏n

i=r+3 p
2
i

if both sets are balls of radius 1. Note that we have A = B in the first and third cases.
Using the condition pi ≥ r+1, it is easy to verify that z2 < z1 and z3 ≤ z1. Furthermore,
we have z3 = z1 if and only if pi = r + 1 for all i ∈ [r + 2]. This completes the proof of
Theorem 7. 2

5 Concluding remarks

For the simple characterization of the cases of equality in Theorem 1, the assumption
k ̸= 2 is necessary. Here we characterize the maximal cross-intersecting pairs in the
k = 2 case.

Let p = (p1, . . . , pn) be a size vector of positive integers with k = mini pi = 2 and let
I = {i ∈ [n] : pi = 2}. For any set W of functions from I → [2], define the sets

AW = {x ∈ Sp : ∃f ∈ W such that xi = f(i) for every i ∈ I},

BW = {y ∈ Sp : ̸ ∃f ∈ W such that yi ̸= f(i) for every i ∈ I}.

The sets AW and BW are cross-intersecting for any W . Moreover, if |W | = 2I−1, we
have |A| · |B| = |Sp|2/4, so they form a maximal cross-intersecting pair. Note that these
include more examples than just the pairs of families described in Theorem 1, provided
that |I| > 1.

We claim that all maximal cross-intersecting pairs are of the form constructed above.
To see this, consider a maximal pair A,B ⊆ Sp. We know from the proof of Theorem 1
that x ∈ A if and only if x′ /∈ B, where x′ is defined by x′i = (xi+1 mod pi) for all i ∈ [n].
Let j ∈ [n] be a coordinate with pj > 2. By the same argument, we also have that x ∈ A
holds if and only if x′′ /∈ B, where x′′i = x′i for i ∈ [n] \ {j} and x′′j = (xj + 2 mod pj).
Thus, both x′ and x′′ belong to B or neither of them does. This holds for every vector
x′, implying that j is irrelevant for the set B and thus also for A.
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As there are no relevant coordinates for A and B outside the set I of coordinates
with pi = 2, we can choose a set W of functions from I to [2] such that A = AW . This
makes

B = {y ∈ Sp : y intersects all x ∈ A} = BW .

We have |A|+ |B| = |Sp| and |A| · |B| = |Sp|2/4 if and only if |W | = 2|I|−1.

In [FF80], the case p = (k, . . . , k), n = r + 2 was considered and it was noted that
the radius 1 ball C in all the coordinates is an r-intersecting. The cardinality of C
is |C| = (r + 2)(k − 1) + 1. The “trivial” r-intersecting family obtained by fixing r
coordinates has k2 elements, thus it does not provide an extremal example if r ≥ k. If
k = r+1, then the trivial example and the family C are of the same size. This means that
fixing r coordinates is definitely not the only way to obtain maximal r-cross-intersecting
pairs, but it is not clear whether both examples are maximal or not. The r = 1 special
case of Theorem 1 suggests that the trivial example may still be maximal in the case
k = r + 1, although clearly not the only maximal example. Theorem 7 establishes this
for r > 6. The intermediate cases 2 ≤ r ≤ 6 are still open but could possibly be handled
by computer search.

Finally, we mention that there is a simple connection between the problem discussed
in this paper and a question related to communication complexity. Consider the following
two-person communication game: Alice and Bob each receive a vector from Sp, and they
have to decide whether the vectors are r-intersecting. In the communication matrix of
such a game, the rows are indexed by the possible inputs of Alice, the columns by the
possible inputs of Bob, and an entry of the matrix is 1 or 0 corresponding to the “yes” or
“no” output the players have to compute for the corresponding inputs. In the study of
communication games, the submatrices of this matrix in which all entries are equal play
a special role. The largest area of an all-1 submatrix is the maximal value of |A| · |B|
for r-cross-intersecting families A,B ⊆ Sp.
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Theory Ser. B 13 (1972), 183–184.

[Liv79] M. L. Livingston: An ordered version of the Erdős-Ko-Rado theorem, J. Combin.
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