Almost All String Graphs are Intersection Graphs of Plane Convex Sets

János Pach* ${ }^{* \ddagger} \quad$ Bruce Reed ${ }^{\S} \quad$ Yelena Yuditsky ${ }^{\S}$

April 13, 2020

Abstract

A string graph is the intersection graph of a family of continuous arcs in the plane. The intersection graph of a family of plane convex sets is a string graph, but not all string graphs can be obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that some pair of them is not connected by any edge $(n \rightarrow \infty)$. We also show that every graph with the above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.

1 Overview

The intersection graph of a collection C of sets is the graph whose vertex set is C and in which two sets in C are connected by an edge if and only if they have nonempty intersection. A curve is a subset of the plane which is homeomorphic to the interval $[0,1]$. The intersection graph of a finite collection of curves ("strings") is called a string graph. A full-dimensional compact convex set in the plane will be called simply a convex set.

Ever since Benzer [Be59] introduced the notion in 1959, to explore the topology of genetic structures, string graphs have been intensively studied both for practical applications and theoretical interest. In 1966, studying electrical networks realizable by printed circuits, Sinden [Si66] considered the same constructs at Bell Labs. He proved that not every graph is a string graph, and raised the question whether the recognition of string graphs is decidable. The affirmative answer was given by Schaefer and Štefankovič ScSt04] 38 years later. The difficulty of the problem is illustrated by an elegant construction of Kratochvíl and Matoušek KrMa91, according to which there exists a string graph on n vertices such that no matter how we realize it by curves, there are two curves that intersect at least $2^{c n}$ times, for some $c>0$. On the other hand, it was proved in [ScSt04] that every string graph on n vertices and m edges can be realized by polygonal curves, any pair of which intersect at most $2^{c^{\prime} m}$ times, for some other constant c^{\prime}. The problem of recognizing string graphs is NP-complete Kr91, ScSeSt03].

[^0]In spite of the fact that there is a wealth of results for various special classes of string graphs, understanding the structure of general string graphs has remained an elusive task. The aim of this paper is to show that almost all string graphs have a very simple structure. That is, the proportion of string graphs that possess this structure tends to 1 as n tends to infinity.

Given any graph property P and any $n \in \mathbb{N}$, we denote by P_{n} the set of all graphs with property P on the (labeled) vertex set $V_{n}=\{1, \ldots, n\}$. In particular, STRING_{n} is the collection of all string graphs with the vertex set V_{n}.

Theorem 1 As $n \rightarrow \infty$, the vertex set of almost every string graph $G \in \operatorname{STRING}_{n}$ can be partitioned into four parts such that three of them induce a clique in G and the fourth one splits into two cliques with no edge running between them.

Theorem 2 Every graph G whose vertex set can be partitioned into four parts such that three of them induce a clique in G and the fourth one splits into two cliques with no edge running between them, is a string graph.

Theorem 1 settles a conjecture of Janson and Uzzell from JaU17, where a related weaker result was proved in terms of graphons.

We also prove that a typical string graph can be realized using relatively simple strings.
Let Conv_{n} denote the set of all intersection graphs of families of n labeled convex sets $\left\{C_{1}, \ldots, C_{n}\right\}$ in the plane. For every pair $\left\{C_{i}, C_{j}\right\}$, select a point in $C_{i} \cap C_{j}$, provided that such a point exists. We can assume without loss of generality that the selected points are in general position. Replace each convex set C_{i} by the polygonal curve obtained by connecting all points selected from C_{i} by segments, in the order of increasing x-coordinate. Observe that any two such curves belonging to different $C_{i} \mathrm{~S}$ cross at most $2 n$ times. The intersection graph of these curves (strings) is the same as the intersection graph of the original convex sets, showing that $\operatorname{Conv}_{n} \subseteq \operatorname{String}_{n}$. Taking into account the construction of Kratochvíl and Matoušek KrMa91] mentioned above, it easily follows that the sets Conv_{n} and String $_{n}$ are not the same, provided that n is sufficiently large.

Theorem 3 There exist string graphs that cannot be obtained as intersection graphs of convex sets in the plane.

We call a graph G canonical if its vertex set can be partitioned into 4 parts such that 3 of them induce a clique in G and the 4 th one splits into two cliques with no edge running between them. The set of canonical graphs on n vertices is denoted by CanOn_{n}. Theorem 2 states $\mathrm{CanOn}_{n} \subset \operatorname{String}_{n}$. In fact, this is an immediate corollary of $\mathrm{CONv}_{n} \subset \operatorname{StRING}_{n}$ and the relation CANON ${ }_{n} \subset \operatorname{Conv}_{n}$, given by the following theorem.

Theorem 4 The vertices of every canonical graph G can be represented by convex sets in the plane such that their intersection graph is G.

The converse is not true. Every planar graph can be represented as the intersection graph of convex sets in the plane (Koebe [Ko36]). Since no planar graph contains a clique of size exceeding four, for $n>20$ no planar graph with n vertices is canonical.

Combining Theorems 1 and 4 , we obtain the following.
Corollary 5 Almost all string graphs on n labeled vertices are intersection graphs of convex sets in the plane.

Figure 1: The graph G_{1} is a planar graph with more than 20 vertices. The graph G_{2} is the graph from the construction of Kratochvíl and Matoušek KrMa91.

See Figure 1 for a sketch of the containment relation of the families of graphs discussed above.
The rest of this paper is organized as follows. In Section 2 , we discuss previous related results and thereby introduce some needed notation and tools In Section 3, we collect some simple facts about string graphs and intersection graphs of plane convex sets, and combine them to prove Theorem 4 . In Section 4, we give an outline of the proof of our main result, Theorem 1, and deduce one of its corollaries: an asymptotic formula for the number of string graphs with n vertices (see Theorem 7 below). After some necessary preparation in Section 5, we fill in the details in Sections 6, 7, and 8 .

2 The structure of typical graphs in a hereditary family

A graph property P is called hereditary if every induced subgraph of a graph G with property P has property P , too. With no danger of confusion, we use the same notation P to denote a (hereditary) graph property and the family of all graphs that satisfy this property. Clearly, the properties that a graph G is a string graph ($G \in$ STRING) or that G is an intersection graph of plane convex sets ($G \in \mathrm{Conv}$) are hereditary. The same is true for the properties that G contains no subgraph or no induced subgraph isomorphic to a fixed graph H.

It is a classic topic in extremal graph theory to investigate the typical structure of graphs in a specific hereditary family. This involves proving that almost all graphs in the family have a certain structural decomposition. This research is inextricably linked to the study of the growth rate of the function $\left|\mathrm{P}_{n}\right|$, also known as the speed of P , in two ways. Firstly, structural decompositions may give us bounds on the growth rate. Secondly, lower bounds on the growth rate help us to prove that the size of the exceptional family of graphs which fail to have a specific structural decomposition is negligible. In particular, we will both use a preliminary bound on the speed in proving our structural result about string graphs, and apply our theorem to improve the previously best known bounds on the speed of the string graphs.

In a pioneering paper, Erdős, Kleitman, and Rothschild [ErKR76] approximately determined for every t the speed of the property that the graph contains no clique of size t. Erdős, Frankl, and Rödl [ErFR86] generalized this result as follows. Let H be a fixed graph with chromatic number $\chi(H)$. Then every graph of n vertices that does not contain H as a (not necessarily induced) subgraph can be made $(\chi(H)-1)$-partite by the deletion of $o\left(n^{2}\right)$ edges. This implies that the speed of the property that the graph contains no subgraph isomorphic to H is

$$
\begin{equation*}
2^{\left(1-\frac{1}{\chi(H)-1}+o(1)\right)\binom{n}{2}} . \tag{1}
\end{equation*}
$$

Prömel and Steger [PrS92a, PrS92b, PrS93] established an analogous theorem for graphs containing no induced subgraph isomorphic to H. Throughout this paper, these graphs will be called H-free. To state their result, Prömel and Steger introduced the following key notion.

Definition 6 A graph G is (r, s)-colorable for some $0 \leq s \leq r$ if there is an r-coloring of the vertex set $V(G)$, in which the first s color classes are cliques and the remaining $r-s$ color classes are stable sets. The coloring number $\chi_{c}(\mathrm{P})$ of a hereditary graph property P is the largest integer r for which there is an such that all (r, s)-colorable graphs have property P . Consequently, for any $0 \leq s \leq \chi_{c}(\mathrm{P})+1$, there exists $a\left(\chi_{c}(\mathrm{P})+1, s\right)$-colorable graph that does not have property P .

Prömel and Steger proved that for every H, if P is the property of being H-free then P satisfies

$$
\begin{equation*}
\left|\mathrm{P}_{n}\right|=2^{\left(1-\frac{1}{\chi_{c}(\mathrm{P})}+o(1)\right)\binom{n}{2}} . \tag{2}
\end{equation*}
$$

The work of Prömel and Steger was completed by Alekseev [Al93] and by Bollobás and Thomason BoT95, BoT97, who proved that this inequality holds for every hereditary graph property P.

The lower bound follows from the observation that for $\chi_{c}(\mathrm{P})=r$, there exists $s \leq r$ such that all (r, s)-colorable graphs have property P . In particular, P_{n} contains all graphs whose vertex sets can be partitioned into s cliques and $r-s$ stable sets, and the number of such graphs is of the order described by the right-hand side of (2).

As for string graphs, Pach and Tóth [PaT06] proved that

$$
\begin{equation*}
\chi_{c}(\operatorname{StRING})=4 . \tag{3}
\end{equation*}
$$

Hence, (2) immediately implies

$$
\begin{equation*}
\left|\operatorname{STRING}_{n}\right|=2^{\left(\frac{3}{4}+o(1)\right)\binom{n}{2} .} \tag{4}
\end{equation*}
$$

Theorem 1 allows us to strengthen this result considerably, as shown below it easily implies:

Theorem 7

$$
\left|\operatorname{STRING}_{n}\right|=2^{\frac{3 n^{2}}{8}+\frac{9 n}{4}+o(n)} .
$$

To prove Theorem 1, we adopt an approach introduced by Prömel and Steger PrS91. They observed that a partition of $V(G)$ into a clique and a stable set certifies that G is C_{4}-free, because no matter which edges between the clique and the stable set are present, there can be no C_{4}. Considering one such partition they obtained that there are at least $2^{\frac{n^{2}}{4}-1} C_{4}$-free graphs on n vertices. They proved that almost every C_{4}-free graph permits such a partition and hence the speed
 "certifying partitions". It is an interesting open problem to decide which hereditary families permit such partitions and what can be said about the inner structure of the subgraphs induced by the parts. This line of research was continued by Balogh, Bollobás, and Simonovits BaBS04, BaBS09, BaBS11. One result in this direction is due to Alon, Balogh, Bollobás, and Morris AlBBM11. They proved that almost every graph with a hereditary Property P can be partitioned into $\chi_{c}(\mathrm{P})$ parts with a simple internal structure.

The first step of our proof is to strengthen the result of Alon et al. AlBBM11 when P is the string graphs. We show that we can actually find a partition of almost every string graph into four parts such that each part satisfies the properties in their definition of simple structure and
furthermore: three of the parts can be made into cliques by deleting $o(n)$ vertices and the fourth can be made into the disjoint union of cliques by deleting $o(n)$ vertices.

The second step of our proof is to show that actually almost every string graph which has such a partition has one in which the union of the four deleted sets is empty.

We give a more detailed outline of the proof of Theorem 1 in Section 4 , and fill in the details in Sections 6. 8

3 String graphs vs. intersection graphs of convex sets-proof of Theorem 4

Instead of proving Theorem 4, we establish a somewhat more general result.
Theorem 8 Given a planar graph H with labeled vertices $\{1, \ldots, k\}$ and positive integers n_{1}, \ldots, n_{k}, let $\mathrm{H}\left(n_{1}, \ldots, n_{k}\right)$ denote the class of all graphs with $n_{1}+\ldots+n_{k}$ vertices that can be obtained from H by replacing every vertex $i \in V(H)$ with a clique of size n_{i}, and adding any number of further edges between pairs of cliques that correspond to pairs of vertices $i \neq j$ with $i j \in E(H)$.

Then every element of $\mathrm{H}\left(n_{1}, \ldots, n_{k}\right)$ is the intersection graph of a family of plane convex sets.
Proof Fix any graph $G \in \mathrm{H}\left(n_{1}, \ldots, n_{k}\right)$. The vertices of H can be represented by closed disks D_{1}, \ldots, D_{k} with disjoint interiors such that D_{i} and D_{j} are tangent to each other for some $i<j$ if and only if $i j \in E(H)$ (Koebe, [Ko36]). In this case, let $t_{i j}=t_{j i}$ denote the point at which D_{i} and D_{j} touch each other. For any $i(1 \leq i \leq k)$, let o_{i} be the center of D_{i}. Assume without loss of generality that the radius of every disk D_{i} is at least 1 .

The graph G has $n_{1}+\ldots+n_{k}$ vertices denoted by $v_{i m}$, where $1 \leq i \leq k$ and $1 \leq m \leq n_{i}$. In what follows, we assign to each vertex $v_{i m} \in V(G)$ a finite set of points $P_{i m}$, and define $C_{i m}$ to be the convex hull of $P_{i m}$. For every $i, 1 \leq i \leq k$, we include o_{i} in all sets $P_{i m}$ with $1 \leq m \leq n_{i}$, to make sure that for each i, all sets $C_{i m}, 1 \leq m \leq n_{i}$ have a point in common, therefore, the vertices that correspond to these sets induce a clique.

Let $\varepsilon<1$ be the minimum of all angles $\measuredangle t_{i j} o_{i} t_{i l}>0$ at which the arc between two consecutive touching points $t_{i j}$ and $t_{i l}$ on the boundary of the same disc D_{i} can be seen from its center, over all $i, 1 \leq i \leq k$ and over all j and l. Fix a small $\delta>0$ satisfying $\delta<\varepsilon^{2} / 100$.

For every $i<j$ with $i j \in E(H)$, let $\gamma_{i j}$ be a circular arc of length δ on the boundary of D_{i}, centered at the point $t_{i j} \in D_{i} \cap D_{j}$. We select $2^{n_{i}}$ distinct points $p_{i j}(A) \in \gamma_{i j}$, each representing a different subset $A \subseteq\left\{1, \ldots, n_{i}\right\}$. A point $p_{i j}(A)$ will belong to the set $P_{i m}$ if and only if $m \in A$. (Warning: Note that the roles of i and j are not interchangeable!)

If for some $i<j$ with $i j \in E(H)$, the intersection of the neighborhood of a vertex $v_{j M} \in V(G)$ for any $1 \leq M \leq n_{j}$ with the set $\left\{v_{i m}: 1 \leq m \leq n_{i}\right\}$ is equal to $\left\{v_{i m}: m \in A\right\}$, then we include the point $p_{i j}(A)$ in the set $P_{j M}$ assigned to $v_{j M}$, see Figure 2 for a sketch. Hence, for every $m \leq n_{i}$ and $M \leq n_{j}$, we have

$$
v_{i m} v_{j M} \in E(G) \quad \Longleftrightarrow \quad P_{i m} \cap P_{j M} \neq \emptyset .
$$

In other words, the intersection graph of the sets assigned to the vertices of G is isomorphic to G.
It remains to verify that

$$
v_{i m} v_{j M} \in E(G) \quad \Longleftrightarrow \quad C_{i m} \cap C_{j M} \neq \emptyset .
$$

Suppose that the intersection graph of the set of convex polygonal regions

$$
\left\{C_{i m}: 1 \leq i \leq k \text { and } 1 \leq m \leq n_{i}\right\}
$$

Figure 2: The point $p_{i j}(A)$ is included in $P_{j M}$.
differs from the intersection graph of

$$
\left\{P_{i m}: 1 \leq i \leq k \text { and } 1 \leq m \leq n_{i}\right\} .
$$

Assume first, for contradiction, that there exist i, m, j, M with $i<j$ such that D_{i} and D_{j} are tangent to each other and $C_{j M}$ contains a point $p_{i j}(B)$ for which

$$
\begin{equation*}
B \neq N_{j M} \cap\left\{v_{i m}: 1 \leq m \leq n_{i}\right\} . \tag{5}
\end{equation*}
$$

Consider the unique point $p=p_{i j}(A) \in \gamma_{i j}$ that belongs to $P_{j M}$, that is, we have

$$
A=N_{j M} \cap\left\{v_{i m}: 1 \leq m \leq n_{i}\right\} .
$$

Draw a tangent line ℓ to the arc $\gamma_{i j}$ at point p. See Figure 3. The polygon $C_{j M}$ has two sides meeting at p; denote the infinite rays emanating from p and containing these sides by r_{1} and r_{2}. These rays either pass through o_{j} or intersect the boundary of D_{j} in a small neighborhood of the point of tangency of D_{j} with some other disk $D_{j^{\prime}}$. Since δ was chosen to be much smaller than ε, we conclude that r_{1} and r_{2} lie entirely on the same side of ℓ where o_{j}, the center of D_{j}, is. On the other hand, all other points of $\gamma_{i j}$, including the point $p_{i j}(B)$ satisfying (5) lie on the opposite side of ℓ, which is a contradiction.

Essentially the same argument and a little trigonometric computation show that for every j and M, the set $C_{j M}-D_{j}$ is covered by the union of some small neighborhoods (of radius $<\varepsilon / 10$) of the touching points $t_{i j}$ between D_{j} and the other disks D_{i}. This, together with the assumption that the radius of every disk D_{i} is at least 1 (and, hence, is much larger than ε and δ) implies that $C_{j M}$ cannot intersect any polygon $C_{i m}$ with $i \neq j$, for which D_{i} and D_{j} are not tangent to each other.

A very similar argument was outlined in KuKr98.
Applying Theorem 8 to the graph obtained from K_{5} by deleting one of its edges, Theorem 4 follows.

4 Outline of the proof of Theorem 1

Definition 9 By a great partition of a graph G we mean an ordered partition of its vertex set $V(G)$ into $X_{1}, X_{2}, X_{3}, X_{4}$ such that (i) for $i \leq 3, G\left[X_{i}\right]$ is a clique while $G\left[X_{4}\right]$ is the disjoint union of two cliques. We call a graph great if it has a great partition and mediocre otherwise.

Figure 3: Tangent disks D_{i} and D_{j} touching at $t_{i j}$.

Theorem 1 simply states that the ratio of the number of mediocre string graphs on n vertices over the number of great graphs with n vertices is $o(1)$.

As previously discussed, the proof of Theorem 1 splits into two parts. We first show that for almost every G in $\operatorname{String}_{n}$, we can find a partition of $V(G)$ into four parts each of which has a simple internal structure, including that we can delete an exceptional set of size $o(n)$ so that three of the parts induce cliques and the fourth induces the disjoint union of two cliques. We then show that, we can almost always chose the exceptional set to be empty.

To state the result we obtain in the first step, we need to agree on some notation and terminology. The neighborhood of a vertex v of a graph G is denoted by $N_{G}(v)$ or, if there is no danger of confusion, simply by $N(v)$. For any $A \subset V(G)$, let $G[A]$ denote the subgraph of G induced by A.

The result we obtain in the first step is the following.
Theorem 10 For every sufficiently small δ, there are $\gamma>0$ and b with the following property. For almost every string graph G on V_{n}, there is a partition of V_{n} into $X_{1}, \ldots, X_{4}, Z_{1}, \ldots, Z_{4}$ such that there is a set B of at most b vertices for which the following conditions are satisfied:
(I) $G\left[X_{1}\right], G\left[X_{2}\right]$, and $G\left[X_{3}\right]$ are cliques and $G\left[X_{4}\right]$ induces the disjoint union of two cliques.
(II) $\left|Z_{1} \cup Z_{2} \cup Z_{3} \cup Z_{4}\right| \leq n^{1-\gamma}$,
(III) for every $i(1 \leq i \leq 4)$ and every $v \in X_{i} \cup Z_{i}$, there exists $a \in B$ such that

$$
\left|(N(v) \triangle N(a)) \cap\left(X_{i} \cup Z_{i}\right)\right| \leq \delta n,
$$

(IV) for every $i(1 \leq i \leq 4)$, we have $\left|\left|Z_{i} \cup X_{i}\right|-\frac{n}{4}\right| \leq n^{1-\gamma}$.

We note that our four part partition is ($X_{1} \cup Z_{1}, X_{2} \cup Z_{2}, X_{3} \cup Z_{3}, X_{4} \cup Z_{4}$). (I) and (II) imply that $Z=Z_{1} \cup Z_{2} \cup Z_{3} \cup Z_{4}$ is the exceptional set we desire. The other key property is (III), which greatly reduces the choices for the edges within the parts, as we discuss more fully below. On the other hand, (IV) is not surprising. Indeed, having proven the weakening of the theorem where it is deleted, we can obtain the full theorem in just a few lines. Again this is set out below.

See Figure 4 for a pictorial representation of Theorem 10.

Figure 4: A sketch of a typical string graph as in Theorem 10. The edges between the parts are not drawn. The sets shaded grey are cliques.

Definition 11 A partition of the vertex set V_{n} of a graph into 8 parts $X_{1}, \ldots, X_{4}, Z_{1}, \ldots, Z_{4}$ is called good if it satisfies conditions (I), (II), (III), and (IV).

A good partition $X_{1}, \ldots, X_{4}, Z_{1}, \ldots, Z_{4}$ is also called \mathcal{Y}-good for $\mathcal{Y}=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$, where $Y_{i}=X_{i} \cup Z_{i}$ for every $i \in[4]$.

We choose $\delta>0$ so small that Theorem 10 holds and δ also satisfies certain inequalities implicitly given below. We apply Theorem 10 and obtain that for some positive γ and b, almost every graph in $\operatorname{StRING}_{n}$ permits a good partition.

By Theorem 10, to complete the proof of Theorem 1. we need to show that the number of mediocre string graphs on V_{n} with a good partition is of smaller order than the number of great graphs on V_{n}. We do that by comparing the number of good partitions of mediocre graphs and the number of great partitions of great graphs. As can be seen from the following claim, we do not over-count much when we consider the number of great partitions in place of the number of great graphs. Obviously, every great graph has at least 6 great partitions, because we can arbitrarily permute the first 3 partition elements. The next statement shows that most great graphs do not permit more than 6 great partitions.

Claim 12 The ratio between the number of pairs of a great graph together with its great partition and the number of great graphs is $6+o(1)$.

Claim 13 For every partition $\mathcal{Y}=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ of V_{n}, the number of graphs which permit a great partition with $X_{i}=Y_{i}$ for every i is of larger order then the number of mediocre string graphs which permit a \mathcal{Y}-good partition.

In order to establish Theorem 1, it is enough to prove Theorem 10, Claim 12, and Claim 13 ,
After some necessary preparation in the next section, we prove Theorem 10 in Section 6 . Claims 12 and 13 are proved in Sections 7 and 8, respectively.

Here we show how Theorem 7 follows from Theorem 1 and Claim 12 ,
Proof of Theorem 7 Combining Theorem 1 and Claim 12, we see that the ratio of the size of String $_{n}$ over the number of ordered great partitions of graphs on V_{n} is $\frac{1}{6}+o(1)$, so we need only count the latter. There are $2^{2 n}$ ordered partitions of V_{n} into Y_{1}, \ldots, Y_{4}, and for any such partition there are $O(1) 2^{m \mathcal{Y}+\left|Y_{4}\right|}$ graphs for which this is a great partition. This latter term is at most $2^{3 n^{2} / 8+6+\frac{n}{4}+o(n)}$, which gives us the claimed upper bound on the speed of string graphs. Furthermore, a simple calculation shows that in a an $\Omega\left(\frac{1}{n^{3 / 2}}\right)$ proportion of all $2^{2 n}$ ordered 4-partitions of V_{n}, no two parts differ in size by more than 1 . This gives the desired lower bound.

Before ending this section, we give a bit of intuition about the proof of Claim 13 which is a key element of our argument. We note that, for a given ordered partition \mathcal{Y}, there are fewer than 2^{n} choices for the 4-tuple ($\left.G\left[Y_{1}\right], G\left[Y_{2}\right], G\left[Y_{3}\right], G\left[Y_{4}\right]\right)$ over G for which \mathcal{Y} is a great partition as the first three of its elements are cliques and the last is the disjoint union of 2 cliques. This is dwarfed by the number of choices for this 4 -tuple over mediocre G for which \mathcal{Y} is a good partition.

To counterbalance this fact, we need to consider the edges between the partition elements. If we insist that Y_{4} can be partitioned into a specific pair of cliques, and every other Y_{i} is a clique, then every choice for the edges between the parts yields a great graph for which \mathcal{Y} is a great partition. In contrast, for a choice of $\left(G\left[Y_{1}\right], G\left[Y_{2}\right], G\left[Y_{3}\right], G\left[Y_{4}\right]\right)$, for some mediocre graph G for which \mathcal{Y} is a good partition, there are much fewer choices for the edges between the parts that yield a mediocre string graph for which \mathcal{Y} is a good partition.

In the proof of Claim 13, we repeatedly exploit information about a quadruple to bound the number of its extensions to mediocre string graphs for which it forms a good partition. This tradeoff between greater choice within the part and less choice between the parts will also be crucially important in the proof of Theorem 10 .

5 The starting point

Our starting point is essentially a special case of a result of Alon et al. AlBBM11 which holds for all hereditary properties of graphs. To state it, we need some notations.

For any disjoint subsets $A, B \subset V(G)$, let $G[A, B]$ denote the bipartite subgraph of G consisting of all edges of G running between A and B. The symmetric difference of two sets, X and Y, is denoted by $X \triangle Y$.

Following Alon et al., for any integer $k>0$, we define $U(k)$ as the bipartite graph with vertex classes $\{1, \ldots, k\}$ and $\{I: I \subset\{1, \ldots, k\}\}$, where a vertex i in the first class is connected to a vertex I in the second if and only if $i \in I$. We think of $U(k)$ as a "universal" bipartite graph on $k+2^{k}$ vertices, because for every subset of the first class there is a vertex in the second class whose neighborhood is precisely this subset.

Definition 14 Let k be a positive integer. A graph G is said to contain $U(k)$ if there are two disjoint subsets $A, B \subset V(G)$ such that the bipartite subgraph $G[A, B] \subseteq G$ is isomorphic to $U(k)$. Otherwise, with a slight abuse of terminology, we say that G is $U(k)$-free.

By slightly modifying the proof of the main result, Theorem 1, in AlBBM11, and adapting it to string graphs, we obtain the following.

Theorem 15 For any sufficiently large positive integer k and for any $\delta>0$ which is sufficiently small in terms of k, there exist $\epsilon>0$ and a positive integer b with the following properties.

The vertex set $V_{n}\left(\left|V_{n}\right|=n\right)$ of almost every string graph G can be partitioned into eight sets, $S_{1}, \ldots, S_{4}, A_{1}, \ldots, A_{4}$, such that for some set B of at most b vertices
(a) $G\left[S_{i}\right]$ is $U(k)$-free for every $i(1 \leq i \leq 4)$;
(b) $\left|A_{1} \cup \ldots \cup A_{4}\right| \leq n^{1-\epsilon}$; and
(c) for every $i(1 \leq i \leq 4)$ and $v \in S_{i} \cup A_{i}$, there is $a \in B$ such that

$$
\left|(N(v) \triangle N(a)) \cap\left(S_{i} \cup A_{i}\right)\right| \leq \delta n .
$$

For those familiar with the paper of Alon, Balogh, Bollobás, and Morris [AlBBM11], we present the details of the minor modifications required for the proof of Theorem 15.

Proof It is sufficient to prove the result for δ sufficiently small. We set $\delta=3 \alpha$ for some $\alpha>0$ which is required to be sufficiently small. So, in what follows, we can and do replace δ by 3α. (This replacement is essential to readability for those readers who choose to work through [AlBBM11, as δ denotes a different quantity in that paper.)

We essentially follow and repeat the proof of Theorem 1, given in Section 7 of [AlBBM11]. Our Theorem 15 differs from their Theorem 1 in the following ways.
(i) In our case, the hereditary family \mathcal{P} is the family of string graphs. Hence, by Pach and Tóth PaT06, we have $\chi_{c}(P)=4$,
(ii) We allow k to be any large enough integer, rather than one fixed large integer.
(iii) We allow α to be arbitrarily small, as long as it is small enough in terms of k (and \mathcal{P}).
(iv) ϵ is chosen as a function of α and k.
(v) There is an integer b which is chosen as a function of α and k such that there exist a choice B of at most b vertices and a partition of A into $A_{1}, A_{2}, A_{3}, A_{4}$ for which our property (c) holds - with δ replaced by 3α.
(vi) The sentence beginning with "Moreover" has to be deleted.

Let $k \in \mathbb{N}$ be sufficiently large, let $\alpha=3 \delta>0$ be sufficiently small in terms of k, and choose γ sufficiently small in terms of k and α, and ϵ sufficiently small in terms of all of these parameters. By Lemma 17 of AlBBM11, almost every graph $G \in \mathcal{P}$ has a BBS-partition P for $(\epsilon, \delta, \gamma)$ into 4 parts. Let B be a maximal (2α)-bad set for (G, P).

By Lemmas 22 and 23 of [AlBBM11], for almost every G, there exists an α-adjustment $P^{\prime}=$ $\left(S_{1}^{\prime}, \ldots, S_{4}^{\prime}\right)$ of (G, P) with respect to B. Let $A=U\left(G, P^{\prime}, k\right)$ be the exceptional set given by the algorithm. By Lemma 24, for almost every $G,|A| \leq n^{1-\epsilon}$. Let c stand for $c(\alpha, \mathcal{P})$ of Lemma 19 . Lemma 24 can be strengthened so that it is also possible to deduce that $|B| \leq c$ for almost every $G \in \mathcal{P}$.

Let $A_{i}=S_{i}^{\prime} \cap A, S_{i}=S_{i}^{\prime}-A, i \in[4]$. Now, part(a) of our theorem is the same as Theorem 1(b) in AlBBM11], and part (b) is the same as Theorem 1(a), where ϵ is $\frac{\alpha}{2}$. Part (c) follows immediately from the fact that $S_{1}^{\prime}, \ldots, S_{4}^{\prime}$ is an α-adjustment.

Next, we state the necessary strengthening of Lemma 24 from [AlBBM11]. Let B denote the set with $|B|>c(\alpha, \mathcal{P})$, where $c(\alpha, \mathcal{P})$ is the constant in Lemma 19. Let $U^{\prime}\left(\mathcal{P}_{n}, \alpha, k\right)$ be the set $U\left(\mathcal{P}_{n}, \alpha, k\right)$.

Lemma 16 Let $r \geq 2$ and let \mathcal{P} be a hereditary property of graphs with $\chi_{c}(\mathcal{P})=r$ (in our case, $r=4)$. There exists $k=k(\mathcal{P}) \in \mathbb{N}$ such that for any α sufficiently small in terms of k and \mathcal{P}, the following holds.

Let $\epsilon, \alpha, \gamma>0$ be sufficiently small, and let $n \in \mathbb{N}$ be sufficiently large. Then we have $\left|U^{\prime}\left(\mathcal{P}_{n}, \alpha, k\right)\right| \leq 2^{\left(1-\frac{1}{r}\right)\binom{n}{2}-n^{2-2 \alpha}}$.

The original proof of Lemma 24 actually proves this stronger result, provided that
(a) in the first paragraph, we set out that c to be $c(\alpha, \mathcal{P})$ from their Lemma 19;
(b) in the definition of $U_{n}=\mathcal{U}\left(P_{n}, \alpha, k\right)-\left(\mathcal{B}\left(\mathcal{P}, \alpha, n^{1-2 \alpha}\right) \cup \mathcal{D}\left(\mathcal{P}_{n}, \alpha\right)\right)$, replace $n^{1-2 \alpha}$ by c;
(c) delete the assumption "if $c=c(\alpha, \mathcal{P})$ is sufficiently large".

6 The proof of Theorem 10

The aim of this section is to deduce Theorem 10 from Theorem 15. We will need the following result from [AlBBM11.

Lemma 17 (Theorem 2 in [AlBBM11]) For every $k \in \mathbb{N}$, there is $\rho=\rho(k)>0$ such that the number of $U(k)$-free graphs on $V_{t}=\{1,2, \ldots, t\}$ is less than $2^{t^{2-\rho}}$.

Proof of Theorem 10 We choose k large enough and $0<\delta<\frac{1}{40}$ sufficiently small in terms of k so that for some b and ϵ, almost every string graph has a partition into $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$ such that for some set B of at most b vertices, (a)-(c) of Theorem 15 hold. We call such a partition an $A B B M$ partition.

Let $0<\alpha<\min \left\{\epsilon, \frac{\rho}{2}\right\}$ where ρ is the parameter from Lemma 17 for the above k. Let $\gamma=\frac{\alpha}{40}$ and $l=l(n)=\left\lceil n^{1-\frac{\alpha}{7}}\right\rceil$.

In the sequel, we show that almost every string graph G has an ABBM partition with the following properties.
(1) For each $i \in[3], \exists Y_{i} \subset S_{i}$ with $\left|Y_{i}\right| \leq \frac{1}{8} \cdot n^{1-\gamma}$ such that $G\left[S_{i}-Y_{i}\right]$ is a clique.
(2) $\exists Y_{4} \subset S_{4}$ with $\left|Y_{4}\right| \leq \frac{1}{8} \cdot n^{1-\gamma}$ such that $G\left[S_{4}-Y_{4}\right]$ is the disjoint union of two cliques.
(3) For every $i \in[4],\left|\left|S_{i} \cup A_{i}\right|-\frac{n}{4}\right| \leq n^{1-\gamma}$.

Note that this implies Theorem 10. Indeed, by setting $Z_{i}=A_{i} \cup Y_{i}$ and $X_{i}=S_{i}-Y_{i}$ for each $i \in[4]$, part(I) of the theorem follows from (1) and (2). Furthermore, for sufficiently large n, part (II) also follows from (1), (2), Theorem 15 (b), and from the fact that $\gamma=\frac{\alpha}{40} \leq \frac{\epsilon}{40}$. We obtain part (III), because ($S_{1}, \ldots, S_{4}, A_{1}, \ldots, A_{4}$) is an ABBM partition and $S_{i} \cup A_{i}=X_{i} \cup Z_{i}$ for each $i \in$ [4]. Finally, part (IV) from property (3) above.

Theorem 15 tells us that almost every string graph belongs to the family

$$
\mathcal{G}_{1}=\mathcal{G}_{1}(k, \delta):=\{G \in \operatorname{StRING} \mid G \text { has an ABBM partition }\} .
$$

So we only need to prove that the number of graphs in \mathcal{G}_{1} for which there is an ABBM partition not satisfying at least one of the properties (1), (2), (3), is o(|($\left.\left.\mathcal{G}_{1}\right)_{n} \mid\right)$. Consider three other special families of graphs, and let $l=l(n)=\left\lceil n^{1-\frac{\alpha}{7}}\right\rceil$, as was specified at the beginning of the proof.
$\mathcal{G}_{2}:=\left\{G \in\left(\mathcal{G}_{1}\right)_{n} \mid G\right.$ has an ABBM partition for which $\exists i \in[4]$ s.t. $\left.| | S_{i} \cup A_{i}\left|-\frac{n}{4}\right|>n^{1-\gamma}\right\}$.
$\mathcal{G}_{3}:=\left\{G \in\left(\mathcal{G}_{1}\right)_{n}-\mathcal{G}_{2} \mid G\right.$ has an ABBM partition for which $\exists i \in[4]$ s.t. $G\left[S_{i}\right]$ contains l disjoint sets of size 3 , each inducing a path or a stable set $\}$.
$\mathcal{G}_{4}:=\left\{G \in\left(\mathcal{G}_{1}\right)_{n}-\mathcal{G}_{2}-\mathcal{G}_{3} \mid G\right.$ has an ABBM partition for which $\exists i \neq j \in[4]$ s.t. $G\left[S_{i}\right]$ and $G\left[S_{j}\right]$ contain l disjoint sets of size 4 , each inducing the disjoint union of a vertex and a triangle $\}$.

We show the following.
Lemma $18\left|\mathcal{G}_{2} \cup \mathcal{G}_{3} \cup \mathcal{G}_{4}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$.
Lemma 18 implies that almost every string graph is in $\left(\mathcal{G}_{1}\right)_{n}-\left(\mathcal{G}_{2} \cup \mathcal{G}_{3} \cup \mathcal{G}_{4}\right)$. For any such graph G, we consider an ABBM partition $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$. Since G is not in \mathcal{G}_{3}, no $S_{i}, i \in[4]$, has l disjoint subsets, each od which induces a path or stable set with 3 vertices. Since G is not in \mathcal{G}_{4}, by swapping 4 with some other index if necessary, we can ensure that no $S_{i}, i \in[3]$, has l disjoint subsets of S_{i}, each of which induces the disjoint union of a triangle and a vertex. For $i \in[3]$, let Y_{i} be a maximum set of disjoint subsets of S_{i}, each of which induces a path or stable set of size 3 , or is the disjoint union of a triangle and a vertex. Let Y_{4} be a maximum set of disjoint subsets of S_{4}, each inducing either a path or a stable set with 3 vertices. Clearly, each Y_{i} has at most $7 l$ elements. Since $l=\left\lceil n^{1-\frac{\alpha}{7}}\right\rceil$ and $\gamma=\frac{\alpha}{40}$, this is less than $\frac{n^{1-\gamma}}{8}$, provided n is large enough.

Any graph that has no induced paths on 3 vertices is the disjoint union of cliques. If, in addition, the graph has no stable set of size 3 , it is the disjoint union of at most 2 cliques. If, on top of this, the graph contains no subset that induces the disjoint union of a vertex and a triangle, and it has at least 5 vertices, then it is a clique. Thus, for every sufficiently large n, every ABBM partition of G satisfies (1), (2), and (3).

To complete the proof of Theorem 10, it remains to establish Lemma 18 .
Proof of Lemma 18 We compute separately a lower bound on the size of \mathcal{G}_{1} and an upper bound on the size of $\mathcal{G}_{2} \cup \mathcal{G}_{3} \cup \mathcal{G}_{4}$, and we show that the latter is of smaller order than the former. Computing a lower bound on the size of \mathcal{G}_{1} is easy.

Lemma $19\left|\left(\mathcal{G}_{1}\right)_{n}\right| \geq 2^{\frac{3 n^{2}}{8}-6}$.
Proof For any $n>3$, fix a partition $S_{1}, S_{2}, S_{3}, S_{4}$ of V_{n} into 4 parts, where each S_{i} has either $\lceil n / 4\rceil$ or $\lfloor n / 4\rfloor$ vertices. Let A_{i} be empty for all i. For any sufficiently large n and for any graph G on V_{n}, for which each S_{i} is a clique, this yields an ABBM partition. To see this, let B contain exactly one vertex from each of $S_{1}, S_{2}, S_{3}, S_{4}$. Now every choice of edges between the S_{i} yields a distinct string graph with the given certifying partition. Since there are more than $\frac{3 n^{2}}{8}-6$ pairs of vertices that lie in distinct partition elements, the statement is true.

To obtain an upper bound on $\left|\mathcal{G}_{2} \cup \mathcal{G}_{3} \cup \mathcal{G}_{4}\right|$, consider each of the possible 8^{n} partitions of V into ($S_{1}, \ldots, S_{4}, A_{1}, \ldots, A_{4}$), separately.

For any partition \mathcal{Y} of V_{n} into 4 parts, define $m(\mathcal{Y})$ to be the number of pairs of vertices not taken from the same part. When we use m in this section, we mean $m\left(S_{1} \cup A_{1}, S_{2} \cup A_{2}, S_{3} \cup A_{3}, S_{4} \cup A_{4}\right)$.

Definition 20 The projection of G onto a partition of its vertex set is the set of subgraphs induced by the partition elements.

A projection onto ($S_{1} \cup A_{1}, \ldots, S_{4} \cup A_{4}$) is an ABBM projection for $\left(S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}\right)$ if it is the projection of some graph for which ($S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$) is an ABBM partition.

We now use Lemma 17 to bound the number of different ABBM projections for a given $\left(S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}\right)$.

Lemma 21 The number of possible $A B B M$ projections for a partition ($S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$) of V_{n} is at most $O\left(2^{8 n^{2-\alpha}}\right)$.

Proof By Lemma 17, the number of choices for a $U(k)$-free graph on each S_{i} is $O\left(2^{n^{2-\rho}}\right)=$ $O\left(2^{n^{2-\alpha}}\right)$. Let $A=\cup_{i=1}^{4} A_{i}$. Since, in an ABBM partition, $|A|$ is at most $n^{1-\epsilon}$, there are at most $2^{n^{2-\epsilon}}=O\left(2^{n^{2-\alpha}}\right)$ choices for the edges with at least one endpoint in the set A. It follows that there are at most $O\left(2^{8 n^{2-\alpha}}\right)$ choices for the ABBM projection for this partition, over all graphs for which it is an ABBM partition.

Lemma $22\left|\mathcal{G}_{2}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$.
Proof Let $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$ be a partition of V_{n} such that for some $i \in[4]$, we have $\left|\left|S_{i} \cup A_{i}\right|-\frac{n}{4}\right|>n^{1-\gamma}$. Then $m<\frac{3 n^{2}}{8}+6-n^{2-\gamma}$. There are at most 2^{m} graphs that have the same ABBM projection on $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$. Combining this bound with the upper bound in Lemma 21, and comparing it with the lower bound $\left|\left(\mathcal{G}_{1}\right)_{n}\right| \geq 2^{\frac{3 n^{2}}{8}-6}$ from Lemma 19, we get the desired result.

In order to complete the proof of Theorem 10, we need to exploit the fact that for some specific choice of an ABBM projection for ($S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$), it cannot occur that all 2^{m} graphs extending this projection are string graphs. Specifically, we will use the following result.

Lemma 23 Let H be a non-string graph, and let $L_{1}, L_{2}, L_{3}, L_{4}$ be a partition of $V(H)$. Let P be a projection on a partition $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ of V_{n}. Assume that for each $i \in[4]$, we can choose a family \mathcal{W}^{i} of q disjoint subsets of Y_{i}, each inducing a graph isomorphic to $H\left[L_{i}\right]$.

Then the number of string graphs whose projection on \mathcal{Y} is P is at most $2^{m(\mathcal{Y})}\left(1-\frac{1}{\left.2^{\left(V V_{2}(H) \mid\right.}\right)}\right)^{\frac{q^{2}}{4}}$.
Proof It is well known that there is a prime p between $\frac{q}{2}$ and q. For each $i \in[4]$, let $J_{0}^{i}, \ldots, J_{p-1}^{i}$ be p members of \mathcal{W}^{i}. For $1 \leq r, s \leq p$, consider the 4 -tuple $J_{r}^{1}, J_{r+s}^{2}, J_{r+2 s}^{3}, J_{r+3 s}^{4}$, where addition is taken modulo p. For each of the $p^{2} \geq \frac{q^{2}}{4}$ such 4 -tuples, there is a way to choose edges between pairs of vertices in distinct elements of the 4 -tuple so that we get a copy of H. Hence, the resulting graph where such a choice is made is not a string graph. Therefore, among the $\left.c \leq 2{ }_{2}^{(|V(H)|}{ }_{2}\right)$ choices for the edges between the elements of the 4 -tuple, at most $c-1$ can occur in a string graph with the given projection on $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$. Furthermore, by our choice of the 4 -tuples, for any x in S_{i} and y in S_{j} with $i \neq j$, there is at most one 4 -tuple containing both x and y. The result follows.

To exploit this lemma, we need to consider the partitions of certain non-string graphs set out in the following result, which is a slight generalization of Lemma 3.2 in [PaT06] with essentially the same proof.

Lemma 24 Let H be a graph on the vertex set $\left\{v_{1}, \ldots, v_{5}\right\} \cup\left\{v_{i j}: 1 \leq i \neq j \leq 5\right\}$, where $v_{i j}=v_{j i}$ and every $v_{i j}$ is connected by an edge to v_{i} and v_{j}. The graph H may have some further edges connecting pairs of vertices $\left(v_{i j}, v_{i k}\right)$ with $j \neq k$. Then H is not a string graph.

Figure 5: Possible partitions of a non-string graph.
Proof Suppose for contradiction that there is a graph H with the above properties that has a string representation. Choose such a graph with the maximum number of edges. Continuously contract each string (curve) representing $v_{i}(1 \leq i \leq 5)$ to a point p_{i}, Note that, by our choice of H, at the end of the process we still have a string representation of H. For every pair $i \neq j$, consider a non-selfintersecting arc of the curve representing $v_{i j}$ with endpoints p_{i} and p_{j}. These arcs define a drawing of K_{5}, in which no two independent edges intersect. However, K_{5} is not a planar graph, hence, by a well known theorem of Hanani and Tutte [Ch34, Tu70, no such drawing exists.

Corollary 25 For each of the following types of partition, there exists a non-string graph whose vertex set can be partitioned in the specified way:
(a) 2 stable (that is, independent) sets each of size at most 10;
(b) 4 cliques each of size at most five and a vertex;
(c) 3 cliques each of size at most five and a stable set of size 3 ;
(d) 3 cliques each of size at most five and a path with three vertices;
(e) 2 cliques both of size at most five and 2 graphs that can be obtained as the disjoint union of a point and a clique of size at most 3 .

See Figure 5 for an illustration of Corollary 25 .
Remark 26 Corollary 25 immediately implies that χ_{c} (String) ≤ 4. Indeed, there exist $(5, s)$ colorable non-string graphs for $s \leq 3$ (by (a)), for $s=4$ and 5 (by (b)). In fact, we have $\chi_{c}($ String $)=4$ PaT06].

Lemma $27\left|\mathcal{G}_{3}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$.
Proof We define two subfamilies of $\left(\mathcal{G}_{1}\right)_{n}$.

$$
\begin{aligned}
\mathcal{H}_{1}:= & \left\{G \in\left(\mathcal{G}_{1}\right)_{n}-\mathcal{G}_{2} \mid G \text { has an ABBM partition for which } \exists i \neq j \in[4]\right. \text { s.t. } \\
& \left.G\left[S_{i}\right] \text { and } G\left[S_{j}\right] \text { contain } l \text { disjoint stable sets of size } 10\right\} .
\end{aligned}
$$ $G\left[S_{i}\right]$ does not contain l disjoint cliques of size 5$\}$.

First, we show that $\left|\mathcal{H}_{1}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$. Consider a partition of V_{n} into parts $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}$, A_{3}, A_{4}. By Lemma 21, we know that the number of ABBM projections for the above partition is $O\left(2^{8\left(n^{2-\alpha}\right)}\right)$. By Corollary $13($ a) , for any $\{i, j\} \subseteq[4]$, there is a non-string graph H whose vertex set can be partitioned into $L_{1}, L_{2}, L_{3}, L_{4}$ with the following property: if $k \notin\{i, j\}$, then L_{k} is non-empty, and if $k \in\{i, j\}$, then L_{k} is a stable set of size at most 10 . So, applying Lemma 23 with $q=l$, the number of string graphs G for which a specific ABBM projection for $S_{1}, S_{2}, S_{3}, S_{4}$, $A_{1}, A_{2}, A_{3}, A_{4}$ shows that G is in \mathcal{H}_{1}, because there are distinct $G\left[S_{i}\right]$ and $G\left[S_{j}\right]$ containing l disjoint stable sets of size 10 , is at most $2^{m}\left(1-\frac{1}{2^{200}}\right)^{l^{2}}$. Hence, the number of graphs in \mathcal{H}_{1} is at most $2^{8\left(n^{2-\alpha}\right)} \cdot 2^{m} \cdot 2^{-c n^{2-\frac{\alpha}{2}}}$ for some constant $c>0$. Since $m<\frac{3 n^{2}}{8}+6$, taking into account the lower bound on $\left|\left(\mathcal{G}_{1}\right)_{n}\right|$ in Lemma 19, we get $\left|\mathcal{H}_{1}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$, as desired.

Secondly, we show that $\left|\mathcal{H}_{2}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$. For this, we need the following observation. By Ramsey theorem, every set of 2^{15} vertices contains either a clique of size 5 or a stable set of size 10. Therefore, if a graph J does not contain l disjoint stable sets of size 10 , then it must contain $\left(|V(J)|-10(l-1)-2^{15}\right) / 5$ disjoint cliques of size 5 .

Let $G \in \mathcal{H}_{2}$. By the definition of \mathcal{H}_{2}, there is an ABBM projection for some $S_{1}, S_{2}, S_{3}, S_{4}$, $A_{1}, A_{2}, A_{3}, A_{4}$ such that at least one $G\left[S_{i}\right]$ does not contain l disjoint cliques of size 5 . Since \mathcal{H}_{2} is disjoint from \mathcal{G}_{2}, every S_{j} contains more than $\frac{n}{5}$ vertices. By the last paragraph, this implies that S_{i} must contain a set \mathcal{S}^{i} of l disjoint stable sets $Z_{1}^{i}, \ldots, Z_{l}^{i}$ of size 10 . Since \mathcal{H}_{2} is disjoint from \mathcal{H}_{1}, we also obtain by the last paragraph that no $G\left[S_{j}\right]$ with $j \neq i$ contains l disjoint stable sets of size 10 , and, hence, every such $G\left[S_{j}\right]$ contains a set \mathcal{C}^{j} of l disjoint cliques $Z_{1}^{j}, \ldots, Z_{l}^{j}$ of size 5 .

By Corollary 25 (c), there is a non-string graph which can be partitioned into L_{1}, \ldots, L_{4}, where for $j \neq i, L_{i}$ is a clique of size at most 5 , and L_{i} is a stable set of size at most 3. Applying Lemma 23 with $q=l$, the number of ways to extend an ABBM projection of G which shows that G does not belong to \mathcal{H}_{2} to a string graph is at most $2^{\frac{3 n^{2}}{8}+6}\left(1-\frac{1}{\left.2^{\left(\frac{18}{2}\right)}\right)^{\frac{l^{2}}{4}}}\right.$. Hence, as before, by Lemma 21 , the number of graphs in \mathcal{H}_{2} is at most $2^{8\left(n^{2-\alpha}\right)} \cdot 2^{\frac{3 n^{2}}{8}+6} 2^{-c n^{2-\frac{\alpha}{2}}}$, for some $c>0$. Comparing this bound with the lower bound on $\left|\left(\mathcal{G}_{1}\right)_{n}\right|$, we get that $\left|\mathcal{H}_{2}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$, as desired.

To complete the proof of the lemma, we need to bound the size of $\mathcal{G}_{3}-\left(\mathcal{G}_{2} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$. Consider a graph G in this class and an ABBM projection of G for a partition $S_{1}, S_{2}, S_{3}, S_{4}, A_{1}, A_{2}, A_{3}, A_{4}$ of V_{n} which shows that $G \in \mathcal{G}_{3}-\left(\mathcal{G}_{2} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$. In particular, for some $i \in[4]$, we can choose a set \mathcal{S}^{i} of $\frac{l}{2}$ disjoint subsets of size 3 in $G\left[S_{i}\right]$ such that either each subset induces a path or each subset induces a stable set. Further, since G does not belong to $\mathcal{G}_{1} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}$, for every $j \in[4]-\{i\}$ we can choose a collection \mathcal{C}^{j} of $\frac{l}{2}$ disjoint subsets of size 5 in $G\left[S_{j}\right]$, each of which induces a clique.

By Corollary 25 (c) or (d), we obtain that there is a non-string graph H which can be partitioned into $L_{1}, . ., L_{4}$ such that for $j \neq i, L_{j}$ is a clique of size at most 5 while for each S in $\mathcal{S}^{i}, G[S]$ induces $H\left[L_{i}\right]$. Applying Lemma 23 with $q=\frac{l}{2}$, the number of different ways how to extend the ABBM projection of G which shows that $G \in \mathcal{G}_{3}-\left(\mathcal{G}_{2} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$ to a string graph, is at most $2^{\frac{3 n^{2}}{8}+6}\left(1-\frac{1}{2^{153}}\right)^{\frac{l^{2}}{16}}$. Hence, as before, by Lemma 21. the number of graphs in $\mathcal{G}_{3}-\left(\mathcal{G}_{2} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}\right)$ is at most $2^{8\left(n^{2-\alpha}\right)} \cdot 2^{\frac{3 n^{2}}{8}+6} 2^{-c n^{2-\frac{\alpha}{2}}}$, for some $c>0$. Again, comparing this bound with the lower bound on $\left|\left(\mathcal{G}_{1}\right)_{n}\right|$, we obtain $\left|\mathcal{G}_{3}-\left(\mathcal{G}_{2} \cup \mathcal{H}_{1} \cup \mathcal{H}_{2}\right)\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$.

Using similar ideas and Corollary 25 (e), we can also derive the following.

Lemma $28\left|\mathcal{G}_{4}\right|=o\left(\left|\left(\mathcal{G}_{1}\right)_{n}\right|\right)$.
Proof Our string graph G is not in $\mathcal{G}_{2} \cup \mathcal{G}_{3}$, thus Ramsey theory tells us that each $G\left[S_{i}\right]$ contains a set \mathcal{C}^{i} of l disjoint cliques of size 5 . Since $G \in \mathcal{G}_{4}$, we can find distinct $G\left[S_{i}\right]$ and $G\left[S_{j}\right]$ containing collections \mathcal{T}^{i} and \mathcal{T}^{j}, resp., of l disjoint sets, each of which induce the disjoint union of a vertex and a triangle. Now, Corollary 25 (e) implies that there is a non-string graph H whose vertex set can be partitioned into L_{1}, \ldots, L_{4} with the property that for $k \notin\{i, j\}, L_{k}$ is a clique of size at most 5 , while L_{i} and L_{j} can be obtained as the disjoint union of a clique and a triangle. Again, applying Lemma 23 and Lemma 21, we obtain the desired result.

This completes the proof Lemma 18 and, thus, of Theorem 10 .

7 The proof of Claim 12

We will exploit the fact that if a string graph has a great partition and we fix the subgraphs induced by the parts of the partition, then any choice we make for the edges between the sets X_{i} will yield another string graph which permits the same great partition. This fact implies that the edge patterns between different parts of a particular great partition are chosen uniformly at random and it is very unlikely that they define a graph which also permits some other great partition. This allows us to prove Claim 12 .

Proof of Claim 12 To prove our claim, we focus on ordered pairs of a graph and a corresponding great partition $\left(G,\left(X_{1}, X_{2}, X_{3}, X_{4}\right)\right)$, that is, $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is a great partition of G with the following property which we denote by (P^{*}):
(a) any two vertices of G in a part X_{i} that induces a clique have at least $\frac{13 n}{32}$ common neighbours;
(b) any two vertices in different parts have fewer than $\frac{13 n}{32}$ common neighbours;
(c) for every part X_{i} and every vertex $v \notin X_{i}, v$ forms a P_{3} with two vertices of X_{i}; and
(d) X_{4} does not induce a clique.

Clearly, every great graph has at least six great partitions obtained by permuting the indices of the partition elements. We show that
(i) every graph on V_{n} has at most six great partitions satisfying $\left(\mathrm{P}^{*}\right)$, and
(ii) almost every great partition of a great graph on V_{n} satisfies property $\left(\mathrm{P}^{*}\right)$.

These two statements together prove our claim.
To prove (i), we assume that $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ and ($\left.X_{1}^{\prime}, X_{2}^{\prime}, X_{3}^{\prime}, X_{4}^{\prime}\right)$ are two great partitions of a graph G, both of which satisfy property (P^{*}). Clearly, (a) and (b) tell us that for $i \leq 3, X_{i}$ is contained in some X_{j}^{\prime}. It follows from property (c) that each such X_{i} is, in fact, of size at least 2 and equal to some X_{j}^{\prime}. Hence, the two sets of partition elements are the same. By property (d), $X_{4}^{\prime}=X_{4}$. This proves (i).

Next, we prove (ii). For any (ordered) partition $\mathcal{X}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ of V_{n}, let $I=I(\mathcal{X})$ be all choices of edges within the partition elements which result in this partition being great. As before, let $m=m(\mathcal{X})$ denote the number of pairs of vertices not lying in the same partition element.

There are $|I| 2^{m}$ graphs for which this partition is great, as we can pair any choice from I with any choice of edges between the partition elements. Furthermore, I can be chosen by specifying a partition of X_{4} into two disjoint cliques. Thus, there is at least one and at most 2^{n-1} choices for I. If there is $i \in[4]$ such that $\left|X_{i}\right| \geq \frac{n}{4}+c n^{\frac{2}{3}}$ for some $c>0$, then $m \leq \frac{3 n^{2}}{8}-\frac{c^{2} n^{\frac{4}{3}}}{2}$, which accounts only for $o(1)$ proportion of great graphs. So, we can assume that, for almost every great partition of a great graph, we have that $\left|X_{i}\right|=\frac{n}{4}+o\left(n^{\frac{2}{3}}\right)$ for every $i \in[4]$. It remains to show that the for any partition \mathcal{X} for which $\left|X_{i}\right|=\frac{n}{4}+o\left(n^{\frac{2}{3}}\right)$ for every $i \in[4]$, the number of great graphs G for which \mathcal{X} is a great partition failing to satisfy property $\left(\mathrm{P}^{*}\right)$, is $o\left(|I| 2^{m}\right)$.

As $\left|X_{4}\right|=\frac{n}{4}+o\left(n^{\frac{2}{3}}\right)$, almost every graph on $\left|X_{4}\right|$ vertices which is the disjoint union of two cliques is not a clique. So, there are $o(|I|) 2^{m}=o\left(|I| 2^{m}\right)$ graphs for which X is a partition for which (d) fails to hold.

Choose a great graph from amongst the 2^{m} graphs extending a choice of I uniformly at random, by adding each edge between two vertices in different parts independently with probability $\frac{1}{2}$.

Observe that, given any three vertices u, v, w not contained in the same X_{i}, the probability that w is a common neighbour of both u and v is at most $\frac{1}{2}$ if w lies in the same partition element as one of u or v, and is exactly $\frac{1}{4}$ otherwise. Taking into account the restriction on the size of the X_{i}, we obtain that the expected number of common neighbours of two vertices is at most $\frac{1}{4} \cdot \frac{2 n}{4}+\frac{1}{2} \cdot \frac{2 n}{4}+o(n)=\frac{3 n}{8}+o(n)$ if they are in different partition elements, and at least $\frac{n}{4}+\frac{1}{4} \cdot \frac{3 n}{4}+o(n)=\frac{7 n}{16}+o(n)$ if they are in the same partition element that induces a clique.

Furthermore, given the partition, the (random) number of common neighbours of two vertices which lie together in some X_{i} that forms a clique is the sum of $\left|X_{i}\right|-2$ and $n-\left|X_{i}\right|$ independent random variables, each of which is 1 with probability $\frac{1}{4}$ and 0 with probability $\frac{3}{4}$. In the same vein, if u lies in X_{i} and v lies in X_{j} for distinct i and j, then their number of common neighbours is the sum of $n-\left|X_{i}-N(u)\right|-\left|X_{j}-N(v)\right|$ independent random variables, $\left|X_{i} \cap N(u)\right|+\left|X_{j} \cap N(v)\right|$ of which are equally likely to be 0 or 1 , and the rest of which are 0 with probability $\frac{3}{4}$ and 1 with probability $\frac{1}{4}$. Thus, for every choice of $I,\binom{n}{2}$ applications of the Chernoff bound, one for each pair of vertices, show that the number of great graphs extending this choice, for which either (P^{*}) (a) or $\left(\mathrm{P}^{*}\right)(\mathrm{b})$ fails is $o\left(2^{m}\right)$.

Consider now an X_{i} and a vertex v outside of X_{i}. Partition X_{i} into $\frac{\left|X_{i}\right|}{2}$ disjoint pairs of vertices. (Assume for simplicity that X_{i} is even, the other case can be treated in exactly the same way.) For each pair, there is at least one choice out of the 4 possibilities for the edges between this pair and v, for which these 3 vertices induce a path. Thus, when we randomly construct a great graph extending I, the probability that none of these sets of 3 vertices induces a path is less than $\left(\frac{3}{4}\right)^{\frac{\left|X_{i}\right|}{2}} \leq\left(\frac{3}{4}\right)^{\frac{n}{9}}$. Since there are fewer than n choices for v and only 4 choices for X_{i}, it follows that (c) holds for almost all great graphs extending I. This completes the proof of (ii) and our claim.

8 The proof of Claim 13

At the end of Section 4, we have already given some intuition about the proof.
Proof of Claim 13 Let $\mathcal{Y}=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ be a partition of V_{n} such that $\left|\left|Y_{i}\right|-\frac{n}{4}\right| \leq n^{1-\gamma}$, for every $i \in[4]$.

As before, let m be the number of pairs of vertices not contained in the same partition element, and note that there are exactly $2^{\left|Y_{4}\right|-1}$ choices for $G\left[Y_{4}\right]$ for a graph G for which \mathcal{Y} is a great partition, and, hence, $2^{m}\left(2^{\left|Y_{4}\right|-1}\right)$ graphs for which \mathcal{Y} is a great partition.

As in Section 6, our approach is to show that, while there may be more choices for $G\left[Y_{i}\right]$ for mediocre graphs for which \mathcal{Y} is a good partition, for each such choice we have much fewer than 2^{m} choices for mediocre string graphs extending it. However, we will have to sharpen our results, with respect to both the number of projections we need to consider and to how many string graphs extend each projection.

Let $\mathcal{F}=\mathcal{F}(\mathcal{Y})$ denote the set of mediocre string graphs which permit a \mathcal{Y}-good partition. For any $G \in \mathcal{F}$, let $P(G)$ denote the projection of G on the sets $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$. That is, $P(G)$ is the disjoint union of the subgraphs $G\left[Y_{1}\right], G\left[Y_{2}\right], G\left[Y_{3}\right]$, and $G\left[Y_{4}\right]$.

We begin by exploiting the existence of the special set B of vertices to bound the number of choices for the edges of a good projection onto \mathcal{Y}, leaving a specified set $W \subseteq V_{n}$ of vertices.

Lemma 29 Let $W \subseteq V_{n}$. The number of possibilities for the set of edges incident to the vertices in W in a projection $P(G)$, over all $G \in \mathcal{F}$, is o(2 $\left.2^{\sqrt{\delta} n|W|+n(b+1)}\right)$.

Proof We can specify the edges of a projection of a graph in \mathcal{F} incident to the vertices in W by first specifying the vertices in B and the edges out of each vertex of B. Next, for each $i \in[4]$ and each vertex $w \in W \cap Y_{i}$, we specify a vertex $v_{w} \in B$ for which the symmetric difference of $N\left(v_{w}\right) \cap Y_{i}$ and $N(w) \cap Y_{i}$ has at most δn elements, and we also specify the elements of this symmetric difference. So, there are at most $\binom{n}{b} 2^{n b} b^{|W|}\binom{n}{|W|}\binom{n}{\delta n}^{|W|}$ choices for the set of edges of $P(G)$ leaving W, over all $G \in \mathcal{F}$. We note that if δ is sufficiently small, then this is $o\left(2^{\sqrt{\delta} n|W|+n(b+1)}\right)$.

This immediately implies the following.
Corollary 30 The number of projections on $\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$ of all graphs in \mathcal{F} is $o\left(2^{\sqrt{\delta} n^{2-\gamma}+n(b+3)}\right)$.
Proof We can specify a projection $P(G), G \in \mathcal{F}$, by specifying the vertices of $Z=Z_{1} \cup \ldots \cup Z_{4}$ and the edges out of them into their corresponding parts, along with the partition of X_{4} into two cliques. Applying Lemma 29, there are $o\left(2^{n} 2^{\left|X_{4}\right|-1} 2^{\sqrt{\delta} n|Z|+n(b+1)}\right)$ choices for $P(G)$, over all $G \in \mathcal{F}$. Note that $o\left(2^{\sqrt{\delta} n|Z|}\right)=o\left(2^{\sqrt{\delta} n^{2-\gamma}}\right)$, because $|Z| \leq n^{1-\gamma}$, by part (III) of Theorem 10 .

Our next step is to strengthen Lemma 23 by considering the situation where we fix not just the projection, but also the edges out of some small set, and bound the number of choices for the remaining edges between the partition elements which yield a string graph.

Lemma 31 Let H be a non-string graph and let $L_{0}, L_{1}, L_{2}, L_{3}, L_{4}$ be a partition of $V(H)$, where some L_{i} may be empty. Let P be a projection on \mathcal{Y}. Fix a set W_{0} of $\left|L_{0}\right|$ vertices of G, and a mapping f from W_{0} to L_{0}.

Then the number of string graphs G whose projection P on \mathcal{Y} has the property that
$\left({ }^{*}\right)$ for every $j \in[4]$, there is a collection \mathcal{W}_{j} of q disjoint sets of vertices of $Y_{j}-W_{0}$ such that, for every $W \in \mathcal{W}_{j}$, the mapping f extends to an isomorphism from $G\left[W_{0} \cup W\right]$ to $H\left[L_{0} \cup L_{j}\right]$,
is $2^{m}\left(1-\frac{1}{2(\underset{2}{\mid V(H)})}\right)^{\frac{q^{2}}{4}}$.

Proof Let p be a prime between $\frac{q}{2}$ and q. We first choose the edges out of W_{0}. For those choices for which $\left(^{*}\right)$ holds, for every $j \in[4]$, let $J_{0}^{j}, \ldots, J_{p-1}^{j}$ be p elements of \mathcal{W}_{j}, whose existence is guaranteed by condition $(*)$.

For $1 \leq r, s \leq p$, consider the 4-tuple $J_{r}^{1}, J_{r+s}^{2}, J_{r+2 s}^{3}, J_{r+3 s}^{4}$, where addition is modulo p. For each of the $p^{2} \geq \frac{q^{2}}{4}$ such 4 -tuples, there is a way of choosing edges between its elements so that the resulting extension is not a string graph. Thus, of the $\left.c \leq 22^{(|V(H)|}\right)$ choices for the edges between the elements of the 4 -tuple, at most $c-1$ can occur in a string graph with the given projection and given choice of edges out of W_{0}. Furthermore, by the way in which we chose our 4-tuples, for any $x \in Y_{i}$ and $y \in Y_{j}$ with $i \neq j \in[4]$, there is at most one 4-tuple containing both x and y. The result follows.

The next result illustrates the power of this lemma.
For a mediocre graph $G \in \mathcal{F}$, we call a set $T \subset V(G)$ versatile if for each $i \in[4]$ with $Y_{i} \cap T=\emptyset$, there is clique C_{i} in $G\left[Y_{i}\right]$ such that for all subsets $T^{\prime} \subseteq T$, there are $\frac{n}{\log n}$ vertices of C_{i} that are adjacent to all elements of T^{\prime} and to none of $T-T^{\prime}$. We denote by P_{3} a path of 3 vertices and by S_{3} a stable set on 3 vertices. Let

$$
\begin{aligned}
& \mathcal{F}_{1}:=\left\{G \in \mathcal{F} \mid \text { there is } i \in[4], \text { and versatile set } T_{i} \subset Y_{i}\right. \text { such that } \\
&\left.\left|T_{i}\right|=3 \text { and } G\left[T_{i}\right] \text { is isomorphic to } P_{3} \text { or } S_{3}\right\} .
\end{aligned}
$$

Lemma $32\left|\mathcal{F}_{1}\right|=o\left(2^{m}\right)$.
Proof For each choice of a good projection of a graph G onto \mathcal{Y}, each choice of a set T_{i} of 3 vertices contained in Y_{i} which induce an S_{3} or P_{3}, and for each choice of the set of edges incident to T_{i} which make T_{i} versatile, we count the number of string graphs which have this projection and for which the set of edges incident to T_{i} is the specified set.

By Corollary 25 (c) or (d), there is a non-string graph H whose vertex set can be partitioned into 3 cliques of size at most 5 , and a set L_{0} such that $H\left[L_{0}\right]$ is isomorphic to $G\left[T_{i}\right]$. We label these 3 cliques as L_{j} for $j \in[4]-\{i\}$. We set $L_{i}=\emptyset$. Let f be an isomorphism from $G\left[T_{i}\right]$ to $H\left[L_{0}\right]$. We claim that for each $j \in[4]$, we can choose a family \mathcal{W}_{j} of $\frac{n}{10 \log n}$ disjoint cliques in Y_{j} of size $\left|L_{j}\right|$ with the property that for each $W \in \mathcal{W}_{j}$, the mapping f extends to an isomorphism from $G\left[T_{i} \cup W\right]$ to $H\left[L_{0} \cup L_{j}\right]$. If $i=j$, then each of these cliques is an empty set. Otherwise, each element of \mathcal{W}_{j} will be contained in C_{j}. We choose the vertices of the cliques in \mathcal{W}_{j} one at a time, avoiding the vertices of C_{j} in cliques which have already been chosen. Since L_{j} and C_{j} are both cliques, to ensure that f extends to an isomorphism, we just need to make sure that our choice for the image of each vertex of L_{j} has the correct neighbourhood in T_{i}. By the definition of versatility, there are at least $\frac{n}{\log n}$ vertices of C_{j} with the desired neighbourhood, and, since we choose at most $\frac{5 n}{10 \log n}$ vertices from this set, one will not yet be chosen.

Applying Lemma31 with $W_{0}=T_{i}$, the number of choices for a string graph extending the projection, for which the set of edges incident to T_{i} have been specified, is at most $2^{m}\left(1-\frac{1}{2^{(18)} 2}\right)^{\frac{n^{2}}{400(\log n)^{2}}}$. By Corollary 30, there are $2^{o\left(\frac{n^{2}}{(\log n)^{2}}\right)}$ choices for our projection. There are only 4 choices for i, at most n^{3} choices for the vertices of T_{i}, and at most $2^{3 n}$ choices for the edges incident to the vertices T_{i}. The desired result follows.

We can prove an analogous result for sets of size at most 8 that intersect 2 parts of the partition. To state this result, we need a definition. A graph J^{\prime} is called extendible if there is some non-string graph whose vertex set can be partitioned into 2 cliques of size at most 5 and a set inducing J^{\prime}. Let

$$
\begin{aligned}
\mathcal{F}_{2}:= & \left\{G \in \mathcal{F} \mid \text { there are } i \neq j \in[4], T_{i} \subset Y_{i} \text { and } T_{j} \subset Y_{j}\right. \text { such that } \\
& \left.\left|T_{i}\right|,\left|T_{j}\right| \leq 4, T_{i} \cup T_{j} \text { is versatile, and } G\left[T_{i} \cup T_{j}\right] \text { is extendible }\right\} .
\end{aligned}
$$

Lemma $33\left|\mathcal{F}_{2}\right|=o\left(2^{m}\right)$.
Proof For each choice of a partition $\mathcal{Y}=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)$, distinct i and j in [4], a projection of a graph G onto \mathcal{Y}, a set T_{i} of at most 4 vertices contained in Y_{i}, a set T_{j} of at most 4 vertices in Y_{j}, and the set of edges incident to $T_{i} \cup T_{j}$ which make $G\left[T_{i} \cup T_{j}\right]$ extendible and $T_{i} \cup T_{j}$ versatile, we count the number of string graphs which have this projection and for which the set of edges incident to $T_{i} \cup T_{j}$ is the specified set.

Since $G\left[T_{i} \cup T_{j}\right]$ is extendible, there is a non-string graph H whose vertex set can be partitioned into 2 cliques of size at most 5 , and a set L_{0} such that $H\left[L_{0}\right]$ is isomorphic to $G\left[T_{i} \cup T_{j}\right]$. We label these 2 cliques as L_{k} for $k \in[4]-\{i, j\}$. We set $L_{i}=L_{j}=\emptyset$. Let f be an isomorphism from $G\left[T_{i} \cup T_{j}\right]$ to $H\left[L_{0}\right]$. We claim that for each $k \in[4]$, we can choose a family \mathcal{W}_{k} of $\frac{n}{10 \log n}$ cliques of size $\left|L_{k}\right|$ such that for each W in \mathcal{W}_{k}, f extends to an isomorphism from $G\left[T_{i} \cup T_{j} \cup W\right]$ to $H\left[L_{0} \cup L_{k}\right]$. For $k \in\{i, j\}$, each of these cliques is the empty set. For $k \notin\{i, j\}$, each element of \mathcal{W}_{k} will be contained in C_{k}. Since L_{k} and C_{k} are both cliques, to ensure that f extends to an isomorphism, we just need to ensure that our choice for the image of each vertex of L_{k} has the correct neighbourhood in $T_{i} \cup T_{j}$. By the definition of versatility, there are at least $\frac{n}{\log n}$ vertices of C_{k} with the desired neighbourhoods, and, since we choose at most $\frac{5 n}{10 \log n}$ vertices from this set, one will not yet be chosen.

By Lemma 31, the number of choices for a string graph extending the projection for which the set of edges incident to $T_{i} \cup T_{j}$ have been specified, is at most $2^{m}\left(1-\frac{1}{2^{\left(\frac{18}{2}\right)}}\right)^{\frac{n^{2}}{400(\log n)^{2}}}$. By Corollary 30. there are $2^{o\left(\frac{n^{2}}{(\log n)^{2}}\right)}$ choices for our projection. There are at most 6 choices for $\{i, j\}$, at most n^{8} choices for the vertices of $T_{i} \cup T_{j}$, and at most $2^{8 n}$ choices for the edges incident to the vertices $T_{i} \cup T_{j}$. The desired result follows.

For every mediocre string graph G in \mathcal{F}, we choose a maximum family $\mathcal{W}=\mathcal{W}_{G}$ of disjoint sets, each of which either
(a) is contained in some Y_{i} and induces S_{3} or P_{3}, or
(b) is of size 8 , contains exactly 4 vertices from each of 2 distinct partition elements, and induces an extendible subgraph.

Note that every element of \mathcal{W} must intersect $Z=Z_{1} \cup \ldots \cup Z_{4}$, hence $|\mathcal{W}| \leq|Z|$. Set $W^{*}=\cup_{W \in \mathcal{W} W} W$, and let $Y_{i}^{\prime}=Y_{i}-W^{*}$. Note that $\left|W^{*}\right| \leq 8|\mathcal{W}| \leq 8|Z|$ and that for every i, Y_{i}^{\prime} has more than $\frac{n}{5}$ vertices and $G\left[Y_{i}^{\prime}\right]$ is the disjoint union of two cliques, by the maximality of \mathcal{W}. In what follows, we focus on graphs in $\mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)$. Hence, the edges of $G-P(G)$ must be chosen in such a way that no set $S \in \mathcal{W}$ is versatile. Let

$$
\mathcal{F}_{3}:=\left\{G \in \mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)| | \mathcal{W} \mid \geq C \text { for } C=10^{6} b\right\} .
$$

Lemma $34\left|\mathcal{F}_{3}\right|=o\left(2^{m}\right)$.
Proof For every choice of a projection onto \mathcal{Y} and a collection \mathcal{W} of at most $n^{1-\gamma}$ disjoint sets of vertices of size at most 8 , we count the number of graphs G in \mathcal{F}_{3}, for which this projection is $P(G)$ such that we can choose \mathcal{W}_{G} to be \mathcal{W}.

Since each Y_{k}^{\prime} is the disjoint union of 2 cliques, each $Y_{k}^{\prime}, k \in[4]$, contains a clique C_{k} with at least $\frac{n}{10}$ vertices. The graph G was chosen to be outside $\mathcal{F}_{1} \cup \mathcal{F}_{2}$, for any set $D \in \mathcal{W}$, there is a subset $D^{\prime} \subseteq D$ and a $j \in[4]$ with $Y_{j} \cap D=\emptyset$ such that there are fewer than $\frac{n}{\log n}$ vertices of C_{j} which are adjacent to all of D^{\prime} and none of $D-D^{\prime}$. This implies that the number of choices for the edges of $E(G)-E(P(G))$ with one endpoint in D is $o\left(2^{\left.\frac{3 n|D|}{4}-\frac{n}{10000}\right) \text {. Indeed, if there were no restrictions, }}\right.$ the number of choices for the edges of $E(G)-E(P(G))$ would be at most $2^{\frac{3 n|D|}{4}+o(n)}$. On the other hand, for any choice $D^{\prime} \subseteq D$, in an unrestricted choice we expect at least $\left|C_{j}\right| / 2^{|D|}>n / 2^{8}$ vertices of C_{j} to have neighbourhood D^{\prime} on D. Applying the Chernoff bounds to the probability that we only get $\frac{n}{\log n}$ such vertices in C_{j} yields the claimed bound on the number of choices for the edges from D.

Given a choice of \mathcal{W}, the number of choices for graphs on $Y_{1}^{\prime}, \ldots, Y_{4}^{\prime}$ is less than 2^{n}. Applying Lemma 29 to W^{*}, we obtain that the number of choices for the edges of $P(G)$ which have exactly one endpoint in W^{*}, is $O\left(2^{n(b+1)+\sqrt{\delta}\left|W^{*}\right| n}\right)$. There are fewer than $2^{n}\left|W^{*}\right| W^{*} \mid 2^{\left|W^{*}\right|^{2}}$ choices for W^{*}, a partition of it yielding \mathcal{W}, and the edges with both endpoints in W^{*}. Combining these facts with the result of the previous paragraph, we get that the number of graphs in $\mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)$ is at most $O\left(2^{n(b+1)+\left(\sqrt{\delta} n+\log \left|W^{*}\right|+\left|W^{*}\right|\right)\left|W^{*}\right|} \cdot 2^{m} \cdot 2^{-\frac{|\mathcal{L}| n}{10000}}\right)$. We can and do choose δ small enough so that if $\left|W^{*}\right| \geq C$, then the above is $o\left(2^{m}\right)$.

It remains to count the number of graphs in $\mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}\right)$. We begin with the following.
Lemma 35 The number of projections onto \mathcal{Y} which extend to a string graph in $\mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}\right)$ is $2^{O(n)}$

Proof We are counting the number of choices of the good projection $P(G)$ onto \mathcal{Y}, over all mediocre string graphs $G \in \mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}\right)$. That is, over all G for which we can choose \mathcal{W} with $|\mathcal{W}| \leq C$ such that no element of \mathcal{W} is versatile. Recall that, by the definition of \mathcal{W}, each element in \mathcal{W} is of size at most 8 and, hence, $\left|W^{*}\right| \leq 8 C$. Also recall that, for $Y_{i}^{\prime}=Y_{i}-W^{*}$, by the maximality of \mathcal{W}, each $G\left[Y_{i}^{\prime}\right], i \in[4]$, is the disjoint union of 2 cliques.

We claim that the number of projections of this type is at most $\binom{n}{8 C}(8 C)^{8 C} 2^{8 C n+1}=2^{O(n)}$. Indeed, there are at most $\binom{n}{8 C}(8 C)^{8 C}$ ways to choose the vertices in \mathcal{W} and partition them into sets. There are at most $2^{8 C n}$ ways to choose the neighborhoods of the vertices in W^{*}. Finally, there are at most 2^{n} ways to partition each Y_{i}^{\prime} into 2 cliques. Thus, our claim is true and the lemma holds.

Let

$$
\begin{aligned}
\mathcal{F}_{4}:= & \left\{G \in \mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}\right) \mid \text { there are } i \neq j \in[4] \text { such that both } Y_{i}^{\prime}\right. \\
& \text { and } \left.Y_{j}^{\prime} \text { contain two components larger than } n^{2 / 3}\right\} .
\end{aligned}
$$

Lemma $36\left|\mathcal{F}_{4}\right|=o\left(2^{m}\right)$.
Proof To prove the lemma, we consider one of the $2^{O(n)}$ projections which extends to a graph in \mathcal{F}_{4} and count how many string graphs it extends to.

By Corollary 25 (e), there is a non-string graph H whose vertex set can be partitioned into $\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$ so that for $k \in[4]-\{i, j\}, L_{k}$ is a clique of size at most 5 and $G\left[L_{i}\right]$ and $G\left[L_{j}\right]$ are the disjoint union of a vertex and a clique of size 3 .

For $k \in\{i, j\}$, we can find a family \mathcal{T}^{k} of $\frac{n^{2 / 3}}{3}$ disjoint sets in Y_{i}^{\prime}, each inducing the disjoint union of a triangle and a vertex. For $k \in[4]-\{i, j\}$, we can find a family \mathcal{T}^{k} of $\frac{n^{2 / 3}}{3}$ disjoint sets in Y_{i}^{\prime} each of which is a clique of size $\left|L_{k}\right|$. Applying Lemma 31 with L_{0} empty, we see that the number of choices for the edges between the partition elements which extend this projection to a string graph is at most $2^{m}\left(1-\frac{1}{2^{\left(\frac{18}{2}\right)}}\right)^{\frac{n^{4 / 3}}{36}}$. Since, by Lemma 35 , the number of choices for the projection is $2^{O(n)}$, the desired result follows.

For each vertex $v \in W^{*}$, we define the rank of v with respect to a partition element Y_{i} as $\max \left\{\min (|N(v) \cap K|,|K-N(v)|) \mid K\right.$ is a component of $\left.Y_{i}^{\prime}\right\}$. We use $\operatorname{rank}(v)$ to denote the minimum of these ranks over the partition elements. We say that v is extreme on Y_{i} if its rank with respect to Y_{i} is less than $n^{\frac{2}{3}}$. Let

$$
\begin{aligned}
\mathcal{F}_{5}:= & \left\{G \in \mathcal{F}-\left(\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4}\right) \mid \text { there is } v \in W^{*}\right. \text { such that } \\
& v \text { is not extreme on any partition element }\} .
\end{aligned}
$$

Lemma $37\left|\mathcal{F}_{5}\right|=o\left(2^{m}\right)$.
Proof For each projection of a graph $G \in \mathcal{F}_{5}$ onto \mathcal{Y}, we count the number of choices for $E(G)-E(P(G))$ over all string graphs G with this projection. Consider a vertex v in W^{*} which is not extreme on any partition element. By Corollary 25 (b), there is a non-string graph H such that for some vertex $w \in V(H), H-w$ can be partitioned into four cliques ($L_{1}, L_{2}, L_{3}, L_{4}$) each of size at most 5 . By our choice of v, for $k \in[4]$ we can find a family \mathcal{W}^{k} of $\frac{n^{\frac{2}{3}}}{5}$ disjoint cliques in Y_{k}^{\prime}, each of which contains $\left|N(w) \cap L_{k}\right|$ neighbours of v. For any 4 -tuple consisting of an element from each \mathcal{T}_{k}, there is a choice of edges between the elements of the 4 -tuple which implies that H is a subgraph of G. Applying Lemma 31 with $L_{0}=\{w\}$, we see that the number of choices for the edges between the partition elements which extend this projection to a string graph is at most $2^{m}\left(1-\frac{1}{2^{\left(\frac{21}{21}\right)}}\right)^{\frac{n^{4 / 3}}{100}}$. By Lemma 35, the number of choices for the projection is $2^{O(n)}$ and the desired result follows.

It remains to analyze the case when every vertex of W^{*} is extreme on some partition element. We consider a new partition $\mathcal{Y}^{*}=\left(Y_{1}^{*}, \ldots, Y_{4}^{*}\right)$ obtained from \mathcal{Y} by moving each element of W^{*} to a set Y_{i} with respect to which its rank is equal to $\operatorname{rank}(v)$. Let $W_{i}^{*}, i \in[4]$, be the set of vertices in $W^{*} \cap Y_{i}^{*}$. Let

$$
\begin{aligned}
\mathcal{F}_{6}:= & \left\{G \in \mathcal{F}-\cup_{i=1}^{5} \mathcal{F}_{i} \mid \text { there is } v \in W^{*} \text { such that for some } j\right. \text { for which } \\
& \left.v \notin Y_{j}^{*} \text { the rank of } v \text { with respect to } Y_{k} \text { is less than } \frac{n}{\log n}\right\} .
\end{aligned}
$$

Lemma $38\left|\mathcal{F}_{6}\right|=o\left(2^{m}\right)$.
Proof First, we specify the number of choices for $\mathcal{Y}^{*}, \mathcal{W}^{*}$, and a projection onto \mathcal{Y}^{*} which can be extended to a graph in \mathcal{F}_{6}.

We note that we can specify the new partition \mathcal{Y}^{*} and the set W^{*} by fixing a choice for W^{*}, and a choice of for each element u of W^{*} of a partition element with respect to which u has rank $\operatorname{rank}(u)$. This is $O\left(4^{8 C} \cdot\binom{n}{\left|W^{*}\right|}\right)=O\left(\left(\left|W^{n}\right|\right)\right)$ choices.

Since $Y_{i}^{*}-W^{*}=Y_{i}-W^{*}$ and we are not considering graphs in \mathcal{F}_{4}, there are at most $2^{\max \left\{\left|Y_{i}\right|, 1 \leq i \leq 4\right\}}\binom{n}{n^{2 / 3}}^{3}=2^{\left|Y_{4}\right|+O\left(n^{1-\gamma}+n^{3 / 4}\right)}$ choices for the edges of such a mediocre string graph which lie within the $Y_{i}^{*}-W^{*}$. For every vertex $u \in Y_{i}^{*} \cap W^{*}$, to specify the edges from u to $Y_{i}^{*}-W^{*}$, we need to specify for each of the at most 2 components K of $Y_{i}^{*}-W^{*}$, the smaller of the sets $K \cap N(u)$ and $K-N(u)$ (with ties broken arbitrarily) and then whether this set is $K \cap N(u)$ or $K-N(u)$. There are at most $4(\underset{\operatorname{rank}(u)}{n})^{2} \leq 4\binom{n}{n^{2 / 3}}^{2}$ such choices. Since there are $O(1)$ choices for the edges within W^{*}, we see that there are $2^{\left|Y_{4}\right|+o(n)}$ choices for the projection of such a G on one of $2^{o(n)}$ possible \mathcal{Y}^{*}.

Now, we count the number of graphs G, the projection of which onto one of these Y^{*} is one of the given projections, for which there is a vertex v of W^{*} such that for some Y_{j} with $v \notin Y_{j}^{*}$, the rank of v on Y_{j} is less than $\frac{n}{\log n}$. To specify the edges from v to $Y_{j}^{*}-W^{*}$, we need to specify for each of the at most 2 components K of $Y_{j}^{*}-W^{*}$, the smaller of the sets $K \cap N(v)$ and $K-N(v)$ (with ties broken arbitrarily) and then whether this set is $K \cap N(v)$ or $K-N(v)$. Hence, there are at most $4\left(\begin{array}{l}n / \sqrt{\log n}\end{array}\right)^{2}=2^{o(n)}$ choices for the edges from v to Y_{j}^{*} which make v extreme on Y_{j}. Hence, letting m^{\prime} denote the number of pairs of vertices lying in different elements of \mathcal{Y}^{*}, we have that the number of such G is $2^{m^{\prime}+\left|Y_{4}\right|+o(n)-n / 4}$.

As the size of each Y_{i} differs from $\frac{n}{4}$ by at most $n^{1-\gamma}$, and we move only a constant number of vertices, the difference between m and m^{\prime} is $O\left(n^{1-\gamma}\right)$. So, the number of choices for G in \mathcal{F}_{6} is $o\left(2^{m+\left|Y_{4}\right|}\right)$.

Next, we focus on graphs $G \in \mathcal{F}-\cup_{i=1}^{6} \mathcal{F}_{i}$. Let $P(G)$ be a projection on \mathcal{Y}. Let v be a vertex of W^{*} maximizing $\operatorname{rank}(v)$ and let i be the integer for which $v \in Y_{i}^{*}$. We define $\operatorname{rank}^{\prime}(v)$ as $\operatorname{rank}(v)$, unless $\operatorname{rank}(v)=0$. If $\operatorname{rank}(v)=0$ and we can choose v to be in a P_{3} or S_{3} of $G\left[Y_{i}^{*}\right]$, then we set $\operatorname{rank}^{\prime}(v)=1$. Let

$$
\mathcal{F}_{7}:=\left\{G \in \mathcal{F}-\cup_{i=1}^{6} \mathcal{F}_{i} \mid \text { there is a vertex } v \in W^{*} \text { with } \operatorname{rank}^{\prime}(v)>0\right\}
$$

Lemma $39\left|\mathcal{F}_{7}\right|=o\left(2^{m+\left|Y_{4}\right|}\right)$.
Proof Let $G \in \mathcal{F}_{7}$ and let $P(G)$ be its projection on \mathcal{Y}. Let v be a vertex of W^{*} maximizing $\operatorname{rank}^{\prime}(v)$ and let $i \in[4]$ be such that $v \in Y_{i}^{*}$. Assume that $\operatorname{rank}^{\prime}(v)>0$. If $\operatorname{rank}^{\prime}(v)>1$, then we choose a set of $\operatorname{rank}^{\prime}(v)$ different $P_{3} \mathrm{~s}$, all containing v, but otherwise disjoint and contained in Y_{i}. Let \mathcal{T}^{i} be this set of $P_{3} \mathrm{~S}$, and denote its elements by $T_{1}^{i}, \ldots, T_{\operatorname{rank}^{\prime}(v)}^{i}$. If $\operatorname{rank}^{\prime}(v)=1$, we choose an S_{3} or P_{3} containing v to be T_{1}^{i}.

By Corollary 25 (c) or (d), there is a non-string graph H whose vertex set can be partitioned into $\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$, where $H\left[L_{i}\right]=G\left[T_{1}^{i}\right]$ and for $k \in[4]-\{i\}, L_{k}$ is a clique of size at most 5 . For each $1 \leq q \leq \operatorname{rank}^{\prime}(v)$, let f_{q} be an isomorphism from T_{q}^{i} to $H\left[L_{i}\right]$ such that the image of v is the same under all f_{q}. Let v^{\prime} be this image. For each $j \in[4]-i$, let n_{j} be the number of vertices of L_{j} adjacent to v^{\prime}. As G is not in \mathcal{F}_{6}, for every $j \in[4]-i$, the rank of v is at least $\frac{n}{\log n}$ on Y_{j}. Thus, we can choose a set \mathcal{C}^{j} of $q=\frac{n}{10 \log n}$ disjoint cliques $C_{1}^{j}, \ldots, C_{q}^{j}$ in $G\left[Y_{j}-W^{*}\right]$, each of size $\left|L_{j}\right|$, such that v has exactly n_{j} neighbours in each of them. In other words, there is an isomorphism f from $G\left[\{v\} \cup C^{j}\right]$ to $H\left[\left\{v^{\prime}\right\} \cup L_{j}\right]$ which maps v^{\prime} to v, for each $j \geq 2$ and $C^{j} \in \mathcal{C}^{j}$.

We count first the extensions of such a projection onto \mathcal{Y} to a string graph for which there is some T_{q}^{i} with the property that for all j in [4]-\{i\}, there are more than $\frac{n}{(\log n)^{2}}$ values of k for which f_{q} extends to an isomorphism from $G\left[T_{q}^{i} \cup C_{k}^{j}\right]$ to $H\left[L_{i} \cup L_{j}\right]$. In this case, by Lemma 31,

We count next the number of extensions for which there is no T_{q}^{i} with the above property. The probability that f_{q} extends to an isomorphism from $H\left[L_{i} \cup L_{j}\right]$ to $G\left[T_{q}^{i} \cup C_{k}^{j}\right]$ for some $j \in[4]-\{i\}$ if we choose the edges between the $Y_{i}^{*}-W^{*}$ randomly, is at least 2^{-15} and these probabilities are all independent. So, an application of the Chernoff bounds tells us that the probability that for one specific T_{q}^{i} there is some j for which there are no $n /(\log n)^{2}$ different values of k for which f_{q} extends to an isomorphism from $G\left[T_{q}^{i} \cup C_{k}^{j}\right]$ to $H\left[L_{i} \cup L_{j}\right]$, is $2^{-\Omega(n / \log n)}$. Thus, the number of extensions for which there is no such T_{q}^{i} is $2^{m^{\prime}-\Omega\left(\frac{r a n k^{\prime}(v) n}{\log n}\right)}$.

The number of choices for W^{*} and Y^{*} is at most $n^{\left|W^{*}\right|} 4^{\left|W^{*}\right|}=2^{O(\log n)}$. The number of choices for the edges of our projection is $O\left(2^{\left|Y_{4}\right|+n^{1-\gamma}}\binom{n}{n^{2} / 3}^{3}\binom{n}{\operatorname{ank}^{\prime}(v)}^{2\left|W^{*}\right|}\right)$. Using that W^{*} is a constant and $\operatorname{rank}^{\prime}(v)$ is at most $n^{2 / 3}$, this is $O\left(2^{\left|Y_{4}\right|+n^{1-\gamma}+n^{3 / 4}}\right)$. Since $m^{\prime}=m+O\left(n^{1-\gamma}\right)$, we obtain that the number of string graphs for which $\operatorname{rank}^{\prime}(v) \neq 0$ is $o\left(2^{m+\left|Y_{4}\right|}\right)$.

To complete the proof of Theorem 1, we need to show the following.
Lemma $40\left|\mathcal{F}-\cup_{i=1}^{7} \mathcal{F}_{i}\right|=o\left(2^{m+\left|Y_{4}\right|}\right)$.
Proof Consider $G \in \mathcal{F}-\cup_{i=1}^{7} \mathcal{F}_{i}$ and let $P(G)$ be its projection on \mathcal{Y}. As noted before, there are $2^{O(\log n)}$ choices for W^{*} and \mathcal{Y}^{*}, and $O(1)$ choices for the edges within W^{*}. Let v be a vertex of W^{*} maximizing $\operatorname{rank}^{\prime}(v)$. Now, we have $\operatorname{rank}^{\prime}(v)=0$. This means that every $Y_{i}^{*}, i \in[4]$, is the disjoint union of 2 cliques. Since $G \notin \mathcal{F}_{4}$, and $Y_{i}^{*}-W^{*}=Y_{i}-W^{*}$, letting max denote the maximum over all Y_{i}^{*} of the size of the smallest component of Y_{i}^{*}, there are fewer than $\binom{n}{\max }\binom{n}{n^{2 / 3}}^{3}$ choices for the partition of every $Y_{i}^{*}-W^{*}$ into 2 cliques. Given such a partition for each i, there are $4^{\left|W^{*}\right|}=O(1)$ choices for the edges out of W^{*} in the projection of G onto Y^{*}. Hence, the number of choices for such a projection with $\max \leq \frac{n}{1000}$ is $2^{O(\log n)}\left(\frac{n}{n} 1000\binom{n}{n^{2} / 3}^{3}=o\left(2^{\left|Y_{4}\right|-\frac{n}{\log n}}\right)\right.$. There are at most $2^{m^{\prime}}=2^{m+O\left(n^{1-\gamma}\right)}$ string graphs extending each such projection and, hence, $o\left(2^{m+\left|Y_{4}\right|}\right)$ such string graphs in total.

Therefore, we need only count the number of graphs G in $\mathcal{F}-\cup_{i=1}^{7} \mathcal{F}_{i}$ for which there is some i such that Y_{i}^{*} has two components of size exceeding $\frac{n}{1000}$. Since $G \notin \mathcal{F}_{4}$, for all $i \neq j$, the smaller component of Y_{i}^{*} has at most $n^{2 / 3}$ vertices. The number of choices for \mathcal{Y}^{*}, W^{*} and for the projection of such a G onto \mathcal{Y}^{*} is $O\left(2^{O(\log n)+\left|Y_{4}\right|+O\left(n^{1-\gamma}\right)+O\left(n^{3 / 4}\right)}\right)$. If for all $j \neq i, Y_{j}^{*}$ is a clique, then G is a great graph which has a great partition obtained by re-indexing the elements of \mathcal{Y}. So, we can assume that this is not the case and find a subgraph D which induces the disjoint union of a vertex and a clique of size 3 contained in Y_{j}^{*}, for some $j \neq i$.

By Corollary 25 (e), there is a non-string graph H whose vertex set can be partitioned into ($L_{1}, L_{2}, L_{3}, L_{4}$), where $H\left[L_{i}\right]$ and $H\left[L_{j}\right]$ are disjoint unions of a vertex and a clique of size at most 3 , and for $k \in[4]-\{i, j\}, L_{k}$ is a clique of size at most 5 . We can choose a subgraph $D^{\prime} \subseteq D$ such that there is an isomorphism f from $G\left[D^{\prime}\right]$ to $H\left[L_{j}\right]$. For every $k \in[4]-\{j\}$, we can choose a set \mathcal{C}^{k} of $\frac{n}{4000}$ disjoint sets $C_{1}^{k}, \ldots, C_{p}^{k}$ in $G\left[Y_{j}-W^{*}\right]$, each of which induces a subgraph isomorphic to $H\left[L_{j}\right]$ (for $k=i$, we need to exploit our lower bound on the size of the smaller component of Y_{i}^{*}).

We count first the extensions of such a projection onto \mathcal{Y}, where for every $k \in[4]-\{j\}$, there are more than $\frac{n}{\log n}$ values of ℓ for which f extends to an isomorphism from $G\left[D^{\prime} \cup C_{\ell}^{k}\right]$ to $H\left[L_{i} \cup L_{k}\right]$. By Lemma 31, there are at most $2^{m^{\prime}}\left(1-\frac{1}{\left.2^{\left(\frac{18}{2}\right)}\right)^{\Omega\left(n^{2} / \log ^{2} n\right)} \text { string graphs extending a given such }}\right.$ projection.

We count next the number of extensions with the property that for some $k \in[4]-\{i\}$, there are fewer than $\frac{n}{\log n}$ values of ℓ for which f extends to an isomorphism from $G\left[D^{\prime} \cup C_{\ell}^{k}\right]$ to $H\left[L_{i} \cup L_{k}\right]$. The
probability that f extends to an isomorphism from $G\left[D^{\prime} \cup C_{\ell^{\prime}}^{j}\right]$ to $H\left[L_{i} \cup L_{j}\right]$ for some $j \in[4]-\{i\}$, if we choose the edges between the Y_{i}^{*} randomly, is at least 2^{-15}, and these probabilities are all independent. So, applying the Chernoff bounds, we obtain that the probability that there is some j such that there are no $\frac{n}{\log n}$ values of ℓ^{\prime} for which f extends to an isomorphism from $H\left[L_{i} \cup L_{j}\right]$ to $G\left[D^{\prime} \cup C_{\ell^{\prime}}^{j}\right]$, is $2^{-\Omega(n)}$.

Since the total number of projections we are considering, over all choices of \mathcal{Y}^{*} and W^{*}, is $O\left(2^{O(\log n)+\left|Y_{4}\right|+O\left(n^{1-\gamma}\right)+n^{3 / 4}}\right)$ and $m^{\prime}=m+O\left(n^{1-\gamma}\right)$, we conclude that the total number of string graphs extending these projections is $o\left(2^{m+\left|Y_{4}\right|}\right)$, and we are done.

This completes the proof of Theorem 1 .

Acknowledgement

This research was carried out while all three authors were visiting IMPA in Rio de Janeiro. They would like to thank the institute for its generous support, and all three referees for their careful work and valuable remarks.

References

[Al93] V. E. Alekseev. On the entropy values of hereditary classes of graphs, Discrete Math. Appl. 3 (1993), 191-199.
[AlBBM11] N. Alon, J. Balogh, B. Bollobás, and R. Morris. The structure of almost all graphs in a hereditary property, J. Combin. Theory Ser. B 101(2) (2011), 85-110.
[BaBS04] J. Balogh, B. Bollobás, and M. Simonovits. On the number of graphs without forbidden subgraph, J. Combin. Theory Ser. B 91 (2004), 1-24.
[BaBS09] J. Balogh, B. Bollobás, and M. Simonovits. The typical structure of graphs without given excluded subgraphs, Random Structures Algorithms 34 (2009), 305-318.
[BaBS11] J. Balogh, B. Bollobás, and M. Simonovits. The fine structure of octahedron-free graphs, J. Combin. Theory Ser. B 101(2) (2011), 67-84.
[BB11] J. Balogh and J. Butterfield. Excluding induced subgraphs: critical graphs, Random Structures and Algorithms 38 (2011), 100-120.
[Be59] S. Benzer. On the topology of the genetic fine structure, Proc. Nat. Acad. Sci. 45 (1959), 1607-1620.
[BoT95] B. Bollobás and A. Thomason. Projections of bodies and hereditary properties of hypergraphs, Bull. Lond. Math. Soc. 27 (1995), 417-424.
[BoT97] B. Bollobás and A. Thomason. Hereditary and monotone properties of graphs, The Mathematics of Paul Erdős, Vol. II, R. L. Graham and J. Nešetřil (Eds.) 14 (1997), 70-78.
[Ch34] Ch. Chojnacki (A. Hanani). Uber wesentlich unplättbare Kurven im dreidimensionalen Raume, Fund. Math. 23 (1934), 135-142.
[ErFR86] P. Erdős, P. Frankl, and V. Rödl. The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin. 2 (1986), 113-121.
[ErKR76] P. Erdős, D. J. Kleitman, B. L. Rothschild. Asymptotic enumeration of K_{n}-free graphs, International Colloquium on Combinatorial Theory, Atti dei Convegni Lincei 17 (1976), 19-27.
[JaU17] S. Janson and A. J. Uzzell. On string graph limits and the structure of a typical string graph, J. Graph Theory 84 (2017), 386-407.
[KKOT15] J. Kim, D. Kühn, D. Osthus, T. Townsend. Forbidding induced even cycles in a graph: typical structure and counting, J. Comb. Theory, Ser. B 131 170-219 (2018)
[Ko36] P. Koebe. Kontaktprobleme der Konformen Abbildung, Ber. Sachs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 88 (1936), 141-164.
[KuKr98] J. Kratochvíl and A. Kuběna. On intersection representations of co-planar graphs, Discrete Math. 178 (1998) 251-255.
[Kr91] J. Kratochvíl. String graphs II: recognizing string graphs is NP-hard, J. Combin. Theory Ser. B 52 (1991), 67-78.
[KrMa91] J. Kratochvíl and J. Matoušek: String graphs requiring exponential representations, J. Combin. Theory Ser. B 53 (1991), 1-4.
[PaT06] J. Pach and G. Tóth. How many ways can one draw a graph?, Combinatorica 26 (2006), 559-576.
[PrS91] H. J. Prömel and A. Steger. Excluding Induced Subgraphs I: Quadrilaterals, Random Structures and Algorithms. 2 (1991), 53-79.
[PrS92a] H. J. Prömel and A. Steger. Almost all Berge graphs are perfect, Combin., Probab. \&8 Comp. 1 (1992), 53-79.
[PrS92b] H. J. Prömel and A. Steger. Excluding induced subgraphs. III. A general asymptotic, Random Structures Algorithms 3(1) (1992), 19-31.
[PrS93] H. J. Prömel and A. Steger. Excluding induced subgraphs II: Extremal graphs, Discrete Appl. Math. 44 (1993) 283-294.
[ReSc17] B. Reed and A. Scott. The typical structure of an H-free graph when H is a cycle, manuscript.
[RY17] B. Reed and Y. Yuditsky. The typical structure of H-free graphs for H a tree, manuscript.
[ScSeSt03] M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string graphs in NP. Special issue on STOC 2002 (Montreal, QC), J. Comput. System Sci. 67 (2003), 365-380.
[ScSt04] M. Schaefer and D. Štefankovič. Decidability of string graphs, J. Comput. System Sci. 68 (2004), 319-334.
[Si66] F. W. Sinden. Topology of thin film RC-circuits, Bell System Technological Journal (1966), 1639-1662.
[Tu70] W. T. Tutte. Toward a theory of crossing numbers, J. Combinatorial Theory 8 (1970), 45-53.

[^0]: *Rényi Institute, Budapest, e-mail: pach@cims.nyu.edu
 ${ }^{\dagger}$ IST Austria, Vienna, partially supported by Austrian Science Fund (FWF), grant Z 342-N31.
 ${ }^{\ddagger}$ MIPT, Moscow, partially supported by the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant no 075-15-2019-1926.
 ${ }^{\S}$ School of Computer Science, McGill University, Montreal, Canada, Laboratoire I3S CNRS, and Professor Visitante Especial, IMPA, Rio de Janeiro breed@cs.mcgill.ca.
 ${ }^{\top}$ School of Computer Science, McGill University, Montreal, Canada; yuditskyL@gmail.com.

