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Abstract

A string graph is the intersection graph of a family of continuous arcs in the plane. The
intersection graph of a family of plane convex sets is a string graph, but not all string graphs
can be obtained in this way. We prove the following structure theorem conjectured by Janson
and Uzzell: The vertex set of almost all string graphs on n vertices can be partitioned into five
cliques such that some pair of them is not connected by any edge (n→∞). We also show that
every graph with the above property is an intersection graph of plane convex sets. As a corollary,
we obtain that almost all string graphs on n vertices are intersection graphs of plane convex sets.

1 Overview

The intersection graph of a collection C of sets is the graph whose vertex set is C and in which two
sets in C are connected by an edge if and only if they have nonempty intersection. A curve is a
subset of the plane which is homeomorphic to the interval [0, 1]. The intersection graph of a finite
collection of curves (“strings”) is called a string graph. A full-dimensional compact convex set in
the plane will be called simply a convex set.

Ever since Benzer [Be59] introduced the notion in 1959, to explore the topology of genetic
structures, string graphs have been intensively studied both for practical applications and theoretical
interest. In 1966, studying electrical networks realizable by printed circuits, Sinden [Si66] considered
the same constructs at Bell Labs. He proved that not every graph is a string graph, and raised the
question whether the recognition of string graphs is decidable. The affirmative answer was given
by Schaefer and Štefankovič [ScSt04] 38 years later. The difficulty of the problem is illustrated by
an elegant construction of Kratochv́ıl and Matoušek [KrMa91], according to which there exists a
string graph on n vertices such that no matter how we realize it by curves, there are two curves
that intersect at least 2cn times, for some c > 0. On the other hand, it was proved in [ScSt04] that
every string graph on n vertices and m edges can be realized by polygonal curves, any pair of which
intersect at most 2c

′m times, for some other constant c′. The problem of recognizing string graphs
is NP-complete [Kr91, ScSeSt03].
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In spite of the fact that there is a wealth of results for various special classes of string graphs,
understanding the structure of general string graphs has remained an elusive task. The aim of this
paper is to show that almost all string graphs have a very simple structure. That is, the proportion
of string graphs that possess this structure tends to 1 as n tends to infinity.

Given any graph property P and any n ∈ N, we denote by Pn the set of all graphs with property
P on the (labeled) vertex set Vn = {1, . . . , n}. In particular, Stringn is the collection of all string
graphs with the vertex set Vn.

Theorem 1 As n→∞, the vertex set of almost every string graph G ∈ Stringn can be partitioned
into four parts such that three of them induce a clique in G and the fourth one splits into two cliques
with no edge running between them.

Theorem 2 Every graph G whose vertex set can be partitioned into four parts such that three of
them induce a clique in G and the fourth one splits into two cliques with no edge running between
them, is a string graph.

Theorem 1 settles a conjecture of Janson and Uzzell from [JaU17], where a related weaker result
was proved in terms of graphons.

We also prove that a typical string graph can be realized using relatively simple strings.

Let Convn denote the set of all intersection graphs of families of n labeled convex sets
{C1, . . . , Cn} in the plane. For every pair {Ci, Cj}, select a point in Ci ∩ Cj , provided that
such a point exists. We can assume without loss of generality that the selected points are in
general position. Replace each convex set Ci by the polygonal curve obtained by connecting all
points selected from Ci by segments, in the order of increasing x-coordinate. Observe that any
two such curves belonging to different Cis cross at most 2n times. The intersection graph of these
curves (strings) is the same as the intersection graph of the original convex sets, showing that
Convn ⊆ Stringn. Taking into account the construction of Kratochv́ıl and Matoušek [KrMa91]
mentioned above, it easily follows that the sets Convn and Stringn are not the same, provided
that n is sufficiently large.

Theorem 3 There exist string graphs that cannot be obtained as intersection graphs of convex sets
in the plane.

We call a graph G canonical if its vertex set can be partitioned into 4 parts such that 3 of them
induce a clique in G and the 4th one splits into two cliques with no edge running between them. The
set of canonical graphs on n vertices is denoted by Canonn. Theorem 2 states Canonn ⊂ Stringn.
In fact, this is an immediate corollary of Convn ⊂ Stringn and the relation Canonn ⊂ Convn,
given by the following theorem.

Theorem 4 The vertices of every canonical graph G can be represented by convex sets in the plane
such that their intersection graph is G.

The converse is not true. Every planar graph can be represented as the intersection graph of
convex sets in the plane (Koebe [Ko36]). Since no planar graph contains a clique of size exceeding
four, for n > 20 no planar graph with n vertices is canonical.

Combining Theorems 1 and 4, we obtain the following.

Corollary 5 Almost all string graphs on n labeled vertices are intersection graphs of convex sets in
the plane.
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Figure 1: The graph G1 is a planar graph with more than 20 vertices. The graph G2 is the graph
from the construction of Kratochv́ıl and Matoušek [KrMa91].

See Figure 1 for a sketch of the containment relation of the families of graphs discussed above.

The rest of this paper is organized as follows. In Section 2, we discuss previous related results and
thereby introduce some needed notation and tools In Section 3, we collect some simple facts about
string graphs and intersection graphs of plane convex sets, and combine them to prove Theorem 4.
In Section 4, we give an outline of the proof of our main result, Theorem 1, and deduce one of its
corollaries: an asymptotic formula for the number of string graphs with n vertices (see Theorem 7
below). After some necessary preparation in Section 5, we fill in the details in Sections 6, 7, and 8.

2 The structure of typical graphs in a hereditary family

A graph property P is called hereditary if every induced subgraph of a graph G with property P has
property P, too. With no danger of confusion, we use the same notation P to denote a (hereditary)
graph property and the family of all graphs that satisfy this property. Clearly, the properties that a
graph G is a string graph (G ∈ String) or that G is an intersection graph of plane convex sets
(G ∈ Conv) are hereditary. The same is true for the properties that G contains no subgraph or no
induced subgraph isomorphic to a fixed graph H.

It is a classic topic in extremal graph theory to investigate the typical structure of graphs in a
specific hereditary family. This involves proving that almost all graphs in the family have a certain
structural decomposition. This research is inextricably linked to the study of the growth rate of the
function |Pn|, also known as the speed of P, in two ways. Firstly, structural decompositions may
give us bounds on the growth rate. Secondly, lower bounds on the growth rate help us to prove that
the size of the exceptional family of graphs which fail to have a specific structural decomposition is
negligible. In particular, we will both use a preliminary bound on the speed in proving our structural
result about string graphs, and apply our theorem to improve the previously best known bounds on
the speed of the string graphs.

In a pioneering paper, Erdős, Kleitman, and Rothschild [ErKR76] approximately determined for
every t the speed of the property that the graph contains no clique of size t. Erdős, Frankl, and
Rödl [ErFR86] generalized this result as follows. Let H be a fixed graph with chromatic number
χ(H). Then every graph of n vertices that does not contain H as a (not necessarily induced)
subgraph can be made (χ(H) − 1)-partite by the deletion of o(n2) edges. This implies that the
speed of the property that the graph contains no subgraph isomorphic to H is

2

(
1− 1

χ(H)−1
+o(1)

)
(n2). (1)
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Prömel and Steger [PrS92a, PrS92b, PrS93] established an analogous theorem for graphs con-
taining no induced subgraph isomorphic to H. Throughout this paper, these graphs will be called
H-free. To state their result, Prömel and Steger introduced the following key notion.

Definition 6 A graph G is (r, s)-colorable for some 0 ≤ s ≤ r if there is an r-coloring of the vertex
set V (G), in which the first s color classes are cliques and the remaining r − s color classes are
stable sets. The coloring number χc(P) of a hereditary graph property P is the largest integer r
for which there is an s such that all (r, s)-colorable graphs have property P. Consequently, for any
0 ≤ s ≤ χc(P) + 1, there exists a (χc(P) + 1, s)-colorable graph that does not have property P.

Prömel and Steger proved that for every H, if P is the property of being H-free then P satisfies

|Pn| = 2

(
1− 1

χc(P)
+o(1)

)
(n2). (2)

The work of Prömel and Steger was completed by Alekseev [Al93] and by Bollobás and Thoma-
son [BoT95, BoT97], who proved that this inequality holds for every hereditary graph property
P.

The lower bound follows from the observation that for χc(P) = r, there exists s ≤ r such that
all (r, s)-colorable graphs have property P. In particular, Pn contains all graphs whose vertex sets
can be partitioned into s cliques and r− s stable sets, and the number of such graphs is of the order
described by the right-hand side of (2).

As for string graphs, Pach and Tóth [PaT06] proved that

χc(String) = 4. (3)

Hence, (2) immediately implies

|Stringn| = 2( 3
4

+o(1))(n2). (4)

Theorem 1 allows us to strengthen this result considerably, as shown below it easily implies:

Theorem 7

|Stringn| = 2
3n2

8
+ 9n

4
+o(n).

To prove Theorem 1, we adopt an approach introduced by Prömel and Steger [PrS91]. They
observed that a partition of V (G) into a clique and a stable set certifies that G is C4-free, because
no matter which edges between the clique and the stable set are present, there can be no C4.

Considering one such partition they obtained that there are at least 2
n2

4
−1 C4-free graphs on n

vertices. They proved that almost every C4-free graph permits such a partition and hence the speed

of the C4-free graphs 2
n2

4
+o(n). They also proved [PrS92a] that all C5-free graphs permit similar

“certifying partitions”. It is an interesting open problem to decide which hereditary families permit
such partitions and what can be said about the inner structure of the subgraphs induced by the parts.
This line of research was continued by Balogh, Bollobás, and Simonovits [BaBS04, BaBS09, BaBS11].
One result in this direction is due to Alon, Balogh, Bollobás, and Morris [AlBBM11]. They proved
that almost every graph with a hereditary Property P can be partitioned into χc(P) parts with a
simple internal structure.

The first step of our proof is to strengthen the result of Alon et al. [AlBBM11] when P is the
string graphs. We show that we can actually find a partition of almost every string graph into
four parts such that each part satisfies the properties in their definition of simple structure and
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furthermore: three of the parts can be made into cliques by deleting o(n) vertices and the fourth
can be made into the disjoint union of cliques by deleting o(n) vertices.

The second step of our proof is to show that actually almost every string graph which has such
a partition has one in which the union of the four deleted sets is empty.

We give a more detailed outline of the proof of Theorem 1 in Section 4, and fill in the details in
Sections 6–8.

3 String graphs vs. intersection graphs of convex sets—proof of
Theorem 4

Instead of proving Theorem 4, we establish a somewhat more general result.

Theorem 8 Given a planar graph H with labeled vertices {1, . . . , k} and positive integers n1, . . . , nk,
let H(n1, . . . , nk) denote the class of all graphs with n1 + . . .+ nk vertices that can be obtained from
H by replacing every vertex i ∈ V (H) with a clique of size ni, and adding any number of further
edges between pairs of cliques that correspond to pairs of vertices i 6= j with ij ∈ E(H).

Then every element of H(n1, . . . , nk) is the intersection graph of a family of plane convex sets.

Proof Fix any graph G ∈ H(n1, . . . , nk). The vertices of H can be represented by closed disks
D1, . . . , Dk with disjoint interiors such that Di and Dj are tangent to each other for some i < j
if and only if ij ∈ E(H) (Koebe, [Ko36]). In this case, let tij = tji denote the point at which Di

and Dj touch each other. For any i (1 ≤ i ≤ k), let oi be the center of Di. Assume without loss of
generality that the radius of every disk Di is at least 1.

The graph G has n1 + . . .+ nk vertices denoted by vim, where 1 ≤ i ≤ k and 1 ≤ m ≤ ni. In
what follows, we assign to each vertex vim ∈ V (G) a finite set of points Pim, and define Cim to be
the convex hull of Pim. For every i, 1 ≤ i ≤ k, we include oi in all sets Pim with 1 ≤ m ≤ ni, to
make sure that for each i, all sets Cim, 1 ≤ m ≤ ni have a point in common, therefore, the vertices
that correspond to these sets induce a clique.

Let ε < 1 be the minimum of all angles ]tijoitil > 0 at which the arc between two consecutive
touching points tij and til on the boundary of the same disc Di can be seen from its center, over all
i, 1 ≤ i ≤ k and over all j and l. Fix a small δ > 0 satisfying δ < ε2/100.

For every i < j with ij ∈ E(H), let γij be a circular arc of length δ on the boundary of Di,
centered at the point tij ∈ Di ∩Dj . We select 2ni distinct points pij(A) ∈ γij , each representing
a different subset A ⊆ {1, . . . , ni}. A point pij(A) will belong to the set Pim if and only if m ∈ A.
(Warning: Note that the roles of i and j are not interchangeable!)

If for some i < j with ij ∈ E(H), the intersection of the neighborhood of a vertex vjM ∈ V (G)
for any 1 ≤M ≤ nj with the set {vim : 1 ≤ m ≤ ni} is equal to {vim : m ∈ A}, then we include the
point pij(A) in the set PjM assigned to vjM , see Figure 2 for a sketch. Hence, for every m ≤ ni and
M ≤ nj , we have

vimvjM ∈ E(G) ⇐⇒ Pim ∩ PjM 6= ∅.
In other words, the intersection graph of the sets assigned to the vertices of G is isomorphic to G.

It remains to verify that

vimvjM ∈ E(G) ⇐⇒ Cim ∩ CjM 6= ∅.

Suppose that the intersection graph of the set of convex polygonal regions

{Cim : 1 ≤ i ≤ k and 1 ≤ m ≤ ni}
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tij

m ∈ A
pij(A)

CjM = conv PjM

Cim = conv Pim

tij

N(vjM) ∩ {vim : m ≤ ni} = {vim : m ∈ A}

Figure 2: The point pij(A) is included in PjM .

differs from the intersection graph of

{Pim : 1 ≤ i ≤ k and 1 ≤ m ≤ ni}.

Assume first, for contradiction, that there exist i,m, j,M with i < j such that Di and Dj are
tangent to each other and CjM contains a point pij(B) for which

B 6= NjM ∩ {vim : 1 ≤ m ≤ ni}. (5)

Consider the unique point p = pij(A) ∈ γij that belongs to PjM , that is, we have

A = NjM ∩ {vim : 1 ≤ m ≤ ni}.

Draw a tangent line ` to the arc γij at point p. See Figure 3. The polygon CjM has two sides
meeting at p; denote the infinite rays emanating from p and containing these sides by r1 and r2.
These rays either pass through oj or intersect the boundary of Dj in a small neighborhood of the
point of tangency of Dj with some other disk Dj′ . Since δ was chosen to be much smaller than ε,
we conclude that r1 and r2 lie entirely on the same side of ` where oj , the center of Dj , is. On the
other hand, all other points of γij , including the point pij(B) satisfying (5) lie on the opposite side
of `, which is a contradiction.

Essentially the same argument and a little trigonometric computation show that for every j and
M , the set CjM −Dj is covered by the union of some small neighborhoods (of radius < ε/10) of
the touching points tij between Dj and the other disks Di. This, together with the assumption that
the radius of every disk Di is at least 1 (and, hence, is much larger than ε and δ) implies that CjM
cannot intersect any polygon Cim with i 6= j, for which Di and Dj are not tangent to each other. �

A very similar argument was outlined in [KuKr98].

Applying Theorem 8 to the graph obtained from K5 by deleting one of its edges, Theorem 4
follows.

4 Outline of the proof of Theorem 1

Definition 9 By a great partition of a graph G we mean an ordered partition of its vertex set V (G)
into X1, X2, X3, X4 such that (i) for i ≤ 3, G[Xi] is a clique while G[X4] is the disjoint union of
two cliques. We call a graph great if it has a great partition and mediocre otherwise.
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γij

tij

Di

Dj

t2j
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Figure 3: Tangent disks Di and Dj touching at tij .

Theorem 1 simply states that the ratio of the number of mediocre string graphs on n vertices
over the number of great graphs with n vertices is o(1).

As previously discussed, the proof of Theorem 1 splits into two parts. We first show that for
almost every G in Stringn, we can find a partition of V (G) into four parts each of which has a
simple internal structure, including that we can delete an exceptional set of size o(n) so that three
of the parts induce cliques and the fourth induces the disjoint union of two cliques. We then show
that, we can almost always chose the exceptional set to be empty.

To state the result we obtain in the first step, we need to agree on some notation and terminology.
The neighborhood of a vertex v of a graph G is denoted by NG(v) or, if there is no danger of
confusion, simply by N(v). For any A ⊂ V (G), let G[A] denote the subgraph of G induced by A.

The result we obtain in the first step is the following.

Theorem 10 For every sufficiently small δ, there are γ > 0 and b with the following property. For
almost every string graph G on Vn, there is a partition of Vn into X1, . . . , X4, Z1, . . . , Z4 such that
there is a set B of at most b vertices for which the following conditions are satisfied:

(I) G[X1], G[X2], and G[X3] are cliques and G[X4] induces the disjoint union of two cliques.

(II) |Z1 ∪ Z2 ∪ Z3 ∪ Z4| ≤ n1−γ,

(III) for every i (1 ≤ i ≤ 4) and every v ∈ Xi ∪ Zi, there exists a ∈ B such that

|(N(v)4N(a)) ∩ (Xi ∪ Zi)| ≤ δn,

(IV) for every i (1 ≤ i ≤ 4), we have
∣∣|Zi ∪Xi| − n

4

∣∣ ≤ n1−γ.
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We note that our four part partition is (X1 ∪ Z1, X2 ∪ Z2, X3 ∪ Z3, X4 ∪ Z4). (I) and (II) imply
that Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4 is the exceptional set we desire. The other key property is (III), which
greatly reduces the choices for the edges within the parts, as we discuss more fully below. On the
other hand, (IV) is not surprising. Indeed, having proven the weakening of the theorem where it is
deleted, we can obtain the full theorem in just a few lines. Again this is set out below.

See Figure 4 for a pictorial representation of Theorem 10.

X1

Z1

X2

Z2

X3

Z3

X4

Z4

Figure 4: A sketch of a typical string graph as in Theorem 10. The edges between the parts are not
drawn. The sets shaded grey are cliques.

Definition 11 A partition of the vertex set Vn of a graph into 8 parts X1, . . . , X4, Z1, . . . , Z4 is
called good if it satisfies conditions (I), (II), (III), and (IV).

A good partition X1, . . . , X4, Z1, . . . , Z4 is also called Y-good for Y = (Y1, Y2, Y3, Y4), where
Yi = Xi ∪ Zi for every i ∈ [4].

We choose δ > 0 so small that Theorem 10 holds and δ also satisfies certain inequalities implicitly
given below. We apply Theorem 10 and obtain that for some positive γ and b, almost every graph
in Stringn permits a good partition.

By Theorem 10, to complete the proof of Theorem 1. we need to show that the number of
mediocre string graphs on Vn with a good partition is of smaller order than the number of great
graphs on Vn. We do that by comparing the number of good partitions of mediocre graphs and
the number of great partitions of great graphs. As can be seen from the following claim, we do not
over-count much when we consider the number of great partitions in place of the number of great
graphs. Obviously, every great graph has at least 6 great partitions, because we can arbitrarily
permute the first 3 partition elements. The next statement shows that most great graphs do not
permit more than 6 great partitions.

Claim 12 The ratio between the number of pairs of a great graph together with its great partition
and the number of great graphs is 6 + o(1).

Claim 13 For every partition Y = (Y1, Y2, Y3, Y4) of Vn, the number of graphs which permit a great
partition with Xi = Yi for every i is of larger order then the number of mediocre string graphs which
permit a Y-good partition.

In order to establish Theorem 1, it is enough to prove Theorem 10, Claim 12, and Claim 13.
After some necessary preparation in the next section, we prove Theorem 10 in Section 6. Claims

12 and 13 are proved in Sections 7 and 8, respectively.
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Here we show how Theorem 7 follows from Theorem 1 and Claim 12.

Proof of Theorem 7 Combining Theorem 1 and Claim 12, we see that the ratio of the size
of Stringn over the number of ordered great partitions of graphs on Vn is 1

6 + o(1), so we need
only count the latter. There are 22n ordered partitions of Vn into Y1, . . . , Y4, and for any such
partition there are O(1)2mY+|Y4| graphs for which this is a great partition. This latter term is at most

23n2/8+6+n
4

+o(n), which gives us the claimed upper bound on the speed of string graphs. Furthermore,
a simple calculation shows that in a an Ω( 1

n3/2 ) proportion of all 22n ordered 4-partitions of Vn, no
two parts differ in size by more than 1. This gives the desired lower bound. �

Before ending this section, we give a bit of intuition about the proof of Claim 13 which is a key
element of our argument. We note that, for a given ordered partition Y, there are fewer than 2n

choices for the 4-tuple (G[Y1], G[Y2], G[Y3], G[Y4]) over G for which Y is a great partition as the first
three of its elements are cliques and the last is the disjoint union of 2 cliques. This is dwarfed by
the number of choices for this 4-tuple over mediocre G for which Y is a good partition.

To counterbalance this fact, we need to consider the edges between the partition elements. If we
insist that Y4 can be partitioned into a specific pair of cliques, and every other Yi is a clique, then
every choice for the edges between the parts yields a great graph for which Y is a great partition.
In contrast, for a choice of (G[Y1], G[Y2], G[Y3], G[Y4]), for some mediocre graph G for which Y is a
good partition, there are much fewer choices for the edges between the parts that yield a mediocre
string graph for which Y is a good partition.

In the proof of Claim 13, we repeatedly exploit information about a quadruple to bound the
number of its extensions to mediocre string graphs for which it forms a good partition. This tradeoff
between greater choice within the part and less choice between the parts will also be crucially
important in the proof of Theorem 10.

5 The starting point

Our starting point is essentially a special case of a result of Alon et al.[AlBBM11] which holds for
all hereditary properties of graphs. To state it, we need some notations.

For any disjoint subsets A,B ⊂ V (G), let G[A,B] denote the bipartite subgraph of G consisting
of all edges of G running between A and B. The symmetric difference of two sets, X and Y , is
denoted by X 4 Y .

Following Alon et al., for any integer k > 0, we define U(k) as the bipartite graph with vertex
classes {1, . . . , k} and {I : I ⊂ {1, . . . , k}}, where a vertex i in the first class is connected to a
vertex I in the second if and only if i ∈ I. We think of U(k) as a “universal” bipartite graph on
k + 2k vertices, because for every subset of the first class there is a vertex in the second class whose
neighborhood is precisely this subset.

Definition 14 Let k be a positive integer. A graph G is said to contain U(k) if there are two
disjoint subsets A,B ⊂ V (G) such that the bipartite subgraph G[A,B] ⊆ G is isomorphic to U(k).
Otherwise, with a slight abuse of terminology, we say that G is U(k)-free.

By slightly modifying the proof of the main result, Theorem 1, in [AlBBM11], and adapting it
to string graphs, we obtain the following.

Theorem 15 For any sufficiently large positive integer k and for any δ > 0 which is sufficiently
small in terms of k, there exist ε > 0 and a positive integer b with the following properties.
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The vertex set Vn (|Vn| = n) of almost every string graph G can be partitioned into eight sets,
S1, . . . , S4, A1, . . . , A4, such that for some set B of at most b vertices

(a) G[Si] is U(k)-free for every i (1 ≤ i ≤ 4);

(b) |A1 ∪ . . . ∪A4| ≤ n1−ε; and

(c) for every i (1 ≤ i ≤ 4) and v ∈ Si ∪Ai, there is a ∈ B such that

|(N(v)4N(a)) ∩ (Si ∪Ai)| ≤ δn.

For those familiar with the paper of Alon, Balogh, Bollobás, and Morris [AlBBM11], we present
the details of the minor modifications required for the proof of Theorem 15.

Proof It is sufficient to prove the result for δ sufficiently small. We set δ = 3α for some α > 0
which is required to be sufficiently small. So, in what follows, we can and do replace δ by 3α. (This
replacement is essential to readability for those readers who choose to work through [AlBBM11], as
δ denotes a different quantity in that paper.)

We essentially follow and repeat the proof of Theorem 1, given in Section 7 of [AlBBM11]. Our
Theorem 15 differs from their Theorem 1 in the following ways.

(i) In our case, the hereditary family P is the family of string graphs. Hence, by Pach and Tóth
[PaT06], we have χc(P ) = 4,

(ii) We allow k to be any large enough integer, rather than one fixed large integer.

(iii) We allow α to be arbitrarily small, as long as it is small enough in terms of k (and P).

(iv) ε is chosen as a function of α and k.

(v) There is an integer b which is chosen as a function of α and k such that there exist a choice B
of at most b vertices and a partition of A into A1, A2, A3, A4 for which our property (c) holds
– with δ replaced by 3α.

(vi) The sentence beginning with ”Moreover” has to be deleted.

Let k ∈ N be sufficiently large, let α = 3δ > 0 be sufficiently small in terms of k, and choose γ
sufficiently small in terms of k and α, and ε sufficiently small in terms of all of these parameters.
By Lemma 17 of [AlBBM11], almost every graph G ∈ P has a BBS-partition P for (ε, δ, γ) into 4
parts. Let B be a maximal (2α)-bad set for (G,P ).

By Lemmas 22 and 23 of [AlBBM11], for almost every G, there exists an α-adjustment P ′ =
(S′1, . . . , S

′
4) of (G,P ) with respect to B. Let A = U(G,P ′, k) be the exceptional set given by the

algorithm. By Lemma 24, for almost every G, |A| ≤ n1−ε. Let c stand for c(α,P) of Lemma 19.
Lemma 24 can be strengthened so that it is also possible to deduce that |B| ≤ c for almost every
G ∈ P.

Let Ai = S′i ∩A,Si = S′i −A, i ∈ [4]. Now, part(a) of our theorem is the same as Theorem 1(b)
in [AlBBM11], and part (b) is the same as Theorem 1(a), where ε is α

2 . Part (c) follows immediately
from the fact that S′1, . . . , S

′
4 is an α-adjustment.

Next, we state the necessary strengthening of Lemma 24 from [AlBBM11]. Let B denote the
set with |B| > c(α,P), where c(α,P) is the constant in Lemma 19. Let U ′(Pn, α, k) be the set
U(Pn, α, k).
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Lemma 16 Let r ≥ 2 and let P be a hereditary property of graphs with χc(P) = r (in our case,
r = 4). There exists k = k(P) ∈ N such that for any α sufficiently small in terms of k and P, the
following holds.

Let ε, α, γ > 0 be sufficiently small, and let n ∈ N be sufficiently large. Then we have

|U ′(Pn, α, k)| ≤ 2(1− 1
r

)(n2)−n
2−2α

.

The original proof of Lemma 24 actually proves this stronger result, provided that
(a) in the first paragraph, we set out that c to be c(α,P) from their Lemma 19;
(b) in the definition of Un = U(Pn, α, k)− (B(P, α, n1−2α) ∪ D(Pn, α)), replace n1−2α by c;
(c) delete the assumption ”if c = c(α,P) is sufficiently large”. �

6 The proof of Theorem 10

The aim of this section is to deduce Theorem 10 from Theorem 15. We will need the following result
from [AlBBM11].

Lemma 17 (Theorem 2 in [AlBBM11]) For every k ∈ N, there is ρ = ρ(k) > 0 such that the
number of U(k)-free graphs on Vt = {1, 2, . . . , t} is less than 2t

2−ρ
.

Proof of Theorem 10 We choose k large enough and 0 < δ < 1
40 sufficiently small in terms of

k so that for some b and ε, almost every string graph has a partition into S1, S2, S3, S4, A1, A2, A3, A4

such that for some set B of at most b vertices, (a)-(c) of Theorem 15 hold.We call such a partition
an ABBM partition.

Let 0 < α < min{ε, ρ2} where ρ is the parameter from Lemma 17 for the above k. Let γ = α
40

and l = l(n) = dn1−α
7 e.

In the sequel, we show that almost every string graph G has an ABBM partition with the
following properties.

(1) For each i ∈ [3], ∃Yi ⊂ Si with |Yi| ≤ 1
8 · n1−γ such that G[Si − Yi] is a clique.

(2) ∃Y4 ⊂ S4 with |Y4| ≤ 1
8 · n1−γ such that G[S4 − Y4] is the disjoint union of two cliques.

(3) For every i ∈ [4], ||Si ∪Ai| − n
4 | ≤ n1−γ .

Note that this implies Theorem 10. Indeed, by setting Zi = Ai ∪ Yi and Xi = Si − Yi for each
i ∈ [4], part(I) of the theorem follows from (1) and (2). Furthermore, for sufficiently large n, part
(II) also follows from (1), (2), Theorem 15(b), and from the fact that γ = α

40 ≤ ε
40 . We obtain part

(III), because (S1, . . . , S4, A1, . . . , A4) is an ABBM partition and Si ∪Ai = Xi ∪ Zi for each i ∈ [4].
Finally, part (IV) from property (3) above.

Theorem 15 tells us that almost every string graph belongs to the family

G1 = G1(k, δ) := {G ∈ String | G has an ABBM partition}.

So we only need to prove that the number of graphs in G1 for which there is an ABBM partition
not satisfying at least one of the properties (1), (2), (3), is o(|(G1)n|). Consider three other special
families of graphs, and let l = l(n) = dn1−α

7 e, as was specified at the beginning of the proof.

G2 := {G ∈ (G1)n | G has an ABBM partition for which ∃i ∈ [4] s.t. ||Si ∪Ai| −
n

4
| > n1−γ}.
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G3 := {G ∈ (G1)n − G2 | G has an ABBM partition for which ∃i ∈ [4] s.t. G[Si] contains l disjoint

sets of size 3, each inducing a path or a stable set}.

G4 := {G ∈ (G1)n − G2 − G3 | G has an ABBM partition for which ∃i 6= j ∈ [4] s.t. G[Si] and G[Sj ]

contain l disjoint sets of size 4, each inducing the disjoint union of a vertex and a triangle}.

We show the following.

Lemma 18 |G2 ∪ G3 ∪ G4| = o(|(G1)n|).

Lemma 18 implies that almost every string graph is in (G1)n − (G2 ∪ G3 ∪ G4). For any such
graph G, we consider an ABBM partition S1, S2, S3, S4, A1, A2, A3, A4. Since G is not in G3, no
Si, i ∈ [4], has l disjoint subsets, each od which induces a path or stable set with 3 vertices. Since G
is not in G4, by swapping 4 with some other index if necessary, we can ensure that no Si, i ∈ [3],
has l disjoint subsets of Si, each of which induces the disjoint union of a triangle and a vertex. For
i ∈ [3], let Yi be a maximum set of disjoint subsets of Si, each of which induces a path or stable set
of size 3, or is the disjoint union of a triangle and a vertex. Let Y4 be a maximum set of disjoint
subsets of S4, each inducing either a path or a stable set with 3 vertices. Clearly, each Yi has at
most 7l elements. Since l = dn1−α

7 e and γ = α
40 , this is less than n1−γ

8 , provided n is large enough.
Any graph that has no induced paths on 3 vertices is the disjoint union of cliques. If, in addition,

the graph has no stable set of size 3, it is the disjoint union of at most 2 cliques. If, on top of this,
the graph contains no subset that induces the disjoint union of a vertex and a triangle, and it has
at least 5 vertices, then it is a clique. Thus, for every sufficiently large n, every ABBM partition of
G satisfies (1), (2), and (3).

To complete the proof of Theorem 10, it remains to establish Lemma 18.

Proof of Lemma 18 We compute separately a lower bound on the size of G1 and an upper
bound on the size of G2 ∪ G3 ∪ G4, and we show that the latter is of smaller order than the former.
Computing a lower bound on the size of G1 is easy.

Lemma 19 |(G1)n| ≥ 2
3n2

8
−6.

Proof For any n > 3, fix a partition S1, S2, S3, S4 of Vn into 4 parts, where each Si has either
dn/4e or bn/4c vertices. Let Ai be empty for all i. For any sufficiently large n and for any graph
G on Vn, for which each Si is a clique, this yields an ABBM partition. To see this, let B contain
exactly one vertex from each of S1, S2, S3, S4. Now every choice of edges between the Si yields a
distinct string graph with the given certifying partition. Since there are more than 3n2

8 − 6 pairs of
vertices that lie in distinct partition elements, the statement is true. �

To obtain an upper bound on |G2 ∪ G3 ∪ G4|, consider each of the possible 8n partitions of V
into (S1, . . . , S4, A1, . . . , A4), separately.

For any partition Y of Vn into 4 parts, define m(Y) to be the number of pairs of vertices not taken
from the same part. When we use m in this section, we mean m(S1 ∪A1, S2 ∪A2, S3 ∪A3, S4 ∪A4).

Definition 20 The projection of G onto a partition of its vertex set is the set of subgraphs induced
by the partition elements.

A projection onto (S1∪A1, . . . , S4∪A4) is an ABBM projection for (S1, S2, S3, S4, A1, A2, A3, A4)
if it is the projection of some graph for which (S1, S2, S3, S4, A1, A2, A3, A4) is an ABBM partition.

12



We now use Lemma 17 to bound the number of different ABBM projections for a given
(S1, S2, S3, S4, A1, A2, A3, A4).

Lemma 21 The number of possible ABBM projections for a partition (S1, S2, S3, S4, A1, A2, A3, A4)
of Vn is at most O(28n2−α

).

Proof By Lemma 17, the number of choices for a U(k)-free graph on each Si is O(2n
2−ρ

) =
O(2n

2−α
). Let A = ∪4

i=1Ai. Since, in an ABBM partition, |A| is at most n1−ε, there are at most

2n
2−ε

= O(2n
2−α

) choices for the edges with at least one endpoint in the set A. It follows that there
are at most O(28n2−α

) choices for the ABBM projection for this partition, over all graphs for which
it is an ABBM partition. �

Lemma 22 |G2| = o(|(G1)n|).

Proof Let S1, S2, S3, S4, A1, A2, A3, A4 be a partition of Vn such that for some i ∈ [4], we have

||Si ∪Ai| − n
4 | > n1−γ . Then m < 3n2

8 + 6− n2−γ . There are at most 2m graphs that have the same
ABBM projection on S1, S2, S3, S4, A1, A2, A3, A4. Combining this bound with the upper bound in

Lemma 21, and comparing it with the lower bound |(G1)n| ≥ 2
3n2

8
−6 from Lemma 19, we get the

desired result. �

In order to complete the proof of Theorem 10, we need to exploit the fact that for some specific
choice of an ABBM projection for (S1, S2, S3, S4, A1, A2, A3, A4), it cannot occur that all 2m graphs
extending this projection are string graphs. Specifically, we will use the following result.

Lemma 23 Let H be a non-string graph, and let L1, L2, L3, L4 be a partition of V (H). Let P be a
projection on a partition (Y1, Y2, Y3, Y4) of Vn. Assume that for each i ∈ [4], we can choose a family
W i of q disjoint subsets of Yi, each inducing a graph isomorphic to H[Li].

Then the number of string graphs whose projection on Y is P is at most 2m(Y)

(
1− 1

2(
|V (H)|

2 )

) q2

4

.

Proof It is well known that there is a prime p between q
2 and q. For each i ∈ [4], let J i0, . . . , J

i
p−1

be p members of W i. For 1 ≤ r, s ≤ p, consider the 4-tuple J1
r , J

2
r+s, J

3
r+2s, J

4
r+3s, where addition is

taken modulo p. For each of the p2 ≥ q2

4 such 4-tuples, there is a way to choose edges between pairs
of vertices in distinct elements of the 4-tuple so that we get a copy of H. Hence, the resulting graph

where such a choice is made is not a string graph. Therefore, among the c ≤ 2(|V (H)|
2 ) choices for the

edges between the elements of the 4-tuple, at most c− 1 can occur in a string graph with the given
projection on S1, S2, S3, S4, A1, A2, A3, A4. Furthermore, by our choice of the 4-tuples, for any x in
Si and y in Sj with i 6= j, there is at most one 4-tuple containing both x and y. The result follows.
�

To exploit this lemma, we need to consider the partitions of certain non-string graphs set out in
the following result, which is a slight generalization of Lemma 3.2 in [PaT06] with essentially the
same proof.

Lemma 24 Let H be a graph on the vertex set {v1, . . . , v5} ∪ {vij : 1 ≤ i 6= j ≤ 5}, where vij = vji
and every vij is connected by an edge to vi and vj. The graph H may have some further edges
connecting pairs of vertices (vij , vik) with j 6= k. Then H is not a string graph.

13



(a) (b) (c)

(d) (e)

Figure 5: Possible partitions of a non-string graph.

Proof Suppose for contradiction that there is a graph H with the above properties that has
a string representation. Choose such a graph with the maximum number of edges. Continuously
contract each string (curve) representing vi (1 ≤ i ≤ 5) to a point pi, Note that, by our choice of H,
at the end of the process we still have a string representation of H. For every pair i 6= j, consider a
non-selfintersecting arc of the curve representing vij with endpoints pi and pj . These arcs define a
drawing of K5, in which no two independent edges intersect. However, K5 is not a planar graph,
hence, by a well known theorem of Hanani and Tutte [Ch34], [Tu70], no such drawing exists. �

Corollary 25 For each of the following types of partition, there exists a non-string graph whose
vertex set can be partitioned in the specified way:

(a) 2 stable (that is, independent) sets each of size at most 10;
(b) 4 cliques each of size at most five and a vertex;
(c) 3 cliques each of size at most five and a stable set of size 3;
(d) 3 cliques each of size at most five and a path with three vertices;
(e) 2 cliques both of size at most five and 2 graphs that can be obtained as the disjoint union of

a point and a clique of size at most 3.

See Figure 5 for an illustration of Corollary 25.

Remark 26 Corollary 25 immediately implies that χc(String) ≤ 4. Indeed, there exist (5, s)-
colorable non-string graphs for s ≤ 3 (by (a)), for s = 4 and 5 (by (b)). In fact, we have
χc(String) = 4 [PaT06].

Lemma 27 |G3| = o(|(G1)n|).

Proof We define two subfamilies of (G1)n.

H1 := {G ∈ (G1)n − G2 | G has an ABBM partition for which ∃i 6= j ∈ [4] s.t.

G[Si] and G[Sj ] contain l disjoint stable sets of size 10}.
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H2 := {G ∈ (G1)n − G2 −H1 | G has an ABBM partition for which ∃i ∈ [4] s.t.

G[Si] does not contain l disjoint cliques of size 5}.

First, we show that |H1| = o(|(G1)n|). Consider a partition of Vn into parts S1, S2, S3, S4, A1, A2,
A3, A4. By Lemma 21, we know that the number of ABBM projections for the above partition is
O(28(n2−α)). By Corollary 13(a), for any {i, j} ⊆ [4], there is a non-string graph H whose vertex
set can be partitioned into L1, L2, L3, L4 with the following property: if k 6∈ {i, j}, then Lk is
non-empty, and if k ∈ {i, j}, then Lk is a stable set of size at most 10. So, applying Lemma 23
with q = l, the number of string graphs G for which a specific ABBM projection for S1, S2, S3, S4,
A1, A2, A3, A4 shows that G is in H1, because there are distinct G[Si] and G[Sj ] containing l disjoint

stable sets of size 10, is at most 2m(1 − 1
2200

)l
2
. Hence, the number of graphs in H1 is at most

28(n2−α) · 2m · 2−cn2−α2 for some constant c > 0. Since m < 3n2

8 + 6, taking into account the lower
bound on |(G1)n| in Lemma 19, we get |H1| = o(|(G1)n|), as desired.

Secondly, we show that |H2| = o(|(G1)n|). For this, we need the following observation. By
Ramsey theorem, every set of 215 vertices contains either a clique of size 5 or a stable set of size
10. Therefore, if a graph J does not contain l disjoint stable sets of size 10, then it must contain
(|V (J)| − 10(l − 1)− 215)/5 disjoint cliques of size 5.

Let G ∈ H2. By the definition of H2, there is an ABBM projection for some S1, S2, S3, S4,
A1, A2, A3, A4 such that at least one G[Si] does not contain l disjoint cliques of size 5. Since H2 is
disjoint from G2, every Sj contains more than n

5 vertices. By the last paragraph, this implies that
Si must contain a set Si of l disjoint stable sets Zi1, . . . , Z

i
l of size 10. Since H2 is disjoint from H1,

we also obtain by the last paragraph that no G[Sj ] with j 6= i contains l disjoint stable sets of size

10, and, hence, every such G[Sj ] contains a set Cj of l disjoint cliques Zj1 , . . . , Z
j
l of size 5.

By Corollary 25 (c), there is a non-string graph which can be partitioned into L1, . . . , L4, where
for j 6= i, Li is a clique of size at most 5, and Li is a stable set of size at most 3. Applying Lemma
23 with q = l, the number of ways to extend an ABBM projection of G which shows that G does

not belong to H2 to a string graph is at most 2
3n2

8
+6(1− 1

2(
18
2 )

)
l2

4 . Hence, as before, by Lemma 21,

the number of graphs in H2 is at most 28(n2−α) · 2 3n2

8
+62−cn

2−α2 , for some c > 0. Comparing this
bound with the lower bound on |(G1)n|, we get that |H2| = o(|(G1)n|), as desired.

To complete the proof of the lemma, we need to bound the size of G3− (G2 ∪H1 ∪H2). Consider
a graph G in this class and an ABBM projection of G for a partition S1, S2, S3, S4, A1, A2, A3, A4

of Vn which shows that G ∈ G3 − (G2 ∪H1 ∪H2). In particular, for some i ∈ [4], we can choose a set
Si of l

2 disjoint subsets of size 3 in G[Si] such that either each subset induces a path or each subset
induces a stable set. Further, since G does not belong to G1 ∪H1 ∪H2, for every j ∈ [4]− {i} we
can choose a collection Cj of l

2 disjoint subsets of size 5 in G[Sj ], each of which induces a clique.
By Corollary 25 (c) or (d), we obtain that there is a non-string graph H which can be partitioned

into L1, .., L4 such that for j 6= i , Lj is a clique of size at most 5 while for each S in Si, G[S]
induces H[Li]. Applying Lemma 23 with q = l

2 , the number of different ways how to extend the
ABBM projection of G which shows that G ∈ G3 − (G2 ∪ H1 ∪ H2) to a string graph, is at most

2
3n2

8
+6(1− 1

2153
)
l2

16 . Hence, as before, by Lemma 21, the number of graphs in G3 − (G2 ∪H1 ∪H2)

is at most 28(n2−α) · 2 3n2

8
+62−cn

2−α2 , for some c > 0. Again, comparing this bound with the lower
bound on |(G1)n|, we obtain |G3 − (G2 ∪H1 ∪H2)| = o(|(G1)n|). �

Using similar ideas and Corollary 25 (e), we can also derive the following.
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Lemma 28 |G4| = o(|(G1)n|).

Proof Our string graph G is not in G2∪G3, thus Ramsey theory tells us that each G[Si] contains
a set Ci of l disjoint cliques of size 5. Since G ∈ G4, we can find distinct G[Si] and G[Sj ] containing
collections T i and T j , resp., of l disjoint sets, each of which induce the disjoint union of a vertex
and a triangle. Now, Corollary 25 (e) implies that there is a non-string graph H whose vertex set
can be partitioned into L1, . . . , L4 with the property that for k 6∈ {i, j}, Lk is a clique of size at
most 5, while Li and Lj can be obtained as the disjoint union of a clique and a triangle. Again,
applying Lemma 23 and Lemma 21, we obtain the desired result. �

This completes the proof Lemma 18 and, thus, of Theorem 10. �

�

7 The proof of Claim 12

We will exploit the fact that if a string graph has a great partition and we fix the subgraphs induced
by the parts of the partition, then any choice we make for the edges between the sets Xi will
yield another string graph which permits the same great partition. This fact implies that the edge
patterns between different parts of a particular great partition are chosen uniformly at random and
it is very unlikely that they define a graph which also permits some other great partition. This
allows us to prove Claim 12.

Proof of Claim 12 To prove our claim, we focus on ordered pairs of a graph and a corresponding
great partition (G, (X1, X2, X3, X4)), that is, (X1, X2, X3, X4) is a great partition of G with the
following property which we denote by (P*):

(a) any two vertices of G in a part Xi that induces a clique have at least 13n
32 common neighbours;

(b) any two vertices in different parts have fewer than 13n
32 common neighbours;

(c) for every part Xi and every vertex v 6∈ Xi, v forms a P3 with two vertices of Xi; and

(d) X4 does not induce a clique.

Clearly, every great graph has at least six great partitions obtained by permuting the indices of
the partition elements. We show that

(i) every graph on Vn has at most six great partitions satisfying (P*), and
(ii) almost every great partition of a great graph on Vn satisfies property (P*).

These two statements together prove our claim.

To prove (i), we assume that (X1, X2, X3, X4) and (X ′1, X
′
2, X

′
3, X

′
4) are two great partitions of

a graph G, both of which satisfy property (P*). Clearly, (a) and (b) tell us that for i ≤ 3, Xi is
contained in some X ′j . It follows from property (c) that each such Xi is, in fact, of size at least 2
and equal to some X ′j . Hence, the two sets of partition elements are the same. By property (d),
X ′4 = X4. This proves (i).

Next, we prove (ii). For any (ordered) partition X = (X1, X2, X3, X4) of Vn, let I = I(X ) be all
choices of edges within the partition elements which result in this partition being great. As before,
let m = m(X ) denote the number of pairs of vertices not lying in the same partition element.
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There are |I|2m graphs for which this partition is great, as we can pair any choice from I with
any choice of edges between the partition elements. Furthermore, I can be chosen by specifying a
partition of X4 into two disjoint cliques. Thus, there is at least one and at most 2n−1 choices for I.

If there is i ∈ [4] such that |Xi| ≥ n
4 + cn

2
3 for some c > 0, then m ≤ 3n2

8 − c2n
4
3

2 , which accounts
only for o(1) proportion of great graphs. So, we can assume that, for almost every great partition of

a great graph, we have that |Xi| = n
4 + o(n

2
3 ) for every i ∈ [4]. It remains to show that the for any

partition X for which |Xi| = n
4 + o(n

2
3 ) for every i ∈ [4], the number of great graphs G for which X

is a great partition failing to satisfy property (P*), is o(|I|2m).

As |X4| = n
4 + o(n

2
3 ), almost every graph on |X4| vertices which is the disjoint union of two

cliques is not a clique. So, there are o(|I|)2m = o(|I|2m) graphs for which X is a partition for which
(d) fails to hold.

Choose a great graph from amongst the 2m graphs extending a choice of I uniformly at random,
by adding each edge between two vertices in different parts independently with probability 1

2 .
Observe that, given any three vertices u, v, w not contained in the same Xi, the probability

that w is a common neighbour of both u and v is at most 1
2 if w lies in the same partition

element as one of u or v, and is exactly 1
4 otherwise. Taking into account the restriction on the

size of the Xi, we obtain that the expected number of common neighbours of two vertices is at
most 1

4 · 2n
4 + 1

2 · 2n
4 + o(n) = 3n

8 + o(n) if they are in different partition elements, and at least
n
4 + 1

4 · 3n
4 + o(n) = 7n

16 + o(n) if they are in the same partition element that induces a clique.
Furthermore, given the partition, the (random) number of common neighbours of two vertices

which lie together in some Xi that forms a clique is the sum of |Xi| − 2 and n− |Xi| independent
random variables, each of which is 1 with probability 1

4 and 0 with probability 3
4 . In the same vein,

if u lies in Xi and v lies in Xj for distinct i and j, then their number of common neighbours is the
sum of n − |Xi −N(u)| − |Xj −N(v)| independent random variables, |Xi ∩N(u)|+ |Xj ∩N(v)|
of which are equally likely to be 0 or 1, and the rest of which are 0 with probability 3

4 and 1 with
probability 1

4 . Thus, for every choice of I,
(
n
2

)
applications of the Chernoff bound, one for each pair

of vertices, show that the number of great graphs extending this choice, for which either (P*)(a) or
(P*)(b) fails is o(2m).

Consider now an Xi and a vertex v outside of Xi. Partition Xi into |Xi|2 disjoint pairs of vertices.
(Assume for simplicity that Xi is even, the other case can be treated in exactly the same way.) For
each pair, there is at least one choice out of the 4 possibilities for the edges between this pair and v,
for which these 3 vertices induce a path. Thus, when we randomly construct a great graph extending

I, the probability that none of these sets of 3 vertices induces a path is less than (3
4)
|Xi|
2 ≤ (3

4)
n
9 .

Since there are fewer than n choices for v and only 4 choices for Xi, it follows that (c) holds for
almost all great graphs extending I. This completes the proof of (ii) and our claim. �

8 The proof of Claim 13

At the end of Section 4, we have already given some intuition about the proof.

Proof of Claim 13 Let Y = (Y1, Y2, Y3, Y4) be a partition of Vn such that
∣∣|Yi| − n

4

∣∣ ≤ n1−γ ,
for every i ∈ [4].

As before, let m be the number of pairs of vertices not contained in the same partition element,
and note that there are exactly 2|Y4|−1 choices for G[Y4] for a graph G for which Y is a great
partition, and, hence, 2m(2|Y4|−1) graphs for which Y is a great partition.
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As in Section 6, our approach is to show that, while there may be more choices for G[Yi] for
mediocre graphs for which Y is a good partition, for each such choice we have much fewer than
2m choices for mediocre string graphs extending it. However, we will have to sharpen our results,
with respect to both the number of projections we need to consider and to how many string graphs
extend each projection.

Let F = F(Y) denote the set of mediocre string graphs which permit a Y-good partition. For
any G ∈ F , let P (G) denote the projection of G on the sets (Y1, Y2, Y3, Y4). That is, P (G) is the
disjoint union of the subgraphs G[Y1], G[Y2], G[Y3], and G[Y4].

We begin by exploiting the existence of the special set B of vertices to bound the number of
choices for the edges of a good projection onto Y, leaving a specified set W ⊆ Vn of vertices.

Lemma 29 Let W ⊆ Vn. The number of possibilities for the set of edges incident to the vertices in

W in a projection P (G), over all G ∈ F , is o(2
√
δn|W |+n(b+1)).

Proof We can specify the edges of a projection of a graph in F incident to the vertices in W by
first specifying the vertices in B and the edges out of each vertex of B. Next, for each i ∈ [4] and
each vertex w ∈W ∩Yi, we specify a vertex vw ∈ B for which the symmetric difference of N(vw)∩Yi
and N(w)∩Yi has at most δn elements, and we also specify the elements of this symmetric difference.

So, there are at most
(
n
b

)
2nbb|W |

(
n
|W |

)(
n
δn

)|W |
choices for the set of edges of P (G) leaving W , over all

G ∈ F . We note that if δ is sufficiently small, then this is o(2
√
δn|W |+n(b+1)). �

This immediately implies the following.

Corollary 30 The number of projections on (Y1, Y2, Y3, Y4) of all graphs in F is o(2
√
δn2−γ+n(b+3)).

Proof We can specify a projection P (G), G ∈ F , by specifying the vertices of Z = Z1 ∪ . . .∪Z4

and the edges out of them into their corresponding parts, along with the partition of X4 into two

cliques. Applying Lemma 29, there are o(2n2|X4|−12
√
δn|Z|+n(b+1)) choices for P (G), over all G ∈ F .

Note that o(2
√
δn|Z|) = o(2

√
δn2−γ

), because |Z| ≤ n1−γ , by part (III) of Theorem 10. �

Our next step is to strengthen Lemma 23 by considering the situation where we fix not just
the projection, but also the edges out of some small set, and bound the number of choices for the
remaining edges between the partition elements which yield a string graph.

Lemma 31 Let H be a non-string graph and let L0, L1, L2, L3, L4 be a partition of V (H), where
some Li may be empty. Let P be a projection on Y. Fix a set W0 of |L0| vertices of G, and a
mapping f from W0 to L0.

Then the number of string graphs G whose projection P on Y has the property that

(*) for every j ∈ [4], there is a collection Wj of q disjoint sets of vertices of Yj −W0

such that, for every W ∈ Wj, the mapping f extends to an isomorphism from G[W0∪W ]
to H[L0 ∪ Lj ],

is 2m
(

1− 1

2(
|V (H)|

2 )

) q2

4

.
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Proof Let p be a prime between q
2 and q. We first choose the edges out of W0. For those

choices for which (*) holds, for every j ∈ [4], let J j0 , . . . , J
j
p−1 be p elements of Wj , whose existence

is guaranteed by condition (*).
For 1 ≤ r, s ≤ p, consider the 4-tuple J1

r , J
2
r+s, J

3
r+2s, J

4
r+3s, where addition is modulo p. For

each of the p2 ≥ q2

4 such 4-tuples, there is a way of choosing edges between its elements so that the

resulting extension is not a string graph. Thus, of the c ≤ 2(|V (H)|
2 ) choices for the edges between

the elements of the 4-tuple, at most c− 1 can occur in a string graph with the given projection and
given choice of edges out of W0. Furthermore, by the way in which we chose our 4-tuples, for any
x ∈ Yi and y ∈ Yj with i 6= j ∈ [4], there is at most one 4-tuple containing both x and y. The result
follows. �

The next result illustrates the power of this lemma.
For a mediocre graph G ∈ F , we call a set T ⊂ V (G) versatile if for each i ∈ [4] with Yi ∩ T = ∅,

there is clique Ci in G[Yi] such that for all subsets T ′ ⊆ T , there are n
logn vertices of Ci that are

adjacent to all elements of T ′ and to none of T − T ′. We denote by P3 a path of 3 vertices and by
S3 a stable set on 3 vertices. Let

F1 := {G ∈ F | there is i ∈ [4], and versatile set Ti ⊂ Yi such that

|Ti| = 3 and G[Ti] is isomorphic to P3 or S3}.

Lemma 32 |F1| = o(2m).

Proof For each choice of a good projection of a graph G onto Y, each choice of a set Ti of 3
vertices contained in Yi which induce an S3 or P3, and for each choice of the set of edges incident to
Ti which make Ti versatile, we count the number of string graphs which have this projection and for
which the set of edges incident to Ti is the specified set.

By Corollary 25 (c) or (d), there is a non-string graph H whose vertex set can be partitioned
into 3 cliques of size at most 5, and a set L0 such that H[L0] is isomorphic to G[Ti]. We label these
3 cliques as Lj for j ∈ [4]− {i}. We set Li = ∅. Let f be an isomorphism from G[Ti] to H[L0]. We
claim that for each j ∈ [4], we can choose a family Wj of n

10 logn disjoint cliques in Yj of size |Lj |
with the property that for each W ∈ Wj , the mapping f extends to an isomorphism from G[Ti ∪W ]
to H[L0 ∪ Lj ]. If i = j, then each of these cliques is an empty set. Otherwise, each element of
Wj will be contained in Cj . We choose the vertices of the cliques in Wj one at a time, avoiding
the vertices of Cj in cliques which have already been chosen. Since Lj and Cj are both cliques, to
ensure that f extends to an isomorphism, we just need to make sure that our choice for the image
of each vertex of Lj has the correct neighbourhood in Ti. By the definition of versatility, there are
at least n

logn vertices of Cj with the desired neighbourhood, and, since we choose at most 5n
10 logn

vertices from this set, one will not yet be chosen.
Applying Lemma 31 with W0 = Ti, the number of choices for a string graph extending the projec-

tion, for which the set of edges incident to Ti have been specified, is at most 2m
(

1− 1

2(
18
2 )

) n2

400(logn)2

.

By Corollary 30, there are 2
o
(

n2

(logn)2

)
choices for our projection. There are only 4 choices for i, at

most n3 choices for the vertices of Ti, and at most 23n choices for the edges incident to the vertices
Ti. The desired result follows. �
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We can prove an analogous result for sets of size at most 8 that intersect 2 parts of the partition.
To state this result, we need a definition. A graph J ′ is called extendible if there is some non-string
graph whose vertex set can be partitioned into 2 cliques of size at most 5 and a set inducing J ′. Let

F2 := {G ∈ F | there are i 6= j ∈ [4], Ti ⊂ Yi and Tj ⊂ Yj such that

|Ti|, |Tj | ≤ 4, Ti ∪ Tj is versatile, and G[Ti ∪ Tj ] is extendible}.

Lemma 33 |F2| = o(2m).

Proof For each choice of a partition Y = (Y1, Y2, Y3, Y4), distinct i and j in [4] , a projection of
a graph G onto Y, a set Ti of at most 4 vertices contained in Yi, a set Tj of at most 4 vertices in
Yj , and the set of edges incident to Ti ∪ Tj which make G[Ti ∪ Tj ] extendible and Ti ∪ Tj versatile,
we count the number of string graphs which have this projection and for which the set of edges
incident to Ti ∪ Tj is the specified set.

Since G[Ti ∪ Tj ] is extendible, there is a non-string graph H whose vertex set can be partitioned
into 2 cliques of size at most 5, and a set L0 such that H[L0] is isomorphic to G[Ti ∪ Tj ]. We
label these 2 cliques as Lk for k ∈ [4] − {i, j}. We set Li = Lj = ∅. Let f be an isomorphism
from G[Ti ∪ Tj ] to H[L0]. We claim that for each k ∈ [4], we can choose a family Wk of n

10 logn
cliques of size |Lk| such that for each W in Wk, f extends to an isomorphism from G[Ti ∪ Tj ∪W ]
to H[L0 ∪ Lk]. For k ∈ {i, j}, each of these cliques is the empty set. For k 6∈ {i, j}, each element
of Wk will be contained in Ck. Since Lk and Ck are both cliques, to ensure that f extends to an
isomorphism, we just need to ensure that our choice for the image of each vertex of Lk has the
correct neighbourhood in Ti ∪ Tj . By the definition of versatility, there are at least n

logn vertices of

Ck with the desired neighbourhoods, and, since we choose at most 5n
10 logn vertices from this set, one

will not yet be chosen.
By Lemma 31, the number of choices for a string graph extending the projection for which the

set of edges incident to Ti ∪Tj have been specified, is at most 2m
(

1− 1

2(
18
2 )

) n2

400(logn)2

. By Corollary

30, there are 2
o
(

n2

(logn)2

)
choices for our projection. There are at most 6 choices for {i, j}, at most

n8 choices for the vertices of Ti ∪ Tj , and at most 28n choices for the edges incident to the vertices
Ti ∪ Tj . The desired result follows. �

For every mediocre string graph G in F , we choose a maximum family W =WG of disjoint sets,
each of which either

(a) is contained in some Yi and induces S3 or P3, or

(b) is of size 8, contains exactly 4 vertices from each of 2 distinct partition elements, and induces
an extendible subgraph.

Note that every element ofW must intersect Z = Z1∪. . .∪Z4, hence |W| ≤ |Z|. Set W ∗ = ∪W∈WW ,
and let Y ′i = Yi −W ∗. Note that |W ∗| ≤ 8|W| ≤ 8|Z| and that for every i, Y ′i has more than n

5
vertices and G[Y ′i ] is the disjoint union of two cliques, by the maximality of W . In what follows, we
focus on graphs in F − (F1 ∪F2). Hence, the edges of G−P (G) must be chosen in such a way that
no set S ∈ W is versatile. Let

F3 := {G ∈ F − (F1 ∪ F2) | |W| ≥ C for C = 106b}.
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Lemma 34 |F3| = o(2m).

Proof For every choice of a projection onto Y and a collection W of at most n1−γ disjoint sets
of vertices of size at most 8, we count the number of graphs G in F3, for which this projection is
P (G) such that we can choose WG to be W.

Since each Y ′k is the disjoint union of 2 cliques, each Y ′k, k ∈ [4], contains a clique Ck with at least
n
10 vertices. The graph G was chosen to be outside F1 ∪ F2, for any set D ∈ W, there is a subset
D′ ⊆ D and a j ∈ [4] with Yj ∩D = ∅ such that there are fewer than n

logn vertices of Cj which are

adjacent to all of D′ and none of D −D′. This implies that the number of choices for the edges of

E(G)− E(P (G)) with one endpoint in D is o(2
3n|D|

4
− n

10000 ). Indeed, if there were no restrictions,

the number of choices for the edges of E(G)−E(P (G)) would be at most 2
3n|D|

4
+o(n). On the other

hand, for any choice D′ ⊆ D, in an unrestricted choice we expect at least |Cj |/2|D| > n/28 vertices
of Cj to have neighbourhood D′ on D. Applying the Chernoff bounds to the probability that we
only get n

logn such vertices in Cj yields the claimed bound on the number of choices for the edges
from D.

Given a choice of W, the number of choices for graphs on Y ′1 , . . . , Y
′

4 is less than 2n. Applying
Lemma 29 to W ∗, we obtain that the number of choices for the edges of P (G) which have exactly

one endpoint in W ∗, is O(2n(b+1)+
√
δ|W ∗|n). There are fewer than 2n|W ∗||W ∗|2|W ∗|2 choices for W ∗,

a partition of it yielding W , and the edges with both endpoints in W ∗. Combining these facts with
the result of the previous paragraph, we get that the number of graphs in F − (F1 ∪ F2) is at most

O(2n(b+1)+(
√
δn+log |W ∗|+|W ∗|)|W ∗| · 2m · 2− |W|n10000 ). We can and do choose δ small enough so that if

|W ∗| ≥ C, then the above is o(2m). �

It remains to count the number of graphs in F − (F1 ∪ F2 ∪ F3). We begin with the following.

Lemma 35 The number of projections onto Y which extend to a string graph in F − (F1 ∪F2 ∪F3)
is 2O(n)

Proof We are counting the number of choices of the good projection P (G) onto Y, over all
mediocre string graphs G ∈ F − (F1 ∪ F2 ∪ F3). That is, over all G for which we can choose W
with |W| ≤ C such that no element of W is versatile. Recall that, by the definition of W, each
element in W is of size at most 8 and, hence, |W ∗| ≤ 8C. Also recall that, for Y ′i = Yi−W ∗, by the
maximality of W, each G[Y ′i ], i ∈ [4], is the disjoint union of 2 cliques.

We claim that the number of projections of this type is at most
(
n

8C

)
(8C)8C28Cn+1 = 2O(n).

Indeed, there are at most
(
n

8C

)
(8C)8C ways to choose the vertices in W and partition them into sets.

There are at most 28Cn ways to choose the neighborhoods of the vertices in W ∗. Finally, there are
at most 2n ways to partition each Y ′i into 2 cliques. Thus, our claim is true and the lemma holds. �

Let

F4 := {G ∈ F − (F1 ∪ F2 ∪ F3) | there are i 6= j ∈ [4] such that both Y ′i

and Y ′j contain two components larger than n2/3}.

Lemma 36 |F4| = o(2m).

Proof To prove the lemma, we consider one of the 2O(n) projections which extends to a graph
in F4 and count how many string graphs it extends to.
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By Corollary 25 (e), there is a non-string graph H whose vertex set can be partitioned into
(L1, L2, L3, L4) so that for k ∈ [4]− {i, j}, Lk is a clique of size at most 5 and G[Li] and G[Lj ] are
the disjoint union of a vertex and a clique of size 3.

For k ∈ {i, j}, we can find a family T k of n2/3

3 disjoint sets in Y ′i , each inducing the disjoint

union of a triangle and a vertex. For k ∈ [4]− {i, j}, we can find a family T k of n2/3

3 disjoint sets
in Y ′i each of which is a clique of size |Lk|. Applying Lemma 31 with L0 empty, we see that the
number of choices for the edges between the partition elements which extend this projection to

a string graph is at most 2m(1 − 1

2(
18
2 )

)
n4/3

36 . Since, by Lemma 35, the number of choices for the

projection is 2O(n), the desired result follows. �

For each vertex v ∈ W ∗, we define the rank of v with respect to a partition element Yi as
max{min(|N(v)∩K|, |K−N(v)|) | K is a component of Y ′i }. We use rank(v) to denote the minimum
of these ranks over the partition elements. We say that v is extreme on Yi if its rank with respect to
Yi is less than n

2
3 . Let

F5 := {G ∈ F − (F1 ∪ F2 ∪ F3 ∪ F4) | there is v ∈W ∗ such that

v is not extreme on any partition element}.

Lemma 37 |F5| = o(2m).

Proof For each projection of a graph G ∈ F5 onto Y, we count the number of choices for
E(G)− E(P (G)) over all string graphs G with this projection. Consider a vertex v in W ∗ which is
not extreme on any partition element. By Corollary 25 (b), there is a non-string graph H such that
for some vertex w ∈ V (H), H − w can be partitioned into four cliques (L1, L2, L3, L4) each of size

at most 5. By our choice of v, for k ∈ [4] we can find a family Wk of n
2
3

5 disjoint cliques in Y ′k, each
of which contains |N(w) ∩ Lk| neighbours of v. For any 4-tuple consisting of an element from each
Tk, there is a choice of edges between the elements of the 4-tuple which implies that H is a subgraph
of G. Applying Lemma 31 with L0 = {w}, we see that the number of choices for the edges between

the partition elements which extend this projection to a string graph is at most 2m(1− 1

2(
21
2 )

)
n4/3

100 .

By Lemma 35, the number of choices for the projection is 2O(n) and the desired result follows. �

It remains to analyze the case when every vertex of W ∗ is extreme on some partition element.
We consider a new partition Y∗ = (Y ∗1 , . . . , Y

∗
4 ) obtained from Y by moving each element of W ∗ to

a set Yi with respect to which its rank is equal to rank(v). Let W ∗i , i ∈ [4], be the set of vertices in
W ∗ ∩ Y ∗i . Let

F6 := {G ∈ F − ∪5
i=1Fi | there is v ∈W ∗ such that for some j for which

v 6∈ Y ∗j the rank of v with respect to Yk is less than
n

log n
}.

Lemma 38 |F6| = o(2m).

Proof First, we specify the number of choices for Y∗,W∗, and a projection onto Y∗ which can
be extended to a graph in F6.

We note that we can specify the new partition Y∗ and the set W ∗ by fixing a choice for W ∗,
and a choice of for each element u of W ∗ of a partition element with respect to which u has rank
rank(u). This is O(48C ·

(
n
|W ∗|

)
) = O(

(
n
|W ∗|

)
) choices.

22



Since Y ∗i − W ∗ = Yi − W ∗ and we are not considering graphs in F4, there are at most

2max{|Yi|,1≤i≤4}( n
n2/3

)3
= 2|Y4|+O(n1−γ+n3/4) choices for the edges of such a mediocre string graph

which lie within the Y ∗i −W ∗. For every vertex u ∈ Y ∗i ∩W ∗, to specify the edges from u to
Y ∗i −W ∗, we need to specify for each of the at most 2 components K of Y ∗i −W ∗, the smaller of the
sets K ∩N(u) and K −N(u) (with ties broken arbitrarily) and then whether this set is K ∩N(u)

or K −N(u). There are at most 4
( n
rank(u)

)2 ≤ 4
(
n

n2/3

)2
such choices. Since there are O(1) choices

for the edges within W ∗, we see that there are 2|Y4|+o(n) choices for the projection of such a G on
one of 2o(n) possible Y∗.

Now, we count the number of graphs G, the projection of which onto one of these Y ∗ is one of
the given projections, for which there is a vertex v of W ∗ such that for some Yj with v 6∈ Y ∗j , the
rank of v on Yj is less than n

logn . To specify the edges from v to Y ∗j −W ∗, we need to specify for
each of the at most 2 components K of Y ∗j −W ∗, the smaller of the sets K ∩N(v) and K −N(v)
(with ties broken arbitrarily) and then whether this set is K ∩N(v) or K −N(v). Hence, there are

at most 4
(

n
n/
√

logn

)2
= 2o(n) choices for the edges from v to Y ∗j which make v extreme on Yj . Hence,

letting m′ denote the number of pairs of vertices lying in different elements of Y∗, we have that the
number of such G is 2m

′+|Y4|+o(n)−n/4.
As the size of each Yi differs from n

4 by at most n1−γ , and we move only a constant number
of vertices, the difference between m and m′ is O(n1−γ). So, the number of choices for G in F6 is
o(2m+|Y4|). �

Next, we focus on graphs G ∈ F −∪6
i=1Fi. Let P (G) be a projection on Y . Let v be a vertex of

W ∗ maximizing rank(v) and let i be the integer for which v ∈ Y ∗i . We define rank′(v) as rank(v),
unless rank(v) = 0. If rank(v) = 0 and we can choose v to be in a P3 or S3 of G[Y ∗i ], then we set
rank′(v) = 1. Let

F7 := {G ∈ F − ∪6
i=1Fi | there is a vertex v ∈W ∗ with rank′(v) > 0}.

Lemma 39 |F7| = o(2m+|Y4|).

Proof Let G ∈ F7 and let P (G) be its projection on Y. Let v be a vertex of W ∗ maximizing
rank′(v) and let i ∈ [4] be such that v ∈ Y ∗i . Assume that rank′(v) > 0. If rank′(v) > 1, then we
choose a set of rank’(v) different P3s, all containing v, but otherwise disjoint and contained in Yi.
Let T i be this set of P3s, and denote its elements by T i1, . . . , T

i
rank′(v)

. If rank′(v) = 1, we choose an

S3 or P3 containing v to be T i1.
By Corollary 25 (c) or (d), there is a non-string graph H whose vertex set can be partitioned

into (L1, L2, L3, L4), where H[Li] = G[T i1] and for k ∈ [4]− {i}, Lk is a clique of size at most 5. For
each 1 ≤ q ≤ rank′(v), let fq be an isomorphism from T iq to H[Li] such that the image of v is the
same under all fq. Let v′ be this image. For each j ∈ [4]− i, let nj be the number of vertices of Lj
adjacent to v′. As G is not in F6, for every j ∈ [4]− i, the rank of v is at least n

logn on Yj . Thus, we

can choose a set Cj of q = n
10 logn disjoint cliques Cj1 , . . . , C

j
q in G[Yj −W ∗], each of size |Lj |, such

that v has exactly nj neighbours in each of them. In other words, there is an isomorphism f from
G[{v} ∪ Cj ] to H[{v′} ∪ Lj ] which maps v′ to v, for each j ≥ 2 and Cj ∈ Cj .

We count first the extensions of such a projection onto Y to a string graph for which there is
some T iq with the property that for all j in [4] − {i}, there are more than n

(logn)2
values of k for

which fq extends to an isomorphism from G[T iq ∪ Cjk] to H[Li ∪ Lj ]. In this case, by Lemma 31,

there are at most 2m
′
(1− 1

2(
18
2 )

)Ω(n2/(logn)4) such string graphs extending a given projection.
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We count next the number of extensions for which there is no T iq with the above property. The

probability that fq extends to an isomorphism from H[Li ∪ Lj ] to G[T iq ∪Cjk] for some j ∈ [4]− {i}
if we choose the edges between the Y ∗i −W ∗ randomly, is at least 2−15 and these probabilities are
all independent. So, an application of the Chernoff bounds tells us that the probability that for
one specific T iq there is some j for which there are no n/(log n)2 different values of k for which fq

extends to an isomorphism from G[T iq ∪ Cjk] to H[Li ∪ Lj ], is 2−Ω(n/ logn). Thus, the number of

extensions for which there is no such T iq is 2
m′−Ω(

rank′(v)n
logn

)
.

The number of choices for W ∗ and Y ∗ is at most n|W
∗|4|W

∗| = 2O(logn). The number of choices
for the edges of our projection is O(2|Y4|+n

1−γ( n
n2/3

)3( n
rank′(v)

)2|W ∗|
). Using that W ∗ is a constant

and rank′(v) is at most n2/3, this is O(2|Y4|+n
1−γ+n3/4

). Since m′ = m+O(n1−γ), we obtain that
the number of string graphs for which rank′(v) 6= 0 is o(2m+|Y4|). �

To complete the proof of Theorem 1, we need to show the following.

Lemma 40 |F − ∪7
i=1Fi| = o(2m+|Y4|).

Proof Consider G ∈ F − ∪7
i=1Fi and let P (G) be its projection on Y. As noted before, there

are 2O(logn) choices for W ∗ and Y∗, and O(1) choices for the edges within W ∗. Let v be a vertex
of W ∗ maximizing rank′(v). Now, we have rank′(v) = 0. This means that every Y ∗i , i ∈ [4], is
the disjoint union of 2 cliques. Since G 6∈ F4, and Y ∗i −W ∗ = Yi −W ∗, letting max denote the

maximum over all Y ∗i of the size of the smallest component of Y ∗i , there are fewer than
(
n

max

)(
n

n2/3

)3

choices for the partition of every Y ∗i −W ∗ into 2 cliques. Given such a partition for each i, there are
4|W

∗| = O(1) choices for the edges out of W ∗ in the projection of G onto Y ∗. Hence, the number of

choices for such a projection with max ≤ n
1000 is 2O(logn)

(
n
n

1000

)(
n

n2/3

)3
= o(2

|Y4|− n
logn ). There are at

most 2m
′

= 2m+O(n1−γ) string graphs extending each such projection and, hence, o(2m+|Y4|) such
string graphs in total.

Therefore, we need only count the number of graphs G in F − ∪7
i=1Fi for which there is some i

such that Y ∗i has two components of size exceeding n
1000 . Since G 6∈ F4, for all i 6= j, the smaller

component of Y ∗i has at most n2/3 vertices. The number of choices for Y∗,W ∗ and for the projection

of such a G onto Y∗ is O(2O(logn)+|Y4|+O(n1−γ)+O(n3/4)). If for all j 6= i, Y ∗j is a clique, then G is
a great graph which has a great partition obtained by re-indexing the elements of Y. So, we can
assume that this is not the case and find a subgraph D which induces the disjoint union of a vertex
and a clique of size 3 contained in Y ∗j , for some j 6= i.

By Corollary 25 (e), there is a non-string graph H whose vertex set can be partitioned into
(L1, L2, L3, L4), where H[Li] and H[Lj ] are disjoint unions of a vertex and a clique of size at most
3, and for k ∈ [4]− {i, j}, Lk is a clique of size at most 5. We can choose a subgraph D′ ⊆ D such
that there is an isomorphism f from G[D′] to H[Lj ]. For every k ∈ [4]− {j}, we can choose a set
Ck of n

4000 disjoint sets Ck1 , . . . , C
k
p in G[Yj −W ∗], each of which induces a subgraph isomorphic to

H[Lj ] (for k = i, we need to exploit our lower bound on the size of the smaller component of Y ∗i ).
We count first the extensions of such a projection onto Y , where for every k ∈ [4]−{j}, there are

more than n
logn values of ` for which f extends to an isomorphism from G[D′ ∪ Ck` ] to H[Li ∪ Lk].

By Lemma 31, there are at most 2m
′
(1 − 1

2(
18
2 )

)Ω(n2/ log2 n) string graphs extending a given such

projection.
We count next the number of extensions with the property that for some k ∈ [4]− {i}, there are

fewer than n
logn values of ` for which f extends to an isomorphism from G[D′∪Ck` ] to H[Li∪Lk]. The
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probability that f extends to an isomorphism from G[D′ ∪Cj`′ ] to H[Li ∪ Lj ] for some j ∈ [4]− {i},
if we choose the edges between the Y ∗i randomly, is at least 2−15, and these probabilities are all
independent. So, applying the Chernoff bounds, we obtain that the probability that there is some j
such that there are no n

logn values of `′ for which f extends to an isomorphism from H[Li ∪ Lj ] to

G[D′ ∪ Cj`′ ], is 2−Ω(n).
Since the total number of projections we are considering, over all choices of Y∗ and W ∗, is

O(2O(logn)+|Y4|+O(n1−γ)+n3/4
) and m′ = m+O(n1−γ), we conclude that the total number of string

graphs extending these projections is o(2m+|Y4|), and we are done. �

This completes the proof of Theorem 1. �
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[ScSt04] M. Schaefer and D. Štefankovič. Decidability of string graphs, J. Comput. System Sci. 68
(2004), 319–334.

[Si66] F. W. Sinden. Topology of thin film RC-circuits, Bell System Technological Journal (1966),
1639–1662.

26



[Tu70] W. T. Tutte. Toward a theory of crossing numbers, J. Combinatorial Theory 8 (1970),
45–53.

27


	Overview
	The structure of typical graphs in a hereditary family
	String graphs vs. intersection graphs of convex sets—proof of Theorem 4
	Outline of the proof of Theorem 1
	The starting point
	The proof of Theorem 10
	The proof of Claim 12
	The proof of Claim 13

