Each problem is worth 10 points (the bonus is 5 points). This homework will be graded out of a total of 30 points. Please state your answers clearly on a separate sheet of paper. Justify your answers.

1

Suppose \(A \) is row equivalent to

\[
\begin{pmatrix}
1 & 2 & 0 & -4 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

(This is \textit{not} \(A \) itself, just the reduced echelon form of it.)

(i). Find a nonzero vector in the nullspace of \(A \).

(ii). Find a vector in the column space of \(A \).

2

Matrix \(A \) is \(4 \times 4 \) and invertible. Matrix \(B \) is \(4 \times 3 \). Suppose \(\text{null}(AB) \) has dimension 2. What is the rank of \(B \)?

Hint: Remember that invertible matrices have \(Ax = 0 \iff x = 0 \). Use this fact to relate \(\text{null}(AB) \) to \(\text{null}(B) \).

3

We have matrices \(A \) and \(B \) with

\[
A = \begin{pmatrix} 3 & 2 & 2 & 1 \\ 1 & 4 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 3 & 2 & 2 & 1 \\ 1 & 4 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 0 & 3 & -1 & 0 \end{pmatrix}.
\]

We know that \(\det(A) = -7 \). Find \(\det(B) \).

Hint: \(A \) and \(B \) are row equivalent. Make sure to show your work.

\textbf{Bonus (5pts)}

Find a matrix \(A \) so that \(\text{col}(A) = \text{null}(A) \).