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1 Introduction

This paper concerns the ergodic theory of a class of nonlinear dissipative PDEs of
parabolic type. Leaving precise statements for later, we first give an indication of the
nature of our results. We view the equation in question as a semi-group or dynamical
system St on a suitable function space H , and assume the existence of a compact
attracting set (as in Temam [15], Chapter 1). To this deterministic system, we add
a random force in the form of a “kick” at periodic time intervals, defining a Markov
chain X with state space H . We assume that the combined effect of the semi-group
and our kicks sends balls to compact sets. Under these conditions, the existence
of invariant measures for X is straightforward. The goal of this paper is a better
understanding of the set of invariant measures and their ergodic properties.

In a state space as large as ours, particularly when the noise is bounded and
degenerate, the set of invariant measures can, in principle, be very large. In this
paper, we discuss two different types of conditions that reduce the complexity of the
situation. The first uses the fact that for the type of equations in question, high
modes tend to be contracted. By actively driving as many of the low modes as
needed, we show that the dynamics resemble those of Markov chains on R

N with
smooth transition probabilities. In particular, the set of ergodic invariant measures is
finite, and every aperiodic ergodic measure is exponentially mixing. The second type
of conditions we consider is when all of the Lyapunov exponents of X are negative.
As in finite dimensions, we show under these conditions that nearby orbits cluster
together in a phenomenon known as “random sinks”.

The conditions in the last paragraph give a general understanding of the struc-
ture of invariant measures; they alone do not guarantee uniqueness. (Indeed, it is
not the case that for the equations in question, invariant measures are always unique;
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see Theorem 3.) For uniqueness, one needs to guarantee that there are places for
distinct ergodic components to meet. To this end, we have identified some conditions
expressed in terms of existence of special sequences of controls. These conditions are
quite special; however, they are easily verified for the equations of interest. Assum-
ing these conditions, the uniqueness of the invariant measure follows readily. In the
case of negative Lyapunov exponents, there is, in fact, a stronger form of unique-
ness or stability, namely that all solutions independent of initial conditions become
asymptotically close to one other as time goes to infinity.

This work is inspired by a number of recent papers on the uniqueness of invariant
measure for the Navier-Stokes equations ([5], [1], [3], [7], [8]), and by [4], which proves
uniqueness of invariant measure for a different equation. With the exception of [7]
and [8], all of the other authors worked with unbounded noise. Naturally there is
overlap among these papers and with the first part of ours. More detailed references
will be given as the theorems are stated.

Instead of working directly with specific PDEs, we have elected to prove our
ergodic theory results for general randomly perturbed dynamical systems on infinite
dimensional Hilbert spaces satisfying conditions compatible with the PDEs of interest.
This allows us to make more transparent the relations between the various dynamical
properties and the mechanisms responsible for them. Once our “abstract” results are
in place, to apply them to specific equations, it suffices to verify that the conditions in
the theorems are met. (In this regard, we are influenced by [7], which takes a similar
approach.)

This paper is organized as follows. Before proceeding to a discussion of our “ab-
stract results”, we first give a sample of their applications. This is done in Section 2.
Sections 3 and 4 treat the two types of conditions that lead to simpler structures for
invariant measures. In each case, we begin with a general discussion and finish with
proofs of concrete results for PDEs which we now state.

2 Statement of Results for PDEs

This section contains precise formulations of results on PDEs that can be deduced
from our “abstract theory”. The theorems below are proved in Sects. 3.3 and 4.3.

2.1 The Navier-Stokes system

The first application of our general results is to the 2-D incompressible Navier-Stokes
equations in the 2−torus T

2 = (R/2πZ)2. We consider the randomly forced system







∂tu− ν∆u+ u · ∇u = −∇p+
∑∞

k=1 δ(t− k)ηk(x) ,

div(u) = 0, u(t = 0) = u0

(1)
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where u0(x) ∈ L2(T2), div(u0) = 0,
∫

u0 = 0, ν > 0 is the viscosity, and where the
ηk’s are i.i.d. random fields which can be expanded as

ηk(x) =

∞
∑

j=1

bjξjkej(x) . (2)

Here the Hilbert space in question is

H = {u, u ∈ L2(T2), div(u) = 0, and

∫

u = 0} ,

and {ej, j ≥ 1} is the orthonormal basis consisting of the eigenfunctions of the Stokes
operator −∆ej + ∇pj = λjej , div(ej) = 0, with λ1 ≤ λ2 ≤ · · · . We assume that
ξjk, j, k ∈ N, are independent random variables where ξjk is distributed according to
a law which has a positive Lipschitz density ρj with respect to the Lebesgue measure
on [−1, 1]. Finally, the bj are required to satisfy

∑∞
j=1 b

2
j = a2 <∞ for some a > 0.

From (1), we define a Markov chain uk with values in H given by uk = u(k+0, ·).
That is to say, if St is the semi-group generated by the unforced Navier-Stokes equa-
tion, i.e. equation (1) without the term

∑∞
k=1 δ(t− k)ηk(x), and S = S1, then

uk+1 = S(uk) + ηk .

Theorem 1 (Uniqueness of invariant measure and exponential mixing).
For the system above, there exists N ≥ 1 depending only on the viscosity ν and on
a such that if bj 6= 0 for all 1 ≤ j ≤ N , then the Markov chain uk has a unique
invariant measure µ in H. Moreover, for all u0 ∈ H, the distribution Θk of uk
converges exponentially fast to µ in the sense that for every test function f : H → R

of class C0,σ, σ > 0, there exists C = C(f, u0) such that for all k ≥ 1,

∣

∣

∣

∣

∫

fdΘk −

∫

fdµ

∣

∣

∣

∣

< Cτk

for some τ < 1 depending only on the Hölder exponent σ.

Papers [7] and [8] together contain a proof of the uniqueness of invariant mea-
sure part of Theorem 1; these papers rely on ideas different from ours. While this
manuscript was being written, we received electronic preprints [9] and [10] which
together prove the results in Theorem 1 using methods similar to ours.

Theorem 1’. The result in Theorem 1 holds if we replace L2 by Hs, any s ∈ N, and
impose the restriction

∑∞
j=1 λ

s
jb

2
j = a2 <∞ on the noise.

Remark. In the theorems above, we can also treat noises that are bounded but not
compact provided that we consider the Markov chain uk = u(k−0, ·) or, equivalently,
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uk+1 = S(uk + ηk). An example of bounded, noncompact noise satisfying the con-
ditions of Theorems 1 and 1’ is the following: Let VN be the span of {e1, e2, ..., eN},
and consider

ηk =

N
∑

j=1

bjξjkej + η′k (3)

where bj 6= 0 for all j, 1 ≤ j ≤ N , and η′k are i.i.d. random variables with a law
supported on a bounded set in V ⊥

N .

Our next result gives a stronger form of uniqueness than the previous one. It
guarantees, under the assumption of negative Lyapunov exponents, that independent
of initial condition, all the solutions eventually come together and evolve as one, their
time evolution depending only on the realization of the noise. Lyapunov exponents
are defined in Sect. 4.1. Having only negative Lyapunov exponents means, roughly
speaking, that infinitesimally the semi-group is contractive on average along typical
orbits. More regularity is required for the next result; thus we work in H2. Let
A(0) ⊂ H2 denote the closure of the set of points accessible under the Markov chain
uk with u0 = 0.

Theorem 2 (Asymptotic uniqueness of solutions independent of initial
conditions). Consider the system defined by (1) with H = H2 and where the ηk are
i.i.d. with a law which has bounded support. Assume there is an invariant measure µ
supported on A(0) such that all of its Lyapunov exponents are strictly negative. Then

(a) µ is the unique invariant measure the Markov chain uk has in H;

(b) there exists λ < 0 such that for almost every sequence of ηk and every pair of
initial conditions u0, u

′
0 ∈ H, there exists C = C(u0, u

′
0) such that if uk+1 =

S(uk) + ηk and u′k+1 = S(u′k) + ηk for all k ≥ 0, then

‖uk − u′k‖ ≤ Ceλk ∀ k ≥ 0 .

Observe that for this result very little is required of the structure of the noise.

Remark. We will explain in Sect. 4.4 (see Remark) that for fixed positive viscosity,
S is a uniform contraction near 0, and so it continues to be a contraction for sufficiently
small bounded noise. Very small but unbounded noise is treated in [12]. As noise level
increases, it is likely that there is a range where S is no longer a contraction but all of
its Lyapunov exponents remain negative. Indeed, for any ergodic invariant measure
µ of the Navier-Stokes system, the largest Lyapunov exponent λ1 is either < 0, = 0,
or > 0: λ1 > 0 can be interpreted as “temporal chaos”; λ < 0 implies the asymptotic
uniqueness of solutions as we have shown; the case λ1 = 0 is sometimes regarded as
less significant because it can often be perturbed away. Of these three possibilities,
the only one that has been proved to occur is λ1 < 0.
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Remark. Theorems 1 and 2 apply to other nonlinear parabolic equations for which
all solutions of the unforced equation relax to their unique stable stationary solutions.

2.2 The real Ginzburg-Landau equation

Our second application is to the following equation, which, following [4], we refer to
as the real Ginzburg-Landau equation. We consider a periodic domain in one space
dimension, i.e. T = (R/2πZ), and consider the system







∂tu− ν∆u− u+ u3 =
∑∞

k=1 δ(t− k)ηk(x) ,

u(t = 0) = u0 .
(4)

Here H = L2(T), {ej , j ≥ 0} is the orthonormal basis defined by −∆ej = λjej ,
λ1 ≤ λ2 ≤ · · · , ν > 0 is a positive constant, and the ηk’s are i.i.d. random fields
which can be expanded as

ηk(x) =
∞

∑

j=0

bjξjkej(x) . (5)

We assume the same conditions on ξjk and bj as in the first paragraph of Sect. 2.1.
The unforced equation in (4) is somewhat more unstable than the (unforced)

Navier-Stokes equation. It has at least three stationary solutions: two stable ones,
namely u = 1 and u = −1, and an unstable one, namely u = 0. Our next result
shows that the number of invariant measures vary depending on how localized the
forcing is, particularly in the zeroth mode.

Theorem 3 (Number of ergodic measures). Consider the Markov chain uk
defined by the system in (4).

(a) There exists α > 0 such that if
∑∞

j=0 |bj |
2 = a2 ≤ α2, then there are at least two

different invariant measures.

(b) There exists N depending only on ν and on a such that if bj 6= 0 for all 0 ≤ j ≤
N , then the number of ergodic invariant measures is finite.

(c) If bj 6= 0 for all 0 ≤ j ≤ N and b0 > 1, then the invariant measure is unique,
and for every initial condition u0 ∈ H, the distribution of uk converges to it
exponentially fast in the sense of Theorem 1.

In contrast to part (a), we observe that to obtain uniqueness of the invariant
measure, we may take bj , 1 ≤ j ≤ N , to be arbitrarily small as long as they are > 0,
and the forcing in the zeroth mode, i.e. b0ξ0k, can be arbitrarily weak as long as its
law has a tail which extends beyond [−1, 1]. As will be explained in Sect. 3.4, the
condition b0 > 1 above can, in fact, be replaced by b0 > κ for a smaller κ.

Theorem 3 complements [4], which drives high rather than low modes, and proves
uniqueness for unbounded noise using techniques very different from ours.
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3 Invariant Measures and their Ergodic Properties

3.1 Formulation of abstract results

Setting and notation. Let S : H → H be a transformation of a separable Hilbert
space H , and let ν be a probability measure on H . We consider the Markov chain
X = {un, n = 0, 1, 2, · · · } on H defined by either

(I) un+1 = S(un) + ηn or (II) un+1 = S(un + ηn)

where η0, η1, · · · are i .i .d . with law ν. The following notation is used throughout this
paper: BH(R) or simply B(R) denotes the ball of radius R in H , i.e. B(R) = {u ∈
H, ‖u‖ ≤ R}; K denotes the support of ν; and given an initial distribution Θ0 of u0,
the distribution of un under X is denoted by Θn. If T : H → H is a mapping and µ
is a measure on H , then T∗µ is the measure defined by (T∗µ)(E) = µ(T−1(E)).

Standing Hypotheses

(P1) (a) S(B(R)) is compact ∀R > 0;

(b) ∀R > 0, ∃MR > 0 such that ∀u, v ∈ B(R), ‖Su− Sv‖ ≤MR‖u− v‖.

(P2) ∀a > 0, ∃R0 = R0(a) such that if K ⊂ B(a), then ∀R > 0, ∃N0 = N0(R) ∈ Z
+

such that for u0 ∈ B(R), un ∈ B(R0) ∀n ≥ N0.

(P3) ∃γ < 1 such that given R > 0, there is a finite dimensional subspace V ⊂ H
such that if PV and PV ⊥ denote orthogonal projections from H onto V and V ⊥

respectively, then ∀u, v ∈ B(R), ‖PV ⊥S(u) − PV ⊥S(v)‖ ≤ γ‖u− v‖.

(P4) (a) K is compact if X is defined by (I), bounded if X is defined by (II).

(b) Let V be given by (P3) with R = R0. Then ν = (PV )∗ν × (PV ⊥)∗ν where

(PV )∗ν has a density ρ with respect to the Lebesgue measure on V , Ω := {ρ > 0}
has piecewise smooth boundary and ρ|Ω is Lipschitz.

We remark that (P1)–(P3) are selected to reflect the properties of general
(nonlinear) parabolic PDEs.

Definition 3.1 A probability measure µ on H is called an invariant measure for
X if Θ0 = µ implies Θn = µ for all n > 0.

Lemma 3.1 Assume (P1), (P2) and (P4)(a). Then
(i) X has an invariant measure;

(ii) there exists a compact set A ⊂ B(R0) on which all invariant measures of X
are supported.
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Proof. Let A0 = B(R0). For n > 0, let An = S(An−1) + K in the case of (I) and
An = S(An−1+K) in the case of (II). Then each An is compact, and by (P2), An ⊂ A0

for all n ≥ some N0. Let

A = ∪N0−1
i=0 (∩∞

k=0 AkN0+i) .

Then A is compact, contained in B(R0), and satisfies S(A) + K = A. To construct
an invariant measure for X , pick an arbitrary u0 ∈ A, and let Θ0 = δu0 , the Dirac
measure at u0. Then any accumulation point of the sequence { 1

n

∑

i<n Θi}n=1,2,··· is
an invariant measure for X . That all invariant measures are supported on A follows
from the fact that for every u0 ∈ H and any sequence of kicks {ηk}, dist(un, A) → 0
as n→ ∞. �

Definition 3.2 Let µ be an invariant measure for X , and let Θ0 = δu0 for the u0

specified.

(1) We say (X , µ) is ergodic if for µ-a.e. u0,
1
n

∑n−1
i=0 Θi → µ weakly as n→ ∞.

(2) We say (X , µ) is mixing if for µ-a.e. u0, Θn → µ weakly as n→ ∞.

(3) We say (X , µ) is exponentially mixing for Hölder continuous observables if
for each σ > 0, there exists τ = τ(σ) < 1 such that the following holds for every
f : H → R of class C0,σ: for µ-a.e. u0, there exists C = C(f, u0) such that

∣

∣

∣

∣

∫

fdΘn −

∫

fdµ

∣

∣

∣

∣

< Cτn for all n ≥ 1.

Let X n denote the n-step Markov chain associated with X .

Theorem A (Structure of invariant measures). Assume (P1)–(P4). Then

(1) X has at most a finite number of ergodic invariant measures.

(2) If (X n, µ) is ergodic for all n ≥ 1, then (X , µ) is exponentially mixing for Hölder
continuous observables.

The reasons behind these results are that under (P1)–(P4), X resembles a Markov
chain on R

N whose transition probabilities have densities. One expects, therefore, the
same type of decomposition into ergodic and mixing components.

We now give a condition that guarantees the uniqueness of invariant measures and
other convergence properties. This condition is expressed in terms of the existence
of special sequences of controls; it is quite strong, but is easily verified for the PDEs
under consideration.
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(C) Given ε0 > 0 and R > 0, there is a finite sequence of controls η̂0, · · · η̂n such
that for all u0, u

′
0 ∈ B(R), if uk+1 = S(uk) + η̂k and u′k+1 = S(u′k) + η̂k for

k < n, then ‖un − u′n‖ < ε0.

Theorem B (Sufficient condition for uniqueness and mixing). Assume
(P1)–(P4) and (C). Then

(1) X has a unique invariant measure µ, and (X , µ) is exponentially mixing;

(2) ∃τ = τ(σ) < 1 such that ∀f ∈ C0,σ and for every u0 ∈ H, there exists C s.t.

∣

∣

∣

∣

∫

fdΘn −

∫

fdµ

∣

∣

∣

∣

< Cτn for all n ≥ 1.

Recalling that the invariant measure µ is supported on a (relatively small) compact
subset of H , we remark that the assertion in (2) above is considerably stronger than
the usual notion of exponential mixing: it tells us about initial conditions far away
from the support of µ. This property is reminiscent of the idea of Sinai-Ruelle-
Bowen measures for attractors in finite dimensional dynamical systems.

3.2 Proofs of abstract results (Theorems A and B)

We will prove Theorems A and B for the case where X is defined by (I); the proofs for
(II) are very similar. Also, to avoid the obstruction of main ideas by technical details,
we will assume (PV )∗ν is the normalized Lebesgue measure on Ω := {u ∈ V, ‖u‖ ≤ r}
for some r > 0; the general case is messier but conceptually not different.

Let M = MR0 where R0 is given by (P2) and MR0 is as defined in (P1). The
following notation is used heavily: Given u0 and η = (η0, η1, η2, · · · ) ∈ KN, we define
ui(η) inductively by letting u0(η) = u0 and ui(η) = S(ui−1(η)) + ηi−1 for i > 0.
Notation such as ui(η0, · · · , ηn−1) for a finite sequence (η0, · · · , ηn−1) with i ≤ n has
the obvious meaning, as does u′i(η) for given u′0.

Lemma 3.2 (Matching Lemma) Let δ = r(2M)−1. There is a set Γ ⊂ KN with
νN(Γ) > 0 such that ∀u0, u

′
0 ∈ B(R0) with ‖u0−u′0‖ < δ, there is a measure-preserving

map Φ : Γ → KN with the property that ∀η ∈ Γ,

‖un(η) − u′n(Φ(η))‖ ≤ ‖u0 − u′0‖γ
n ∀n ≥ 0 .

By virtue of (P4)(b), K = Ω × E where Ω ⊂ V is as above and E ⊂ V ⊥. We
write η0 = (η1

0, η
2
0) with η1

0 ∈ Ω, η2
0 ∈ E. Since all of our operations take place in V ,

it is convenient to introduce the notation Kε := {u ∈ Ω, ‖u‖ ≤ ε} × E, so that in
particular Kr = K.

8



Proof. Suppose ‖u0 − u′0‖ < δ. We define Φ(1) : K r

2
= Kr−Mδ → H by

(η′0
1
, η′0

2
) = Φ(1)(η0) := (η1

0 + PV S(u0) − PV S(u′0), η
2
0) .

Observe that
(i) ‖η′0

1‖ < (r −Mδ) +M · ‖u0 − u′0‖ < r, so that Φ(1)(K r

2
) ⊂ K;

(ii) Φ(1) preserves ν-measure; and
(iii) for η0 ∈ K r

2
, if u1 = u1(η0) and u′1 = u′1(Φ

(1)(η0)), then

PV u1 = PV u
′
1 and ‖PV ⊥u1 − PV ⊥u′1‖ < γ‖u0 − u′0‖.

We may, therefore, repeat the argument above with (u1, u
′
1) in the place of (u0, u

′
0),

defining for each u1 = u1(η0), η0 ∈ K r

2
, a map from Kr−Mδγ = Kr(1− 1

2
γ) to K. Put

together, this defines an injective map Φ(2) : K r

2
×Kr(1− 1

2
γ) → K2 which carries ν2-

measure to ν2-measure such that for each (η0, η1) ∈ K r

2
×Kr(1− 1

2
γ), if u2 = u2(η0, η1)

and u′2 = u′2(Φ
(2)(η0, η1)), then PV u2 = PV u

′
2 and ‖PV ⊥u2 − PV ⊥u′2‖ < γ2‖u0 − u′0‖.

Continued ad infinitum, this process defines a map

Φ : Γ := K r

2
×Kr(1− 1

2
γ) ×Kr(1− 1

2
γ2) × · · · → KN

with the desired properties. Clearly, ν(Γ) = Πi≥0(1−
1
2
γi)D > 0 where D =dimV . �

Proof of Theorem A(1). Recall that if µ is an ergodic invariant measure for X ,
then by the Birkhoff Ergodic Theorem, 1

n

∑n−1
0 δui(η) → µ for µ-a.e. u0 and νN-a.e.

η = (η0, η1, · · · ). This together with Lemma 3.2 implies that if µ, and µ′ are ergodic
measures and there exist u0 ∈ supp(µ) and u′0 ∈ supp(µ′) with ||u0 − u′0‖ < δ, then
µ = µ′. Since all invariant measures of X are supported on the compact set A (Lemma
3.1), it follows that there cannot be more than a finite number of them. �

Proof of the uniqueness of invariant measure part of Theorem B. From the
last paragraph, we know that all the ergodic components of µ are pairwise ≥ δ apart
in distance. Thus condition (C) with ε0 = δ and R = R0 guarantees that there is at
most one ergodic component. �

We remark that the uniqueness of invariant measure results in Theorem 1 and
Theorem 3(c) follow immediately from the preceding discussion once the abstract
hypotheses (P1)–(P4) and (C) are checked for these equations.

The next lemma is used only to prove the general result in Theorem A(2); it
is not needed for the applications in Theorems 1–3. (Both the Navier-Stokes and
Ginzberg-Landau equations satisfy much stronger conditions, making this argument
unnecessary.) Let B(u, ε) denote the ball of radius ε centered at u, and let P n(·|u)
denote the n-step transition probability given u. In the language introduced earlier,
if Θ0 = δu, then P n(·|u) = Θn(·).
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Lemma 3.3 Let µ be an invariant measure with the property that (X n, µ) is ergodic
for all n ≥ 1. We fix B = B(ũ, ε̃) where ũ ∈ supp µ and ε̃ > 0. Then there exist
N0 ∈ Z

+ and α0 > 0 such that PN0(B|u) ≥ α0 for every u ∈ supp µ.

Proof. Pick arbitrary u0 ∈ suppµ. Until nearly the end of the proof, the discussion
pertains to this one point. Consider the “restricted distribution” Θ̂n defined by

Θ̂n(G) = νn{(η0, · · · , ηn−1) : ηi ∈ Kr−Mδγi ∀i < n and un(η0, · · · , ηn−1) ∈ G}

where δ is as in Lemma 3.2, and let Wn denote the support of Θ̂n.

Claim 1. d(u0,∪n>0Wn) = 0.

Proof. By compactness, a subsequence of 1
n

∑n−1
i=0 (Θ̂i(A))−1Θ̂i converges weakly

to a probability measure µ̃ on A (where A is as in Lemma 3.1). Since the restrictions
on ηi become milder and milder as i → ∞, µ̃ is an invariant measure for X . By
construction, all the Θ̂i are supported on supp µ, so we must have µ̃ = µ, for we
know from Theorem A(1) that all the other ergodic invariant measures have their
supports bounded away from supp µ.

Let N = N(u0) be such that d(u0,WN) < ε where ε < δ is a small positive number
to be determined.

Claim 2. For all k ≥ 0 and u ∈ WkN , ∃u′ ∈W(k+1)N such that ‖u− u′‖ < γkNε.

Proof. The claim is true for k = 0 by choice of N . We prove it for k = 1: Let
u′0 ∈ WN be such that ‖u0−u′0‖ < ε, and fix an arbitrary u ∈WN . By definition, there
exist ηi ∈ Kr−Mδγi such that u = uN(η0, · · · , ηN−1). We wish to use the proximity
of u′0 to u0 and the Matching Lemma to produce (η′0, · · · , η

′
N−1) with the property

that u′N(η′0, · · · , η
′
N−1) ∈ W2N and ‖uN − u′N‖ < εγN . To obtain the first property,

it is necessary to have η′i ∈ Kr−Mδγi+N for all i < N . We proceed as follows: since
‖u0 − u′0‖ < ε and η0 ∈ Kr−Mδ, ∃η′0 ∈ Kr−Mδ+Mε such that ‖u1(η0) − u′1(η

′
0)‖ < εγ;

similarly ∃η′1 ∈ Kr−Mδγ+Mεγ such that ‖u2(η0, η1)−u′1(η
′
0, η

′
1)‖ < εγ2, and so on. (See

the proof of Lemma 3.2.) Thus η′i ∈ Kr−Mγi(δ−ε), and assuming ε is sufficiently small
that δγN < (δ − ε), we have η′i ∈ Kr−Mδγi+N . To prove the assertion for k = 2, we
pick an arbitrary u ∈ W2N , which, by definition, is equal to vN from some v0 ∈ WN .
Since we have shown that there exists v′0 ∈ W2N with ‖v0 − v′0‖ < γNε, it suffices to
repeat the argument above to obtain v′N ∈W3N with ‖vN − v′N‖ < γ2Nε.

Claim 3. There exists k1 = k1(u0) s.t. for k ≥ k1, P
kN(B|u) ≥ Θ̂kN(B(ũ, ε̃

2
)) > 0

for all u ∈ H with ‖u− u0‖ < δ.

Proof. Let N (W, ε) denote the ε-neighborhood of W ⊂ H . If follows from Claim
2 that if NkN := N (WkN , 2ε

∑k
i=0 γ

iN), then NkN ⊂ N(k+1)N for all k. Moreover,
the ergodicity of (XN , µ) together with an observation similar to that in Claim 1
shows that the closure of ∪kNkN contains suppµ. Thus NkN ∩ B(ũ, ε̃

4
) 6= ∅ for large

enough k. If 2ε
∑∞

i=1 γ
iN < ε̃

4
, then Θ̂kN(B(ũ, ε̃

2
)) > 0. Now for u with ‖u− u0‖ < δ,

10



the entire restricted distribution Θ̂n starting from u0 can be coupled to a part of the
(unrestricted) distribution starting from u. Thus for sufficiently large n, P n(B|u) ≥
Θ̂n(B(ũ, ε̃

2
)).

To finish, we cover supp µ with a finite number of δ-balls centered at u
(1)
0 , · · · , u(n)

0 ,

and choose N0 = k̂1N̂ where k̂1 = maxi k1(u
(i)
0 ) and N̂ = Πi N(u

(i)
0 ). The lemma is

proved with α0 = mini Θ̂N0(B(ũ, ε̃
2
)) where Θ̂N0 is the restricted distribution starting

from u
(i)
0 . �

From Lemma 3.2, we see that associated with each pair of points (u0, u
′
0) with

‖u0 − u′0‖ < δ, there is a cascade of matchings between un and u′n, leading to the
definition of a measure-preserving map

Φ : Γ := K r

2
×Kr(1− 1

2
γ) ×Kr(1− 1

2
γ2) × · · · → KN

with the property that for η ∈ Γ,

‖ui(η) − u′i(Φ(η))‖ ≤ γi‖u0 − u′0‖ for all i ≤ n.

The main goal in the next proof is, in a sense, to extend Φ to all of KN by attempting
repeatedly to match the orbits that have not yet been matched.

Proof of Theorem A(2). We consider for simplicity the case N0 = 1. Let u0, u
′
0 ∈

supp µ, and let Θn and Θ′
n denote the distributions of un and u′n respectively. We

seek to define a measure-preserving map Φ : KN → KN and to estimate the difference
between Θn and Θ′

n by

In :=

∣

∣

∣

∣

∫

fdΘn −

∫

fdΘ′
n

∣

∣

∣

∣

≤

∫

|f(un(η)) − f(u′n(Φ(η)))| dνN(η) .

Let B be a ball of diameter δ centered at some point in suppµ. By Lemma 3.3,
P (B|u0) ≥ α0, and P (B|u′0) ≥ α0. Matching u1 ∈ B to u′1 ∈ B, we define a measure-
preserving map Φ(1) : Γ̃1 → K for some Γ̃1 ⊂ K with |Γ̃1| = α0. This extends, by the
Matching Lemma, to a measure-preserving map Φ : Γ1 = Γ̃1 × Γ → KN. The map
Φ|Γ1 represents the cascade of future couplings initiated by Φ(1).

Suppose now that Φ has been defined on ∪k≤nΓk where Γk is the set of η matched
at step k. More precisely, Γ1,Γ2, · · · ,Γn are disjoint subsets of KN, and each Γk is of
the form Γk = Γ̃k × Γ for some Γ̃k ⊂ Kk; the matching of uk and u′k in B that takes
place at step k defines a map Φ(k) : Γ̃k → Kk, while the cascade of future matchings
initiated by Φ(k) results in the definition of Φ : Γ̃k×Γ → KN. We now explain how to
define Γn+1. Let G̃n = Kn \∪k≤nΓ

(n)
k where Γ

(n)
k = Γ̃k ×Γ(n−k−1) is the first n-factors

in Γk. Consider the restricted distribution Θ̃n+1 defined by (η0, · · · , ηn−1) ∈ G̃n;
the corresponding distribution Θ̃′

n+1 is defined similarly. By Lemma 3.3, an α0-
fraction of these two distributions can be matched, defining an immediate matching

11



Φ(n+1) : Γ̃n+1 → Kn+1 with Γ̃n+1 ⊂ G̃n ×K and |Γ̃n+1| = α0|G̃n|. Future couplings
that result from Φ(n+1) define Φ : Γn+1 → KN with Γn+1 = Γ̃n+1 × Γ.

We claim that νn(G̃n) decreases exponentially. This requires a little argument, for
even though at each step a fraction of α0 of what is left is matched, our matchings
are “leaky”, meaning not every orbit defined by a sequence in Γ

(n)
k can be matched to

something reasonable at the (n+1)st step. To estimate νn(G̃n), we write KN\∪k≤nΓk
as the disjoint union Gn ∪Hn where Gn = G̃n ×KN. The dynamics of (Gn, Hn) →
(Gn+1, Hn+1) are as follows: An α0-fraction of Gn leaves Gn at the next step; of this
part, a fraction of Πi≥0(1−

1
2
γi)D (recall that D is the dimension of V ) goes into Γn+1

(see Lemma 3.2) while the rest goes into Hn+1. At the same time, a fraction of Hn

returns to Gn+1. We claim that this fraction is bounded away from zero for all n.

To see this, consider one Γk at a time, and observe (from the definition of Γ
(n)
k ) that

|(Γ(n)
k ×K) \ Γ

(n+1)
k | ∼ const |Γ̃k|γn−k.

Combinatorial Lemma Let a0, b0 > 0, and suppose that an and bn satisfy recur-
sively

an+1 ≥ (1 − α0)an + α1bn and bn+1 ≤ (1 − α1)bn + α0an

for some 0 < α0, α1 < 1. Then there exits c > 0 such that an

bn
> c for all n.

The proof of this purely combinatorial lemma is left as an exercise. We deduce
from it that infn |Gn|/|Hn| > 0, which implies νn(G̃n) ≤ Cβn for some C > 0 and
β < 1. This in turn implies that |Γn+1| ≤ Cβn.

Proceeding to the final count, we let f : supp µ → R be such that |f | < C1 and
|f(u) − f(v)| < C1‖u− v‖σ. Then

In ≤

∫

G̃n

|f(un(η0, · · · , ηn−1))|dν
n +

∫

Kn−Φ(n)(∪k≤nΓ
(n)
k

)

|f(u′n(η0, · · · , ηn−1))|dν
n

+
∑

k≤n

∫

Γ
(n)
k

|f(u(η0, · · · , ηn−1)) − f(u′n(Φ
(n)(η0, · · · , ηn−1)))|dν

n (6)

≤ 2C1 · Cβ
n +

∑

k≤n

Cβk−1 · C1(δγ
n−k)σ

≤ const n · [max(β, γσ)]n ≤ const · τn .

Since these estimates are uniform for all pairs u0, u
′
0, we obtain by integrating over

u′0 that
∣

∣

∣

∣

∫

fdΘn −

∫

fdµ

∣

∣

∣

∣

≤ const · τn .

�
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Proof of Theorem B. We will prove, in the next paragraph, that assertion (2) in
Theorem B holds for any invariant measure µ of X . From this (1) follows immediately:
since (X , µ) is exponentially mixing, it is ergodic; and since µ is chosen arbitrarily, it
must be the unique invariant measure.

To prove the claim above, we pick arbitrary u0 ∈ H , u′0 ∈ A, and compare their
distributions Θn and Θ′

n as we did in the proof of Theorem A(2). First, by waiting
a suitable period, we may assume that Θn is supported in B(R0) (where R0 is as
in (P2)). By condition (C) with ε0 = δ where δ is as in Lemma 3.2, there is a set
of controls of length N0 and having νN0-measure α0 for some α0 > 0 that steer the
entire ball B(R0) into a set of diameter < δ. The estimate for |

∫

fdΘn −
∫

fdΘ̂n|
now proceeds as in Theorem A(2), with the use of these special controls taking the
place of Lemma 3.3 to guarantee that an α0-fraction of what is left is matched every
N0 steps. Averaging u′0 with respect to µ, we obtain the desired result. �

3.3 Applications to PDEs: Proofs of Theorems 1 and 3

In this subsection, we prove the theorems related to PDEs stated in Sect. 2.1.

Proof of Theorem 1. We will prove that the abstract hypotheses (P1)–(P4) and
(C) hold for the incompressible Navier-Stokes equation in L2 for the type of noise
specified. Let S(u0) = u(t = 1) where u is the solution of the Navier-Stokes equation
with initial data u0, and let uk = S(uk−1) + ηk. Most of the computations below are
classically known (see for instance [2], [14]); we include them for completeness.

We start by recalling a few properties of the Navier-Stokes equation in the 2-D
torus. First, the following energy estimate holds for all t > 0:

1

2
||u(t)||2L2 + ν

∫ t

0

||∇u||2L2 =
1

2
||u0||

2
L2. (7)

Since
∫

u = 0, we have the Poincare inequality

||∇u||L2 ≥ ||u||L2. (8)

From (7) and (8), it follows that

||S(u)||L2 ≤ e−ν ||u||L2 ; (9)

thus (P2) is satisfied by taking R0(a) >
1

1−e−ν a. On the other hand, for any two
solutions u and v with initial conditions u0 and v0, we have

1

2
∂t||u− v||2L2 + ν||∇(u− v)||2L2 ≤ |

∫

(u− v).∇v(u− v)|

≤ C||∇v||L2||u− v||L2 ||u− v||H1 (10)

≤
ν

2
||u− v||2H1 +

C

ν
||∇v||2L2||u− v||2L2 .

13



(Hölder and Sobolev inequalities are used to get the second line, and the Cauchy-
Schwartz inequality is used to get the third.) Then, applying a Gronwall lemma, we
get

||S(u0) − S(v0)||
2
L2 + ν

∫ 1

0

||(u− v)(s)||2H1ds ≤ CR||u0 − v0||
2
L2. (11)

Here and below, CR denotes a generic constant depending only on R, an upper bound
on the L2 norm of u0, and on the viscosity ν. (P1)(b) follows from (11).

To prove that (P3) holds, we use (11), (7) and a Chebychev inequality to deduce
the existence of a time s, 0 < s < 1, such that ν||(u − v)(s)||2H1 ≤ 4CR||u0 − v0||2L2,
ν||u(s)||2H1 < 2R2 and ν||v(s)||2H1 < 2R2. Combining these estimates with energy
estimates in H1 for t > s, namely,

1

2
||∇u(t)||2L2 + ν

∫ t

s

||∆u||2L2 =
1

2
||∇u(s)||2L2 , (12)

1

2
||∇v(t)||2L2 + ν

∫ t

s

||∆v||2L2 =
1

2
||∇v(s)||2L2 , (13)

1

2
∂t||u− v||2H1 + ν||u− v||2H2 ≤ ||u− v||H2 ||u− v||H1

(

||u||H2 + ||v||H2

)

(14)

≤
ν

4
||u− v||2H2 +

1

ν

(

||u||2H2 + ||v||2H2

)

||u− v||2H1,

integrating (14) between s and 1 and using again a Gronwall lemma, we deduce easily
that

||S(u0) − S(v0)||H1 ≤ CR||u0 − v0||L2. (15)

For any γ > 0 andR > 0, we may takeN large enough that if VN :=span{e1, e2, ..., eN},
then CR ||u||L2 ≤ γ||u||H1 ∀u ∈ V ⊥

N . This together with (15) proves (P3).
Finally, property (C) is satisfied by taking ηi = 0 for 1 ≤ i ≤ n0 where n0 is

large enough that Re−νn0 ≤ ε0 (see (9)). The product structure of the noise ν 3 in
property (P4)(b) holds because ξjk in (2) are independent; the assumption on PV ∗ν
holds because bj 6= 0 for 1 ≤ j ≤ N where N is as in (P3) and the law for ξjk has
density ρj . �

Proof of Theorem 1’. We now prove (P1)–(P4) and (C) in Hs.
To prove (P1)(b), we use the energy estimates

1

2
∂t||u||

2
Hs + ν||u||2Hs+1 ≤ C||u||Hs||u||Hs+1||u||H1

≤
ν

2
||u||2Hs+1 +

C

ν
||u||2H1||u||2Hs , (16)

3We hope our dual use of the symbol ν as viscosity and as noise does not lead to confusion.
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1

2
∂t||u− v||2Hs + ν||u− v||2Hs+1 ≤ C||u− v||Hs||u− v||Hs+1(||u||Hs+1 + ||v||Hs+1) (17)

≤
ν

2
||u− v||2Hs+1 +

C

ν
(||u||2Hs+1 + ||v||2Hs+1)||u− v||2Hs ,

and Gronwall’s lemma between times 0 and 1.
To prove (P3), we proceed as in the case of L2, showing the existence of a time τ ,

0 < τ < 1, such that ||(u−v)(τ)||Hs+1 ≤ 4CR||u0−v0||Hs and ||u(τ)||Hs+1, ||v(τ)||Hs+1 ≤
4CR where ||u0||Hs, ||v0||Hs < R. Then using (16) and (17) with s replaced by s + 1
and integrating between τ and 1, we deduce that

||S(u0) − S(v0)||Hs+1 ≤ CR||u0 − v0||Hs, (18)

from which we obtain (P3).
To prove (P2), we make use of the regularizing effect of the Navier-Stokes equation

in 2-D
||S(u0)||Hs ≤ Cs(||u||L2) (19)

where Cs is a function depending only on s (see [14]). Since BHs(a) ⊂ BL2(a), we
know from (P3) for L2 that if u0 ∈ BL2(R), we have un ∈ BL2(R0) ∀n ≥ some N0.
Taking Rs = Cs(R0)+a, we get that un ∈ BHs(Rs) ∀n ≥ N0. To prove (C), we argue
as in L2, taking ηi = 0, 1 ≤ i ≤ n0, for large enough n0 and appealing to the fact
that Cs(r) → 0 as r → 0. �

We remark that (P2) and (C) above can be proved directly without going through
L2. Next we move on to the real Ginzburg-Landau equation.

Proof of Theorem 3. For simplicity, we take ν = 1.

(a) We need to prove that there exist two disjoint stable sets A1 and A−1, stable in
the sense that ∀u ∈ A±1, S(u) + η ∈ A±1 ∀η ∈ K. Let

A1 = {u ∈ H, ||u− 1||L2 ≤ β} (20)

where β is a constant to be determined. We recall for each φ ∈ R the energy estimate

1

2
∂t||u− φ||2L2 + ||∇(u− φ)||2L2 +

∫

T

u(u− 1)(u+ 1)(u− φ) dx = 0 . (21)

Substituting φ = 1 in (21), we get

1

2
∂t||u− 1||2L2 + ||∇(u− 1)||2L2 ≤ −

∫

T

u(u+ 1)(u− 1)2 dx. (22)

Now for any φ with 0 < φ < 1, we have

u(u+ 1)(u− 1)2 ≥ φ(φ+ 1)(u− 1)2 if u ≥ φ or u ≤ −1 − φ, (23)

u(u+ 1)(u− 1)2 ≥ −1 ∀u.

15



Hence
∫

T

u(u+ 1)(u− 1)2 dx ≥

∫

T

(1{u≥φ} + 1{u≤−1−φ})φ(φ+ 1)(u− 1)2 − meas{u ≤ φ}.

Since the first term on the right side is

≥ φ(φ+ 1)||u− 1||2L2 −

∫

T

1{−1−φ<u<φ}|φ(φ+ 1)(u− 1)2|,

we see for φ ≤ 1/4 that φ(φ+ 1)(φ+ 2)2 ≤ 3, so that

∫

T

u(u+ 1)(u− 1)2 dx ≥ φ(φ+ 1)||u− 1||2L2 − 4 meas{u ≤ φ} . (24)

Assuming β < 1/4 so that A1 ∩ {u > 3/4} 6= ∅, the Poincare inequality yields for
ψ < 3/4 that

||(u− ψ)1{u<ψ}||L2 ≤ C meas {u ≤ ψ}||∇(u1{u<ψ})||L2

≤ C meas {u ≤ ψ}||∇u||L2, (25)

the factor meas{u ≤ ψ} coming from the scale invariance. On the other hand, for
φ < ψ, we have

meas {u ≤ φ} ≤
1

(φ− ψ)2
||(u− ψ)1{u<ψ}||

2
L2 . (26)

For u ∈ A1, we also have

meas {u ≤ ψ} ≤
β2

(1 − ψ)2
. (27)

Putting together (25), (27) and (26), and choosing for instance φ = 1/4 and ψ = 1/2,
we have

||∇u||2L2 ≥
1

β4
||(u− ψ)1{u<ψ}||

2
L2(1 − ψ)4 (28)

≥
1

β4
meas {u ≤ φ}(φ− ψ)2(1 − ψ)4 . (29)

Taking β so that β4 ≤ 1
8
(φ− ψ)2(1 − ψ)4 (e.g. β ≤ 1/8), (22) and (24) yield

1

2
∂t||u− 1||2L2 +

1

2
||∇u||2L2 ≤ −φ(φ+ 1)||u− 1||2L2 (30)

as long as u ∈ A1. Hence

||S(u)− 1||L2 ≤ e−φ(φ+1)||u− 1||L2 . (31)
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Finally, taking a small enough, namely

a ≤ β(1 − e−φ(φ+1)), (32)

we see that A1 is stable under the Markov chain. Applying Lemma 3.1 ((P1) and
(P4)(a) are easily satisfied and (P2) is replaced by the stability of A1), we deduce
that there is at least one invariant measure supported in A1. A symmetric argument
produces an invariant measure in A−1. Clearly these two measures are distinct.

(b) We need to verify (P3) and (P4)(b); the arguments are similar to those in the
proof of Theorem 1. The assertion then follows from Theorem A(1).

(c) We explain how to verify condition (C). First, we use the regularizing effect of the
Laplacian to deduce that for u0 with ‖u0‖L2 < R, ||u1||L∞ ≤ ||u1||H1 ≤ CR. Then,
using the maximum principle for parabolic equations, we get

∂tg ≤ g − g3 where g(t) = max
x∈T

|u| . (33)

Choosing n0 large enough that −b0 < g(n0) < b0 and taking η0 = η1 = · · · = ηn0 = 0,
we obtain ‖un0+1‖∞ < b0. Let ηn0+1 = ηn0+2 = b0e0. Then un0+1 = S(un0)+ηn0+1 > 0,
and so S(un0+1) > 0. Thus 1 < un0+2 < C = 3b0. Taking ηn0+3 = ηn0+4 = · · · ηn0+n1 =
0 for large enough n1, we can arrange to have ||un0+n1 − 1||L2 as small as we wish.
Notice that in the argument above, we took b0 > 1 to make sure that after arranging
for ‖un0+1‖∞ to be ≈ 1, we obtain un0+2 > 1 after two kicks in a suitable direction.
It is clear that with more kicks the condition b0 > 1 can be relaxed. �

4 Dynamics with Negative Lyapunov Exponents

4.1 Formulation of abstract results

We consider a semi-group St on H and a Markov chain X defined by (I) or (II) in
the beginning of Sect. 3.1. In order for Lyapunov exponents to make sense, we need
to impose differentiability assumptions.

(P1’) (a) S(B(R)) is compact ∀R > 0;

(b) S is C1+Lip, meaning for every u ∈ H , there exists a bounded linear operator
Lu : H → H with the property for all h ∈ H ,

lim
ε→0

1

ε
{S(u+ εh) − S(u) − Lu(εh)} = 0 (34)

and ∀R > 0, ∃MR such that ∀u, v ∈ B(R), ‖Lu − Lv‖ ≤MR‖u− v‖.

Since Lemma 3.1 clearly holds with (P1) replaced by (P1’), we let A be as in
Section 3.
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Proposition 4.1 Assume (P1’), (P2) and (P4)(a), and let µ be an invariant measure
for X . Then there is a measurable function λ1 on H with −∞ ≤ λ1 < ∞ such that
for µ-a.e. u0 and νN-a.e. η = (η0, η1, η2, · · · ),

lim
n→∞

1

n
log ‖Lun−1 ◦ · · · ◦ Lu1 ◦ Lu0‖ = λ1(u0) .

Moreover, λ1 is constant µ-a.e. if (X , µ) is ergodic.

This proposition follows from a direct application of the Subadditive Ergodic
Theorem [6] together with the boundedness of ‖Lu‖ on A (see also Lemma 4.1 below).
We will refer to the function or, in the ergodic case, number λ1 as the top Lyapunov
exponent of (X , µ). This section is concerned with the dynamics of X when λ1 < 0.

We begin by stating a result, namely Theorem C, which gives a general description
of the dynamics when λ1 < 0. This result, however, is not needed for our application
to PDEs. The proof of Theorem 2 uses only Theorem D, which is independent of
Theorem C.

Let µ be an invariant measure of X . Theorem C concerns the conditional mea-
sures of µ given the past. That is to say, we view X as starting from time −∞,
i.e. consider · · · , u−2, u−1, u0, u1, u2, · · · defined by un+1 = Sun + ηn ∀n ∈ Z where
· · · , η−2, η−1, η0, η1, η2, · · · are ν-i.i.d. Then for νZ-a.e. η = (· · · , η−1, η0, η1, · · · ), the
conditional probability of µ given η− := (· · · , η−2, η−1) is well defined. We denote it
by µη.

Theorem C (Random sinks). Assume (P1’), (P2) and (P4)(a), and let µ be
an ergodic invariant measure with λ1 < 0. Then there exists k0 ∈ Z

+ such that for
νZ-a.e. η ∈ KZ, µη is supported on exactly k0 points of equal mass.

This result is well known for stochastic flows in finite dimensions (see [11]). In the
next theorem we impose a condition slightly stronger than (C) in Sect. 3.1 to obtain
the type of uniqueness result needed for Theorem 2.

(C’) There exists û0 ∈ H such that for all ε0 > 0 and R > 0, there is a finite
sequence of controls η̂0, · · · η̂n such that for all u0 ∈ B(R), if uk+1 = Suk + η̂k
and ûk+1 = Sûk + η̂k for all k < n, then ‖un − ûn‖ < ε0.

For u ∈ H , we define the accessibility set A(u) as follows: let A0(u) = {u},
An(u) = S(An−1(u)) +K for n > 0, and A(u) = ∪n≥0An(u).

Theorem D (Asymptotic uniqueness of solutions independent of initial
condition). Assume (P1’), (P2), (P4)(a) and (C’). Suppose there is an ergodic
invariant measure µ supported on A(û0) for which λ1 < 0. Then µ is the only invari-
ant measure X has, and the following holds for νN-a.e. η = (η0, η1, · · · ):

∀u0, u
′
0 ∈ H, ‖un(η) − u′n(η)‖ ≤ Ceλn ∀n > 0
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where λ is any number > λ1 and C = C(u0, u
′
0, λ).

Roughly speaking, Theorem D allows us to conclude that all the orbits are eventu-
ally “the same” once we know that the linearized flows along some orbits are contrac-
tive. This passage from a local to a global phenomenon is made possible by condition
(C’), which in the abstract is quite special but is satisfied by a number of standard
parabolic PDEs.

4.2 Proofs of abstract results (Theorems C and D)

Let A be the compact set in Lemma 3.1, and let K denote the support of ν as before.
We consider the dynamical system F : KN ×A→ KN ×A defined by

F (η, u) = (ση, S(u) + η0)

where η = (η0, η1, η2, · · · ) and σ is the shift operator, i.e. σ(η0, η1, η2, · · · ) = (η1, η2, · · · ).
The following is straightforward.

Lemma 4.1 Let µ be an invariant measure of X in the sense of Definition 3.1. Then
F preserves νN × µ, and (F, νN × µ) is ergodic if and only if (X , µ) is ergodic in the
sense of Definition 3.2.

Our next lemma relates the top Lyapunov exponent of a system, which describes
the average infinitesimal behavior along its typical orbits, to the local behavior in
neighborhoods of these orbits. A version applicable to our setting is contained in
[13]. Let B(u, α) = {v ∈ H, ‖v − u‖ < α}.

Proposition 4.2 [13] Let µ be an invariant measure, and assume that λ1 < 0 µ-a.e.
Then given ε > 0, there exist measurable functions α, γ : KN × A → (0,∞) and a
measurable set Λ ⊂ KN × A with (νN × µ)(Λ) = 1 such that for all (η, u0) ∈ Λ and
v0 ∈ B(u0, α(η, u0)),

‖vn(η) − un(η)‖ < γ(η, u0) e
(λ1+ε)n ∀n ≥ 0 .

We first prove Theorem D, from which Theorem 2 is derived.

Proof of Theorem D. From (P2), it follows that we need only to consider initial
conditions in B(R0). Fix ε > 0 and let α and Λ be as in Proposition 4.2 for the
dynamical system (F, νN × µ). We make the following choices:

(1) Let α0 > 0 be a number small enough that (νN × µ){α > 2α0} >
99
100

. Covering
the compact set A(û0) with a finite number of 1

2
α0-balls, we see that there exists

ũ0 ∈ A(û0) such that

Γ1 := {η ∈ KN : B(ũ0, α0) ⊂ B(u, α(η, u)) for some u with (η, u) ∈ Λ}

has positive νN-measure.
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(2) Since ũ0 ∈ A(û0), there is a sequence of controls (η̃0, · · · , η̃k−1) that puts û0

in B(ũ0,
1
2
α0). Choose δ > 0 and Γ2 ⊂ Kk with νk(Γ2) > 0 such that if

u0 ∈ B(û0, δ) and (η0, · · · , ηk−1) ∈ Γ2, then uk(η0, · · · , ηk−1) ∈ B(ũ0, α0).

(3) Condition (C’) guarantees that there exists a sequence of controls (η̂0, · · · , η̂j−1)
that puts the entire ball B(R0) inside B(û0,

1
2
δ). Choose Γ3 ⊂ Kj with νj(Γ3) >

0 such that every sequence (η0, · · · , ηj−1) ∈ Γ3 puts B(R0) inside B(û0, δ).

Let Γ ⊂ KN be the set defined by

{(η0, · · · , ηj−1) ∈ Γ3; (ηj , · · · , ηj+k−1) ∈ Γ2; (ηj+k, ηj+k+1, · · · ) ∈ Γ1} .

Clearly, νN(Γ) > 0. The following holds for νN-a.e. η : Fix η, and let Bn denote
the nth image of B(R0) for this sequence of kicks. By the ergodicity of (σ, νN),
there exists N such that σNη ∈ Γ. Choosing N ≥ N0(R0), we have, by (P2), that
BN ⊂ B(R0). The choice in (3) then guarantees that BN+j ⊂ B(û0, δ), and the choice
in (2) guarantees that BN+j+k ⊂ B(ũ0, α0). By (1), BN+j+k ⊂ B(u, α(u, σN+j+kη))
for some u with (σN+j+kη, u) ∈ Λ. Proposition 4.2 then says that when subjected to
the sequence of kicks defined by σN+j+kη, all orbits with initial conditions in BN+j+k

converge exponentially to each other as n → ∞. Hence this property holds for all
orbits starting from B(R0) when subjected to η. Theorem D is proved. �

Proceeding to Theorem C, the measures µη defined in Sect. 4.1 are called the
sample or empirical measures of µ. They have the interpretation of describing what
one sees at time 0 given that the system has experienced the sequence of kicks η− =
(· · · , η−2, η−1). The characterization of µη in the next lemma is useful. We introduce
the following notation: Let Sη0 : H → H be the map defined by Sη0(u) = Su + η0;
for a measure µ on H , Sη0∗µ is the measure defined by (Sη0∗µ)(E) = µ(S−1

η0
E).

Lemma 4.2 Let µ be an invariant measure for X . Then for νZ-a.e. η =
(· · · , η−2, η−1, η0, ...), (Sη−1Sη−2 · · ·Sη−n

)∗µ converges weakly to µη.

Proof: Fix a continuous function ϕ : A→ R, and define ϕ(n) : KZ → R by

ϕ(n)(η) =

∫

ϕ d((Sη−1Sη−2 · · ·Sη−n
)∗µ)

=

∫

ϕ(Sη−1Sη−2 · · ·Sη−n
(u))dµ(u). (35)

Then ϕ(n) is B−n
−1 -measurable where B−n

−1 is the σ-algebra on KZ generated by coor-
dinates η−1, · · · , η−n. Since

∫

Sη−n∗
µ dν(η−n) = µ, we have E(ϕ(n)|B−n+1

−1 ) = ϕ(n−1).

The martingale convergence theorem then tells us that ϕ(n) convergence νZ-a.e. to
a function measurable on B−∞

−1 . It suffices to carry out the argument above for a
countable dense set of continuous functions ϕ. �
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Lemma 4.3 Given δ > 0, ∃N = N(δ) ∈ Z
+ such that for νZ-a.e. η, there is a set

Eη consisting of ≤ N points such that µη(Eη) > (1 − δ).

Proof: Let α and γ be the functions in Proposition 4.2 for the dynamical system
(F, νN × µ). Given δ > 0, we let α0, γ0 > 0 be constants with the property that if

G = {(η, u) : α(η, u) ≥ α0, γ(η, u) ≤ γ0}

and
Γ = {η ∈ KN : µ{u : (η, u) ∈ G} > 1 − δ} ,

then νN(Γ) > 1 − δ. Consider η ∈ KZ such that
(i) µη = lim(Sη−1Sη−2 · · ·Sη−n

)∗µ and
(ii) (η−n, η−n+1, · · · ) ∈ Γ for infinitely many n > 0.

By Lemma 4.2 and the ergodicity of (σ, νZ), we deduce that the set of η satisfying
(i) and (ii) has full measure. We will show that the property in the statement of the
lemma holds for these η.

Fix a cover {B1, · · · , BN} of A by α0

2
-balls, and let η be as above. We consider

n arbitrarily large with (η−n, η−n+1, · · · ) ∈ Γ. For each i, 1 ≤ i ≤ N , such that
Bi ∩ {u ∈ H : ((η−n, η−n+1, · · · ), u) ∈ G} 6= ∅, pick an arbitrary point u(i) in this set.
Our choices of G and Γ ensure that µ(∪iB(u(i), α0)) > 1 − δ, and that the diameter
of (Sη−1Sη−2 · · ·Sη−n

)B(u(i), α0) is ≤ γ0α0e
(λ+ε)n. We have thus shown that a set of

µη-measure > 1− δ is contained in ≤ N balls each with diameter ≤ γ0α0e
(λ+ε)n. The

result follows by letting n→ ∞. �

To prove Theorem C, we need to work with a version of (F, νN×µ) that has a past.
Let F̃ : KZ ×A→ KZ ×A be such that F̃ : (η, u) 7→ (ση, Sη0u), and let νZ ∗µ be the
measure which projects onto νZ in the first factor and has conditional probabilities
µη on η-fibers. That νZ ∗ µ is F̃ -invariant follows immediately from Lemma 4.2. It is
also easy to see that (F̃ , νZ ∗ µ) is ergodic if and only if (F, νN × µ) is.

Proof of Theorem C. It follows from Lemma 4.3 that for νZ-a.e. η, µη is atomic,
with possibly a countable number of atoms. We now argue that there exists k0 ∈ Z

+

such that for a.e. η, µη has exactly k0 atoms of equal mass.
Let

h(η) = supu∈H µη{u} .

To see that h is a measurable function on KZ, let P(n), n = 1, 2, · · · , be an increasing
sequence of finite measurable partitions of A such that diamP(n) → 0 as n→ ∞. Then
for each P ∈ P(n), η 7→ µη(P ) is a measurable function, as are hn := maxP∈P(n) µη(P )
and h := limn hn. Observe that h(ση) ≥ h(η), with > being possible in principle since
Sη0 is not necessarily one-to-one. However, the measurability of h together with the
ergodicity of (σ, νZ) implies that h is constant a.e. Let us call this value h0. From
the last lemma we know that h0 > 0.
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To finish, we let X = {(η, u) ∈ KZ × A : µη{u} = h0}. Then X is a measurable
set, (νZ ∗µ)(X) > 0 and F̃−1X ⊃ X. This together with the ergodicity of (F̃ , νZ ∗µ)
implies that (νZ ∗ µ)(X) = 1, which is what we want. �

4.3 Application to PDEs: Proof of Theorem 2

Let St be the semi-group generated by the (unforced) Navier-Stokes system, and let
S = S1.

Lemma 4.4 S is C1+Lip in H2(R2).

Proof. It is easy to see that Lu is defined by Luw = ψ(1) where ψ is the solution of
the linear problem

{

∂tψ + U.∇ψ + ψ.∇U − ν∆ψ = −∇p,
ψ(t = 0) = w , divψ = 0

(36)

where U denotes the solution of the Navier-Stokes system with initial data u. That
Lu is linear, continuous and goes from H2 to H2 is obvious. To prove that (34) holds,
let U and V be the solutions of the Navier-Stokes system with initial data u and
u+ ǫw respectively. Then y = V − U − ǫψ satisfies

{

∂ty + (U + ǫψ).∇y + y.∇V + ǫ2ψ.∇ψ − ∆y = −∇p
y(t = 0) = 0 , div(y) = 0.

(37)

By a simple computation, we get that ||y(t = 1)||H2 ≤ C(1 + ||w||2H2)ǫ2, where here
and below C denotes a constant depending only on the H2 norm of u.

To prove that Lu is Lipschitz, i.e.,

||(Lu − Lv)w||H2 ≤ C||u− v||H2||w||H2, (38)

we define Lvw = φ(1) where φ solves an equation analogous to (36) with V in the place
of U , V being the solution with initial condition v. The desired estimate ||(ψ−φ)(t =
1)||H2 is obtained by subtracting this equation from (36). �

Remark. We observe here that the top Lyapunov exponent is negative if the noise
is sufficiently small. We will show, in fact, that given any positive viscosity ν, if a
(see Sect. 2.1 for definition) is small enough, then S : H2 → H2 is a contraction on
the ball of radius ν

2C
.

Rewriting equations (16) and (17) with s = 2, we have

∂t||u||
2
H2 + ν||u||2H3 ≤

C2

ν
||u||4Hs , (39)
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∂t||u− v||2H2 + ν||u− v||2H3 ≤
C2

ν
(||u||2H3 + ||v||2H3)||u− v||2H2 . (40)

For u0 with ||u0||H2 ≤ ν
2C

and a noise with a ≤ ν
2C

(1 − e−ν/4), it follows from (39)
and a Gronwall lemma that

||S(u0)||
2
H2 ≤

( ν

2C

)2

e−ν/2 ,

from which we obtain ||u1||H2 ≤ ν
2C

. Moreover, from (39), we have that

ν

∫ 1

0

||u||2H3 ≤
ν3

16C2
,

so that if v is another solution of the Navier-Stokes system with ||v0||H2 ≤ ν
2C

, then
(40) gives

||u− v||2H2 ≤ ||u0 − v0||
2
H2e−ν+

ν

8 .

Proof of Theorem 3. It suffices to check the hypotheses of Theorem D: (P1’) is
proved in Lemma 4.4, and we explained in the proof of Theorem 1’ why (C’) holds
with û0 = 0. �

References

[1] J. Bricmont, A. Kupiainen and R. Lefevere, Exponential mixing for the 2D
Navier-Stokes dynamics, 2000 preprint.

[2] P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in
Mathematics, University of Chicago Press, Chicago, IL, 1988. x+190 pp.

[3] W. E, J. Mattingly and Ya. G. Sinai, Gibbsian Dynamics and ergodicity for
the stochastically forced 2D Navier-Stokes equation, 2000 preprint.

[4] J.-P. Eckmann and M. Hairer, Uniqueness of the invariant measure for a
stochastic PDE driven by degenerate noise, 2000 preprint.

[5] F. Flandoli and B. Maslowski, Ergodicity of the 2D Navier-Stokes equations,
NoDEA 1 (1994), 403-426.

[6] J. F. C. Kingman, Subadditive processes, Ecole d’été des Probabilités de
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