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Abstract This paper attmpts to make accessible a body of ideas surrounding the follow-
ing result: Typical families of (possibly multimodal) 1-dimensional maps passing through
“Misiurewicz points” have invariant densities for positive measure sets of parameters.

The simplest paradigms of chaotic behavior in dynamical systems are found in uniformly
expanding and uniformly hyperbolic (or Anosov) maps. Allowing expanding and contracting
behaviors to mix leads to a multitude of new possibilities. In spite of much progress, the
analysis of most nonuniformly hyperbolic systems has remained hopelessly difficult. One-
dimensional maps are an exception. The situation in 1 dimension is made tractable by the
fact that the worst enemy of expansion is the critical set, i.e., the set on which f ′ vanishes,
and for typical 1D maps, this set is finite. It has been shown that by controlling the orbits
starting from this finite set, the dynamics on the rest of the phase space can be tamed.

A nonuniform theory for 1D maps was developed in a series of papers in the late 1970s
and 1980s ([J], [M], [CE], [BC1], [R], [BC2], [NS], and others). These ideas are later ex-
ploited in the study of attractors with a single direction of instability, beginning with the
Hénon maps ([BC2], [BY] etc.) and culminating recently in a general theory of rank-one at-
tractors that can live in phase spaces of arbitrary dimensions [WY2]. In the course of these
developments, some of the original 1D arguments have been extended and improved. This
paper is written in response to numerous requests from the dynamical systems community
to make more accessible a certain body of ideas in 1 dimension, both for its independent
interest and as an introduction to the study of rank-one maps in higher dimensions.

The content of this paper can be summarized as follows: Let I be a closed interval or
a circle, and let C2(I, I) denote the set of C2 maps from I to itself. We seek to identify a
reasonably large class of maps G ⊂ C2(I, I) with controlled nonuniform expansion, and to
give a description of its dynamical properties. This is carried out in the following 3 steps:

(1) First we identify a set M ⊂ C2(I, I) defined by strong expanding conditions.

(2) Our class of “good maps” G ⊂ C2(I, I) is obtained by relaxing these conditions. Maps
in G are shown to have absolutely continuous invariant measures.

(3) We show that G is “large” in the sense that for every typical 1-parameter family {fa}
passing through M, the set {a : fa ∈ G} has positive Lebesgue measure.

We first cite the main references directly related to (1)–(3): The class M is a slight
generalization of the maps studied in [M]. In the special case of the quadratic family
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fa(x) = 1 − ax2, the existence of absolutely continuous invariant measures for a positive
measure set of parameters is the well known theorem of Jakobson [J]; for other proofs of
Jakobson’s theorem, see [BC1], [BC2] and [R]. A key idea used in [BC1] and [BC2], namely
the exponential growth of derivatives along critical orbits, is first introduced in [CE]. An
analysis along the lines of (1)–(3) above for unimodal maps was carried out in [TTY]. A
version of Jakobson’s theorem for multimodal maps is given in [T].

While the results of this paper as stated have not been published before, we do not
claim that the ideas of the proofs are new. In outline, our proofs follow those in [BC1] and
Section 2 of [BC2]. The generalization from fa(x) = 1− ax2 to more general maps is along
the lines of [TTY]. We have also borrowed heavily from [WY1] and especially [WY2], both
in terms of setting and the way in which the arguments are carried out. More detailed
references are given at the end of each section.

Organization of paper The class M in (1) above is discussed in Section 1; the class G is
introduced in Section 2. The result on invariant measures (Theorem 1) is stated and proved
in Section 3. The result on positive measure sets of parameters (Theorem 2) is stated in
Sect. 4.1 and proved in Sections 4–7.

Part I DYNAMICAL PROPERTIES

1 The Class M

1.1 Definition and expanding property

For f ∈ C2(I, I), let C = C(f) = {f ′ = 0} denote the critical set of f , and let Cδ denote
the δ-neighborhood of C in I. For x ∈ I, let d(x,C) := minx̂∈C |x− x̂|.

Definition 1.1 We say f ∈ C2(I, I) is in the class M if the following hold for some δ0 > 0:
(a) Outside of Cδ0 : there exist λ0 > 0,M0 ∈ Z

+ and 0 < c0 ≤ 1 such that
(i) for all n ≥M0, if x, f(x), · · · , fn−1(x) 6∈ Cδ0 , then |(fn)′(x)| ≥ eλ0n;
(ii) if x, f(x), · · · , fn−1(x) 6∈ Cδ0 and fn(x) ∈ Cδ0 , any n, then |(fn)′(x)| ≥ c0e

λ0n.
(b) Inside Cδ0 : (i) f ′′(x) 6= 0 for all x ∈ Cδ0 ;

(ii) for all x̂ ∈ C and n > 0, d(fn(x̂), C) ≥ δ0;
(iii) for all x ∈ Cδ0 \ C, there exists p0(x) > 0 such that f j(x) 6∈ Cδ0 for all j < p0(x)

and |(fp0(x))′(x)| ≥ c−1
0 e

1
3
λ0p0(x).

Remark 1. The maps in M are among the simplest with nonuniform expansion: The
phase space is divided into two regions, Cδ0 and I \ Cδ0 . Condition (a) in Definition 1.1
says that on I \Cδ0 , f is essentially uniformly expanding. (b)(iii) says that for x ∈ Cδ0 \C,
even though |f ′(x)| is small, the orbit of x does not return to Cδ0 again until its derivative
has regained a definite amount of exponential growth; i.e., if n is the first return time of
x ∈ Cδ0 to Cδ0 , then |(fn)′(x)| ≥ e

1
3
λ0n. (To see this, use (b)(iii) followed by (a)(ii)).

Remark 2. We identify two properties of the critical orbits of f ∈ M that will serve as
the basis of the generalization in Section 2. Let x̂ ∈ C.
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(1) d(fn(x̂), C) ≥ δ0 for all n > 0, i.e., (b)(ii) in Definition 1.1. (This condition is
redundant and is included solely for emphasis; it follows from (b)(iii) together with the
observation that p0(x) → ∞ as d(x,C) → 0.)

(2) |(fn)′(fx̂)| ≥ c′0e
λ0n for all n > 0 where c′0 = (max |f ′|)−M0 . This follows from (b)(ii)

and (a)(i).

We record for future use the following important fact about the behavior of f ∈ M
outside of Cδ for arbitrary δ < δ0:

Lemma 1.1 There exists c′′0 > 0 depending only on f such that for all δ < δ0 and n > 0:

(a) if x, f(x), · · · , fn−1(x) 6∈ Cδ, then |(fn)′(x)| ≥ c′′0δe
1
3
λ0n;

(b) if x, f(x), · · · , fn−1(x) 6∈ Cδ and fn(x) ∈ Cδ0 , then |(fn)′(x)| ≥ c0e
1
3
λ0n.

Proof: Let x be such that f i(x) 6∈ Cδ for i ∈ [0, n). We divide [0, n] into maximal time
intervals [i, i + k] such that f i+j(x) 6∈ Cδ0 for 0 < j < k, and estimate |(fk)′(f i(x))| as
follows:

Case 1. f i(x), f i+k(x) ∈ Cδ0 . |(f
k)′(f i(x))| ≥ e

1
3
λ0k by Definition 1.1(a)(ii) and (b)(iii).

Case 2. f i(x) 6∈ Cδ0 , f
i+k(x) ∈ Cδ0 . The estimate is given by Definition 1.1(a)(ii).

Case 3. f i(x), f i+k(x) 6∈ Cδ0 . If k ≥ M0, then |(fk)′(f i(x))| > eλ0k by Definition

1.1(a)(i). If k < M0, we let k̂ be the smallest integer > k such that f i+k̂(x) ∈ Cδ0. Using
Definition 1.1(a)(i) for k̂ ≥ M0 and Definition 1.1(a)(ii) for k̂ < M0, we conclude that
|(fk)′(f i(x))| > c0(max |f ′(x)|)−M0eλ0k.

Case 4. f i(x) ∈ Cδ0 , f
i+k(x) 6∈ Cδ0 . As in Case 3, with extra factor (miny∈Cδ0

|f ′′(y)|) δ.

Cases 3 and 4 are relevant only for part (a); each appears at most once in the estimate on
|(fn)′(x)|. �

In the interest of carrying as few constants around as possible, we write c1 = min{c0, c
′
0, c

′′
0}.

1.2 Examples

Example 1. Let f ∈ C3(I, I) be such that
(i) S(f) < 0 where S(f) denotes the Schwarzian derivative of f ,3

(ii) f ′′(x̂) 6= 0 for all x̂ ∈ C,
(iii) if fn(x) = x, then |(fn)′(x)| > 1, and
(iv) for all x̂ ∈ C, infn>0d(f

n(x̂), C) > 0.
Then f ∈ M. For a proof of this fact, see Lemma 2.5 of [WY1].

We note that (i) and (ii) above are satisfied by all members of the quadratic family
fa(x) = 1 − ax2, a ∈ (0, 2], and (iii) and (iv) are satisfied by an uncountable number of a
including a = 2.

Example 2. Another situation where maps in M arise naturally is through scaling. The
following is a slight generalization of Lemma 5.3 in [WY3] and has the same proof: Let
fa : S1 → S1 be given by

fa(θ) = θ + a+ LΦ(θ)

3We have elected to replace this condition by an explicit description of the dynamics in Definition 1.1
because (1) that is exactly what is used and (2) we have found that maps that arise in applications often do
not have negative Schwarzian derivative.
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where a,L ∈ R and Φ : S1 → S1 is an arbitrary function with nondegenerate critical points
(and the right side is to be read mod 1). Then there exists L0 > 0 such that for all L ≥ L0,
there exists an O( 1

L
)-dense set of a for which fa ∈ M.

Reference: Maps of the type in Example 1 are introduced and studied in [M]. Maps of the
type in Example 2 appear naturally in [WY3] and [WY4].

2 The Class G: 3 Basic Properties

Condition (b)(ii) in Definition 1.1 severely limits the scope of M as a subset of C2(I, I).
We now introduce in a neighborhood of each f0 ∈ M an admissible set of perturbations
G(f0). Our set of “good maps” G is then defined to be

⋃

f0∈M
G(f0).

Throughout this section, let f0 ∈ M be fixed, and let δ0, λ0, c1 etc. be the constants in
Sect. 1.1 associated with f0.

2.1 Definition of G(f0) and basic properties

For λ, α, ε > 0 and f ∈ C2(I, I), we say f ∈ G(f0;λ, α, ε) if ‖f−f0‖C2 < ε and the following
hold for all x̂ ∈ C = C(f) and n > 0:

(G1) d(fn(x̂), C) > min{1
2δ0, e

−αn};
(G2) |(fn)′(f(x̂))| ≥ c1e

λn.

Note that with λ < λ0, (G1) and (G2) are relaxations of the conditions on critical orbits
for f0 (see Remark 2 in Sect. 1.1). The main result of this section is

Proposition 2.1 Given f0 ∈ M, λ < 1
4λ0 and α < 1

100λ, there exists δ = δ(f0, λ, α) and
ε = ε(f0, λ, α, δ) > 0 such that (P1)-(P3) below hold for all f ∈ G(f0;λ, α, ε).

Here δ < 1
2δ0 is an auxiliary constant. For simplicity, we assume ε is small enough that

d(fn(x̂), C) > 1
2δ0 for all x̂ ∈ C and 1 ≤ n ≤ n0 where n0 is a large integer satisfying

e−αn0 << δ. Consequently, (G1) can be violated only when fn(x̂) ∈ Cδ. Precise require-
ments on δ and ε will become clear in the proofs. In general, ε << δ << 1. The arguments
are perturbative; some of them will require that ε be taken very close to 0.

The set G(f0) is defined to be the union of G(f0;λ, α, ε) as (λ, α, ε) ranges over all triples
satisfying the conditions in Proposition 2.1.

We now state (P1)–(P3), introducing some useful language along the way.

(P1) Outside of Cδ: (i) if x, f(x), · · · , fn−1(x) 6∈ Cδ, then |(fn)′(x)| ≥ c1δe
1
4
λ0n;

(ii) if x, f(x), · · · , fn−1(x) 6∈ Cδ and fn(x) ∈ Cδ0 , then |(fn)′(x)| ≥ c1e
1
4
λ0n.

Let x̂ ∈ C, and let Cδ(x̂) := (x̂ − δ, x̂ + δ). For x ∈ Cδ(x̂) \ {x̂}, we define p(x), the
bound period of x, to be the largest integer such that |f i(x) − f i(x̂)| ≤ e−2αi ∀i < p(x).

(P2) Partial derivative recovery for x ∈ Cδ \ C: For x ∈ Cδ(x̂) \ {x̂},
(i) 1

3 ln(max |f ′|) log 1
|x−x̂| ≤ p(x) ≤ 3

λ
log 1

|x−x̂| ;
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(ii) |(fp(x))′(x)| > e
λ
3
p(x).

(P2) leads to the following general description of orbits:

Decomposition into “bound” and “free” states: For x ∈ I such that f i(x) 6∈ C for
all i ≥ 0 (for example, x = f(x̂) for x̂ ∈ C), let

t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · ·

be defined as follows: t1 is the smallest j ≥ 0 such that f j(x) ∈ Cδ. For k ≥ 1, let pk be
the bound period of f tk(x), and let tk+1 be the smallest j ≥ tk + pk such that f j(x) ∈ Cδ.
(Note that an orbit may return to Cδ during its bound periods, i.e. ti are not the only
return times to Cδ.) This decomposes the orbit of x into segments corresponding to time
intervals (tk, tk + pk) and [tk + pk, tk+1], during which we describe the orbit of x as being in
“bound” and “free” states respectively; tk are called times of free returns.

(P3) is about comparisons of derivatives for nearby orbits. To state what it means for
two points to be close to each other, we introduce a partition P on I. First let P0 = {Iµj}
be the following partition on (−δ, δ): Assume δ = e−µ∗ for some µ∗ ∈ Z

+. For µ ≥ µ∗,
let Iµ = (e−(µ+1), e−µ); for µ ≤ −µ∗, let Iµ be the reflection of I−µ about 0. Each Iµ is
further subdivided into 1

µ2 subintervals of equal length called Iµj . For x̂ ∈ C, let P x̂
0 be the

partition on Cδ(x̂) obtained by shifting the center of P0 from 0 to x̂. The partition P is
defined to be P x̂

0 on Cδ(x̂); on I \ Cδ, its elements are intervals of length ≈ δ.
The following shorthand is used: We refer to π ∈ P corresponding to (translated) Iµj

intervals in P x̂
0 simply as “Iµj”. For π ∈ P, π+ denotes the union of π and the two elements

of P adjacent to it. For an interval γ ⊂ I, we say γ ≈ π if π ⊂ γ ⊂ π+. For practical
purposes, π+ intersecting ∂Cδ can be treated as “inside Cδ” or “outside Cδ”.

4 For γ ⊂ I+
µj ,

we define the bound period of γ to be p(γ) = minx∈I+
µj
{p(x)}. For x, y ∈ I, [x, y] denotes the

segment connecting x and y. We say x and y in I have the same itinerary (with respect to
P) through time n− 1 if there exist t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · · ≤ n such that for every
k, f tk [x, y] ⊂ π+ for some π ⊂ Cδ, pk = p(f tk [x, y]), and for all i ∈ [0, n) \ ∪k[tk, tk + pk),
f i[x, y] ⊂ π+ for some π ∈ P with π ∩Cδ = ∅.

(P3) Distortion estimate: There exists K0 > 1 (depending only on f0 and on λ) such
that if x and y have the same itinerary through time n− 1, then

∣

∣

∣

∣

(fn)′(x)

(fn)′(y)

∣

∣

∣

∣

≤ K0.

(P1)-(P3) are proved in next subsection. We finish by recording the following corollary
of Proposition 2.1.

Corollary 2.1 There exists K1 (depending only on f0 and on λ) such that for all x ∈ I
with f i(x) 6∈ C for all 0 ≤ i < n,

|(fn)′(x)| > K−1
1 d(f j(x), C) e

1
4
λn

4In particular, if π is one of the outermost Iµj in Cδ, then π
+ contains an interval of length δ.
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where j is the time of the last free return before n. The factor d(f j(x), C) may be replaced
by δ if fn(x) is free.

Proof: Let 0 ≤ t1 < t1 + p1 ≤ t2 < t2 + p2 ≤ · · · be as in the paragraph following (P2).
The derivatives on time intervals [tk, tk + pk) and [tk + pk, tk+1) are given by (P2)(ii) and
(P1)(ii) respectively, provided these intervals are completed before time n. We assume δ is
sufficiently small so that the constant c1 in (P1)(ii) is absorbed into the exponential estimate
from the proceeding bound period. If fn(x) is in a bound period initiated at time j, then
|(f (n−j))′(f j(x))| ≥ |f ′(f j(x))|K−1

0 c1e
λ(n−j−1); see (G2) and (P3). If tk +pk ≤ n < tk+1 for

some k, then the derivative between time tk + pk and n is given by (P1)(i). �

Remarks on the use of constants: In this article, K,K1,K2, · · · , are reserved for use
as system constants, which in Part I are constants that are allowed to depend only on (1)
f0, by which we included also the constants in Sect. 1.1 associated with f0, and (2) our
choice of λ. The more important of these constants, such as K0 in (P3), carry a subscript;
all others are referred to by the generic name K. The value of K, therefore, may vary from
expression to expression.

Notation: Where no ambiguity arises, i.e. when only one map f is involved, we will
sometimes write xi = f i(x) for i = 1, 2, · · · .

2.2 Proofs of (P1)–(P3)

Proof of (P1): First we deduce from Lemma 1.1(a) that there exists N = N(δ) such that

for all y ∈ I, if y, f0(y), · · · , f
N−1
0 (y) 6∈ C 1

2
δ(f0), then |(fN

0 )′(y)| > e
1

3.5
λ0N . We then choose

ε small enough that f is sufficiently close to f0 for N iterates in the sense below:

(i) if x and n are as in (P1) and n ≤ N , then |(fn)′(x) − (fn
0 )′(x)| is small enough that

the conclusions of (P1) follow from Lemma 1.1;

(ii) if f i(y) 6∈ Cδ for 0 ≤ i < N , then |(fN )′(y)| > e
1
4
λ0N .

If n in (P1) is > N , we let k be such that kN ≤ n < (k + 1)N , and estimate |(fn)′(x)| by
the chain rule, comparing (fN)′(f iN (x)) with (fN

0 )′(f iN (x)) for i ≤ k using (ii) above, and
(fn−kN)′(fkN(x)) with (fn−kN

0 )′(fkN(x)) using (i). �

Lemma 2.1 The following holds if δ and ε are sufficiently small and suitably related: Let
x̂ ∈ C, and let x ∈ Cδ(x̂). Then for all y ∈ [x̂, x] and k < p(x),

1

2
≤

(fk)′(y1)

(fk)′(x̂1)
≤ 2.

Proof: First,

log
(fk)′(y1)

(fk)′(x̂1)
≤

k
∑

j=1

|f ′(yj) − f ′(x̂j)|

|f ′(x̂j)|
≤ K

k
∑

j=1

|yj − x̂j |

d(x̂j , C)
.
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We choose h0 large enough that (i)
∑∞

i>h0
e−αj << 1 and (ii) e−αh0 < 1

2δ0 (so that

d(x̂j , C) > e−αj for j > h0). Next we choose δ small enough that δ
∑h0

j=1
2
δ0

(max |f ′|)j << 1.

Finally, let ε be small enough that d(x̂j , C) > 1
2δ0 for all j ≤ h0. Then

k
∑

j=1

|yj − x̂j |

d(x̂j , C)
<

h0
∑

j=1

2

δ0
(max |f ′|)jδ +

k
∑

j=h0+1

e−2αj

e−αj
<< 1.

�

Proof of (P2): Suppose |x− x̂| = e−h. Then (G2) together with Lemma 2.1 implies that

|xp − x̂p| ≥
1

2
|(fp−1)′(x̂1)||x1 − x̂1| ≥ K−1eλ(p−1)(x− x̂)2.

From this we deduce that p < 3
λ
h, assuming that h is sufficiently large (or δ is suffi-

ciently small). The lower bound on p is obtained by comparing the inequalities |xp − x̂p| <
(max |f ′|)p−1e−2h and |xp − x̂p| ≥ e−2αp (definition of bound period).

To prove (P2)(ii), taking square root of |xp − x̂p| < K|(fp−1)′(x̂1)|(x− x̂)2, we obtain

K|(fp−1)′(x̂1)|
1
2 |x− x̂| > e−αp. (1)

Then writing |(fp)′(x)| as

|(fp)′(x)| = |(fp−1)′(x1)||f
′(x)| > (K−1|(fp−1)′(x̂1)|

1
2 |x− x̂|) · |(fp−1)′(x̂1)|

1
2

and substituting in (1), we see that |(fp)′(x)| > K−1c
1
2
1 e

1
2
λ(p−1)e−αp, which we may assume

is > e
1
3
λp if p is sufficiently large, or equivalently, δ is sufficiently small. �

Proof of (P3): We write σ0 = [x, y], σk = f tkσ0, and assume for definiteness that
σ0 ⊂ Cδ and tq + pq ≤ n where f iσ0 ∩ Cδ = ∅ for all tq + pq ≤ i < n. (The proof for the
case tq < n < tq + pq is contained in that for n = tq + pq.) Then

log
(fn)′(x)

(fn)′(y)
≤

n−1
∑

j=0

|f ′(yj) − f ′(xj)|

|f ′(yj)|
≤ K

q
∑

k=1

(S′
k + S′′

k )

where

S′
k =

tk+pk−1
∑

j=tk

|yj − xj|

d(yj , C)
and S′′

k =

tk+1−1
∑

tk+pk

|yj − xj|

d(yj , C)

except for S′′
q , which ends at index n−1. Observe that for k < q, it follows from (P2)(ii) and

(P1)(ii) that |σk+1| ≥ c1e
1
3
λ(tk+1−tk)|σk|, which we may assume is ≥ τ |σk| for some τ > 1

(the factor c1 having been absorbed into the exponential assuming δ is sufficiently small).

I. Bound on
∑q

k=1 S
′
k

First we estimate S′
k. Suppose ytk ∈ Cδ(x̂). For tk < j < tk + pk we write

|yj − xj|

d(yj , C)
=

|yj − xj |

|yj − x̂j−tk |
·
|yj − x̂j−tk |

d(yj , C)
.
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By Lemma 2.1 and the usual estimates near x̂, the first factor on the right is

< K
|ytk+1 − xtk+1|

|ytk+1 − x̂1|
< K

|f ′(xtk)| |ytk − xtk |

|ytk − x̂|2
< K

|σk|

d(ytk , C)
.

Thus

S′
k ≤ K

|σk|

d(ytk , C)



1 +

tk+pk−1
∑

j=tk+1

|yj − x̂j−tk |

d(x̂j−tk , C)



 ≤ K
|σk|

d(ytk , C)
,

treating the sum inside the parentheses as in Lemma 2.1.
Now let Kµ = {k ≤ q : σk ⊂ Iµj for some j}. We claim that

∑

k∈Kµ

S′
k < K

∑

k∈Kµ

|σk|

e−|µ|
< K

1

µ2
.

The first inequality is from the estimate above. The second follows from (i) |σk+1| ≥ τ |σk|
and (ii) the term with the largest index is bounded above by |I+

µj |, which is ≤ 3
µ2 e

−|µ|. To

finish, we sum over all µ, |µ| ≥ log 1
δ
, to obtain

∑

S′
k < K.

II. Bound on
∑q

k=1 S
′′
k

For k < q and tk +pk ≤ j ≤ tk+1−1, we have, by (P1)(ii), |σk+1| ≥ c1e
λ(tk+1−j)|xj −yj|,

so S′′
k ≤ K

|σk+1|
δ

. This together with |σk+1| ≥ τ |σk| gives
∑q−1

k=0 S
′′
k ≤ K

|σq|
δ

< K. If
n < tq+1, S

′′
q needs to be estimated separately: Assume the orbit in question visits Cδ0

during the time interval [tq + pq, n) (otherwise the estimate is trivial). Let n̂ be the time of
the last such visit. Then

S′′
q =

n̂−1
∑

j=tq+pq

K
|yj − xj|

d(yj , C)
+ K

|yn̂ − xn̂|

d(yn̂, C)
+

n−1
∑

j=n̂+1

K
|yj − xj|

d(yj , C)
.

The first sum is estimated using |yn̂−1 − xn̂−1| > c1e
1
4
λ0(n̂−1−j)|yj − xj | for tq + pq ≤ j < n̂

((P1)(ii)). The last sum is estimated using |yn−1 − xn−1| > c1δ0e
1
4
λ0(n−j−1)|yj − xj| for

n̂ < j < n− 1 ((P1)(i) with δ0 in the place of δ). It follows that

S′′
q ≤ K

|yn̂−1 − xn̂−1|

δ
+K

|yn̂ − xn̂|

δ
+K

|yn−1 − xn−1|

δ20
< K.

�

References: Conditions of the type (G1) are first used in [BC1] and [BC2]. (G2) is introduced
in [CE]. A version of the material in this section for f0(x) = 1− 2x2 first appeared in [BC1]
and Section 2 of [BC2].

3 Absolutely Continuous Invariant Measures

The goal of this section is to prove

Theorem 1 Every f ∈ G has an absolutely continuous invariant probability measure.

8



3.1 Growth of segments with bounded distortion

Let f ∈ G. To prove that f admits an absolutely continuous invariant probability measure
(acipm), we need to show that the forward images of Lebesgue measure have certain regu-
larity properties. Expansion is conducive to such regularity, but distortion bounds are also
essential. Since (P3) guarantees uniform distortion bounds only on intervals with the same
itinerary, we need to show that intervals of this type grow with sufficient regularity. This
is the mission of the present subsection.

We begin by introducing what will be referred to as a canonical subdivision by
itinerary on an interval ω ⊂ I. This consists of an increasing sequence of partitions
Q0 < Q1 < Q2 < · · · on ω defined as follows: Let us say an interval is “short” if it is
strictly contained in an element of P. Q0 is defined to be P|ω except that the end intervals
are attached to their neighbors if they are short. We assume inductively that all ω̂ ∈ Qi

are intervals and all points in ω̂ have the same itinerary through time i. To go from Qi to
Qi+1, we consider one ω̂ ∈ Qi at a time:

– If f i+1(ω̂) is in a bound period, then it is automatically put into Qi+1. (Observe that
if f i+1(ω̂) ∩ Cδ 6= ∅, then f i+1(ω̂) ⊂ I+

µ′j′ for some µ′, j′, i.e. no cutting is needed
during bound periods. This is an easy exercise.)

– If f i+1(ω̂) is not in a bound period, but all points in ω̂ have the same itinerary through
time i+ 1, we again put ω̂ ∈ Qi+1.

– If neither of the last two cases holds, then we partition ω̂ into segments {ω̂′} according
to their itineraries through time i + 1, requiring that f i+1(ω̂′) ≈ γ for some γ ∈ P
(i.e., no cuts are made that lead to short intervals). The resulting partition is Qi+1|ω̂.

For x ∈ ω and i ≥ 0, let Qi(x) denote the element of Qi containing x. We introduce the
following stopping time on ω: For x ∈ ω, S(x) is the smallest i > 0 such that f i(Qi−1(x))
is not in a bound period and has length > δ. The main result of this subsection is

Proposition 3.1 There exists K2 > 0 such that for any ω ⊂ I with δ < |ω| < 3δ,

|{S > n}| < e−K−1
2 n|ω| for n > K2 log δ−1.

Here | · | denotes the Lebesgue measure of the set. The proof of this proposition follows
from a series of lemmas.

Lemma 3.1 Let ω ≈ Iµj . Then |fp(ω)| > e−
7α
λ
|µ| where p = p(ω).

Proof: It follows from Lemma 2.1 that for Iµj ∈ P x̂,

|fp(Iµj)| =
|fp(Iµj)|

|fp([x̂, x̂± e−|µ|])|
|fp([x̂, x̂± e−|µ|])|

≥ K−1 |f(Iµj)|

|f([x̂, x̂± e−|µ|])|
|fp([x̂, x̂± e−|µ|])|

≥ K−1 1

µ2
e−2αp .

9



By (P2)(i), p < 3
λ
|µ|. The lemma then follows assuming δ is sufficiently small. �

For ω ≈ Iµj , we define the extended bound period of ω to be the largest n such that
all points in ω have the same itinerary (in the sense of (P3)) for n − 1 iterates. The next
lemma follows immediately from Corollary 2.1.

Lemma 3.2 There exists K such that the extended bound period of Iµj is < K|µ|.

Lemma 3.3 Assume δ is sufficiently small. Then for ω ≈ Iµ0j0 ,

|{x ∈ ω : S(x) > n}| < e−
1
2
K−1n |ω| for all n > Kµ0

where K is the constant in Lemma 3.2.

Proof: Let x ∈ ω be such that S(x) > n. We define the essential return times and
addresses of x before n as follows: Let t be the extended bound period of ω. Then either
S = t, or f t(ω) ⊂ Cδ (more precisely ∪I+

µj). In the latter case, we say t1 = t is the

first essential return time of x, and if f t1(Qt1(x)) ≈ Iµ1j1 ⊂ Cδ, then we say Iµ1j1 is its
first essential return address. If S has not been reached, we continue iterating. Let t be
the extended bound period of f t1(Qt1(x)). Then either S(x) = t1 + t, or we define the
second essential return time to be t2 = t1 + t and second return address to be Iµ2j2 if
f t2(Qt2(x)) ≈ Iµ2j2 ⊂ Cδ, and so on.

Let Aq = {x ∈ ω : S(x) > n, f i(x) makes q but not q+1 essential returns before time n}.
Then |{S > n}| =

∑

q |Aq|. We write Aq = ∪RAq,R where Aq,R = {x ∈ Aq : if (µ1, · · · , µq)
are the µ-coordinates of its first q return addresses, then |µ1| + |µ2| + · · · + |µq| = R}, and
further decompose Aq,R into intervals σ consisting of points whose first q return addresses
are identical. Each such σ is equal to Qtq (x) for some x, since the extended bound period
of f tq(Qtq (x)) is not completed before time n (see above). Writing Qtk = Qtk(x), we have

|σ| =
|Qtq |

|Qtq−1 |

|Qtq−1 |

|Qtq−2 |
· · ·

|Qt1 |

|ω|
|ω|

≤ Kq
0

|f tq−1+pq−1(Qtq )|

|f tq−1+pq−1(Qtq−1)|

|f tq−2+pq−2(Qtq−1)|

|f tq−2+pq−2(Qtq−2)|
· · ·

|fp(ω)(Qt1)|

|fp(ω)(ω)|
|ω|

≤ c−q
1 Kq

0

|f tq(Qtq)|

|f tq−1+pq−1(Qtq−1)|

|f tq−1(Qtq−1)|

|f tq−2+pq−2(Qtq−2)|
· · ·

|f t1(Qt1)|

|fp(ω)(ω)|
|ω|

≤ Kq e−|µq |

e−
7
λ

α|µq−1|

e−|µq−1|

e−
7
λ

α|µq−2|
· · ·

e−|µ1|

e−
7
λ

α|µ0|
|ω| .

Here (P3) is used in the first inequality, (P1)(ii) is used in the second and Lemma 3.1 in
the third. With α < 1

100λ, the estimate above gives

|σ| < Kqe−
Pq

k=1
9
10

|µk|+
1
10

|µ0||ω| = Kqe−
9
10

R+ 1
10

|µ0||ω| := |σ|R.

(This estimate is valid only if f i(ω) has completed its first bound period, which is not a
problem since n > K|µ0|.) We estimate |{S > n}| by

|{S > n}| =
∑

q,R

|Aq,R| ≤
∑

R

(number of σ in ∪q Aq,R) · |σ|R .

10



There are

(

R− 1
q

)

ways of decomposing R into a sum of q + 1 integers. For a fixed

q-tuple (µ1, · · · , µq), µi > 0, we claim there are ≤ 2qµ2
1µ

2
2 · · ·µ

2
q possibilities for σ with the

µ-coordinates of their essential free return addresses being (±µ1, · · · ± µq). This is because
f tk(Qtk (σ)) is short enough that it can meet at most one Cδ(x̂), which contains ≤ 2µ2

k

intervals of the form I±µkj . Furthermore, for (µ1, · · · , µq) with |µ1|+ |µ2|+ · · · + |µq| = R,
we have µ2

1µ
2
2 · · · µ

2
q ≤ (R

q
)2q.

There is one other piece of information that is crucial to us, namely that all bound
periods are ≥ ∆ := K−1 log 1

δ
. This means that for a given R, the only feasible q are ≤ R

∆ .
For a fixed R, then, the number of σ in ∪qAq,R is

≤
∑

q

(

R− 1
q

)

· 2q

(

R

q

)2q

≤
R

∆
·

(

R
R
∆

)

· 2
R
∆ ∆2 R

∆ ,

which, by Sterling’s formula, is

∼
R

∆

(

eǫ(
1
∆

) 2
1
∆ ∆

2
∆

)R

where ǫ

(

1

∆

)

→ 0 as δ → 0.

Calling the expression above (1 + η(δ))R, we have η(δ) → 0 as δ → 0.
To finish, we note that n ≤ K(|µ0|+R) where K is as in Lemma 3.2, since the essential

bound period following the qth essential return expires before time K(|µ0| +R). Thus

|{S > n}| <
∑

R≥K−1n−|µ0|

Kq(1 + η(δ))Re−
9
10

R+ 1
10

|µ0||ω|

< e−
4
5
K−1n+ 1

10
|µ0||ω| < e−

1
2
K−1n|ω|

provided that n > K|µ0|. �

Proof of Proposition 3.1: First there is the trival case where for some i > 0, all points
in ω have the same itinerary through time i− 1 and |f i(ω)| > δ, so that S|ω = i. This case
aside, let t0 ≥ 0 be the first time Qt0 contains more than one element. Clearly, t0 < K log 1

δ
,

and |f t0(ω)| > K−1δ by (P1). Let n > 0 be an arbitrary integer. For each ω′ ∈ Qt0 such

that f t0(ω′) ≈ Iµj , |µ| < K−1n, we have |ω′ ∩ {S > t0 + n}| < K0e
− 1

2
K−1n|ω′| by Lemma

3.3, K0 here being the distortion constant for f t0. The measure of the union of ω′ ∈ Qt0

with |µ| > K−1n is ≤ Ke−K−1n. It follows therefore that

|{x ∈ ω : S(x) > t0 + n}| < Ke−
1
2
K−1n|ω| +Kδ−1e−K−1n|ω| < e−K−1

2 (t0+n)|ω|

provided K2 is sufficiently large and n+ t0 > K2 log δ−1. �

3.2 Proof of Theorem 1

Let m denote Lebesgue measure on I, and let f i
∗(m) be the Borel measure with f i

∗(m)(E) =
m(f−i(E)). Fix l := Iµ0j0 for some µ0, j0. For n = 1, 2, · · · , let

νn =
1

n

n−1
∑

i=0

f i
∗(m|l).

11



Clearly, any limit point of νn in the weak∗ topology is f -invariant. As we will see, it suffices
to show that a positive fraction of these measures is absolutely continuous with respect to
m (written “<< m”). The next lemma helps us “catch” this fraction:

Lemma 3.4 There exist (i) an interval L ⊂ I, (ii) a number c > 0, (iii) a sequence of

integers n1 < n2 < · · · , and (iv) for each i = 0, 1, 2, · · · , a collection of subsegments {ω
(i)
j }

of l, with the property that the following hold for each i, j:

(a) f i(ω
(i)
j ) = L;

(b) (f i)′(x)
(f i)′(y)

< K0 for all x, y ∈ ω
(i)
j ;

(c) 1
nk

∑nk−1
i=0 m(∪jω

(i)
j ) ≥ c m(l).

We first finish the proof assuming the conclusion of Lemma 3.4: Let

ν̂nk
=

1

nk

nk−1
∑

i=0

f i
∗(m|

(∪jω
(i)
j )

),

and let ν̂ be a limit point of ν̂nk
. It follows from Lemma 3.4(c) that ν̂(L) > cm(l) > 0.

From Lemma 3.4(a) and (b), we see that if ρk is the density of ν̂nk
, then ρk(x)/ρk(y) ≤ K0

for all x, y ∈ L. These bounds are passed to the limit measure ν̂. In particular, ν̂ << m.
Now let ν be a limit point of νnk

. Then ν ≥ ν̂, meaning ν− ν̂ is a nonnegative measure.
We decompose ν into νac + ν⊥ where νac << m and ν⊥ is singular with respect to m. Since
f∗(νac) << m and f∗(ν⊥) ⊥ m, it follows that both νac and ν⊥ are f -invariant. It remains
to argue that νac(I) > 0, which is true since νac ≥ ν̂ and ν̂(L) > 0.

Proof of Lemma 3.4: We introduce a sequence of stopping times S0 < S1 < S2 < · · · on
l as follows: Let S0 = 0 and S1 = S where S is as defined in Sect. 3.1. For k ≥ 1, let x ∈ ω
be such that Sk(x) has been defined. For definiteness, suppose x ∈ ω ∈ Qi−1 with Sk|ω = i.
We define Sk+1|ω = Sk +S|fSk (ω) ◦f

Sk , i.e., Sk+1(x) is defined to be the smallest j > i such

that f j(Qj−1(x)) is free and has length > δ. Let Q̃i−1 = {ω ∈ Qi−1 such that Sk|ω = i for
some k}. It follows from Proposition 3.1 that for all such ω,

∫

ω

(Sk+1 − Sk)dm ≤M |ω|

for some M possibly dependent on δ but independent of ω, k or i. Keeping k fixed while
summing over ω and i, we obtain

∫

l
(Sk+1 − Sk)dm ≤M m(l). Summing over k then gives

∫

l

Skdm ≤Mk m(l).

By Chebychev’s Inequality,

m{S[ 1
2M

N ] > N} ≤
1

2
m(l).

Hence
1

N

∑

i≤N

m(∪{ω ∈ Q̃i−1}) ≥
1

4M
m(l). (2)
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To finish, we partition I into intervals L1, L2, · · · , L 3
δ

of length 1
3δ each. For each

ω ∈ Q̃i−1, since |f i(ω)| > δ, there exists n = ψ(ω) such that f i(ω) ⊃ Ln. Let ω̂ = ω∩f−iLn.
By (P3), there exists K ′ such that m(ω̂) > K ′−1m(ω). Together with (2), this implies that
for each N , there exists n = n(N) such that

1

N

∑

i≤N

m(∪{ω ∈ Q̃i−1 : ψ(ω) = n}) ≥
δ

12MK ′
m(l).

Let n∗ be such that n∗ = n(N) for infinitely many N . We let L = Ln∗ , and for each i, let

{ω
(i)
j } := {ω̂ : ω ∈ Q̃i−1, ψ(ω) = n∗}. �

References: A version of the material in Sect. 3.1 is used in [BC2] (in a different context).
Sect. 3.2 follows the construction of SRB measures in [BY].

Part II PARAMETER ISSUES

4 Admissible One-parameter Families

4.1 Statement of Theorem 2

We say a 1-parameter family of 1D maps {fa ∈ C2(I, I), a ∈ (a1, a2)} is C2 if the map
(x, a) 7→ fa(x) is C2. If I is an interval, we assume fa(I) is contained in the interior of I;
small modifications of some statements are needed otherwise. Assuming a1 < 0 < a2 and
f0 ∈ M, certain orbits of f0 have natural continuations to a near 0. For example:

(i) Continuations a 7→ x̂(a) of every x̂ ∈ C(f0) is clearly well defined.

(ii) Let Λ ⊂ I be a closed subset with the property that f0(Λ) ⊂ Λ and Λ ∩ C(f0) = ∅.
Then Λ has a natural continuation a 7→ Λ(a) to a small interval containing 0. Moreover,
for each x ∈ Λ, a 7→ x(a) is differentiable. (For more detail, see Sect. 4.2).

Definition 4.1 Let {fa} be a 1-parameter family with f0 ∈ M. We say {fa} satisfies the
parameter transversality condition (PT) at f0 if for every x̂ ∈ C(f0) and q = f0(x̂),

ĉ(x̂) :=
d

da
(fa(x̂(a)) − q(a))

∣

∣

∣

∣

a=0

6= 0.

The notation “q(a)” in the displayed formula above is to be interpreted as follows: Since
f0 ∈ M, q is contained in a closed subset Λ of the kind in (ii) above. By q(a), we refer to
the continuation of q in the sense of (ii).

As a varies, fa(x̂(a)) moves with a, as does the set Λ(a). Roughly speaking, (PT)
stipulates that the two move at different speeds. In general, Λ moves more slowly, and
the trajectory of a 7→ fa(x̂(a)) moves “through” Λ. This is why we think of (PT) as a
transversality condition.
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Theorem 2 For every C2 family {fa} satisfying (PT) at f0 ∈ M, the set {a : fa ∈ G} has
positive Lebesgue measure.

The rest of this paper is devoted to the proof of Theorem 2.

To simplify slightly the discussion, we assume from here on that C(fa) = C(f0) := C for
all a. This is easily arranged via a-dependent changes of coordinates that do not affect the
content of the theorem. As before, critical points will be denoted by “hats” (e.g., x̂ ∈ C,
while x is an arbitrary point in I).

Standing assumptions for Part II:
- (a1, a2) is an interval with a1 < 0 < a2;
- {fa, a ∈ (a1, a2)} is a C2 family with C(fa) = C(f0) for all a;
- f0 ∈ M, and (PT) is satisfied at f0.

System constants for Part II are allowed to depend only on (i) f0 (including the constants
in Sect. 1.1 associated with f0), (ii) the C2 norm of the family {fa}, (iii) ĉ := minx̂∈C |ĉ(x̂)|
and (iv) our choice of λ.

4.2 Alternate formulation of (PT)

We begin with some simple facts about the symbolic dynamics of f = f0 ∈ M. Let
J = {J1, · · · , Jq} be the components of I \ C. For x ∈ I such that f ix 6∈ C for all i ≥ 0,
let φ(x) = (ιi)i=0,1,··· be given by ιi = k if f ix ∈ Jk.

Lemma 4.1 For f ∈ M, there exists an increasing sequence of compact sets Λ(n) such that
(a) Λ(n) ∩ C = ∅, f(Λ(n)) ⊂ Λ(n), and f |Λ(n) is conjugate to a shift of finite type;
(b) ∪nΛ(n) is dense in I;
(c) if infi≥0 d(f

i(x), C) > 0, then x ∈ Λ(n) for some n.

Proof: First we argue that ∪i≥0f
−iC is dense in I. If not, there would be an interval ω

with the property that φ(x) is identical for all x ∈ ω. Let ω be a maximal interval of this
type. Then either (i) fn+k(ω) ⊂ fn(ω) for some n, k, or (ii) fk(ω), k = 0, 1, · · · , are pairwise
disjoint. Case (i) cannot happen since it implies the presence of a periodic point x with
|(fk)′x| ≤ 1. Case (ii) is equally absurd, for it implies the existence of {ki} where fki(ω)
are arbitrarily short. We leave it as an easy exercise to see that this is incompatible with
the definition of M.

For definiteness, consider I = S1. Let ln(x̂) and rn(x̂) be the two points in ∪0<i≤nf
−iC

closest to x̂ ∈ C, and let Λ(n) = {x ∈ I : f ix 6∈ ∪x̂∈C(ln(x̂), rn(x̂)) ∀i ≥ 0}. Then for
each n, Λ(n) is compact and f(Λ(n)) ⊂ Λ(n). That ∪nΛ(n) is dense in I follows from (i)
∪0<i≤nf

−iC ⊂ Λ(n) for all n large enough that (ln(x̂), rn(x̂)) ⊂ (x̂ − δ0, x̂ + δ0), and (ii)
∪i>0f

−iC is dense in I. Assertion (c) follows immediately from this construction.

To show that f |Λ(n) is conjugate to a shift of finite type, let J (n) = {J
(n)
i } be the partition

of I by ∪0≤i≤nf
−iC. For J

(n)
i 6= (ln(x̂), x̂) or (x̂, rn(x̂)), observe that by construction,

f(J
(n)
i ) is equal to the union of a finite number of elements of J (n). Let Λ

(n)
i = Λ(n) ∩ J

(n)
i .
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Then the alphabet of the shift in question is {i : Λ
(n)
i 6= ∅}, and the transition i → j is

admissible if f(Λ
(n)
i ) ⊃ Λ

(n)
j .

Where I is an interval, Λ(n) is as above but restricted to the interval [z1
n, z

2
n] where z1

n

and z2
n are the two points in ∪0<i≤nf

−iC closest to the endpoints of I. The end intervals
are excluded because they do not have the required Markov property. �

Our next result guarantees that q(a) in Definition 4.1 is well defined.

Corollary 4.1 For f ∈ M, let q ∈ I be such that δ1 := infn≥0 d(f
n(q), C) > 0. Then for

all g with ‖g−f‖C2 < ε where ε = ε(δ1), there is a unique point qg ∈ I with φg(qg) = φf (q).

Proof: Fix n large enough that for all i ≥ 0, f i(q) 6∈ (ln(x̂), rn(x̂)) for all x̂ ∈ C, and let
Λ = Λ(n). Let B = ∪i∂Λ̄i where Λ̄i is the shortest interval containing Λi. Since B is a
finite set with f(B) ⊂ B, it consists of preperiodic points. From Lemma 1.1, the periodic
points in question are repelling. Thus if g is sufficiently near f , there is a unique set Bg

with g(Bg) ⊂ Bg such that g|Bg is conjugate to f |B. Using Bg, we recover a set Λg on which
g is conjugate to f |Λ. The uniqueness of qg follows from the expanding property of g away
from C (Lemma 1.1). �

We return now to the C2 family {fa} with f0 ∈ M. Let x̂ ∈ C be fixed, and let q = f0(x̂).
We write F (x, a) := fa(x), reserving (·)′ for x-derivatives, i.e., ∂xF (x, a) = (fa)

′(x).

Proposition 4.1 There is an interval ω in a-space containing 0 in its interior on which
q(a) is defined, a 7→ q(a) is differentiable, and

d

da
q(a) = −

∞
∑

i=1

∂aF (f i−1
a (q(a)), a)

(f i
a)

′(q(a))
. (3)

Proof: Let q be as in the proof of Corollary 4.1. We assume ω is short enough that for all
a ∈ ω, q(a) is well defined, q(a)∩C 1

2
δ0

= ∅, and that (P1) holds for fa outside of C 1
2
δ0

with

uniform bounds. In the computations below, we suppress the dependence on a, writing
f = fa, q = q(a), ∂aF (·) = ∂aF (·, a), and so on.

Continuing to use the notation in Corollary 4.1, we let Λi0,i1,··· ,im = {x ∈ I : f j(x) ∈
Λij , 0 ≤ j ≤ m}, and let Λi0,i1,··· ,im(q) be the cylinder set containing q. For each m, choose

q(m) ∈ ∂Λ̄i0,i1,··· ,im(q). Then q(m) → q. It suffices to show that as functions of a, d
da
q(m)

converges uniformly to the right side of (3). Let p(m) = fm(q(m)). Differentiating, we obtain

d

da
p(m) =

m
∑

i=1

(fm−i)′(f i(q(m))) ∂aF (f i−1(q(m))) + (fm)′(q(m))
d

da
q(m).

This gives

d

da
q(m) =

d
da
p(m)

(fm)′(q(m))
−

m
∑

i=1

∂aF (f i−1q(m))

(f i)′(q(m))
. (4)

We stress that all the action below takes place outside of C 1
2
δ0

, where |(fn)′| grows

exponentially (with prefactor 1
2δ0c1).
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To estimate (4), observe that since p(m) ∈ B (see the proof of Corollary 4.1), and B is a
finite set, d

da
p(m) is uniformly bounded for all m. With |(fm)′(q(m))| growing exponentially,

the first term on the right is exponentially small. It remains to check that the second term
converges uniformly to the right side of (3). Since the tail of the sum in (3) decreases
exponentially (uniformly bounded numerator and exponentially increasing denominator), it
suffices to verify that

A :=

∣

∣

∣

∣

∣

m
∑

i=1

∂aF (f i−1(q(m)))

(f i)′(q(m))
−

m
∑

i=1

∂aF (f i−1(q))

(f i)′(q)

∣

∣

∣

∣

∣

≤
m
∑

i=1

|∂aF (f i−1(q(m))) − ∂aF (f i−1(q))|

|(f i)′(q(m))|
+

m
∑

i=1

|∂aF (f i−1(q))|

|(f i)′(q(m))|
·

∣

∣

∣

∣

∣

(f i)′(q(m))

(f i)′(q)
− 1

∣

∣

∣

∣

∣

converges to 0 uniformly. Consider the ith term in the first sum. By the expanding property
of f outside of C 1

2
δ0

, the numerator is < const e−
1
4
λ0(m−i) |fm(q(m)) − fm(q)|, while the

denominator is > const e
1
4
λ0i. The second sum is estimated similarly. Together they give

A < const me−
1
4
λ0m. �

Let x̂i(a) := f i
a(x̂(a)), and recall the definition of ĉ(x̂) in Definition 4.1.

Corollary 4.2

ĉ(x̂) =
dx̂1

da
(0) +

∞
∑

i=1

∂aF (x̂i(0), 0)

(f i
0)

′(x̂1(0))
.

We have thus obtained an equivalent formulation of (PT) that involves only ∂aF (·, ·)
and properties of f0.

4.3 Comparability of x- and a-derivatives

For f0, λ, α and ε as in Proposition 2.1, we define

GN (f0;λ, α, ε) := {f : ‖f − f0‖C2 < ε and (G1), (G2) hold for all x̂ ∈ C and n ≤ N}.

Proposition 4.2 Let λ, α and ε be fixed. Then there exist ε̂ > 0 and î ∈ Z
+ such that the

following holds for all N ∈ Z
+: Let ΩN ⊂ (−ε̂, ε̂) be such that fa ∈ GN (f0;λ, α, ε) for all

a ∈ ΩN . Then for every a ∈ ΩN and x̂ ∈ C,

1

2
|ĉ(x̂)| <

| d
da
x̂i(a)|

|(f i−1
a )′(x̂1)|

< 2|ĉ(x̂)| for î < i ≤ N.

Proof: Writing
d

da
x̂i(a) = (fa)

′(x̂i−1)
d

da
x̂i−1(a) + ∂aF (x̂i−1, a),

we obtain inductively

d
da
x̂i(a)

(f i−1
a )′(x̂1)

=
d

da
x̂1(a) +

i−1
∑

j=1

∂aF (x̂j , a)

(f j
a)′(x̂1)

.
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Letting I(a, i) denote the expression on the right side above, we choose î large enough that
(i) I(0, î) ≈ ĉ(x̂) and (ii) for i > î,

∣

∣

∣

∣

∣

∣

i−1
∑

j=î

∂aF (x̂j , a)

(f j
a)′(x̂1)

∣

∣

∣

∣

∣

∣

<< |ĉ(x̂)| uniformly for all a ∈ J.

(i) makes sense because ĉ(x̂) 6= 0 by (PT). (ii) is because |∂aF (x̂j , a)| < K and |(f j
a)′(x̂1)| >

c1e
λj from (G2). Since only a finite number of iterates are involved, we may now shrink ε̂

sufficiently so that |I(a, î) − I(0, î)| << |ĉ(x̂)| for all a ∈ (−ε̂, ε̂). �

References: The comparability of x- and a-derivatives is first used in [BC1]; the unimodal
case of the material in Sects. 4.2 and 4.3 is in [TTY].

5 Evolution of Critical Curves

5.1 Logistics

Much of the rest of the analysis revolves around evolutions of the type

a 7→ x̂i(a), i = 0, 1, 2, · · · , for x̂ ∈ C, a ∈ J,

where J is an interval in (−ε̂, ε̂). Via the geometry of these curves, we seek to determine what
fraction of J corresponds to “bad” parameters, that is to say, what fraction of these curves
comes too close to the critical set (therefore violating (G1)), or visits the critical set too
often (thereby violating (G2)). Herein lies the dilemma: In order for the curves a 7→ x̂i(a) to
have controlled geometry, the maps fa corresponding to the a’s involved must (individually)
be good to start with. On the other hand, by studying curve segments corresponding to
good parameters only, how are we to determine what fraction of parameters are bad?

The following discussion motivates our answer to this logistical dilemma.

Properties of f ∈ GN (f0;λ, α, ε) up to time 1
α∗N, α∗ := 3

λ
α

Assume f ∈ GN (f0;λ, α, ε), and consider x̂ ∈ C.
Suppose for some n ≤ 1

α∗N , x̂n ∈ Cδ with d(x̂n, C) > e−αn. We claim that (P2) in Sect.
2.1 holds for this return even though n may be greater than N . This is because the critical
point that will guide x̂n through its partial derivative recovery obeys (G1) and (G2) up to
time N , and by the proof of (P2), the time it takes to complete this recovery is < 3

λ
αn ≤ N .

Indeed if we assume (G1) holds for x̂ up to time n, n ≤ 1
α∗N , then on the time interval

[0, n], the orbit of x̂1 has the bound/free behavior described in Sect. 2.1. Moreover, by an

argument identical to that for Corollary 2.1, we have |(f j)′(x̂1)| > K−1e
1
4
λj for j ≤ n.

We remark that beyond time 1
α∗N , the dynamical description of x̂ in the last paragraph

ceases to be valid as soon as a bound period > N is encountered. Conversely, the behaviors
of other critical orbits beyond time N do not impact the properties of x̂ up to time 1

α∗N .

In view of the discussion above, we modify Proposition 4.2 slightly as follows:

Proposition 4.2’ In addition to the hypotheses in Proposition 4.2, we assume that for
some x̂ ∈ C and n ∈ (N, 1

α∗N ], (G1) holds for x̂ up to time n. Then the conclusion of
Proposition 4.2 holds for this x̂ for all i ≤ n.
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5.2 Duality between phase-space and parameter-space dynamics

Setting. Let λ < 1
4λ0 be as before. To establish the above-mentioned duality, new up-

per bounds are imposed on α and ε (or equivalently ε̂). Let ΩN = {a ∈ (−ε̂, ε̂) : fa ∈
GN (f0;λ, α, ε)}. For the rest of Section 5, we fix x̂ ∈ C. All parameters considered are
assumed to be in ΩN ; all indices considered are assumed to be ≤ 1

α∗N , and (G1) is assumed

to hold for x̂ for all the indices in question. We use the notation τi(a) := d
da
x̂i(a).

Our main results are (P1’)–(P3’), three properties of a 7→ x̂i(a) that are the analogs of
(P1)–(P3) in Sect. 2.1. We state also two lemmas that lie at the heart of these properties.
To avoid disrupting the flow of ideas, proofs are postponed to Sect. 5.3.

Lemma 5.1 Let n > î where î is as in Proposition 4.2. Then

(1 −Ke−
1
4
λn) |(f i

a)
′(x̂n)| ≤

|τn+i|

|τn|
≤ (1 +Ke−

1
4
λn) |(f i

a)
′(x̂n)|.

(P1’) (Outside of Cδ): There exists i0 ≥ î such that the following hold for n ≥ i0:

(i) If x̂n is free, and x̂n+j 6∈ Cδ ∀ 0 ≤ j < j0, then |τn+j| >
1
2c1δe

1
4
λ0j |τn| for j ≤ j0;

(ii) if in addition x̂n+j0 ∈ Cδ0 , then |τn+j0| >
1
2c1e

1
4
λ0j0 |τn|.

The reader should think of i0 as the time after which x- and a-derivatives are sufficiently
close in the sense of Lemma 5.1. We assume x̂i 6∈ C 1

2
δ0

for all i < i0.

Consider next an interval ω ⊂ ΩN with x̂n(ω) ⊂ I+
µj . To establish the desired rela-

tionship between phase-space and parameter-space dynamics during the bound period, we
impose the following additional upper bound on α: Let L be a Lipschitz constant of the
map G : (x, a) 7→ (fa(x), a). We assume α is small enough that

L
3
λ

α < e
1
8
λ. (5)

For each a ∈ ω, let pa denote the bound period of Iµj with respect to fa, and let HD(·, ·)
denote the Hausdorff distance between two sets.

Lemma 5.2 Let ω and α be as above. Then the following hold for all a ∈ ω:

HD(x̂n+j(ω), f j
a(x̂n(ω))) << e−2αj for all j < pa.

We define the bound period p̂n(ω) of x̂n(ω) in parameter-space dynamics to be

p̂n(ω) := min{pa : a ∈ ω}.

(P2’) (Partial derivative recovery): Suppose x̂n(ω) ⊂ I+
µj , and let p̂ = p̂n(ω). Then

(a) 1
3 ln(max|f ′|) |µ| ≤ p̂ ≤ 3

λ
|µ|;

(b) for a, a′ ∈ ω and j < p̂, |x̂n+j(a) − x̂n+j(a
′)| < 2e−2αj ;

(c) |τn+p̂(a)| > e
λp̂
4 |τn(a)| for all a ∈ ω;

(d) if x̂n(ω) ≈ Iµj , then |x̂n+p̂(ω)| ≥ e−
8α
λ
|µ|.
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To state (P3’), we divide each orbit in the time interval [i0, n] into bound and free
periods as in Sect. 2.1, and say all a ∈ ω have the same itinerary up to time n if (i) their
bound and free periods coincide and (ii) whenever x̂i(ω) is free, it is ⊂ π+ for some π ∈ P.

(P3’) (Global distortion): There exist i1 > i0 and K3 > 1 such that if n ≥ i1 and all
points in ω have the same itinerary through step n− 1, then for all a, a′ ∈ ω,

K−1
3 <

τn(a)

τn(a′)
< K3.

Shrinking ε if necessary, we assume from here on that x̂i 6∈ C 1
2
δ0

for all i < i1.

5.3 Proofs of (P1’)–(P3’)

Proof of Lemma 5.1: Let ξ = x̂n. From

τn+i = (fa)
′(ξi−1)τn+i−1 + ∂aF (ξi−1, a),

we deduce inductively that

τn+i = (f i
a)

′(ξ)τn +

i−1
∑

j=0

(f i−j−1)′(ξj+1)∂aF (ξj, a)

= (f i
a)

′(ξ)τn



1 +
i−1
∑

j=0

∂aF (ξj , a)

(f j+1
a )′(ξ)τn



 .

Proposition 4.2’ and Corollary 2.1 then give
∣

∣

∣

∣

∣

∣

i−1
∑

j=0

∂aF (ξj , a)

(f j+1
a )′(ξ)τn

∣

∣

∣

∣

∣

∣

≤ 2|ĉ(x̂)|
i−1
∑

j=0

∣

∣

∣

∣

∣

∂aF (ξj , a)

(fn+j
a )′(x̂1(a))

∣

∣

∣

∣

∣

≤ Ke−
1
4
λn.

�

Proof of (P1’): (P1’) follows immediately from (P1) via Lemma 5.1. With i0 large
enough, the x- and a-derivatives are as close as need be. �

Proof of Lemma 5.2: It suffices to consider the end points of the segments to be
compared. Suppose ω = [ā1, ā2]. Then for i = 1, 2,

|x̂n+j(āi) − f j
a(x̂n(āi))| = |Gj(x̂n(āi), āi) −Gj(x̂n(āi), a)| ≤ Lj|āi − a| ≤ Lj|ω|. (6)

By Proposition 4.2 and Corollary 2.1, |ω| ≤ Ke−
1
4
λn. Also, j ≤ pa, which, by (P2), is

≤ 3
λ
αn. Thus Lj |ω| << e−2αj if α satisfies (5). �

Proof of (P2’): (a) is true because p̂ = pā for some ā ∈ ω. (b) and (d) are immediate
consequences of Lemma 5.2, and (c) follows from Lemma 5.1. �

Turning now to the setting of (P3’), we let a, a′ ∈ ω, and for some k with i0 ≤ k < n,
let ξ = x̂k(a) and ξ′ = x̂k(a

′).
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Lemma 5.3 There exists K > 0 such that for all i such that k + i ≤ n,

(f i
a)

′(ξ)

(f i
a′)′(ξ′)

≤ exp







i−1
∑

j=0

K
|ξj − ξ′j|

d(ξj , C)







.

Proof: First we write

log
(f i

a′)′(ξ′)

(f i
a)

′(ξ)
≤

i−1
∑

j=0

|(fa)
′(ξj) − f ′a′(ξ′j)|

|(fa)′(ξj)|
<

i−1
∑

j=0

K
|ξj − ξ′j| + |a− a′|

d(ξj , C)

< K

i−1
∑

j=0

(

1 +
|a− a′|

|ξj − ξ′j|

)

|ξj − ξ′j |

d(ξj , C)
.

Then we use Proposition 4.2’ and Corollary 2.1 to estimate the quantity in parenthesis:
Assuming for definiteness that a′ < a,

|ξj − ξ′j| =

∫ a

a′

|τk+j(s)|ds ≥
1

2
|ĉ(x̂)|

∫ a

a′

|(fk+j
s )′(x̂1(s))|ds ≥

1

2
|ĉ(x̂)|e

1
4
λk|a− a′|. (7)

�

Proof of (P3’): By Proposition 4.2’, it suffices to show

(fn−1
a′ )′(x̂1(a

′))

(fn−1
a )′(x̂1(a))

< K,

the proof of which follows closely that of (P3) in Sect. 2.2. Let i0 < t1 < t1 + p1 ≤ t2 <
t2 + p2 ≤ · · · where ti are free return times and pi are the associated bound periods. For
definiteness we assume tq + pq ≤ n ≤ tq+1. Then

log
(fn−1

a′ )′(x̂1(a
′))

(fn−1
a )′(x̂1(a))

≤ log
(f t1−1

a′ )′(x̂1(a
′))

(f t1−1
a )′(x̂1(a))

+

q
∑

k=1

(S′
k + S′′

k)

where

S′
k = log

|(fpk

a′ )′(x̂tk(a′))|

|(fpk
a )′(x̂tk(a))|

and S′′
k = log

|(f
tk+1−(tk+pk)
a′ )′(x̂tk+pk

(a′))|

|(f
tk+1−(tk+pk)
a )′(x̂tk+pk

(a))|
,

except for S′′
q , which ends at time n− 1 instead of tq+1.

Let σk = [x̂tk(a), x̂tk (a′)]. It follows from (P2’)(c) and (P1’)(ii) that, for k < q, |σk+1| ≥
1
2c1e

1
4
λ(tk+1−tk)|σk|, which we may assume is ≥ τ̂ |σk| for some τ̂ > 1 (the factor 1

2c1 is again
absorbed into the exponential assuming δ is sufficiently small).

In the proof of (P3), the derivative estimates in S′
k and S′′

k are converted to distance
estimates. This is exactly what we have done in Lemma 5.3. More precisely, if ξ = x̂tk(a)
and ξ′ = x̂tk(a′), then by Lemma 5.3,

S′
k ≤ K

pk−1
∑

j=0

|ξj − ξ′j|

d(ξj , C)
≤ K

pk−1
∑

j=0

|f j
a(ξ) − f j

a(ξ′)|

d(ξj , C)
+K

pk−1
∑

j=0

|f j
a(ξ′) − f j

a′(ξ′)|

d(ξj , C)
.
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The first sum on the right involves only the map fa and is ≤ K |σk|
d(ξ,C) by the corresponding

argument in the proof of (P3). For the second sum, we combine the estimate in (6) with
the result of (7) to show that it is

≤ K





pk−1
∑

j=0

(Leα)j



 |a− a′| ≤ K(Leα)
3
λ

αtke−
1
4
λtk |σk| << |σk|.

After this, the rest of the proof is as before. The sums S′′
k (including k = q) are estimated

similarly, the only difference being that the exponential growth of |ξj − ξ′j | here is derived
from (P1’).

It remains to treat the initial stretch. The estimate from time i0 to time t1 is identical
to that for S′′

k , and

log
(f i0−1

a′ )′(x1(a
′))

(f i0−1
a )′(x1(a))

≤ Ki0 |a− a′|

where K is related to the C2 norm of the 1-parameter family. Since |a− a′| < Ke−
1
4
λi1 , we

know that the contribution of the first i0 iterates is < 1 if i1 is sufficiently large.

This completes the proof of (P3’). �

Reference: A version of the material in Sects. 5.2 and 5.3 is contained in [BC1].

6 Two Parameter Estimates

6.1 Processes defined by critical orbits

Let λ, α, ε and ε̂ be as in Sect. 5.2. Associated with each x̂ ∈ C we now introduce the idea of
a process {γi} describing the dynamics of a 7→ x̂(a) combined with a deletion process. The
domain of definition of this process is ∆0, a subinterval of (−ε̂, ε̂). For each i = 0, 1, 2, · · ·
and a ∈ ∆0, γi(a) is equal to either x̂i(a) or ∗, the meaning of the latter being that the
parameter in question will not be considered further, i.e., it is deleted. In particular, if
γi(a) = ∗, then γi+k(a) = ∗ for all k > 0,

Roughly speaking, we seek to identify a decreasing sequence of subsets {γi 6= ∗} of ∆0

and a sequence of partitions Qi defined on {γi 6= ∗} representing the canonical subdivision
associated with a 7→ x̂(a). This subdivision is carried out in a manner analogous to that in
Sect. 3.1. As the reader will recall, the construction in Sect. 3.1 relies on the decomposition
of orbits into bound and free periods. We have seen in Section 5 that bound/free notions
are well defined for a 7→ x̂(a) under suitable circumstances. The idea is that whenever we
are unable to guarantee these circumstances, we will delete the parameter. Later on, we will
see that it is useful also to make deletions for other purposes (but will not concern ourselves
with that for now). This is the motivation for the definition below.

For N ≤ ∞, we say {γi, i < N} is a process associated with x̂ if the following hold: Let
∆0 ⊂ (−ε̂, ε̂) be an interval containing 0, and let i1 be as in Sect. 5.2.
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(1) (a) We assume γi(∆0)∩C 1
2
δ0

= ∅ for all i ≤ i1. In this time range, γi has no meaning.

We set γi = x̂i and Qi = {∆0}. No deletions are permitted.

(b) A subdivision must occur before γi(∆0) meets Cδ.

(2) At time i > i1, we assume that for all j < i, γj are defined, as are Qj , representing
a canonical subdivision. We assume also that the notion of bound/free makes sense
on each ω ∈ Qj. Consider now ω ∈ Qi−1 (on which γi−1 6= ∗). We first put on it the
canonical partition Qi as defined in Sect. 3.1. On each ω̂ ∈ Qi|ω, there are 2 options:
we either let γi = x̂i on all of ω̂, or we let it = ∗ on all of ω̂. The rules are as follows:

(a) We are free to set γi = ∗ or x̂i on any ω̂ outside of Cδ.

(b) For ω̂ ⊂ Cδ, the following conditions must be met if we wish to set γi|ω̂ = x̂i:

(i) x̂i(ω̂) ∩ {d(·, C) < e−αi} = ∅;

(ii) ω̂ ⊂ Ωα∗i, i.e., fa ∈ Gα∗i(f0;λ, α, ε) for all a ∈ ω̂.

Finally, we set γi = ∗ on {γi−1 = ∗}. This completes our definition at the ith step.
Paragraph (2) is then repeated with i+ 1 in the place of i.

We observe that the process above is well defined. It is clearly well defined initially.
When γi(ω̂) ⊂ Cδ, (2)(b) guarantees that for all a ∈ ω̂ for which γi(a) 6= ∗, the ensuing
bound period is meaningful (see Sect. 5.1). Once this is taken care of, Sect. 5.2 gives the
desired resemblance to phase-space dynamics until the next free return.

We remark that even though {γi} is associated with a particular x̂ ∈ C, condition
(2)(b)(ii) demands good behavior of all critical orbits up to time α∗i. The fact that this
requirement is only up to time α∗i, which is << i, is crucial for us. Observe also that on
each ∆0, there is a maximal process, referring to the one in which the only deletions are
those in (2)(b). All other processes are subordinate to this one, meaning they are defined
by rules that demand further deletions.

6.2 Deletions due to (G1)

We fix x̂ ∈ C and ∆0, and let {γi, i < n} be a process associated with x̂.

Lemma 6.1 There exists K such that for all ω ∈ Qn−1, if ω1 is the part of ω deleted on
account of (G1) at step n, then

|ω1| < Ke−
1
2
αn|ω| .

Proof: Suppose ω1 6= ∅. Let j0 be the largest j < n such that (i) ω ∈ Qj , (ii) γj(ω) is free
and “long”. (Such a j0 exists by condition (1)(b) in Sect. 6.1; one may have to go back to
the time when ω is created as a result of a subdivision.) There are two possibilities:

Case 1. γj0(ω) is outside of Cδ, i.e., γj0(ω) ≈ π for some π with π ∩ Cδ = ∅. Then
|γj0(ω)| ≥ δ, and |γn(ω)| > K−1δ. Not knowing the location of γn(ω), we assume the
worst-case scenario, namely that γn(ω) crosses entirely a forbidden region {d(·, ŷ) < e−αn}
for some ŷ ∈ C. Thus the fraction of ω with d(x̂n, C) < e−αn is < 2e−αn ·Kδ−1, which we
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may assume is < Ke−
1
2
αn (see the paragraph following Proposition 2.2). Here (P3’) is used

to transfer the ratio of lengths on γn(ω) back to ω.
Case 2. γj0(ω) ≈ Iµj . Let p be the bound period initiated at time j0. Observe first that

|γn(ω)| > K−1|γj0+p(ω)| > K−1e−
1
10

|µ|: Since γn(ω) is free (otherwise there would be no
deletion), n ≥ j0 + p. The first inequality follows from (P1’)(ii) combined (possibly) with
(P2’)(c); the second follows from (P2’)(d). Observe also that by design, |µ| ≤ αj0 < αn, so

the fraction of ω being estimated is again < Ke−αne
1
10

αn < Ke−
1
2
αn. �

6.3 Deletions on account of (G2)

We begin with an estimate on derivative growth in terms of the time an orbit spends in
bound periods initiated at returns to C

δ̂
for arbitrary δ̂ < δ. Consider f ∈ GN (f0;λ, α, ε)

and n ≤ 1
α∗N . Let x ∈ I be such that d(xi, C) ≥ min{1

2δ0, e
−αi} for all 0 ≤ i < n. By the

reasoning in Sect. 5.1, the usual bound/free decomposition makes sense for the orbit of x
up to time n. Let B(δ̂;n) denote the total number of i, 0 ≤ i ≤ n, such that xi ∈ C

δ̂
or it

is in a bound period initiated from a visit to C
δ̂
.

Lemma 6.2 Let f and x be as above. Given δ̂ ≤ δ and σ > 0, if B(δ̂;n) ≤ σn, then

|(fn)′(x)| > K−1δ̂ e[(1−σ) 1
4
λ0−α]n .

Proof: Consider first the case where xn is free. Let t̂1 < t̂1 + p̂1 ≤ t̂2 < t̂2 + p̂2 ≤ · · · ≤
t̂k + p̂k ≤ n where t̂1, · · · , t̂k are the consecutive free return times to {d(·, C) < δ̂}. Then

(fn)′(x) = (fn−t̂k−p̂k)′(xt̂k+p̂k
) · (f p̂k)′(xt̂k

) · (f t̂k−t̂k−1−p̂k−1)′(xt̂k−1+p̂k−1
) · · · (f t̂1)′(x).

We use (P1)(i) for (fn−t̂k−p̂k)′(xt̂k+p̂k
), (P1)(ii) for (f ti−t̂i−1−p̂i−1)′(xt̂i−1+p̂i−1

), and the triv-

ial estimate |(f p̂i)′(xt̂i
)| > c−1

1 for growth during bound periods (see (P2)(ii)). This gives

|(fn)′(x)| > K−1δ̂e
1
4
λ0(1−σ)n since p̂1 + · · · + p̂k ≤ σn by assumption. The factor −αn is

needed if n is not free; see Corollary 2.1. �

Corollary 6.1 Let the hypotheses be as in Lemma 6.2, with x = x̂1 for some x̂ ∈ C. We
assume further that d(x̂i, C) > 1

2δ0 for all i ≤ n0 where n0 is sufficiently large depending on

δ̂. Then B(δ̂; 0, n) < σn implies |(fn)′(x̂1)| > c1e
[(1−σ) 1

4
λ0−α]n.

Proof: The factor δ̂ is absorbed into the initial growth if n > n0. �

For f ∈ G, it can be deduced from properties of the invariant measure that
∫

1
n
B(δ̂;n)dµ

decreases with δ̂. In light of the duality in Sect. 5.2, one may expect a similar phenomenon
for a 7→ γi(a). We formulate below a large deviation estimate useful for estimating the
measure of parameters deleted on account of (G2).

Let {γi, i < n} be as in Sect. 6.2. For a such that γn(a) 6= ∗, let B(a, δ̂;n) be the
number B(δ̂;n) defined above with f = fa and x = x̂.

Proposition 6.1 Given any σ > 0, there exist positive numbers ε̂1 = ε̂1(σ) and δ̂ = δ̂(σ)
such that

|{a ∈ ∆0 : γn 6= ∗ and B(a, δ̂;n) > σn}| < e−ε̂1n|∆0|.
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6.4 Large deviation estimate

We first state the analog of Lemma 3.3. Let ω̂ ∈ Qj0 be such that γj0(ω̂) 6= ∗ and is free.
On ω̂ we define Ŝ, a stopping time starting from j0, as follows: We extend the process on ω
beyond time j0, and for each a ∈ ω, let k = k(a) > j0 be the first time when γk(Qk−1(a))
is not in a bound period and has length > δ. If such a k exists, we set Ŝ(a) = k − j0. If a
is deleted before that happens, we set Ŝ(a) = 0.

Lemma 6.3 Let ω̂ ∈ Qj0 be such that γj0(ω̂) is free and ≈ Iµj . Then

|{a ∈ ω̂ : Ŝ(a) > m}| < e−
1
2
K−1m |ω̂| for all m > K log |µ|.

The proof is entirely parallel to that of Lemma 3.3 in Sect. 3.1.

Proof of Proposition 6.1: We take a probabilistic viewpoint, with underlying probability
space (∆0, P ), P being normalized Lebesgue measure on ∆0. Let δ̂ > 0 be a small number
to be determined. Let n be fixed. The idea is to introduce Xi dominated by certain
exponential random variables such that B(a) := B(a, δ̂, n) ≤

∑

Xi(a).

Step I. Formulation of problem as one involving
∑

Xi

For each a ∈ ∆0, we define t0 < t1 < · · · and S1, S2, · · · via the following algorithm,
with the understanding that the algorithm terminates as soon as γi(a) = ∗ or time n is
reached. To get started, let t0 be the smallest j > 0 such that γj(Qj−1(a)) ∩Cδ̂

6= ∅.

(i) After ti is defined, we define Si+1: If Qti(a) ∩ Cδ̂
= ∅, set Si+1 = 0; if Qti(a) ⊂ C

δ̂
,

let Si+1 = min(Ŝ, n− ti) where Ŝ is the stopping time above starting from ti.

(ii) If Si+1 = 0, let ti+1 be the smallest j > ti such that γj(Qj−1(a)) ∩ Cδ̂
6= ∅; define

ti+1 the same way if Si+1 > 0 except that j is taken ≥ ti + Si+1.

Suppose ti(a) is defined. Let Q = Qti−1(a). Assuming δ̂ << δ, we claim:
(1) γti(Q) is free;

(2) |γti(Q)| > δ̂
1
10 ;

(3) for all a′, a′′ ∈ Q, τti(a
′)/τti(a

′′) < K.
(1) is true because trajectories of critical curves in bound periods initiated outside of C

δ̂

cannot meet C
δ̂
. If Si > 0, it may happen that ti = ti−1 + Si, in which case |γti(Q)| > δ

by definition. Otherwise we back up to time t when Q was first created as an element of
some Qj . Then ti−1 + Si ≤ t < ti, and γt(Q) ∩ C

δ̂
= ∅. If γt(Q) is outside of Cδ, then

|γti(Q)| > K−1δ by (P1’). If γt(Q) ≈ Iµj for some Iµj ⊂ Cδ \ Cδ̂
, then |γti(Q)| > K−1δ̂

8α
λ

by (P2’)(d). In all cases, (2) holds assuming δ̂ << δ. (3) follows from (P3’).

Because of (1)–(3), we think of ti as times of dynamical renewal.

In preparation for Step II, we organize some of the information from above as follows.
Let X0 = 0. For i = 1, 2, · · · , n, let Xi : ∆0 → Z

+ be such that Xi(a) = Si(a) where
Si(a) is defined, 0 otherwise. Then B ≤

∑

i≤nXi. It suffices to show P{
∑

i≤nXi > σn}
decreases exponentially with n. We define the following σ-algebras on ω: Let Ai be the set
of a for which ti is defined. Then Ai ∈ Fi, and for a ∈ Ai, the atom of Fi containing a
is Qti(a)−1(a). For a 6∈ Ai, the atom of Fi containing a is Qk(a) where k is the last step
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before the algorithm above is terminated. One verifies that Fi so defined is a σ-algebra,
that F0 < F1 < · · · < Fn, and that Xi is measurable with respect to Fi.

Step II. Large deviation estimate for
∑

1≤i≤nXi

First we compute the conditional distribution of Xi+1 given Fi, i ≥ 0. Consider Q ∈
Fi|Ai

. (On Q ∈ Fi with Q ∩Ai = ∅, Xi+1 = 0.) From (2) and (3) above, we have

(i) P (Xi+1 = 0 | Q) ≥ 1 −Kδ̂
9
10 .

For Iµj ⊂ C
δ̂
, Lemma 6.3 together with (1) and (3) above give

(ii) P (Xi+1 > m | Q∩{γti ∈ Iµj}) < Ke−
1
2
K−1m if m ≥ K|µ|; no information otherwise.

Combining the last two estimates, we obtain for all m ≥ 0,

P (Xi+1 > m | Q) < Kδ̂−
1
10 min(δ̂, e−K−1m) +Kδ̂

9
10 e−

1
2
K−1m. (8)

A simple computation then gives E[eρXi+1 |Q] < ∞ if ρ < 1
2K

−1 (where K is as in the

exponents above). We note further that by decreasing δ̂ (keeping ρ fixed), E[eρXi+1 |Q] can
be made arbitrarily close to 1. Let η > 0 be a number to be determined shortly, and choose
δ̂ = δ̂(η) sufficiently small that E[eρXi+1 |Q] < eη . Observing that the upper bound in (8)
and hence that for E[eρXi+1 |Q] do not depend on i or on Q, we conclude that with the
choices of ρ, η and δ̂ above, E[eρXi+1 |Fi] < eη for every i ≥ 0.

To finish, we observe that

E
[

eρ
P

1≤i≤n Xi

]

= E
[

E[eρ
P

1≤i≤n Xi |Fn−1]
]

= E
[

eρ
P

1≤i≤n−1 Xi E[eρXn |Fn−1]
]

≤ eη E
[

eρ
P

1≤i≤n−1 Xi

]

,

giving inductively E[eρ
P

1≤i≤n Xi ] ≤ enη. We arrive, therefore, at the estimate

P {B > σn} < P







∑

1≤i≤n

Xi > σn







< eηn−ρσn.

This is < e−
1
2
ρσn if η is chosen < 1

4ρσ. �

References: A version of Sects. 6.2 and 6.3 is used in [BC2]; Sect. 6.4 is taken from [WY2].

7 Positive measure sets of good parameters

7.1 Preliminary definitions and choices

1. We fix λ ≤ 1
5λ0.

2. Augmented versions of (G1) and (G2). For reasons to become clear, it will be advanta-
geous to put our good maps “deeper inside” GN (f0;λ, α, ε). We say x̂ ∈ C satisfies (G1)#

and (G2)# up to time N if for all 1 ≤ i ≤ N ,

(G1)# d(x̂i, C) > min(1
2δ0, 2e

−αi);
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(G2)# |(f i)′(x̂1)| > 2c1e
λ1i where λ1 = λ+ 1

100λ0,

and say f ∈ G#
N (f0;λ, α, ε) if all x̂ ∈ C satisfy (G1)# and (G2)# up to time N . Clearly,

G#
N (f0;λ, α, ε) ⊂ GN (f0;λ, α, ε). The proof of the following lemma is straightforward.

Lemma 7.1 There exists K4 > 1 for which the following holds: If fâ ∈ G#
N (f0;λ, α, ε),

then for all n ≤ N , fa ∈ Gn(f0;λ, α, ε) for all a ∈ [â−K−n
4 , â+K−n

4 ].

3. Choice of α. In addition to α < 1
100λ, we impose two upper bounds on α: The first

is introduced in (5) in Sect. 5.2; the second is (9) in Sect. 7.2. With λ and α fixed,

GN (f0;λ, α, ε) and G#
N (f0;λ, α, ε) will be abbreviated as GN and G#

N from here on.

4. Choices of σ and δ̂. We need σ to be small enough that the exponent in Corollary 6.1,
namely (1− σ)1

4λ0 −α, is > λ1. (For example, σ = 1
100 will do.) We then let δ̂ be given by

Proposition 6.1 with 1
2σ in the place of σ.

5 The start-up interval ∆0. We choose ∆0 ⊂ (−ε̂, ε̂) to contain 0 and to be short enough
that for some n0 sufficiently large, d(x̂i, C) > 1

2δ0 for all i ≤ n0, x̂ ∈ C and a ∈ ∆0. A
number of impositions on n0 have been made; see, for example, Sects. 2.1 and 5.2, and
Corollary 6.1. There will be more in the next two pages.

7.2 Inductive construction of ∆

We seek to construct a sequence of sets ∆0 ⊃ ∆n0 ⊃ ∆2n0 ⊃ ∆22n0
⊃ · · · in parameter

space with the properties that

(i) for each ℓ, {fa, a ∈ ∆2ℓn0
} ⊂ G#

2ℓn0
and

(ii) ∆ := ∩ℓ≥0∆2ℓn0
has positive Lebesgue measure.

The rules of construction are detailed below; the measure estimate is given in Sect. 7.3.

Overview of procedure

Let C := {x̂1, x̂2, · · · , x̂q}. Associated with each x̂k, we define a process {γk
i , i < ∞}

in the sense of Sect. 6.1 with the property that for every a such that γk
2ℓn0

(a) 6= ∗, x̂k(a)

satisfies (G1)# and (G2)# up to time 2ℓn0. We then let

∆k
2ℓn0

:= {γk
2ℓn0

6= ∗} and ∆2ℓn0
:= ∩1≤k≤q∆

k
2ℓn0

.

It follows that fa ∈ G#
2ℓn0

for every a ∈ ∆2ℓn0
.

The processes γk
i are updated in N -to-2N cycles, N = 2ℓn0, ℓ = 1, 2, · · · . Within each

cycle, we first update each of the q processes individually, i.e., extend γk
i from i = N to

i = 2N . At the end of this updating, we reset some of the values of γk
2N to ∗ to reflect the

combined status of all q processes before moving to the next cycle.

Remarks. It is absolutely essential to take inventory of the global picture at regular time
intervals (as we do at times 2ℓn0). Other than that, the precise order in which γk

i is updated
is unimportant. Also, the number “2” has little significance: all that is needed is a relation
with α that gives (9) below.
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Getting started: Let nk
1 be the smallest i > 0 such that x̂k

i (∆0)∩C 1
2
δ0

6= ∅. Then nk
1 > n0,

and |x̂k
nk

1
(∆0)| >

1
2δ0. Since δ << 1

2δ0, the first subdivision occurs at or before time nk
1.

Condition (1)(b) in the definition of a process in Sect. 6.1 is met. Recall that we have
assumed e−αn0 << δ, so that Lemma 6.1 applies to all deletions due to (G1)#.

Formal procedure from step N = 2ℓn0 to step 2N

At time N , we are handed q well defined processes {γk
i , i ≤ N}, k = 1, 2, · · · , q, with the

property that for each a ∈ ∆k
N = {γk

N 6= ∗},

(i) fa ∈ G2α∗N , and

(ii) x̂k(a) satisfies (G1)# and (G2)# up to time N .

The procedure from N to 2N consists of the following:

Step 1. The following is carried out for each of the processes {γk
i }.

1a. We extend γk
i up to i = 2N , deleting all ω ∈ Qi with γi(ω)∩ {d(·, C) < 2e−αi} 6= ∅.

(Deletions corresponding to (2)(b)(ii) in Sect. 6.1 are not needed because (i) above
already puts {γk

N 6= ∗} ⊂ Ω2α∗N .) We denote the resulting γk
2N by γk

2N,tmp1 as its
values will be reset momentarily.

1b. On each ω ∈ Qk
2N , we let γk

2N,tmp2 = ∗ if B(a, δ̂; 2N) > σN for a ∈ ω, and let it be

= γk
2N,tmp1 otherwise.

Step 2. On each ω ∈ Qk
2N , we let γk

2N = γk
2N,tmp2 if ω ∩ ∆N 6= ∅, otherwise let it = ∗.

It remains to show that these steps lead to (i) and (ii) above with N replaced by 2N .
For a ∈ ∆k

2N = {γk
2N 6= ∗}, Step 1a ensures that x̂k

i (a) satisfies (G1)# up to time 2N . By

Step 1b, B(a, δ̂;n) ≤ σN < σn. Our choice of σ (see Sect. 7.1) together with Corollary
6.1 then gives the lower bound for |(fn−1)′(x̂k

1)| in (G2)#. It remains to prove fa ∈ G4α∗N

for a ∈ ∆k
2N . Let ω be the element of Qk

2N containing a. Since ω survived the deletion
in Step 2, there must be a point â ∈ ω ∩ ∆N . By Lemma 7.1, it suffices to show that
ω ⊂ [â−K−4α∗N

4 , â +K−4α∗N
4 ]. By Proposition 4.2’, |ω| < 2(ĉc1)

−1e−2λ1N . (Observe that
the hypotheses of Proposition 4.2’ are met: ω ⊂ Ω2α∗N , and x̂k

i obeys (G1) up to time 2N .)
We conclude that ω ⊂ Ω4α∗N if

2(ĉc1)
−1e−2λ1N < K−4α∗N

4 . (9)

This is one of the conditions imposed on α in item 3 of Sect. 7.1.

7.3 Lower bound on measure of ∆

For each N and k, we now estimate the contribution to ∆N \ ∆2N (not ∆k
N \ ∆k

2N ! ) due
to deletions in γk

i from i = N to i = 2N .

Step 1a: By Lemma 6.1, the total measure deleted is <
∑

N<i≤2N Ke−
1
2
αi|∆0|.

Step 1b: By Proposition 6.1, the total measure deleted is < e−ε̂1N |∆0|.

Step 2: The sets ω removed in this step do not meet ∆N , i.e., they have been deleted
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earlier. Thus the actions taken in this step do not contribute to ∆N \ ∆2N .

Summing over the q critical points, we obtain

|∆N \ ∆2N | ≤ q



K
∑

N<i≤2N

e−
1
2
αi + e−ε̂1N



 |∆0|.

It follows that

|∆| ≥ |∆0| −
∑

|∆2ℓn0
\ ∆2ℓ+1n0

| >

(

1 − q

∞
∑

i=n0

(Ke−
1
2
αi + e−ε̂i)

)

|∆0|,

which is positive if n0 is sufficiently large. This completes the proof of Theorem 2. �

Reference: This section follows [WY2], which, together with its precursor [WY1] contain
the corresponding material for rank one attractors.
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