Two pricing approaches for carbon emissions allowances

Mireille Bossy
Issues and goals

Carbon markets as part of instruments to foster reduction of carbon dioxide emissions in order to respond to climate changes issues:

▶ To what extent are carbon market truly efficient to mitigate CO2 emissions?
▶ How to establish a good market design enabling mitigation?

Our two approaches(*):

▶ Quantitative : An indifference price from the producers view point in European Union Emission Trading Scheme (EU ETS)
▶ Qualitative : A game theory approach for the penalty design in a cap and trade scheme.

(*) : this work is funded by the French Environmental Agency ADEME.
The European Union Emission Trading Scheme

EU ETS : Exchange for allowances involving specific industrial sectors (power generation, cement, iron and steel, paper...).

The Kyoto phase (2008-2012) covers almost the half of the overall GHG emissions in Europe

(source: BlueNext)

Third phase (Strengthening) : 2013-2020
- setting an overall EU cap : a 20% cut in EU economy-wide emissions relative to 1990 levels
- a move from allowances for free to auctioning
EU ETS market rules

▶ Each phase: divided in yearly compliance periods

▶ At the beginning of the period: the state/EU decides how it distributes allowances to producers.

▶ At the end of the period: each agent must own as much allowances as its yearly CO2 (eq) emission quotas.

If excess of emissions: the agent pays a penalty: 100€ per ton CO2 (eq).

▶ In between: agent may sell/buy allowances on organized exchanges (ECX, BlueNext, EEX) or over the counter.
CO2 indifference price: general settings

- The agent control is the production strategy: \((\pi_t)_{0 \leq t \leq T} \)
 \[\pi_t = (\pi^1_t, \ldots, \pi^n_t) \in \mathbb{A} := \{ \eta \in \mathbb{R}^n; 0 \leq \eta_i \leq p_{\text{max}}^i \} \]
- The processes under control are:
 - \(E^\pi_t \): CO2 emissions at time \(t \)
 - \(W^\pi_t \): wealth at time \(t \)
- The market parameters:
 - \(\Theta_0 \): allocated allowances at time \(t = 0 \)
 - \(P (\cdot) \): the penalty function, increasing and vanishing on \(\mathbb{R}^- \)

Criterion for optimal control process \(\Pi^* \):

\[
E \left[U(W^\Pi^*_T - P(E^\Pi^*_T - \Theta_0)) \right] = \sup_{\pi \in \text{Adm}} E \left[U(W^\pi_T - P(E^\pi_T - \Theta_0)) \right]
\]

\(U \) is a strictly increasing and concave utility function.

Indifference price \(P^{\text{CO2}}(q) \) for buying/selling \(q \) allowances, at \(t = 0 \):

\[
P^{\text{CO2}}(q) = \inf \{ p \in \mathbb{R}; \sup_{\pi} E \left[U(W^\pi_T - qp - P(E^\pi_T - \Theta_0 - q)) \right] \}
- \sup_{\pi} E \left[U(W^\pi_T - P(E^\pi_T - \Theta_0)) \right] > 0 \}
\]

For simplicity: interest rate is set to zero
We focus on the electricity production sector

Huge part of the market: 70% of the allocation plan (phase 1).

More flexibility for emissions: fuel switching

Inelastic demand: the spot market price captures the stochastic demand

Global demand, production (mix), and emission on 2012-26-04, (from RTE France)
The wealth dynamics for the electricity producer

- **Stochastic input**: the electricity spot price S.
- **A 3D state space** (w, e, s) for (W, E, S).
- **The control** $\pi = (\pi^1, \ldots, \pi^n)$, a progressively measurable process valued in A: generated power, plants portfolio (coal, gas, oil, hydro, wind, PV, ...)
- **The dynamics of the wealth process**: for all $t \geq \theta$

$$
\begin{align*}
 dW_{t}^{\pi; \theta, w, s} &= \left\{ (\pi_{t} \cdot 1 - Q_{t}^{OTC}) S_{t}^{\theta, s} + Q_{t}^{OTC} P(t) - C(t, \pi_{t}) \right\} dt, \\
 h\left(t, S_{t}^{\theta, s} ; \pi_{t} \right)
\end{align*}
$$

$W_{\theta} = w$,

- **Deterministic production costs**: $C(t, \pi) = \sum_{i=1}^{n} \int_{0}^{\pi} C_{i}^{m}(t, p) dp$,

- **Deterministic quantity and price for contractual production**: Q_{t}^{OTC} and $P(t)$, bounded
The model for an electricity producer

Merit order of the marginal production cost

\[C(t, \pi) = \sum_{i=1}^{n} \int_{0}^{\pi} C_i^m(t, p) dp \]
CO2 emissions dynamics

\[d\mathcal{E}_t^\pi = \sum_{i=1}^{n} \left(\int_{0}^{\pi_t^i} \alpha_m(p)dp \right) dt, \quad \mathcal{E}_0 = e, \alpha(p) \text{ bounded on } A; \]

\[\alpha_{\text{coal}} = 0.96, \quad \alpha_{\text{gas}} = 0.36, \quad \alpha_{\text{oil-gas}} = 0.60, \quad \alpha_{\text{oil}} = 0.80. \]

Marginal cost in €/Mwh, with the CO2 penalty of 100 €
Electricity spot price and emissions dynamics

A diffusion process for electricity spot market price \((S_t, t \geq 0)\)

\[
\begin{align*}
\begin{cases}
 dS^{t,s}_t &= b\left(t, S^{t,s}_t\right) \, dt + \sigma\left(t, S^{t,s}_t\right) \, dB_t, \quad \forall t \geq \theta \\
 S^{t,s}_{\theta} &= s
\end{cases}
\end{align*}
\]

- \(b\) and \(\sigma\) Lipschitz in \(s\) uniformly in \(t\)
- \((B_t, t \geq 0)\) a Brownian motion, \(|b(t, s)| + |\sigma(t, s)| \leq \kappa_t + K|s|\), with \(\int_0^T \kappa_s^2 \, ds < \infty\)

Epex auction prices in 2011
The model for an electricity producer

The spot price calibration \(S_t = s(\exp(X_t) - a) \)

Calibration of \(X_t \) as

- an Ornstein Uhlenbeck (OU) process: \(dX_t = \theta (\mu - X_t) \, dt + \sigma dB_t, \)
- an OU square process: \(X_t = Y_t^2 \) and \(dY_t = \theta (\mu - Y_t) \, dt + \sigma dB_t, \)
- a CIR process: \(dX_t = \theta (\mu - X_t) \, dt + \sigma \sqrt{X_t} dB_t, \)
- an OU-Variance Gamma process: \(dX_t = \alpha (\mu - X_t) \, dt + dZ_t \) with \(Z_t = mt + \theta G_t + \sigma B_{G_t(\kappa)} \)

on the Epex spot market data
The value function of the producer

Criterion for optimal control process Π^*:

$$
\mathbb{E} \left[U(W_T^{\Pi^*} - \mathbb{P}(\mathcal{E}_T^{\Pi^*} - \Theta_0)) \right] = \sup_{\pi \in \text{Adm}} \mathbb{E} \left[U(W_T^{\pi} - \mathbb{P}(\mathcal{E}_T^{\pi} - \Theta_0)) \right] \tag{1}
$$

Theorem

Assume that U is increasing and concave, \mathbb{P} increasing, derivable or convex and that $\pi^* = \pi^*(t, x_2, x_3)$ is an optimum of the problem

$$
\sup_{\pi \in A} \{ h(t, x_3, \pi) - \alpha(\pi) \mathbb{P}'(x_2 - \Theta_0) \}
$$

then the control Π^* defined by, $\forall i \in \{1, \ldots, n\}$ and $\forall \theta \in [t, T]$,

$$
\Pi^*_\theta = \pi^*(\theta, \mathcal{E}_\theta^{t,e,\Pi^*}, S_{\theta}^{t,s}),
$$

is an optimal control for (1).

Proof: use the adjoint backward equation for (1) with

$$
Y_T^{\pi} = D_x U(W_T^{\pi} - \mathbb{P}(\mathcal{E}_T - \Theta_0))
$$

and the concavity of U.
The value function of the producer

Corollary

Assume in addition that for all \(i \in \{1, \ldots, n\}\), \(\alpha^i_m\) and \(C^i_m\) are constants. Then \(\Pi^*\) defined by

\[
\Pi^*_{\theta,i} = p_i, \max \left\{ S^i_{\theta} - C^i_m - \alpha^i_m \mathbb{P}'(\mathcal{E}^{t,e;\Pi^*} - \Theta_0) > 0 \right\}, i \in \{1, \ldots, n\}, \theta \in [t, T]
\]

is an optimal control of the value function problem (1).

Lemma

Assume that \(U\) is increasing and concave, if \(\mathbb{P}\) is convex, if \(p \mapsto pC^m(t,p)\) is concave and \(p \mapsto p\alpha^m(p)\) is convex. Then \(\nu\) is increasing in \((w,e,s)\) and concave in \((w,e)\).

\[
W^t_{r,w-w',s,\pi} = W^t_{r,w,s,\pi} - w', \ \forall r \geq t
\]

\[
\mathcal{E}^t_{r,e-e',\pi} = \mathcal{E}^t_{r,e;\pi} - e', \ \forall r \geq t.
\]
The value function of the producer

The distribution of the producer state variables at the end of the compliance period

Main input: the electricity prices

The four spot models prices distribution at time $T = 1$ year, calibrated on the Epex 2011 historical data.
The value function of the producer

The total carbon emission for various penalty (0, 20, 40, 60, 80, 100 €)

The total electricity production in terms of penalty
Free allocation of 80% of the production without penalty
The value function of the producer

Distribution of the penalty paid (exp OU-VG)

Distribution of the penalty paid (exp CIR)

Total penalty paid for various penalty (0, 20, 40, 60, 80, 100 €)

Wealth at the end of the compliance period (exp OU-VG)

Wealth at the end of the compliance period (exp CIR)

Wealth at the end of the compliance period
The Hamilton-Jacobi-Bellman PDE

for \(x = (w, e, s) \), \(\nu(t, x) = \sup_{\pi \in \text{Adm}} \mathbb{E}_t, x \{ \mathcal{U}(W^{\pi, t, w, s}_T - \mathbb{P}(\mathcal{E}^{\pi, t, e}_T - \Theta_0)) \} \), \(\text{(2)} \)

\[
\begin{cases}
\frac{\partial \nu}{\partial t} + b(t, s) \frac{\partial \nu}{\partial s} + \frac{\sigma(t, s)^2}{2} \frac{\partial^2 \nu}{\partial s^2} + \sup_{\pi \in \mathbb{A}} \left\{ h(t, s; \pi) \frac{\partial \nu}{\partial w} + \alpha(\pi) \frac{\partial \nu}{\partial e} \right\} = 0 \\
\nu(T, w, e, s) = \mathcal{U}(w - \mathbb{P}(e - \Theta_0))
\end{cases}
\]

By considering the operator \(\mathcal{H} \)

\[
\mathcal{H}(t, x, p, M) = \frac{1}{2} \text{Tr}(\Sigma \Sigma^t M)(t, x) + \sup_{\pi \in \mathbb{A}} \{ \lambda(t, x, \pi) \cdot p \}
\]

\[
\Sigma(t, x) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma(t, x_3) \end{pmatrix} \quad \lambda(t, x, \pi) = \begin{pmatrix} h(t, x_3; \pi) \\ \alpha(\pi) \\ b(t, x_3) \end{pmatrix}
\]

\[
\partial_t \nu + \mathcal{H}(t, x, D_x \nu, D_x^2 \nu) = 0, \ \forall (t, x) \in [0, T] \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^*_+
\]
Well-posedness of the HJB equation

\(b \) and \(\sigma \) Lipschitz uniformly in time.
\(P \) with linear growth
\[v(t, w, e, s) = o \left(\exp \left(C(2 + |w| + |e|) \right) \right). \]

Theorem

- With above assumptions the value function of the stochastic control problem is a continuous (viscosity) solution to the HJB equation.

- Assume further
 \[\exists \kappa, \quad \| b(t, s) \| \leq \kappa (1 + s) \]
 \[\| \sigma(t, s) \| \leq \kappa \left(1 + \sqrt{s} \right), \quad \forall s > 0. \]

Then the HJB equation no more than one viscosity solution.

Proof: following Barles, Buckdahn and Pardoux 96, Crandall Ishii and Lions 92, Pham 2007.
CO2 indifference price

Buying/selling q allowances at time 0 at price p:

$$v(0, w - qp, e - q, s) = \sup_{\pi \in \text{Adm}} \mathbb{E} \left[\mathcal{U} \left(W_{T}^{\pi;t,w,s} - qp - P(E_{T}^{\pi;t,e} - q - \Theta_{0}) \right) \right]$$

As v is continuous in w, e, the indifference price for q allowances is $P^{\text{CO2}}(q)$ such that

$$v(0, w - qP^{\text{CO2}}(q), e - q, s) = v(0, w, e, s)$$

- $P^{\text{CO2}}(q; T, w, e, s) = \lim_{t \to T} P^{\text{CO2}}(q; t, w, e, s) = \frac{P(e - \Theta_{0}) - P(e - q - \Theta_{0})}{q}$

and for $P(x) := \lambda x^{+}$ (EU ETS $\lambda = 100\text{€}$)

$$P^{\text{CO2}}(q; T, w, e, s) = \lambda \mathbb{1}_{\{e - \Theta_{0} > q\}} + \frac{\lambda e - \Theta_{0}}{q} \mathbb{1}_{\{q \leq e - \Theta_{0} \leq 0\}}.$$

- If $(S_{t})_{t \geq 0}$ is deterministic

$$P^{\text{CO2}}(q; t, w, e, s) = \frac{P(E_{T}^{t,e;\pi^{*}}) - P(E_{T}^{t,e-q;\pi^{*}})}{q}.$$
CO\textsubscript{2} indifference price in stochastic environment

- Existence of a non trivial value $0 < P^{CO2} < \lambda$?

If so

- What sensitivity to the design:
 - of the penalty P ?
 - of the initial allocation Θ_0 ?

- What regularity of the value function in terms of λ and Θ_0 ?
Regularity of the value function

A FBSDE representation?

the classical framework (see e.g. Pardoux Tang 99, Delarue 02)

\[
\begin{align*}
\forall t \in [0, T], \\
X_r^{t,x} &= x + \int_t^r f(s, X_s^{t,x}, Y_s^{t,x}, Z_s^{t,x}) \, ds + \int_t^r \sigma(s, X_s^{t,x}, Y_s^{t,x}, Z_s^{t,x}) \, dB_s, \\
Y_r^{t,x} &= h(X_T^{t,x}) + \int_r^T g(s, X_s^{t,x}, Y_s^{t,x}, Z_s^{t,x}) \, ds - \int_r^T Z_s^{t,x} \, dB_s, \\
E \int_0^T \left(|X_t|^2 + |Y_t|^2 + |Z_t|^2 \right) \, dt &< \infty
\end{align*}
\]

\[Lu(s, x, y, z) := \frac{1}{2} Tr(\sigma \sigma' (s, x, y) D_x^2 u) + f(s, x, y, z) \cdot D_x u\]

Under condition of well posedness for the FBSDE system,

\[u(t, x) := Y_t^{t,x} \quad \text{is the viscosity solution of :}\]

\[
\begin{align*}
\frac{\partial u}{\partial t} + (Lu)(t, x, u, D_x u \cdot \sigma) + g(t, x, u, D_x u \cdot \sigma) &= 0, \quad \forall (t, x) \in [0, T) \times \mathbb{R}^n, \\
u(T, x) &= h(x)
\end{align*}
\]

In our case

\[
\begin{align*}
\mathcal{H}(t, x, p, M) &= \frac{1}{2} Tr(\Sigma \Sigma^t M)(t, x) + \lambda(t, x, \pi^*(t, x, p)) \cdot p \\
\text{where } \pi^*(t, x, p) &= \text{Argsup}_{\pi \in \mathbb{A}} \{ \lambda(t, x, \pi) \cdot p \}
\end{align*}
\]

obstacle: the volatility \(\Sigma(t, x) \) is not invertible and thus it is impossible to write \(\pi^*(t, x, p) = \tilde{\pi}^*(t, x, \Sigma \cdot p) \).
Regularity of the value function

\[
\begin{aligned}
\left\{ \begin{array}{l}
\frac{\partial v}{\partial t} + b(t, s) \frac{\partial v}{\partial s} + \frac{\sigma(t, s)^2}{2} \frac{\partial^2 v}{\partial s^2} + \sup_{\pi \in \Pi} \left\{ h(t, s; \pi) \frac{\partial v}{\partial w} + \alpha(\pi) \frac{\partial v}{\partial e} \right\} = 0 \\
v(T, w, e, s) = U(w - P(e - \Theta_0))
\end{array} \right.
\end{aligned}
\]

Note that

\[
\begin{aligned}
&h(t, s; \pi^*) \frac{\partial v}{\partial w} + \alpha(\pi^*) \frac{\partial v}{\partial e} = \sup_{\pi \in \Pi} \left\{ h(t, s; \pi) \frac{\partial v}{\partial w} + \alpha(\pi) \frac{\partial v}{\partial e} \right\},
\end{aligned}
\]

where

\[
\pi^*(t, x) = \left(P^i_{\max} \mathbb{1}_{\{ (s - C^i_m) \partial_w v(t, x) + \alpha^i_m \partial_e v(t, x) > 0 \}} \right)_{1 \leq i \leq n}.
\]

and

\[
\frac{\partial v}{\partial w} (t, x) = -P'(e - \Theta_0).
\]
Regularity of the indifference price function

We set $\tilde{P}_{CO_2}(q; \cdot) = qP^{CO_2}(q; \cdot)$.

Proposition

If the first order derivatives of v exist, then

\[
\begin{align*}
\partial_q \tilde{P}_{CO_2} &= - \frac{\partial_e v}{\partial_w v} (t, w - \tilde{P}_{CO_2}, e - q, s) \\
\partial_t \tilde{P}_{CO_2} &= \frac{\partial_t v (t, w - \tilde{P}_{CO_2}, e - q, s) - \partial_t v (t, w, e, s)}{\partial_w v (t, w - \tilde{P}_{CO_2}, e - q, s)} \\
\partial_w \tilde{P}_{CO_2} &= \left(1 - \frac{\partial_w v (t, w, e, s)}{\partial_w v (t, w - \tilde{P}_{CO_2}, e - q, s)} \right) \\
\partial_e \tilde{P}_{CO_2} &= \frac{\partial_e v (t, w - \tilde{P}_{CO_2}, e - q, s) - \partial_e v (t, w, e, s)}{\partial_w v (t, w - \tilde{P}_{CO_2}, e - q, s)} \\
\partial_s \tilde{P}_{CO_2} &= \frac{\partial_s v (t, w - \tilde{P}_{CO_2}, e - q, s) - \partial_s v (t, w, e, s)}{\partial_w v (t, w - \tilde{P}_{CO_2}, e - q, s)}
\end{align*}
\]
The case of the EU ETS penalty function $\mathcal{P}(x) = \lambda x^+$.

Proposition

The derivatives $\frac{\partial v}{\partial t}$, $\frac{\partial v}{\partial e}$, $\frac{\partial v}{\partial s}$ are well defined and

$$
\frac{\partial v}{\partial e}(t, w, e, s) = -\lambda 1\{e - \Theta_0 > 0\} \mathbb{E} \left[U' \left(W_{T}^{t,w,s;\pi^*} - \lambda (\mathcal{E}_{T}^{t,e;\pi^*} - \Theta_0)^+ \right) \right]
$$

$$
\frac{\partial v}{\partial t}(t, w, e, s) = \mathbb{E} \left\{ (\mathcal{E}_{T}^{t,e;\pi^*} - \Theta_0)^+ U' (W_{T}^{t,w,s;\pi^*} - \lambda (\mathcal{E}_{T}^{t,e;\pi^*} - \Theta_0)^+) \right\}
$$

For a model price $S_t = s(e^{X_t - a})$

$$
\frac{\partial v}{\partial s}(t, w, e, s) = \mathbb{E} \left[U' (W_{T}^{t,w,s;\pi^*} - \lambda (\mathcal{E}_{T}^{t,e;\pi^*} - \Theta_0)^+) \right] \\
\times \int_{t}^{T} \sum_{i=1}^{n} (\pi_{u,i}^* - Q_u^{OTC}) \exp(X_u) du .
$$
Solve the HJB equation

- Numerical scheme for fully non linear PDE
 - Implicit-Explicit scheme
 - Optimal control computation algorithm
 - Consistency, Stability, Monotonicity, Convergence (see Barles and Souganidis 91, Barles and Jakobsen 07, Forsyth and Labahn 08)

- Artificial boundary condition
 - Restrict to a compact the computational domain

Input
- Data for the producer model
- Calibration of the spot price
HJB : dimension reduction with exponential utility

\[U_{\text{exp}}(w) = \frac{1 - \exp(-\rho w)}{\rho}, \text{ for } \rho > 0 \]

\[W_r^{\pi; t, w, s} = w + W_r^{\pi; t, 0, s}, \, r \geq t \]

\[\nu(t, w, e, s) = U(w) g(t, e, s) \]

where \(g \) solve the following HJB, \(z = (e, s) \):

\[
\begin{cases}
 g_t + G(t, z, g, D_z g, D_{z^2} g) = 0 \\
 g(T, (e, s)) = \exp(\rho \mathbb{P}(e - \Theta_0))
\end{cases}
\]

with

\[G(t, z, a, p, M) = \frac{1}{2} \text{Tr} \left\{ \Sigma \Sigma^t M \right\}_{(t, z)} + \inf_{\pi \in A} \left\{ B(t, z, \pi) \cdot p - m(t, z, \pi) a \right\} \]

\[\tilde{\Sigma}(t, z) = \begin{pmatrix} 0 & 0 \\ 0 & \sigma(t, z_2) \end{pmatrix} \quad B(t, z, \pi) = \left(\sum_{i=1}^{n} \int_{0}^{\pi_i} \alpha_m^i(p) dp \right) \]

\[m(t, z, \pi) = \rho h(t, z_2, \pi) \]

\[g(t, (e, s)) = \inf_{\pi \in \mathbb{E}} \mathbb{E} \left[\exp \left(-\rho \left(\int_{t}^{T} dW_u^{\pi; t, 0, s} - \mathbb{P} \left(\mathcal{E}_{T; t, e}^{\pi} - \Theta_0 \right) \right) \right) \right] \]
Numerical Example

\[\mathcal{U}(x) = -\exp(-\rho x), \text{ then} \]

\[
\mathcal{P}_{\text{CO2}}(q; 0, w, e, s) = \frac{1}{\rho q} \log \left(\frac{v(0, w, e - q, s)}{v(0, w, e, s)} \right)
\]

Spot price of the form \(S_t = s(\exp(X_t) - a) \) with \(X \) CIR.

Penalty \(\lambda = 100 \)

Model data for the producer: \(n = 4 \) plants

Marginal costs:

\[C_{\text{coal}}^m = 40, \ C_{\text{gas}}^m = 50, \]
\[C_{\text{oil-gas}}^m = 100, \ C_{\text{oil}}^m = 150 \]

Marginal emission rates:

\[\alpha_{\text{coal}}^m = 0.96, \ \alpha_{\text{gas}}^m = 0.36, \]
\[\alpha_{\text{oil-gas}}^m = 0.50, \ \alpha_{\text{oil}}^m = 0.80 \]
Computation of the indifference price

Value function and indifference prices (exp(CIR) case)

Indif. price in terms of the initial spot price

Indif. price in terms of the initial allocation
A game approach for cap and trade scheme

We consider now J electricity producers.

- The market regulator fixes a global level of cumulated CO$_2$ eq on a trading period, over all the market participants, a cap Λ that one may not globally exceed.

- $(\mathcal{E}_t^{(j)}, t \in [0, T], j = 1, \ldots, J)$ are the cumulated emissions processes of each player, that we suppose observable by all the players. During the period $[0, T]$, the players may buy/sell/exchange allowances to covert their own exceeded emissions of a final penalty if the global emissions exceed the cap;

\[
\mathcal{E}_T := \sum_{j=1}^{J} \mathcal{E}_T^{(j)}, \quad \text{Penalty} = \mathbb{P}(\mathcal{E}_T^{(j)}, \mathcal{E}_T) = \mathbb{P}_{\text{local}}(\mathcal{E}_T^{(j)})\mathbb{P}_{\text{global}}(\mathcal{E}_T)
\]

\[
\mathbb{P}_{\text{EU EST}}(\mathcal{E}_T^{(j)}) = \lambda(\mathcal{E}_T^{(j)} - \Theta_T^{(j)})^+
\]

\[
\mathbb{P}(\mathcal{E}_T^{(j)}, \mathcal{E}_T) = \lambda(\mathcal{E}_T^{(j)} - \Theta_T^{(j)})^+ 1\{\mathcal{E}_T > \Lambda\}
\]

or \[
\mathbb{P}(\mathcal{E}_T^{(j)}, \mathcal{E}_T) = \lambda(\mathcal{E}_T^{(j)} - \Theta_T^{(j)})^+ \frac{(\mathcal{E}_T - \Lambda)^+}{\Lambda}
\]
The Cap & Trade scheme

Trading constraints

Θ_{total} is the finite total amount of allowances in the market. $\left(\Theta_t^{(j)}, t \in [0, T]\right)$ the number of allowances of the player j. The producer decides of a rate of buying/selling allowances:

$$Q_t^{(j)} \in [Q_{\text{min}}^{(j)}(t), Q_{\text{max}}^{(j)}(t)]$$

for example:

$$Q_{\text{max}}^{(j)}(t) = \frac{\left(\Theta_{\text{total}} - \sum_k \Theta_t^{(k)}\right)^+}{\Delta t}$$

with $\Delta t=$ one hour; one can buy only if the market have something to sell.

$$Q_{\text{min}}^{(j)}(t) = -\frac{\Theta_t^{(j)}}{\Delta t}$$

this means that, one might not sell immediately all the allowances one has in the portfolio.

We denote by \mathcal{Y} the price process of the CO$_2$ allowances in the market.
Players evaluation

Let \((\Pi^{(j)}, Q^{(j)})\) a production & trading strategy of player \(j\). To the emission processes \((\mathcal{E}^{(j)}, j = 1, \ldots, J, \mathcal{E})\), we add the allowance portfolio processes

\[
\Theta_t^{(j)} = \Theta_0^{(j)} + \int_0^t Q_s^{(j)} ds
\]

and the wealth processes

\[
dW_t^{(j)} = \left\{ (\Pi_t^{(j)} \cdot 1) S_t - \sum_{i=1}^n \int_0^{\Pi_t^{(j),i}} C_m^{(j),i}(t, p) dp \right\} dt + \mathcal{Y}_t Q^{(j)} dt
\]

\[
= h^{(j)}(t, S_t; \Pi_t^{(j)}) dt + \mathcal{Y}_t Q^{(j)} dt,
\]

Evaluation of player \(j\) : depends on \((\Pi^{(j)}, Q^{(j)})\) but also on \((\Pi^{(-j)}, Q^{(-j)})\)

\[
((\Pi, Q)_t; t \in [0, T]) = ((\Pi, Q)^{(j)}_t, t \in [0, T], j = 1, \ldots, J).
\]

\[
\phi^{(j)}((\Pi, Q)) = \phi^{(j)}((\Pi, Q)^{(j)}, (\Pi, Q)^{(-j)})
\]

\[
= \mathbb{E}_{t,e,w,s,q} \left[\mathcal{U}^{(j)}(W_T^{(j)} - \mathbf{P}(\mathcal{E}_T^{(j)} - \Theta_T^{(j)}), \mathcal{E}_T) \right].
\]
Nash equilibrium

Theorem

Let \((\Pi, Q)^{(-j)}\) be the set of strategies of the others players than \(j\).
Assume that \(\mathcal{U}(j)\) is concave, increasing, \(\mathcal{P}\) is convex or derivable and that
\((\rho^\diamond, q^\diamond)(t, x_2, x_3, x_4, x_5, x_6)\) is an optimum of: \(\forall \, t \in [0.T]\)

\[
\sup_{\rho \in A(j), q \in [Q(j)_{\min}(t)(Q(j)^{(-j)}), Q(j)_{\max}(t)]} \left\{ h(j)(t, x_3, \rho) + x_5 q - \alpha^{(j)}(\rho)\mathcal{P}'_{\text{local}}(x_2 - x_6)\mathcal{P}_{\text{global}}(x_4) - \alpha(\rho, \Pi_t^{(-j)})\mathcal{P}'_{\text{local}}(x_2 - x_6)\mathcal{P}_{\text{global}}(x_4) \right\}
\]

Then the strategy \((\Pi^\diamond, Q^\diamond)^{(j)}\) defined by

\[
\Pi_t^{\diamond(j), i} = \rho^{\diamond}(t, \mathcal{E}_t^{(j)}, S_t, \mathcal{E}_t, \mathcal{Y}_t, \Theta^{(j)}),
\]

\[
Q_t^{\diamond(j)} = q^{\diamond}(t, \mathcal{E}_t^{(j)}, S_t, \mathcal{E}_t, \mathcal{Y}_t, \Theta^{(j)}),
\]

is a dominant strategy: \((\Pi, Q)^{\diamond(j)}\) is the optimal control of

\[
\phi^{(j)}((\Pi^\diamond, Q^\diamond)^{(j)}, (\Pi, Q)^{(-j)}) = \sup_{(\Pi, Q)^{(j)} \in \text{Adm}} \phi^{(j)}((\Pi, Q)^{(-j)}),
\]

whatever are the strategies \((\Pi, Q)^{(-j)}\) of other players.
The Cap & Trade scheme

Allowance prices derivation

Following Carmon Delarue Espinosa Touzi 2010, we switch to a risk neutral framework: Assume that Y is the price of one allowance in one-compliance period and that the market for allowances is frictionless and liquid. Then (Y, S) is a martingale for a measure Q equivalent to the historical measure \mathbb{P}:

$$dY_t = Z_t d\tilde{B}_t.$$

Theorem

If \mathbb{P} has Lipschitz derivatives, there exists a unique solution $(S_t, E^j, \Theta^j, Y, Z)$ to

$$
\begin{cases}
 dS_t = \sigma(t, S_t) d\tilde{B}_t \\
 \text{for } j = 1, \ldots, J, \\
 dE^j_t = \sum_{i=1}^{n_j} \alpha_{ij}^i \Pi^{\diamond}(j) dt, \\
 d\Theta^j_t = Q^{\diamond}(j) (Y_t) dt, \\
 dY_t = Z_t d\tilde{B}_t, \quad \text{with } Y_T = \lambda P_{\text{global}}(E_T).
\end{cases}
$$

where $(\Pi^{\diamond}, Q^{\diamond})$ is the set of dominant strategies.
The Cap & Trade scheme

A particular case of penalty \(P(E_T^{(j)}, E_T) = \lambda(E_T^{(j)} - \Theta_T^{(j)}) + (E_T - \Lambda)^+ \)

Proposition

There exists a unique solution \((S_t, E_t^j, E, \Theta_t^j, \mathcal{Y}, \mathcal{Z}) \) to

\[
\begin{align*}
\text{for } j = 1, \ldots, J, \quad &dE_t^j = \sum_{i=1}^{n_j} \alpha_{ij} \Pi_t^{\phi(j)} dt, \quad d\Theta_t^j = Q_t^{\phi(j)} (\mathcal{Y}_t) dt, \\
\text{with } &\mathcal{Y}_T = \lambda \mathbb{P}_{\text{global}}(E_T)
\end{align*}
\]

where \((\Pi_t^{\phi}, Q_t^{\phi})\) is the dominant strategy

\[
\Pi_t^{\phi(j)} = p_{i,\text{max}}^{(j)} \mathbb{I} \left\{ S_t - C_{(m)}^{(j)},i - \alpha_{m}^{(j)},i \lambda \mathbb{I} \{ E_t^{(j)} > \Theta_t^{(j)} \} \mathbb{P}_{\text{global}}(E_t) - \sum_{k=1}^{J} \alpha_{m}^{(k),i} \lambda (E_t - \Theta_t^{(j)}) + \mathbb{P}_{\text{global}}'(E_t) > 0 \right\}
\]

\[
Q_t^{\phi(j)} = Q_{\text{max}}^{(j)}(t) \mathbb{I} \{ \mathcal{Y}_t < \mathbb{P}_{\text{global}}(E_t) \mathbb{I} \{ E_t^{(j)} > \Theta_t^{(j)} \} \} + Q_{\text{min}}^{(j)}(t) \mathbb{I} \{ \mathcal{Y}_t > \mathbb{P}_{\text{global}}(E_t) \mathbb{I} \{ E_t^{(j)} > \Theta_t^{(j)} \} \}
\]
Concluding remarks

- joint work with Nadia Maïzi (Mines ParisTech) and Odile Pourtalier (Inria).

- In preparation: a software on the indifference price approach on a web portal, with the help of El Hadj Ali Dia, Jacques Morice and Selim Karia.