Principles of Scientific Computing
Preface

Jonathan Goodman

January 2, 2003



Last revised: January 2, 2003

This book grew out of a course in Scientific Computing for graduate students
at New York University, a first course that covers the basic principles common to
most applications. It addresses the question: What are the basics that everyone
doing scientific computing needs to know? The answer is: some mathematics,
the most basic algorithms, a bit about the workings of a computer, and an idea
how to build software for scientific computing applications. Naturally, specific
applications (e.g. computing stresses in a bridge) also require more advanced
specific material (enginering mechanics, finite elements, etc.).

The principles of scientific computing are a collection of simple, almost obvi-
ous, ideas and points of view. The practitioner is hardly a cook relying printed
recipies or downoaded software, but a creative problem solver who can devise
algorithms and build trustworthy software for new computational challenges. 1
hope that the reader will come to share my delight in the simplicity and admi-
ration of the power of these simple principles.

This book requires a facility with the mathematics that is common to most
quantitative modeling: multivariate calculus, linear algebra, and basic proba-
bility. These subjects may be reviewed using books in the Schaum’s Qutline
series, particularly, Multivariate Calculus, Linear Algebra, and Probability. The
exercises require programming in C or C++. The differences between these are
not so important for the small simple programs called for. The book is struc-
tured so that an ambitious student can learn programming as he or she goes.
See Appendix I. It is possible to do the programming in Fortran, but students
are discouraged from using a programming language, such as Java, Visual Basic,
or Matlab, not designed for efficient large scale scientific computing.

Visualization and data analysis are an essential part of scientific computing.
We recommend Matlab as a simple and reliable system for visualization and
examination of computational results. Students familiar with other scientific
visualization software are welcome to use it. However, we warn the student
that Mathematica is often unreliable. Excel users will need to be sophisticated
enough to turn off the default features intended for business presentations, such
as shading on bar graphs.

Many students will want to compute on their personal computer. Any cur-
rent laptop or desktop should be powerful enough. The student will need a
C/C++ compiler and visualization software such as Matlab. Some of the exer-
cises require the student to download files and software, but always plain text
files or C/C++ source code.

Many of my views on scientific computing were formed during my association
with the remarkable group of faculty and graduate students at Serra House,
the numerical analysis group of the Computer Science Department of Stanford
University, in the early 1980’s. I mention in particularly Marsha Berger, Petter
Bjorstad, Bill Coughran, Gene Golub, Bill Gropp, Eric Grosse, Bob Higdon,
Randy LeVeque, Steve Nash, Joe Oliger, Michael Overton, Nick Trefethen, and
Margaret Wright. Colleagues at the Courant Institute who have influenced this
book include Leslie Greengard, Gene Isaacson, Peter Lax, Charlie Peskin, Luis
Reyna, Mike Shelley, and Olof Widlund. I also acknowledge the lovely book



Numerical Methods by Germund Dahlquist and Ake Bjork.



