Principles of Scientific Computing
Basic Numerical Analysis, I

Jonathan Goodman

last revised January 16, 2003



Manipulation of Taylor series expansions is one of the most common tech-
niques in scientific computing. Most computational methods for differentiation,
integration, and solution of differential equations are based directly on Taylor
series. Series expansions not only lead to computational algorithms, but they
also tell us how accurate these algorithms should be and predict properties
of the error that are the basis for code validation and sophisticated adaptive
computational software.

In this chapter we apply the Taylor series method for three specific problems,
differentiation, integration, and interpolation. Numerical differentiation is the
problem of finding (as accurately as necessary) a derivative of a function, given
several values of the function itself. Numerical integration is the problem of
computing the integral. Interpolation is the problem of evaluating a function
at some value of its arguments given function values at other values of the
arguments.

For all these purposes, we use Taylor series as asymptotic expansions. To
see what this means, consider the expansion

1 1

" =14a+ 2P+ —a"+ . (1)
2 n!

One could use this formula to compute e? by taking z = 2 and adding up enough

terms to get the desired accuracy. That is not what we do here. Instead, we fix

the number of terms, for example

ele—i-x—i—%xQ, (2)
and ask about the range of x values for which this approximation is accurate
enough. In real problems, Taylor series beyond the first few may be difficult
or impossible to compute. Fortunately, most of the methods in this chapter
apply to any function that has a Taylor series expansion, in the asymptotic
sense explained below. We rarely need explicit expressions for the coefficients.

As we stated in Chapter 77, errors that arise from taking just a few terms of
an infinite Taylor series are called truncation errors. For example, we truncate
the infinite series (1) to get the three term approximation (2). This chapter is
about truncation error. We generally neglect roundoff error, since truncation
error is usually larger. We will have to revisit this assumption if our problem
is ill posed, if our computational algorithm is unstable, or if the step size is too
small.

For each of the problems discussed we will start with simple approximations
of modest accuracy and proceed to methods of increasing complexity and accu-
racy. The simplest methods may be adequate for casual computing. Why spend
more time optimizing a code than possibly could be saved in a computation that
takes the computer less than a second? However, the basic operations of inte-
gration and differentiation are often at the hearts of computational algorithms
whose running times are a serious concern; time discovering and implementing
more complex and accurate approximations may be repaid amply.



We work with a step size’, which is generically called h but may have other
names in specific contexts. The approximations become more accurate as h
becomes smaller. The rate of improvement is the order of accuracy. More
accurate approximations generally lead to faster computations. For example,
in estimating f: f(z)dz, the region of integration, [a,b] is divided into panels
of size h. The smaller h, the more panels and longer it takes the computer
to process them all. If a sophisticated integration method achieves 1% error
with h = .1 while the simple one requires h = .01, the sophisticated method
will be, maybe, five times faster — twice the cost per panel but ten times fewer
panels. Whether this factor of five speedup is worth days of extra analysis and
programming depends on the situation.



