
Dynamics

This chapter discusses the numerical computation of solu8tions of ordinary
differential equations ma‘odeling dynamics systems. Differential equations are
equations involving derivatives that wre used to determine a function, which
is the solution. Here, we discuss ordinary differential equations, equations in-
volving derivatives with respedt to a single variable, which we call t. In general
discussions, we seek a function, x(t), and the differential equation is written in
the form

ẋ =
dx

dt
= f(x) . (1)

Here, both x and f have n components: x(t) = (x1(t), · · · , xn(t)) ∈ Rn, and
f(t) = (f1(t), · · · , fn(t)) ∈ Rn. The components of x(t) determine the state of
the system at time t, and f(x) represents the dynamics. In most real problems,
f will depend on a number of problem parameters also.

For example, here is a model of a simple oscillator (such as a mass connected
to a spring sliding on a table) subject to friction. The friction coefficient, γ also
might change with time if friction causes the mass or the table to heat up. This
is modeled through the equations

γ(t) = γ0 + γ1θ(t) , (2)

where θ(t) is the temperature (say, in degrees centigrade) at time t and γ0 and
γ1 are fixed coefficients. When γ1 > 0, the friction coefficient increases when the
temperature increases. An oscillator with mass m, spring constant k, position
q(t), and momentum p(t) is governed by the equations

mq̇ = p , (3)
ṗ = −kq − γq̇ , (4)

The −γq̇ term in the p equation represents the force of friction. The rate of
work done by this friction force is force × q̇ = γq̇2. We suppose the rate of
heating is proportional to this rate of work and that heat dissipates with rate r,
bringing the temperature back to the ambient temperature, θ0. With this, the
temperature evolution equation is

θ̇ = −r(θ − θ0) + µγq̇2 . (5)

We want to put this formulation into the generic form (1). The state of the
system is determined by the three variables q, p, and θ. Although the friction
coefficient, γ(t), is time dependent, it is determined by the other variables. For
this reason, x(t) = (q(t), p(t), θ(t)). We identify f by writing explicit formulas
for the components of x in terms of x and parameters. We find f1(x) = ẋ1 by
solving (3) for q̇:

q̇ =
1
m

p . (6)

1



We find f2 = ṗ in terms of x, (i.e., in terms of q, p, and θ) by using (6) to put p
instead of q̇ on the right, and by using (2) to eliminate γ in favor of components
of x. This gives

ṗ = −kq − γ0 + γ1θ

m
p . (7)

In the same way we can eliminate q̇ and γ from the right side of (??) to get

θ̇ = −r(theta− θ0) +
µ(γ0 − γ1θ)

m2
p2 . (8)

This puts the equations (3), (2), (4), (5) in the form (1), with

f(x) =

 1
mp

−kq − γ0+γ1θ
m p

−r(θ − θ0) + µ(γ0−γ1θ)
m2 p2

 =

 1
mx2

−kx1 − γ0+γ1θ
m x2

−r(x3 − θ0) + µ(γ0−γ1x3)
m2 x2

2

 .

Note that f depends on x and also on a large number of time independent
parameters, m, k, γ0, γ1, r, and µ. This is typical.

We write the dynamics in the form (??) for the purpose of general mathe-
matical discussion. In software it is fine to have something closer to the original
formulation, such as:

int fEval( double x[3], double f[3]) { // Evaluate f for given x

. . . (parameter definitions)

double qDot, pDot, gamma, thetaDot;
double q, p, theta;
q = x[0]; // Vector components start with 0 in C, as always.
p = x[1];
theta = x[2];

qdot = (1/m)*p;
gamma = gamma0 + gamma1*theta;
pDot = -k*q - gamma*qdot ;
thetaDot = -r*( theta - theta0 ) + mu*gamma*qDotqDot;

f[0] = qDot;
f[1] = pDot;
f[2] = thetaDot;

return 0; // Nothing can possibly go wrong.

The advantage of this point of view is that we can write a general program
that solves any problem of the form (1).

We focus on the initial value problem. For this, in addition to the dynamics
(1), we also specify initial conditions, x(t0) = x0. It is traditional to write x0

2



for the initial conditions without intending it to mean the zeroth component of
x. In the initial value problem, x(t) represents the state of the system at time
t. We presume to know the state at some specific time, t0, and seek to compute
the state at later times, t > t0. The task, then, is to find x(t) for t > t0 given
x(t0).

Because of Newton’s law: F = ma, it is common in physical applications for
problems to be formulated using second order differential equations. Suppose we
have l particle coordinates q = (q1, . . . , ql) and corresponding force components
F = (F1(q), . . . , Fl(q)). Then Newton’s law is

mj q̈j = Fj(q) .

We put this into the standard format (1) using the extra variables pj = mjqj

(not the only possible choice). Then we have

q̇j =
1

mj
pj ,

ṗj = Fj(q) .

This gives n = 2l, x = (q1, . . . , ql, p1, . . . , pl), and fj = q̇j = 1
mj

pj , and fj + l =
ṗj = Fj(q), for j = 1, . . . , l. In this process, we have replaced a system of l second
order equations with an equivalent system of n = 2l first order equations.

We could reduce higher order differential equations as well. Consider, for
example, the single third order equation d3q

dt3 = q2. For this, take x1 = q, x2 = q̇,
and x2 = q̈. Then we have f1 = x2, f2 = x3, and f3 = x2

1. A single third order
equation has become a system of three first order equations.

3


