
Principles of Scientific Computing

Sources of Error

Jonathan Goodman

last revised January 6, 2006

1

In scientific computing, we never expect to get the exact answer. Inexactness
is practically the definition of scientific computing. Getting the exact answer,
generally with integers or rational numbers, is symbolic computing, an interesting
but distinct subject. Suppose we are trying to compute the number A. The
computer will produce an approximation, which we call Â. This Â may agree
with A to 16 decimal places, but the identity A = Â (almost) never is true in
the mathematical sense, if only because the computer does not have an exact
representation for A. For example, if we need to find x that satisfies the equation
x2 − 175 = 0, we might get 13 or 13.22876, depending on the computational
method, but

√
175 cannot be represented exactly as a floating point number.

Four primary sources of error are: (i) roundoff error, (ii) truncation error,
(iii) termination of iterations, and (iv) statistical error in Monte Carlo. We
will estimate the sizes of these errors, either a priori from what we know in
advance about the solution, or a posteriori from the computed (approximate)
solutions themselves. Software development requires distinguishing these errors
from those caused by outright bugs. In fact, the bug may not be that a formula
is wrong in a mathematical sense, but that an approximation is not accurate
enough. This chapter discuss floating point computer arithmetic and the IEEE
floating point standard. The others are treated later.

Scientific computing is shaped by the fact that nothing is exact. A mathe-
matical formula that would give the exact answer with exact inputs might not
be robust enough to give an approximate answer with (inevitably) approximate
inputs. Individual errors that were small at the source might combine and grow
in the steps of a long computation. Such a method is unstable. A problem is
ill conditioned if any computational method for it is unstable. Stability theory,
which is modeling and analysis of error growth, is an important part of scientific
computing.

1 Relative error, absolute error, and cancella-
tion

The absolute error in approximating A by Â is e = Â − A. The relative error,
which is ǫ = e/A, is usually more meaningful. These definitions may be restated
as

Â = A + e (absolute error) , Â = A · (1 + ǫ) (relative error). (1)

For example, the absolute error in approximating A =
√

175 by Â = 13 is e =
13.22876 · · · − 13 ≈ .23. The corresponding relative error is e/A ≈ .23/13.2 ≈
.017 < 2%. Saying that the error is less than 2% is probably more informative
than saying that the error is less than .25 = 1/4.

Relative error is a dimensionless measure of error. In practical situations,
the desired A probably has units, such as seconds, meters, etc. If A is a length
measured in meters, knowing e ≈ .23 does not tell you whether e is large or
small. If the correct length is half a meter, then .23 is a large error. If the

2

correct length in meters is 13.22876 · · ·, then Â is off by less than 2%. If we
switch to centimeters the error becomes 22.9. This may seem larger, but it still
is less than 2% of the exact length, 1, 322.876 · · · (in centimeters).

We often describe the accuracy of an approximation or measurement by
saying how many decimal digits are correct. For example, Avogadro’s number
(the number of molecules in one mole) with two digits of accuracy is N0 ≈
6.0 × 1023. We write 6.0 instead of just 6 to indicate that we believe the 0 is
correct, that the true Avogadro’s number is closer to 6×1023 than to 6.1×1023

or 5.9× 1023. With three digits the number is N0 ≈ 6.02× 1023. In an absolute
sense, the difference between N0 ≈ 6 × 1023 and N0 ≈ 6.02 × 1023 is 2 × 1021

molecules per mole, which may seem like a lot, but the relative error is about a
third of one percent.

While relative error is more useful than absolute error, it also is more prob-
lematic. Relative error can grow through cancellation. For example, suppose
we know A = B − C and we have evaluated B and C to three decimal digits
of accuracy. If the first two digits of B and C agree, then they cancel in the
subtraction, leaving only one correct digit in A. If, say, B ≈ B̂ = 2.38 × 105

and C ≈ Ĉ = 2.33×105, then A ≈ Â = 5×103. This Â is probably off by more
than 10% even though B̂ and Ĉ had relative error less than 1%. Catastrophic

cancellation is losing many digits in one subtraction. More subtle and more
common is an accumulation of less dramatic cancellations over a series of steps.

2 Computer arithmetic

Error from inexact computer floating point arithmetic is called roundoff error.
Roundoff error occurs in most floating point operations. Some computations in-
volve no other approximations. For example, solving systems of linear equations
using Gaussian elimination would give the exact answer in exact arithmetic (all
computations performed exactly). Even these computations can be unstable
and give wrong answers. Being exactly right in exact arithmetic does not imply
being approximately right in floating point arithmetic.

Floating point arithmetic on modern computers is governed by the IEEE

floating point standard. Following the standard, a floating point operation nor-
mally has relative error less than the machine precision, but of the same order
of magnitude. The machine precision is ǫmach ≈ 6 · 10−8 for single precision

(data type float in C), and ǫmach = 2−53 ≈ 10−16 for double precision (data
type double in C). Let A = B © C, with © standing for one of the arithmetic
operations: addition (A = B+C), subtraction, multiplication, or division. With

the same B and C, the computer will produce Â with relative error (1) that
normally satisfies |ǫ| ≤ ǫmach.

2.1 Introducing the standard

The IEEE floating point standard is a set of conventions for computer repre-
sentation and processing of floating point numbers. Modern computers follow

3

these standards for the most part. The standard has four main goals:

1. To make floating point arithmetic as accurate as possible.

2. To produce sensible outcomes in exceptional situations.

3. To standardize floating point operations across computers.

4. To give the programmer control over exception handling.

The standard specifies exactly how numbers are represented in hardware.
The most basic unit of information that a computer stores is a bit, a variable
whose value may be either 0 or 1. Bits are organized into 32 bit or 64 bit words,
or bit strings. The number of 32 bit words is1 232 = 22 · 230 ≈ 4 × (103)3 = 4
billion. A typical computer should take well under a minute to list all of them.
A computer running at 1GHz in theory can perform one billion operations per
second, though that may not be achieved in practice. The number of 64 bit
words is about 1.6 · 1019, which is too many to be listed in a year. A 32 bit
floating point number is called single precision and has data type float in
C/++. A 64 bit floating point number is called double precision and has data
type double.

C/C++ also has data types int (for 32 bits) and longint (for 64 bits) that
represent integers. Integer, or fixed point arithmetic, is very simple. With 32
bit integers, the 232 ≈ 4 · 109 distinct words represent that many consecutive
integers, filling the range from about −2 · 109 to about 2 · 109. Addition, sub-
traction, and multiplication are done exactly whenever the answer is within this
range. The result is unpredictable when the answer is out of range (overflow).
Results of integer division are rounded down to the nearest integer below the
answer.

2.2 Representation of numbers, arithmetic operations

For scientific computing, integer arithmetic has two drawbacks. One is that
there is no representation for numbers that are not integers. Also important
is the small range of values. The number of dollars in the US national debt,
several trillion (1012), cannot be represented as a 32 bit integer but is easy to
approximate in 32 bit floating point.

The standard assigns a real number value to each single precision or double
precision bit string. On a calculator display, the expression:

−.2491E− 5

means −2.491 · 10−6. This expression consists of a sign bit, s = −, a mantissa,
m = 2491 and an exponent, e = −5. The expression s.mEe corresponds to the
number s · .m ·10e. Scientists like to put the first digit of the mantissa on the left
of the decimal point (−2.491 ·10−6) while calculators put the whole thing on the

1We use the approximation 210 = 1024 ≈ 103.

4

right (−.2491 · 10−5). In base 2 (binary) arithmetic, the scientists’ convention
saves a bit, see below.

When the standard interprets a 32 bit word, the first bit is the sign bit, s = ±.
The next 8 bits form the exponent2, e, and the remaining 23 bits determine the
form the fraction, f . There are two possible signs, 28 = 256 possible values of
e (ranging from 0 to 255), and 223 ≈ 8 million possible fractions. Normally a
floating point number has the value

A = ±2e−127 · (1.f)2 , (2)

where f is base 2 and the notation (1.f)2 means that the expression 1.f is inter-
preted in base 2. Note that the mantissa is 1.f rather than just the fractional
part, f . Any number (except 0) can be normalized so that its base 2 mantissa
has the form 1.f . There is no need to store the “1.” explicitly, which saves one
bit.

For example, the number 2.752 · 103 = 2572 can be written

2752 = 211 + 29 + 27 + 26

= 211 ·
(
1 + 2−2 + 2−4 + 2−5

)

= 211 · (1 + (.01)2 + (.0001)2 + (.00001)2)

= 211 · (1.01011)2 .

Altogether, we have, using 11 = (1011)2,

2752 = +(1.01011)
(1011)2
2 .

Thus, we have sign s = +. The exponent is e − 127 = 11 so that e = 138 =
(10001010)2. The fraction is f = (01011000000000000000000)2. The entire 32
bit string corresponding to 2.752 · 103 then is:

1︸︷︷︸
s

10001010︸ ︷︷ ︸
e

01011000000000000000000︸ ︷︷ ︸
f

.

For arithmetic operations, the standard mandates the rule: the exact answer,

correctly rounded. For example, suppose x, y, and z are computer variables of
type float, and the computer executes the statement x = y / z;. Let B and C
be the numbers that correspond to the 32 bit strings y and z using the standard
(2). A number that can be represented exactly in form (2) using 32 bits is a (32
bit) floating point number. Clearly B and C are floating point numbers, but the
exact quotient, A = B/C, probably is not. Correct rounding means finding the

floating point number Â closest3 to A. The computer is supposed to set the bit
string x equal to the bit string representing Â. For exceptions to this rule, see
below.

2This a slight misnomer; the actual exponent is e − 127 (in single precision) exponent.
3Ties can happen. The accuracy of IEEE floating point arithmetic does not depend on

how ties are resolved.

5

The exact answer correctly rounded rule implies that the only error in float-
ing point arithmetic comes from rounding the exact answer, A, to the nearest
floating point number, Â. This rounding error is determined by the distance
between floating point numbers. The greatest rounding is when A is half way
between neighboring floating point numbers, B− and B+. For a floating point
number of the form B− = (1.f−)2 · 2p, the next larger floating point number
is usually B+ = (1.f+)2 · 2p, where we get f+ from f− by adding the smallest
possible fraction, which is 2−23 for 23 bit single precision fractions. The relative

size of the gap between B− and B+ is, after some algebra,

γ =
B+ − B−

B−

=
(1.f+)2 − (1.f−)2

(1.f−)2
=

2−23

(1.f−)2
.

The largest γ is given by the smallest denominator, which is (1.0 · · · 0)2 = 1,
which gives γmax = 2−23. The largest rounding error is half the gap size, which
gives the single precision machine precision ǫmach = 2−24 stated above.

The 64 bit double precision floating point format allocates one bit for the
sign, 11 bits for the exponent, and the remaining 52 bits for the fraction. There-
fore its floating point precision is given by ǫmach = 2−53. Double precision arith-
metic gives roughly 16 decimal digits of accuracy instead of 7 for single preci-
sion. There are 211 possible exponents in double precision, ranging from 1023
to −1022. The largest double precision number is of the order of 21023 ≈ 10307.
The largest single precision number is about 2126 ≈ 1038. Not only is dou-
ble precision arithmetic more accurate than single precision, but the range of
numbers is far greater.

2.3 Exceptions

The extreme exponents, e = 0 and e = 255 in single precision (e = 0 and
e = 211 − 1 = 2047 in double), are not interpreted using (2). Instead, they have
carefully engineered interpretations that make the IEEE standard distinctive.
Numbers with e = 0 are denormalized and have the value

A = ±0.f · 2−126 (single precision), A = ±0.f · 2−1022 (double).

This feature is called gradual underflow. Underflow is the situation in which
the result of an operation is not zero but is closer to zero than any normalized
floating point number. In single precision, the smallest normalized positive
floating point number is A = (1.0 · · · 0)2 · 2−126. The nearest floating point
number in the positive direction is B+ = (1.0 · · · 01)2 · 2−126. The nearest
floating point number in the negative direction is the denormalized number
B− = (0.1 · · · 11)2 ·2−126. The gap between A and B+ and the gap between B−

and A both are (0.0 · · · 01)2 · 2−126 = 2−126−23 = 2−149. Without denormalized
numbers, A would have a gap of size 2−149 on the right and 2−126 (the space
between 0 and A) on the left: the left gap would be 223 ≈ 4 billion times larger
than the gap on the right. Gradual underflow also has the consequence that

6

two floating point numbers are equal, x = y, if and only if subtracting one from
the other gives exactly zero.

The other extreme case, e = 255 in single precision, has two subcases, inf
(for infinity) if f = 0 and NaN (for Not a Number) if f 6= 0. The C++ statement
cout << x; produces4 “inf” and “NaN” respectively. An arithmetic operation
produces inf if the exact answer is larger than the largest floating point number,
as does 1/x if x = ±0. (Actually 1/ + 0 = +inf and 1/ − 0 = -inf). Invalid
operations such as sqrt(-1.), log(-4.), produce NaN. Any operation involving
a NaN produces another NaN. It is planned that f will contain information about
how or where in the program the NaN was created but this is not standardized
yet. Operations with inf are common sense: inf + finite = inf, inf/inf =
NaN, finite/inf = 0, inf+ inf = inf, inf− inf = NaN.

A floating point arithmetic operation is an exception if the result is not a
normalized floating point number. The standard mandates that a hardware flag

(a binary bit of memory in the processor) should be set (given the value 1) when
an exception occurs. There should be a separate flag for the underflow, inf, and
NaN exceptions. The programmer should be able to specify what happens when
an exception flag is set. Either the program execution continues without inter-
ruption or an exception handler procedure is called. The programmer should
be able to write procedures that interface with the exception handler to find
out what happened and take appropriate action. Only the most advanced and
determined programmer will be able to do this. The rest of us have the worst
of both: the exception handler is called, which slows the program execution but
does nothing useful.

Many features of IEEE arithmetic are illustrated in Figure 1. Note that e204

gives inf in single precision but not in double precision because the range of
values is larger in double precision. We see that inf and NaN work as promised.
The main rule, “exact answer correctly rounded”, explains why adding pairs
of floating point numbers is commutative: the mathematical sums are equal so
they round to the same floating point number. This does not force addition to
be associative, which it is not. Multiplication also is commutative but not asso-
ciative. The division operator gives integer or floating point division depending
on the types of the operands. Integer arithmetic truncates the result to the next
lower integer rather than rounding it to the nearest integer.

// A program that explores floating point arithmetic in the IEEE

// floating point standard. The source code is SourcesOfError.C.

#include <iostream.h>

#include <math.h>

int main() {

4Microsoft, in keeping with its pattern of maximizing incompatibility, gives something
different.

7

float xs, ys, zs, ws; // Some single precision variables.

double yd; // A double precision variable.

xs = 204.; // Take an exponential that is out of range.

ys = exp(xs);

cout << "The single precision exponential of " << xs <<

" is " << ys << endl;

yd = exp (xs); // In double precision, it is in range.

cout << "The double precision exponential of " << xs <<

" is " << yd << endl;

zs = xs / ys; // Divide a normal number by infinity.

cout << xs << " divided by " << ys <<

" gives " << zs << endl;

ws = ys; // Divide infinity by infinity.

zs = ws / ys;

cout << ws << " divided by " << ys << " gives " << zs << endl;

zs = sqrt(-1.) ; // sqrt(-1) should be NaN.

cout << "sqrt(-1.) is " << zs << endl;

ws = xs + zs; // Add NaN to a normal number.

cout << xs << " + " << zs << " gives " << ws << endl;

xs = sin(1.); // Some generic single precision numbers.

ys = 100. *sin(2.);

zs = 10000.*sin(3.);

float xsPys, ysPxs, xsPzs, zsPxs; // xsPzx holds xs + zs, etc.

xsPys = xs + ys;

ysPxs = ys + xs; // Try commuting pairs.

xsPzs = xs + zs;

zsPxs = zs + xs;

if ((xsPys == ysPxs) && (xsPzs == zsPxs))

cout << "Adding " << xs << " " << ys << " and "<< zs <<

" in pairs commutes." << endl;

else

cout << "Adding " << xs << " " << ys << " and "<< zs <<

" in pairs does not commute." << endl;

float xsPysPzs, ysPzsPxs; // Test for associativity.

xsPysPzs = (xs + ys) + zs;

ysPzsPxs = (ys + zs) + xs;

if (xsPysPzs == ysPzsPxs)

8

cout << "Adding " << xs << " " << ys << " and "<< zs <<

" is associative." << endl;

else

cout << "Adding " << xs << " " << ys << " and "<< zs <<

" is not associative." << endl;

int xi, yi; // Some integer variables.

xi = 9; // Compute the quotient using integer

yi = 10; // and floating point arithmetic.

zs = xi/yi;

ws = ((float) xi) / ((float) yi); // Convert, then divide.

cout << "Integer division of " << xi << " by " << yi <<

" gives " << zs << ". " <<

" Floating point gives " << ws << endl;

return(0);

}

Figure 1: A program that illustrates some of the features of arithmetic using the

IEEE floating point standard.

3 Truncation error

Truncation error is the error in analytical approximations such as

f ′(x) ≈ f(x + h) − f(x)

h
. (3)

This is not an exact formula, but it can be a useful approximation. We often
think of truncation error as arising from truncating a Taylor series. In this case,
the Taylor series formula,

f(x + h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) + · · · ,

is truncated by neglecting all the terms after the first two on the right. This
leaves the approximation

f(x + h) ≈ f(x) + hf ′(x) ,

which can be rearranged to give (3). Truncation usually is the main source of
error in numerical integration or solution of differential equations. The analysis
of truncation error using Taylor series will occupy the next two chapters.

9

h .3 .01 10−5 10−8 10−10

f̂ ′ 6.84 5.48 5.4366 5.436564 5.436562
etot 1.40 4.10 · 10−2 4.08 · 10−5 −5.76 · 10−8 −1.35 · 10−6

Figure 2: Estimates of f ′(x) using (3). The error is etot, which results from
truncation and roundoff error. Roundoff error is apparent only in the last two
columns.

As an example, we take f(x) = xex, x = 1, and several h values. The
truncation error is

etr =
f(x + h) − f(x)

h
− f ′(x) .

In Chapter ?? we will see that (in exact arithmetic) etr roughly is proportional
to h for small h. The numbers in Figure 3 were computed in double precision
floating point arithmetic. The total error, etot, is a combination of truncation
and roundoff error. Roundoff error is significant for the smallest h values: for
h = 10−8 the error is no longer proportional to h; by h = 10−10 the error has
increased. Such small h values are rare in a practical calculation.

4 Iterative Methods

Suppose we want to find A by solving an equation. Often it is impossible to
find a formula for the solution. Instead, iterative methods construct a sequence
of approximate solutions, An, for n = 1, 2, Hopefully, the approximations
converge to the right answer: An → A as n → ∞. In practice, we must stop the
iteration process for some large but finite n and accept An as the approximate
answer.

For example, suppose we have a y > 0 and we want to find x with xex = y.
There is not a formula for x, but we can write a program to carry out the
iteration: x1 = 1, xn+1 = ln(y)−ln(xn). The numbers xn are iterates. The limit
x = limn→∞ xn (if it exists), is a fixed point of the iteration, i.e. x = ln(y)−ln(x),
which implies xex = y. Figure 4 demonstrates the convergence of the iterates
in this case with y = 10. The initial guess is x1 = 1. After 20 iterations, we
have x20 ≈ 1.74. The error is e20 ≈ 2.3 · 10−5, which might be small enough,
depending on the application.

After 67 iterations the relative error is (x67 − x)/x ≈ 2.2 · 10−16/1.75 ≈
1.2 · 10−16, which is only slightly larger than double precision machine precision
ǫmach ≈ 1.1 · 10−16. This shows that supposedly approximate iterative methods
can be as accurate as direct methods that would be exact in exact arithmetic.
It would be a surprising fluke for even a direct method to achieve better than
machine precision because even they are subject to roundoff error.

10

n 1 3 6 10 20 67
xn 1 1.46 1.80 1.751 1.74555 1.745528
en −.745 −.277 5.5 · 10−2 5.9 · 10−3 2.3 · 10−5 2.2 · 10−16

Figure 3: Iterates of xn+1 = ln(y) − ln(xn) illustrating convergence to a limit
that satisfies the equation xex = y. The error is en = xn − x. Here, y = 10.

n 10 100 104 106 106 106

Â .603 .518 .511 .5004 .4996 .4991
error .103 1.8 · 10−2 1.1 · 10−2 4.4 · 10−4 −4.0 · 10−4 −8.7 · 10−4

Figure 4: Statistical errors in a demonstration Monte Carlo computation.

5 Statistical error in Monte Carlo

Monte Carlo means using random numbers as a computational tool. For ex-
ample, suppose5 A = E[X], where X is a random variable with some known
distribution. Sampling X means using the computer random number generator
to create independent random variables X1, X2, . . ., each with the distribution
of X . The simple Monte Carlo method would be to generate n such samples
and calculate the sample mean:

A ≈ Â =
1

n

n∑

k=1

Xk .

The difference between Â and A is statistical error. A theorem in probability,
the law of large numbers, implies that Â → A as n → ∞. Monte Carlo statistical
errors typically are larger than roundoff or truncation errors. This makes Monte
Carlo a method of last resort, to be used only when other methods are not
practical.

Figure 5 illustrates the behavior of this Monte Carlo method for the random
variable X = 3

2U2 with U uniformly distributed in the interval [0, 1]. The exact
answer is A = E[X] = 3

2E[U2] = .5. The value n = 106 is repeated to illustrate
the fact that statistical error is random (see Chapter ?? for a clarification of
this). The errors even with a million samples are much larger than those in the
right columns of Figures 3 and 4.

6 Error propagation and amplification

Errors can be amplified as they propagate through a computation. For example,
suppose the divided difference (3) is part of a long calculation:

. .

f1 = . . . ; \\ approx of f(x)

5E[X] is the expected value of X. Chapter ?? has some review of probability.

11

f2 = . . . ; \\ approx of f(x+h)

. .

fPrimeHat = (f2 - f1) / h ; \\ approx of derivative

It is unlikely that f1 = f̂(x) ≈ f(x) is exact. Many factors may contribute to
the errors e1 = f1 − f(x) and e2 = f2 − f(x + h). There are three contributions
to the final error in f ′:

f̂ ′ − f ′ = er + etr + epr . (4)

One is the roundoff error in evaluating (f2 - f1) / h in floating point

f̂ ′ =
f2 − f1

h
+ er . (5)

The truncation error in the difference quotient approximation is

f(x + h) − f(x)

h
− f ′ = etr . (6)

The propagated error comes from using inexact values of f(x + h) and f(x):

f2 − f1

h
− f(x + h) − f(x)

h
=

e2 − e1

h
= epr . (7)

If we add (5), (6), and (7), and simplify, we get the formula (4).
A stage of a long calculation creates some errors and propagates errors from

earlier stages, possibly with amplification. In this example, the difference quo-
tient evaluation introduces truncation and roundoff error. Also, e1 and e2 rep-
resent errors generated at earlier stages when f(x) and f(x+h) were evaluated.
These errors, in turn, could have several sources, including inaccurate x values
and roundoff in the code evaluating f(x). According to (7), the difference quo-
tient propagates these and amplifies them by a factor of 1/h. A typical value
h = .01 could amplify incoming errors e1 and e2 by a factor of 100.

This increase in error by a large factor in one step is an example of catas-

trophic cancellation. If the numbers f(x) and f(xh) are nearly equal, the differ-
ence can have much less relative accuracy than the numbers themselves. More
common and more subtle is gradual error growth over a long sequence of compu-
tational steps. Exercise 12 has an example in which the error roughly doubles
at each stage. Starting from double precision roundoff level, the error after 30
steps is negligible but the error after 60 steps is larger than the answer.

An algorithm is unstable if its error mainly comes from amplification. This
numerical instability can be hard to discover by standard debugging techniques
that look for the first place something goes wrong, particularly if there is gradual
error growth.

Mathematical stability theory in scientific computing is the search for grad-
ual error growth in computational algorithms. It focuses on propagated error
only, ignoring the original sources of error. For example, Exercise 8 involves the
backward recurrence fk−1 = fk+1−fk. In a stability analysis, we would assume

12

that the subtraction is performed exactly and that the error in fk−1 is entirely

due to errors in fk and fk+1. That is, if f̂k = fk + ek is the computer approxi-
mation, then the ek satisfy the mathematical relation ek−1 = ek+1 − ek, which
is the error propagation equation. We then would use the theory of recurrence
relations to see whether the ek can grow relative to the fk as k decreases. If
this error growth is possible, it will happen in practically any computation.

7 Condition number and ill conditioned prob-
lems

The condition number of a computational problem measures the sensitivity of
the answer to small changes in the data. If κ is the condition number, then
we expect error at least κ · ǫmach, regardless of the computational algorithm. A
problem with large condition number is ill conditioned. For example, if κ > 107,
then there probably is no algorithm that gives anything like the right answer in
single precision arithmetic. Condition numbers as large as 107 or 1016 can and
do occur in practice.

The definition of κ is simplest when the answer is a single number that
depends on a single scalar variable, x: A = A(x). A change in x causes a
change in A: ∆A = A(x + ∆x) − A(x). The condition number measures the
relative change in A caused by a small relative change of x:

∣∣∣∣
∆A

A

∣∣∣∣ ≈ κ

∣∣∣∣
∆x

x

∣∣∣∣ . (8)

Any algorithm that computes A(x) must round x to the nearest floating point
number, x̂. This creates a relative error (assuming x is within the range of
normalized floating point numbers) |∆x/x| = |(x̂ − x)/x| ∼ ǫmach. If the rest of

the computation were done exactly, the computed answer would be Â(x) = A(x̂)
and the relative error would be (using (8))

∣∣∣∣∣
Â(x) − A(x)

A(x)

∣∣∣∣∣ =

∣∣∣∣
A(x̂) − A(x)

A(x)

∣∣∣∣ ≈ κ

∣∣∣∣
∆x

x

∣∣∣∣ ∼ κǫmach . (9)

If A is a differentiable function of x with derivative A′(x), then, for small ∆x,
∆A ≈ A′(x)∆x. With a little algebra, this gives (8) with

κ =

∣∣∣∣A′(x) · x

A(x)

∣∣∣∣ . (10)

This analysis argues that any computational algorithm for an ill conditioned
problem must be unstable. Even if A(x) is evaluated exactly, relative errors
in the input of size ǫ are amplified by a factor of κ. The formulas (9) and
(10) represent an absolute lower bound for the accuracy of any computational
algorithm. An ill conditioned problem is not going to be solved accurately,
period.

13

The formula (10) gives a dimensionless κ because it measures relative sen-
sitivity. The extra factor x/A(x) removes the units of x and A. Absolute
sensitivity is is just A′(x). Note that both sides of our starting point (8) are
dimensionless with dimensionless κ.

As an example consider the problem of evaluating A(x) = R sin(x). The
condition number formula (10) gives

κ(x) =

∣∣∣∣cos(x) · x

sin(x)

∣∣∣∣ .

Note that the problem remains well conditioned (κ is not large) as x → 0, even
though A(x) is small when x is small. For extremely small x, the calculation
could suffer from underflow. But the condition number blows up as x → π,
because small relative changes in x lead to much larger relative changes in A.
This illustrates quirk of the condition number definition: typical values of A
have the order of magnitude R and we can evaluate A with error much smaller
than this, but certain individual values of A may not be computed to high
relative precision. In most applications that would not be a problem.

There is no perfect definition of condition number for problems with more
than one input or output. Suppose at first that the single output A(x) depends
on n inputs x = (x1, . . . , xn). Of course A may have different sensitivities to
different components of x. For example, ∆x1/x1 = 1% may change A much
more than ∆x2/x2 = 1%. If we view (8) as saying that |∆A/A| ≈ κǫ for
|∆x/x| = ǫ, a worst case multicomponent generalization could be

κ =
1

ǫ
max

∣∣∣∣
∆A

A

∣∣∣∣ , where

∣∣∣∣
∆xk

xk

∣∣∣∣ ≤ ǫ for all k.

We seek the worst case6 ∆x. For small ǫ we write

∆A ≈
n∑

k=1

∂A

∂xk

∆xk ,

then maximize subject to the constraint |∆xk| ≤ ǫ |xk| for all k. The maxi-
mum occurs at ∆xk = ±ǫxk, which (with some algebra) leads to one possible
generalization of (10):

κ =

n∑

k=1

∣∣∣∣
∂A

∂xk

· xk

A

∣∣∣∣ . (11)

This formula is useful if the inputs are known to similar relative accuracy, which
could happen even when the xk have different orders of magnitude or different
units.

8 Software

Each chapter of this book has a Software section. Taken together they form
a mini course in software for scientific computing. The material ranges from

6As with rounding, typical errors tend to be order of the worst case error.

14

double tStart, tFinal, t, dt;

int n;

tStart = . . . ; // Some code that determines the start

tFinal = . . . ; // and ending time and the number of

n = . . . ; // equal size steps.

dt = (tFinal - tStart) / n; // The size of each step.

for (t = tStart, t < tFinal, t+= dt)

{ . . . } // Body of the loop does not assign t.

Figure 5: A code fragment illustrating a pitfall of using a floating point variable

to regulate a while loop.

simple tips to longer discussions of bigger issues. The programming exercises
illustrate the chapter’s software principles as well as the mathematical material
from earlier sections.

Scientific computing projects fail because of bad software as often as they fail
because of bad algorithms. The principles of scientific software are less precise
than the mathematics of scientific computing, but are just as important. There
is a set of principles for scientific programming that goes beyond those for general
programming (modular design, commenting, etc.). Projects are handsomely
rewarded for extra efforts and care taken to do the software “right”.

8.1 Floating point numbers are (almost) never equal

Because of inexact floating point arithmetic, two numbers that should be equal
in exact arithmetic often are not equal in the computer. In general, an equality
test between two variables of type float or double is a mistake. A striking
illustration of this can happen with Intel processor chips, where variables of
type double are stored on the chip in 80 bit registers but in memory with the
standard 64. Moving a variable from the register to memory loses the extra bits.
Thus, a program can execute the instruction y1 = y2; and then do not reassign
either y1 or y2, but later (y1 == y2) may evaluate to false because y1 but
not y2 was copied from register to memory.

A common mistake in this regard is to use floating point comparisons to
regulate a loop. Figure 5 illustrates this. In exact arithmetic this would give
the desired n iterations. Because of floating point arithmetic, after the nth

iteration, the variable t may be equal to tFinal but is much more likely to
be above or below due to roundoff error. It is impossible to predict which way
the roundoff error will go. We do not know whether this code will execute the
while loop body n or n + 1 times. Figure 6 uses exact integer arithmetic to
guarantee n executions of the for loop body.

15

double tStart, tFinal, t, dt;

int n, , i;

tStart = . . . ; // Some code that determines the start

tFinal = . . . ; // and ending time and the number of

n = . . . ; // equal size steps.

dt = (tFinal - tStart) / n; // The size of each step.

for (i = 0, i < n, i++)

{ t = tStart + i*dt; // In case the value of t is needed

. . . } // in the loop body.

Figure 6: A code fragment using an integer variable to regulate the loop of Figure

5.

8.2 Plotting

Careful visualization is a key step in understanding any data. Pictures can be
more informative than tables of numbers. Explore and understand the data
by plotting it in various ways. There are many ways to visualize data, simple
graphs, surface plots, contour and color plots, movies, etc. We discuss only
simple graphs here. Here are some things to keep in mind.

Learn your system and your options. Find out what visualization tools
are available or easy to get on your system. Choose a package designed for
scientific visualization, such as Matlab or Gnuplot, rather than one designed for
commercial presentations such as Excel. Learn the options such as line style
(dashes, thickness, color, symbols), labeling, etc.

Use scripting and other forms of automation. You will become frustrated
typing several commands each time you adjust one detail of the plot. Instead,
assemble the sequence of plot commands into a script.

Frame the plot. The Matlab plot function with values in the range from
1.2 to 1.22 will use a vertical scale from 0 to 2 and plot the data as a nearly
horizontal line, unless you tell it otherwise. Figure 7, presents the first 70
Fibonacci numbers. The Fibonacci numbers, fi, are defined by f0 = f1 = 1,
and fi+1 = fi + fi−1, for i ≥ 1. On the linear scale, f1 through f57 sit on the
horizontal axis, indistinguishable to plotting accuracy from zero. The log plot
shows how big each of the 70 numbers is. It also makes it clear that log(fi) is
nearly proportional to i, which implies (if log(fi) ≈ a + bi, then fi ≈ cdi) that
the fi are approximately exponential. If we are interested in the linear scale
plot, we can edit out the useless left part of the graph by plotting only from
n = 55 to n = 70.

Combine curves you want to compare into a single figure. Stacks of graphs
are as frustrating as arrays of numbers. You may have to scale different curves
differently to bring out the relationship they have to each other. If the curves
are supposed to have a certain slope, include a line with that slope. If a certain

16

0 20 40 60 80
0

1

2

3

4
x 10

14

i

f

Fibonacci up to n = 70

Linear scale, full range

0 20 40 60 80
10

0

10
5

10
10

10
15

i
f

Fibonacci up to n = 70

Log scale

55 60 65 70
0

1

2

3

4
x 10

14

i

f

Fibonacci from n = 55 to 70

Linear scale, partial range

Figure 7: Plots of the first n Fibonacci numbers, linear scale on the left, log

scale on the right

17

% Matlab code to generate and plot Fibonacci numbers.

clear f % If you decrease the value of n, it still works.

n = 70; % The number of Fibonacci numbers to compute.

fi = 1; % Start with f0 = f1 = 1, as usual.

fim1 = 1;

f(1) = fi; % Record f(1) = f1.

for i = 2:n

fip1 = fi + fim1; % f(i+1) = f(i) + f(i-1) is the recurrence

fim1 = fi; % relation that defines . . .

fi = fip1; % the Fibonacci numbers.

f(i) = fi; % Record f(i) for plotting.

end

plot(f)

xlabel(’i’) % The horizontal and vertical axes are

ylabel(’f’) % i and f respectively.

topTitle = sprintf(’Fibonacci up to n = %d’,n);

% Put n into the title.

title(topTitle)

text(n/10, .9*f(n), ’Linear scale’);

grid % Make it easier to read values in the plot.

set (gcf, ’PaperPosition’, [.25 2.5 3.2 2.5]);

% Print a tiny image of the plot for the book.

print -dps FibLinear_se

Figure 8: Matlab code to calculate and plot Fibonacci numbers.

x or y value is important, draw a horizontal or vertical line to mark it in the
figure. Use a variety of line styles to distinguish the curves. Exercise 9 illustrates
some of these points.

Make plots self–documenting. Figure 7 illustrates mechanisms in Matlab
for doing this. The horizontal and vertical axes are labeled with values and
text. In the third plot, the simpler command plot(f(iStart:n)) would have
labeled the horizontal axis from 1 to 15 (very misleading) instead of 55 to 70.
Parameters from the run, in this case just n, are embedded in the title.

The Matlab script that made the plots of Figure 7 is in Figure 8. The only
real parameters are n, the largest i value, and whether the plot is on a linear
or log scale. Both of those are recorded in the plot. Note the convenience and
clarity of not hard wiring n = 70. It would take just a moment to make plots
up to n = 100.

18

9 Further reading

The idea for starting a book on computing with a discussion of sources of error
comes from the book Numerical Methods and Software by David Kahaner, Cleve
Moler, and Steve Nash. Another interesting version is in Scientific Computing

by Michael Heath. My colleague, Michael Overton, has written a nice short
book IEEE Floating Point Arithmetic.

10 Exercises

1. It is common to think of π2 = 9.87 as approximately ten. What are the
absolute and relative errors in this approximation?

2. If x and y have type double, and ((x - y) >= 10) evaluates to
TRUE, does that mean that y is not a good approximation to x in the sense
of relative error?

3. Show that fjk = sin(x0 + (j − k)π/3) satisfies the recurrence relation

fj,k+1 = fj,k − fj+1,k . (12)

We view this as a formula that computes the f values on level k + 1 from
the f values on level k. Let f̂jk for k ≥ 0 be the floating point numbers
that come from implementing fj0 = sin(x0 + jπ/3) and (12) (for k > 0)

in double precision floating point. If
∣∣∣f̂jk − fjk

∣∣∣ ≤ ǫ for all j, show that∣∣∣f̂j,k+1 − fj,k+1

∣∣∣ ≤ 2ǫ for all j. Thus, if the level k values are very accurate,

then the level k + 1 values still are pretty good.

Write a program (C/C++ or Matlab) that computes ek = f̂0k − f0k for
1 ≤ k ≤ 60 and x0 = 1. Note that f0n, a single number on level n,
depends on f0,n−1 and f1,n−1, two numbers on level n − 1, and so on
down to n numbers on level 0. Print the ek and see whether they grow
monotonically. Plot the ek on a linear scale and see that the numbers
seem to go bad suddenly at around k = 50. Plot the ek on a log scale.
For comparison, include a straight line that would represent the error if it
were exactly to double each time.

4. What are the possible values of k after the for loop is finished?

float x = 100*rand() + 2;

int n = 20, k = 0;

float dy = x/n;

for (float y = 0; y < x; y += dy;) {

k++; /* body does not change x, y, or dy */ }

5. We wish to evaluate the function f(x) for x values around 10−3. We
expect f to be about 105 and f ′ to be about 1010. Is the problem too ill
conditioned for single precision? For double precision?

19

6. Show that in the IEEE floating point standard with any number of fraction
bits, ǫmach essentially is the largest floating point number, ǫ, so that 1 + ǫ
gives 1 in floating point arithmetic. Whether this is exactly equivalent to
the definition in the text depends on how ties are broken in rounding, but
the difference between the two definitions is irrelevant (show this).

7. Starting with the declarations

float x, y, z, w;

const float oneThird = 1/ (float) 3;

const float oneHalf = 1/ (float) 2;

// const means these never are reassigned

we do lots of arithmetic on the variables x, y, z, w. In each case below,
determine whether the two arithmetic expressions result in the same float-
ing point number (down to the last bit) as long as no NaN or inf values
or denormalized numbers are produced.

(a)

(x * y) + (z - w)

(z - w) + (y * x)

(b)

(x + y) + z

x + (y + z)

(c)

x * oneHalf + y * oneHalf

(x + y) * oneHalf

(d) x * oneThird + y * oneThird

(x + y) * oneThird

8. The fibonacci numbers, fk, are defined by f0 = 1, f1 = 1, and

fk+1 = fk + fk−1 (13)

for any integer k > 1. A small perturbation of them, the pib numbers

(“p” instead of “f” to indicate a perturbation), pk, are defined by p0 = 1,
p1 = 1, and

pk+1 = c · pk + pk−1

for any integer k > 1, where c = 1 +
√

3/100.

(a) Plot the fn and pn in one together on a log scale plot. On the plot,
mark 1/ǫmach for single and double precision arithmetic. This can
be useful in answering the questions below.

20

(b) Rewrite (13) to express fk−1 in terms of fk and fk+1. Use the com-
puted fn and fn−1 to recompute fk for k = n−2, n−3, . . . , 0. Make a
plot of the difference between the original f0 = 1 and the recomputed
f̂0 as a function of n. What n values result in no accuracy for the
recomputed f0? How do the results in single and double precision
differ?

(c) Repeat b. for the pib numbers. Comment on the striking difference
in the way precision is lost in these two cases. Which is more typical?
Extra credit: predict the order of magnitude of the error in recom-
puting p0 using what you may know about recurrence relations and
what you should know about computer arithmetic.

9. The binomial coefficients, an,k, are defined by

an,k =

(
n
k

)
=

n!

k!(n − k)!

To compute the an,k, for a given n, start with an,0 = 1 and then use the
recurrence relation an,k+1 = n−k

k+1 an,k.

(a) For a range of n values, compute the an,k this way, noting the largest
an,k and the accuracy with which an,n = 1 is computed. Do this in
single and double precision. Why is roundoff not a problem here as
it was in problem 8? Find n values for which ân,n ≈ 1 in double
precision but not in single precision. How is this possible, given that
roundoff is not a problem?

(b) Use the algorithm of part (a) to compute

E(k) =
1

2n

n∑

k=0

kan,k =
n

2
. (14)

Write a program without any safeguards against overflow or zero di-
vide (this time only!)7. Show (both in single and double precision)
that the computed answer has high accuracy as long as the interme-
diate results are within the range of floating point numbers. As with
(a), explain how the computer gets an accurate, small, answer when
the intermediate numbers have such a wide range of values. Why is
cancellation not a problem? Note the advantage of a wider range of
values: we can compute E(k) for much larger n in double precision.
Print E(k) as computed by (14) and Mn = maxk an,k. For large n,
one should be inf and the other NaN. Why?

(c) For fairly large n, plot an,k/Mn as a function of k for a range of k
chosen to illuminate the interesting “bell shaped” behavior of the an,k

near k = n/2. Combine the curves for n = 10, n = 20, and n = 50 in

7One of the purposes of the IEEE floating point standard was to allow a program with
overflow or zero divide to run and print results.

21

a single plot. Choose the three k ranges so that the curves are close
to each other. Choose different line styles for the three curves.

22

