1 Introduction

Monte Carlo methods are techniques that use random numbers as part of a
scientific computation. Because Monte Carlo methods usually lead to large
statistical errors, they are a method of last resort, to be used only when other
methods are impractical. For example, we rarely would use Monte Carlo if the
alternative was working a three dimensional integral by quadrature or solving
a partial differential equation in two or three dimensions.

Standard grid based methods become impractical in high dimensions, a phe-
nomenon called the “curse of dimensionality”. Consider, for example, an integral
over the d dimensional unit cube:

:C]=1 xd_l
I:/ / V(zi,xa,...,xq)drrdas - -day . (1)
x1=0 xq=0

If we use a mesh with step size Az = 1/n in each direction, the total number
of mesh points is N = n?. For d = 20 and n = 10, not a very fine mesh, the
number of mesh points, and the number of operations needed, is more than any
contemplated computer can do in a year. On the other hand, a Monte Carlo
approximation with only N = 10% randomly chosen points could reasonably be
expected to give three decimal digits accuracy.

Most Monte Carlo methods are based on the law of large numbers in prob-
ability. Suppose Y is a random variable with expected value A = E[Y]. The
Monte Carlo algorithm generates many “samples” of Y (random variables with
the same probability density), called Y, Y@ Y(N) The sample mean is
used to estimate A:

N
An AN :%ZY(’“). (2)
k=1

The law of large numbers is a mathematical theorem that states that if the
samples Y (¥) are independent, and if E[|Y|] < oo so that the expected value is
properly defined, then

AN A4 asn— oco.

More advanced Monte Carlo methods, including Markov chain Monte Carlo,
produce samples that are not independent and have the probability density of
Y only in the limit N — oco. These methods are beyond the scope of this course.

In the case of the integral (1), we could define a d dimensional uniform
random variable X = (Xi,...,X,) with probability density equal to one if
0 <z; <1for k=1,...,2z4 and zero otherwise. We can generate such an
X by taking the components, X, to be independent scalar random variables
uniformly distributed in the interval [0, 1] (see below). We then define the scalar
random variable Y = V(X), so that E[Y] is given by the integral (1). We can
generate N independent samples Y ¥) by generating N independent points X %)
The estimate of I is then the sample mean of the Y *) as in (2).

I make a distinction between Monte Carlo and simulation. In Monte Carlo,
the ultimate answer, A, is not itself a random number. For example, the integral

(1) is not random. We gladly would dispense with random numbers if d were
small enough to make that practical. Even when A involves a random process
(a hitting probability, expected time to failure, etc.), A itself is not random.

Simulations, in contrast, seek random outcomes. For example, computers use
random numbers in generating artificial images of clouds or trees. Computer
network designers simulate their design networks with random inputs to see
what the answers look like. At some point, the designer may spot a curious
phenomenon and wish to study it quantitatively. As soon as she or he formulates
a specific goal, such as determining the expected number of packed collisions
per minute, she or he is doing Monte Carlo.

The point of the distinction is that Monte Carlo has much more freedom
than simulation. In simulation we only want to create a faithful computer
representation of our model. In Monte Carlo we are free to seek other definitions
of the answer A that might make the computation easier or more accurate. For
example, in (1) it might be possible to integrate by parts and express I in
terms of a different integrand, W(xz). Maybe W is easier to evaluate or has less
variation. In simulation, variance is neither good nor bad, it is just a reflection
of the model being simulated. In Monte Carlo, variance in the estimate of A is
bad because it makes the estimate less accurate.

Reformulating a problem to reduce the Monte Carlo variance is called vari-
ance reduction. The major variance reduction techniques are control variates,
antithetic variates, and importance sampling. Since Monte Carlo computations
are often very slow, practitioners are amply motivated to explore variance re-
duction.

Because the errors in Monte Carlo are mainly statistical, the methods of
statistics primarily are used to estimate them. If A is the answer and A is
the Monte Carlo estimate of A, the bias is E[A] — A. The statistical error is
AA=A-— E[//l\] In a majority of Monte Carlo computations, the bias is either
zero or much smaller than the statistical error. For example, the estimate (2)
will have zero bias if E[Y () = E[Y], which will happen if the probability density
for all of the Y(*) is identical to that for Y, as in the Monte Carlo estimate of
the integral (1). For this reason, Monte Carlo practitioners tend to give careful
estimates of statistical error while trusting the bias to be less significant.

Statistical error estimates are represented through error bars, which are re-
lated to statistical confidence intervals. A confidence interval is a computed
interval [A_, A] with the property that E[A] € [A_, A4] with probability p.
(the confidence probability). Typically statisticians use p. = 99% or p. = 99%.
Of course, [ﬁ] is not random, but A_ and ng are computed during the course
of the Monte Carlo computation and are random. For p. = 95%, there is a 5%
chance that A_ > E[A] or Ay < E[A]. If I repeat the Monte Carlo computa-
tion a hundred times (with a different seed), E [A\] remains the same unknown
value and in all but about five of the runs, it is inside the computed confidence
interval. The error bars used by Monte Carlo practitioners tend to be p. ~ 33%
confidence intervals because they prefer to give a realistic idea how large the
statistical error is likely to be than to be right a vast majority of the time.

This qu1te simple in all but the most sophisticated Monte Carlo. We compute
an estimate, 7, of the standard deviation of A. The confidence interval bounds
are then Ay = A+25 or Ay = A=+ 35 for statisticians’ p. = 95% or p. = 99%.
Monte Carlo practitioners often prefer Ai = A+ 5. These are “one standard
deviation” error bars, in contrast to two or three standard deviation error bars
used by cautious statisticians. An error bar is plotted as a bar, running from
A_ to A+, usually with a dot in the center to represent the actual A.

Error bars should be part of every Monte Carlo computation. The statistical
errors in Monte Carlo are generally larger than errors (roundoff, truncation
error, premature termination error) in other parts of scientific computing. It
would be unprofessional to present the results of a numerical integration without
having done some convergence study to verify the correctness. Error bars play
that role in Monte Carlo. Error bars are part of most scientific presentations
that involve Monte Carlo data. Presentations for nonscientific people may leave
out the error bars, provided that the practitioner has looked at them and decided
they are small enough.

We will follow to some extent the common convention that random variables
are denoted by capital letters with generic numbers given by the corresponding
lower case letter. We might, for example, have a random variable, X, with
a probability density f(x). We will use the informal differential notation of
scientists rather than the rigorous notation of mathematicians. In particular,
the probability density function is defined by the slightly informal expression
f(z)dz = Pr(x < X <z +dx).

2 Random number generators

Random number generators are computer programs that produce numbers may
be used as random numbers in Monte Carlo computations. In principle if float
rand () is a random number generator, then

for (k=0; k<N; k++) U[k] = rand();

should produce random variables, Uy, that are independent and uniformly dis-
tributed in the unit interval. The random variable U is uniformly distributed
in the interval [a,b] if the probability density is f(u) = 1/(b — a) for u € [a,]
and f(u) = 0 otherwise. The standard uniform random variable has a = 0
and b = 1. The random variables Uy are independent if their joint probability
density is a product of the one variable densities. The joint uniform density was
used in the Monte Carlo method for estimating (1) above.

Like computer arithmetic, computer random number generators are not per-
fect. The numbers are not actually random. Even the best random number
generators have some correlation between the Uj. These correlations may be
too subtle for an amateur to find, but the experts are not fooled. Nevertheless,
most of our discussion of Monte Carlo methods assumes that we have access to
as many truly uniform and independent random variables as we need. Much
ingenious Monte Carlo technique goes into the sampling problem: using lots of

independent standard uniform random variables to generate other more com-
plicated random variables.

Practical random number generators are based on two functions, ®, and
V. The seed, S, is a small collection of integers in a certain range, such as
the range of 32 bit integer arithmetic. The operation S’ = ®(S) updates the
seed. The operation U = ¥(S) produces a real number in the interval [0, 1]
from the seed S. A call U = rand() has the effect of returning U = ¥(S) and
replacing S with S’. A good random number generator will allow the user to
access the seed through something like S = getSeed(), and to set the seed, as
in setSeed(S). If you write a code that uses rand() without setSeed(S), the
computer probably sets the seed from it’s internal clock.

Programmers access and set the seed for several reasons. If you are debug-
ging a code and want it to do the same thing every time, you can explicitly set
the seed at the beginning. This will insure that the “random” numbers, Uy, are
the same each run. It is common that Monte Carlo runs are so long that they
need to be checkpointed. Checkpointing means stopping a long computation in
the middle and writing all the data to disk so that the run can be continued
later. If the computer crashes, you lose only the time since the most recent
checkpoint. For Monte Carlo, the codes

for (k = 0; k < 20; k++) U[k] = rand();
and
for (k = 0; k < 10; k++) U[k] = rand();
S = getSeed();
y = rand();
(. . . other stuff involving rand() but not S . . .)
setSeed(S);

for (k = 10; k < 20; k++) U[k] = rand();

do the same thing. Restoring the seed after step 10 continues the Uy sequence
as if it had not been interrupted. A disastrous bug that beginners have been
known to make (but never more than once) is

for (k = 0; k < 20; k++) {
Ulk] = rand();
setSeed(S);

}

This gives each of the Uy the same value.

The details structure of random number generators (as determined by ®
and V) are beyond the scope here. The simplest are congruental, which take
S to be a single integer and S’ = a* S + b mod c. If S is a single 32 bit
integer, then the number of U possible is not more than 232 ~ 8 x 10°. On a
modern computer, a program could use all these in a minute. Continuing the
Monte Carlo computation beyond this point would necessarily mean reusing
old numbers rather than generating new ones. Thus, the effective maximum N
would be severely limited. Modern random number generators do not have this
problem: the cycle time is too long.

3 Direct sampling methods

Most Monte Carlo computations require us to generate random variables with a
given distribution using standard uniform random variables. Some of the tricks
for doing this are stunningly brilliant and simple.

3.1 Bernoulli random variables

A Bernoulli random variable, X has two possible values, X =0 or X = 1. It is
characterized by the probability of getting 1: p = Pr(X = 1). You can make a
Bernoulli from a standard uniform by testing whether the uniform is less than

p

if (rand() <p) X = 1;
else X = 0;

If we run this code segment N times, we get N independent Bernoulli random
variables with the same p. Recall that for any interval [a,b] C [0,1], Pr(U €
[a,b]) = b — a. In particular, Pr({ <p) =p.

More generally, suppose we want to choose between d > 2 outcomes with
outcome j having probability p;. The following code does it:

float U, q;
q =0;
U = rand();
for (j=0; j<d; j++) {
q += pljl;
if (U < q) break;
}

This code returns j if U falls into an interval of length p;. It assumes that all d
elements of p are defined even though in principle we can determine py from the
others using the relation p; +- - -+ pg = 1. The code is robust in the presence of
roundoff. If the final ¢ is slightly different from one or U is slightly larger than
one, we will get j = d (actually j = d — 1 because C starts with j = 0 while
math starts with j = 1), which is a reasonable outcome. The probability of this
happening is extremely small, but if it would happen even once, it could crash
the code if it were written differently. Simulating discrete random systems, such
as finite state space Markov chains, is usually done this way.

3.2 Exponential random variables

The exponential random variable with rate constant A > 0 has probability
density f(t) = Ae™™ for t > 0 and f(t) = 0 otherwise. It is used to model
random failure times. Suppose T is an exponential random variable with rate
A. We can define A by Pr(0 < T < dt) = Adt. The model is that if the thing
has not failed by time ¢, it is good as new at time ¢, no matter how large t is.

More technically, Pr(t <T < t+dt| T > t) = Adt. The exponential form of
the probability density is a consequence of this axiom.

You can get an intuition for exponential random variables by thinking of
randomly shaking a bowl with a marble in it. If you shake vigorously, the
marble will fly out of the bowl almost immediately. If you shake less vigorously,
the marble will move randomly around the bowl. It might suddenly fly out, but
otherwise it stays near the bottom of the bowl, good as new.

Discrete event simulations in continuous time, continuous time discrete Markov
chains, all involve exponentials. The random times between transitions are all
exponential random variables.

Sampling an exponential random variable is simpler than saying what it is.
We start with the “standard” exponential random variable, the one with rate
constant A = 1. If S is a standard exponential random variable, then T' = S/A
is an exponential with rate A. (verify this). If £ is a standard uniform random
variable, then

S =—In(U) (3)

is a standard exponential. Note that the logarithm is well defined because U > 0
and negative because U < 1. Changing the sign in (3) yields a positive S. Most
random number generators never produce U = 0, but be careful if yours does.

We can calculate the probability density produced by the formula (3) and
see that it is standard exponential. This density, f(s), is defined by f(s)ds =
Pr(s < S < s+ds). Substituting (3) gives

f(s)ds = Pr(s<—InU) <s+ds)
= Pr(—s—ds<In(U) < —s)
Pr(e_s_ds <U<e ™).

s—ds ds __

We can write e~ = e %~ % and expand the second exponential: e~% =

1 —ds to get
f(s)ds=Pr(e™®*(1—ds) <U <e™?).

If [a,b] C [0,1], and U is a standard uniform random variable, then Pr(U €
[a,b]) = b—a. Here, the interval runs from a = e~*(1 — ds) to abe™*, for a total
length of e~*ds. Therefore, we have

f(s)ds =e %ds,
which shows that S is indeed a standard exponential.

3.3 Using the distribution function

If X is a random variable with density f(x), then the distribution function (or
CDF, for cumulative distribution function) is

F(x)=Pr(X <z)= /j f(x')dx' . (4)

We assume that f(x) > 0 for all 2, which makes the discussion simpler because
F(z) is a strictly increasing function of z in that case. We show that the random
variable

U=FX) (5)

is a standard uniform random variable. Conversely, if U is standard uniform
and we define X using (5), then X will have F(z) as its distribution function
and f(x) as its density.

Indeed, U is standard uniform if U € [0, 1] and Pr(U < u) = a for u € [0,1].
Now, choose any such w and define « by F(z) = uw. The probability that U < u
is the same as the probability that F(X) < u = F(z), which is the same as the
probability that X < z, which is F(z) = u. With the association f = F(z),
saying Pr(U < u) = u for all u € [0, 1] is the same as saying Pr(X < z) F(x)
for all x, which is what we wanted to show.

We give this argument slightly differently using calculus. For example, sup-
pose we define U by (5) where f(z) is the density for X, and seek g(u), the
density for U. Under the mapping u = F(z), the interval [z, z + dz| is mapped
to the interval [u,u + du], where du = F'(x)dx = f(z)dx. The probabil-
ities of these intervals are the same, since X € [z,x + dx] is equivalent to
U € [u,u + du]. Expressing the probabilities in terms of densities and equating
them gives f(x)dx = g(u)du. Since du = f(z)dz, we find g(u) = 1. Of course,
this only holds for w in the allowed range 0 < u < 1. Other values of u are
impossible, so g(u) = 0 otherwise.

We apply this general principle to the standard exponential random variable
with density f(t) = e7? for t > 0 and f(t) = 0 for t < 0. We will see that
it works even though the hypothesis that f(t) > 0 for all ¢ is not satisfied.
Doing the integral in (4) gives F(t) = 1 —e " for ¢ > 0 and F(t) = 0 for
t < 0. The identification F(T') = U can be solved for T" in terms of U to give
T = —In(1 = U). Of course, if U is standard uniform, then 1 — U is also.
Therefore, we get the same distribution if we take T'= —In(U) as before.

The CDF for the standard normal distribution is often called N(z). It is

given by
1 x
N(x) / e*y2/2dy .

:% .

This is related to but different from the error function erf(x). To generate a
standard normal in this way, we need software to solve the equation N(X) = U
for X, given U € [0, 1]. Reliable and accurate C code for computing N(z) and
N~1(u) is available on the net.

The main obstacle to using the general recipe (5) is the difficulty of comput-
ing F(z) and inverting it (solving for X given U). This makes other sampling
methods, including rejection, interesting.

3.4 Standard normals using Box Muller

3.5 Multivariate normals and Cholesky factorization

From a standard normal, Z, we can generate a normal, X, with mean p and
variance o2 simply by multiplying by ¢ and adding p: X = 0Z + pu.

3.6 Rejection

Rejection sampling is also very general, but it has the potential to be very
inefficient if not done carefully. We wish to generate a random variable, X with
density function f(z). Rejection sampling uses a trial or proposal density, g(x),
and an acceptance probability, p(x). We assume that we have a way to sample
the g density, and we want to use these samples to sample f.

4 Multivariate sampling

In many of the

5 Error bars and statistical analysis

Analysis of statistical error is a necessary part of any Monte Carlo computation.
The analysis appropriate for most elementary Monte Carlo is error bars derived
from the central limit theorem. This analysis is simple and should take much
less computer time than the rest of the Monte Carlo computation.

In its most basic form, the central limit theorem concerns the sum of N
independent random variables with the same probability density. Statisticians
call this the i.i.d. case, for Independent and Identically Distributed. If Yy,
Y@, ... are iid. random variables and A®Y) is the average (2), then A®Y) is
approximately normal. The probability density of a normal random variable is
completely determined by its mean and variance. A simple calculation shows
that E[AN)] = A = E[Y] and var[A™)] = Lvar[Y]. Since the Y(*) are identi-
cally distributed, we let Y represent any one of these. Statisticians sometimes
say that the Y*) are “independent samples of Y. R

The central limit theorem describes the probability distribution of AN, To
understand the technical statement below, recall that for every gaussian random
variable, the probability of being n standard deviations away from the mean is
the same, and the same as for the standard normal. That is, if X is normal
with mean p and variance o2, and Z is a standard normal with mean zero and
variance one, then:

1 n
V 2 —n

These probabilities are well known to statisticians: Py =A33%7 P, = 5%, and
P; < 1%. n need not be an integer. If we apply this to AY) with it’s known

Py = Pr(|X = p| > no) = Pr(|Z| = n) = =24z .

mean and variance, we get

Pr ‘E(N)—A‘>nay)an. 6
(VN 8

The central limit theorem formula (6) is the basis of error analysis in ba-
sic Monte Carlo. The n standard deviation error bar is the interval [A(N) —

no, AN 4 no], where ¢ = oy /V/N is the standard deviation of AN The

N) _

reader can verify that A is inside the error bar exactly if ’E(Al < no, so

the probability that the exact but unknown answer A is inside the error bar is
1 — P,. Statisticians call the error bar a confidence interval because there is
1— P, confidence that A lies within it. If you compute the n standard deviation
error bar, you have probability 1 — P, of including A in the error bar.

Monte Carlo practitioners usually use one standard deviation error bars. The
purpose is to give a graphical representation of the actual size of the error rather
than to give a much larger interval that is nearly certain to contain the answer.
In tables of Monte Carlo results, you might see something like A = 12.874-.034.
Unless otherwise specified, the author probably means that A(Y) = 12.87 and
o = .034. An error bar is usually plotted as a bar with a visible dot in the
center representing AWV)Aand a bar on either side of length no representing the
range of uncertainty of AMN).

In practice we have also to estimate oy . It is natural to use the Monte Carlo
estimate

s _ Ly A
oy =5 Z (Y -) . (7)

k=1

Statistics books often recommend the factor ﬁ instead of our % The answer
is that if this makes an appreciable difference, you do not have enough data.
You should not be doing Monte Carlo estimation, or using the central limit
theorem, with fewer than, say, N = 10 points. In favorable cases, you will have

N >~ 106.

5.1 Summary of the basic Monte Carlo procedure

You want a number A. You find a random variable, Y so that E[Y] = A. You
generate N independent samples of Y, called Y*) for k =1,2,..., N. You form
the sample mean (2) and the sample standard deviation (7) then you report

~ 1
A~ AN £ —_ 5y .
~OY

