1. In the lecture, we showed that the solution of

\[
\begin{align*}
 w_t &= w_{xx}
 \quad \text{for } t > 0 \text{ and } x > 0 \\
 w(x, t = 0) &= 0 \\
 w(x = 0, t) &= \phi(t)
\end{align*}
\]

can be expressed as

\[
w(x, t) = \int_0^t \frac{\partial}{\partial y} G(x, 0, t - s) \phi(s) \, ds
\]

(1)

where \(G(x, y, s) \) is the probability that a random walker (i.e., \(dy = \sqrt{2}dW \)), starting at \(x \) at time 0, reaches \(y \) at time \(s \) without first hitting the boundary at 0. The following line of reasoning provides a different way of looking at this solution:

(a) Express, in terms of \(G \), the probability that the random walker, starting at \(x \) at time 0, hits the boundary before time \(t \). Differentiate in \(t \) to obtain the probability that it hits the boundary at time \(t \) (This is known as the first passage time density).

(b) Use the forward Kolmogorov equation and integration by parts to show that the first passage time density is \(\frac{\partial}{\partial y} G(x, 0, t) \).

(c) Deduce the formula (1).

2. For the process \(dy = \mu dt + dW \) with an absorbing boundary at \(y = 0 \),

(a) suppose the process starts at \(x > 0 \) at time 0, let \(G(x, y, t) \) be the probability that the random walker is at position \(y \) at time \(t \) without first hitting the boundary. Show that

\[
G(x, y, t) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{|y - x - \mu t|^2}{2t}} - \frac{1}{\sqrt{2\pi t}} e^{-2\mu x} e^{-\frac{|y + x - \mu t|^2}{2t}}
\]

i.e., to verify that this \(G \) solves the relevant forward Kolmogorov equation with appropriate boundary and initial conditions.

(b) Show that the first passage time density is

\[
\frac{1}{2} \frac{\partial}{\partial y} G(x, 0, t) = \frac{x}{t \sqrt{2\pi t}} e^{-\frac{|x + \mu t|^2}{2t}}
\]

3. Consider the heat equation \(u_t - u_{xx} = 0 \) in one space dimension, with discontinuous initial data

\[
u(x, 0) = \begin{cases}
0 & \text{if } x < 0 \\
1 & \text{if } x > 0
\end{cases}
\]

(a) Show that

\[
u(x, t) = N\left(\frac{x}{\sqrt{4t}}\right)
\]

where

\[
N(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{y^2}{2}} \, dy
\]

i.e., the cumulative normal distribution.

(b) What is \(\max_x u_x(x, t) \) as a function of time \(t \)? Where is it achieved? What is \(\min_x u_x(x, t) \)? Sketch the graph of \(u_x \) as a function of \(x \) at a given time \(t > 0 \).
(c) Show that
\[v(x, t) = \int_{-\infty}^{x} u(z, t) \, dz \]
solves
\[\begin{cases} v_t - v_{xx} = 0 \\ v(x, 0) = \max \{x, 0\}. \end{cases} \]
Discuss the qualitative behavior of \(v(x, t) \) as a function of \(x \) for a given \(t \): how rapidly does \(v \) tend to 0 as \(x \to -\infty \)? What is the behavior of \(v \) as \(x \to \infty \)? What is the value of \(v(0, t) \)? Sketch the graph of \(v(x, t) \) as a function of \(x \) for given \(t > 0 \).

4. Give “solution formulas” for the following initial-boundary-value problems for the heat equation
\[w_t - w_{xx} = 0 \text{ for } t > 0, \text{ and } x > 0 \]
with the following initial and boundary conditions:

(a) \(w_1(x = 0, t) = 0 \) and \(w_1(x, t = 0) = 1 \). Express the solution in terms of the cumulative normal distribution \(N(\cdot) \).

(b) \(w_2(x = 0, t) = 0 \) and \(w_2(x, t = 0) = (x - K)_+ \) with \(K > 0 \). Express your solution in terms of the function \(v(x, t) \) defined in Problem 3(c)

(c) \(w_3(x = 0, t) = 0 \) and \(w_3(x, t = 0) = (x - K)_+ \) with \(K < 0 \)

(d) \(w_4(x = 0, t) = 1 \) and \(w_4(x, t = 0) = 0 \).

Interpret each as the expected payoff of a suitable barrier-type option, whose underlying is described by \(dy = \sqrt{2} \, dW \) with initial condition \(y(0) = x \) and an absorbing barrier at 0.