1. \[1994 - A2 \] (169, 3, 2, 0, 0, 0, 0, 1, 3, 22, 6)

Let \(A \) be the area of the region in the first quadrant bounded by the line \(y = \frac{1}{2}x \), the \(x \)-axis, and the ellipse \(\frac{1}{2} x^2 + y^2 = 1 \). Find the positive number \(m \) such that \(A \) is equal to the area of the region in the first quadrant bounded by the line \(y = mx \), the \(y \)-axis, and the ellipse \(\frac{1}{2} x^2 + y^2 = 1 \).

Answer. To make the areas equal, \(m \) must be \(2/9 \).

Solution 1. The linear transformation given by \(x_1 = x/3 \), \(y_1 = y \) transforms the region \(R \) bounded by \(y = x/2 \), the \(x \)-axis, and the ellipse \(x^2/9 + y^2 = 1 \) into the region \(R' \) bounded by \(y_1 = 3x_1/2 \), the \(x_1 \)-axis, and the circle \(x_1^2 + y_1^2 = 1 \); it also transforms the region \(S \) bounded by \(y = mx \), the \(y \)-axis, and \(x^2/9 + y^2 = 1 \) into the region \(S'' \) bounded by \(y_1 = 3mx_1 \), the \(y_1 \)-axis, and the circle. Since all areas are multiplied by the same (nonzero) factor under the linear transformation, \(R \) and \(S \) have the same area if and only if \(R' \) and \(S' \) have the same area. However, we can see by symmetry about the line \(y_1 = x_1 \) that this happens if and only if \(3m = 2/3 \), that is, \(m = 2/9 \).

Solution 2 (Noam Elkies). Apply the linear transformation \((x, y) \rightarrow (3y, x/3) \). This preserves area, and the ellipse \(x^2/9 + y^2 = 1 \). It switches the \(x \) and \(y \) axes, and takes \(y = x/2 \) to the desired line, \(x/3 = (3y/2) \), i.e., \(y = (2/9)x \). Thus \(m = 2/9 \).

Remark. There are, of course, less enlightened solutions. Setting up the integrals for the two areas yields the equation

\[
\int_0^{3/\sqrt{13}} \left(\sqrt{9-9y^2} - 2y \right) \, dy = \int_0^{3/\sqrt{1+9m^2}} \left(\sqrt{1-x^2/9} - mx \right) \, dx.
\]

At this point, one might guess that a substitution \(y = cx \) will transform one integral into the other, if \(c \) and \(m \) satisfy

\[
\frac{3}{\sqrt{13}} = c \cdot \frac{3}{\sqrt{1+9m^2}}, \quad 3c = 1, \quad 2c^2 = m,
\]

and in fact, \(c = 1/3 \) and \(m = 2/9 \) work. If this shortcut is overlooked, then as a last resort one could use trigonometric substitution to evaluate both sides: this yields

\[
\frac{3}{2} \arcsin \left(\frac{3}{\sqrt{13}} \right) = \frac{3}{2} \arcsin \left(\frac{1}{\sqrt{1+9m^2}} \right).
\]

Solving yields \(m = 2/9 \).
Evaluate
\[\int_2^4 \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}} \, dx. \]

Answer. The value of the integral is 1.

Solution. The integrand is continuous on [2, 4]. Let I be the value of the integral. As \(x \) goes from 2 to 4, 9 - \(x \) and \(x + 3 \) go from 7 to 5, and from 5 to 7, respectively. This symmetry suggests the substitution \(x = 6 - y \) reversing the interval [2, 4]. After interchanging the limits of integration, this yields
\[I = \int_2^4 \frac{\sqrt{\ln(y+3)}}{\sqrt{\ln(y+3)} + \sqrt{\ln(9-y)}} \, dy. \]

Thus
\[2I = \int_2^4 \frac{\sqrt{\ln(x+3)} + \sqrt{\ln(9-x)}}{\sqrt{\ln(x+3)} + \sqrt{\ln(9-x)}} \, dx = \int_2^4 dx = 2, \]
and \(I = 1. \)

Remark. The same argument applies if \(\sqrt{\ln x} \) is replaced by any continuous function such that \(f(x+3) + f(9-x) \neq 0 \) for \(2 \leq x \leq 4. \)

4. \([1989 - A2]\) (141, 6, 29, 0, 0, 0, 0, 0, 0, 5, 7, 4, 7)
Evaluate \(\int_0^a \int_0^b e^{\max(bx^2, a^2y^2)} \, dy \, dx, \) where \(a \) and \(b \) are positive.

Answer. The value of the integral is \((e^{a^2b^2} - 1)/(ab). \)

Solution. Divide the rectangle into two parts by the diagonal line \(ay = bx \) to obtain
\[
\int_0^b \int_0^{\max(bx^2, a^2y^2)} e^{\max(bx^2, a^2y^2)} \, dy \, dx = \int_0^b \int_0^{bx/a} e^{bx^2} \, dy \, dx + \int_0^b \int_0^{ay/b} e^{a^2y^2} \, dx \, dy \\
= \int_0^b \frac{bx}{a} e^{bx^2} \, dx + \int_0^b \frac{ay}{b} e^{a^2y^2} \, dy \\
= \int_0^b e^{bx^2} \frac{1}{2ab} e^{bx^2} \, dx + \int_0^b e^{a^2y^2} \frac{1}{2ab} e^{a^2y^2} \, dy \\
= e^{a^2b^2} - 1/ab. \]

5. \([1990 - B1]\) (114, 2, 52, 0, 0, 0, 0, 0, 0, 11, 5, 3, 10, 4)
Find all real-valued continuously differentiable functions \(f \) on the real line such that for all \(x \)
\[(f(x))^2 = \int_0^x ((f(t))^2 + (f'(t))^2) \, dt + 1990. \]

Answer. There are two such functions, namely \(f(x) = \sqrt{1990}e^x \), and \(f(x) = -\sqrt{1990}e^x. \)

Solution. For a given \(f \), the functions on the left- and right-hand sides are equal if and only if their values at 0 are equal, i.e., \(f(0)^2 = 1990 \), and their derivatives are equal for all \(x \), i.e.,
\[2f(x)f'(x) = (f(x))^2 + (f'(x))^2 \]
for all \(x. \)

The latter condition is equivalent to each of the following: \((f(x) - f'(x))^2 = 0, \]
\[f'(x) = f(x), f(x) = Ce^x \]
for some constant \(C. \) Combining this condition with \(f(0)^2 = 1990 \) yields \(C = \pm \sqrt{1990} \), so the desired functions are \(f(x) = \pm \sqrt{1990}e^x. \)