Solutions to "Algebraic identities, polynomials" problems

1. [2004-B1] Let k be an integer, $0 \leq k \leq n - 1$. Since $P(r)/r^k = 0$, we have

$$c_nr^{n-k} + c_{n-1}r^{n-k+1} + \ldots + c_{k+1}r = -(c_k + c_{k-1}r^{-1} + \ldots + c_0r^{-k}).$$

Write $r = p/q$ where p and q are relatively prime. Then the left hand side of the above equation can be written as a fraction with denominator q^{n-k}, while the right hand side is a fraction with denominator p^k. Since p and q are relatively prime, both sides of the equation must be an integer, and the result follows.

Remark: If we write $r = a/b$ in lowest terms, then $P(x)$ factors as $(bx-a)Q(x)$, where the polynomial Q has integer coefficients because you can either do the long division from the left and get denominators divisible only by primes dividing b, or do it from the right and get denominators divisible only by primes dividing a. The numbers given in the problem are none other than a times the coefficients of Q. More generally, if $P(x)$ is divisible, as a polynomial over the rationals, by a polynomial $R(x)$ with integer coefficients, then P/R also has integer coefficients; this is known as “Gauss’s lemma” and holds in any unique factorization domain.

2. [2004-A4] It suffices to verify that

$$x_1 \cdots x_n = \frac{1}{2^n n!} \sum_{e_i \in \{-1, 1\}} (e_1 \cdots e_n)(e_1x_1 + \cdots + e_nx_n)^n.$$

To check this, first note that the right side vanishes identically for $x_1 = 0$, because each term cancels the corresponding term with e_1 flipped. Hence the right side, as a polynomial, is divisible by x_1; similarly it is divisible by x_2, \ldots, x_n. Thus the right side is equal to $x_1 \cdots x_n$ times a scalar. (Another way to see this: the right side is clearly odd as a polynomial in each individual variable, but the only degree n monomial in x_1, \ldots, x_n with that property is $x_1 \cdots x_n$.) Since each summand contributes $\frac{1}{n!}x_1 \cdots x_n$ to the sum, the scalar factor is 1 and we are done.

Remark: Several variants on the above construction are possible; for instance,

$$x_1 \cdots x_n = \frac{1}{n!} \sum_{e_i \in \{0, 1\}} (-1)^{n-e_1-\cdots-e_n}(e_1x_1 + \cdots + e_nx_n)^n$$

by the same argument as above.

Remark: These construction work over any field of characteristic greater than n (at least for $n > 1$). On the other hand, no construction is possible over a field of characteristic $p \leq n$, since the coefficient of $x_1 \cdots x_n$ in the expansion of $(e_1x_1 + \cdots + e_nx_n)^n$ is zero for any e_i.

Remark: Richard Stanley asks whether one can use fewer than 2^n terms, and what the smallest possible number is.

First solution: Suppose the contrary. By setting $y = -1, 0, 1$ in succession, we see that the polynomials $1 - x + x^2, 1 + x + x^2$ are linear combinations of $a(x)$ and $b(x)$. But these three polynomials are linearly independent, so cannot all be written as linear combinations of two other polynomials, contradiction.

Alternate formulation: the given equation expresses a diagonal matrix with 1, 1, 1 and zeroes on the diagonal, which has rank 3, as the sum of two matrices of rank 1. But the rank of a sum of matrices is at most the sum of the ranks of the individual matrices.

Second solution: It is equivalent (by relabeling and rescaling) to show that $1 + xy + x^2y^2$ cannot be written as $a(x)d(y) - b(x)c(y)$. Write $a(x) = \sum a_ix^i, b(x) = \sum b_ix^i, c(y) = \sum c_jy^j, d(y) = \sum d_jy^j$. We now start comparing coefficients of $1 + xy + x^2y^2$. By comparing coefficients of $1 + xy + x^2y^2$ and $a(x)d(y) - b(x)c(y)$, we get

$$\begin{align*}
1 &= a_id_i - b_ic_i \quad (i = 0, 1, 2) \\
0 &= a_id_j - b_ic_j \quad (i \neq j).
\end{align*}$$
The first equation says that \(a_i \) and \(b_i \) cannot both vanish, and \(c_i \) and \(d_i \) cannot both vanish. The second equation says that \(a_i/b_i = c_j/d_j \) when \(i \neq j \), where both sides should be viewed in \(R \cup \{ \infty \} \) (and neither is undetermined if \(i, j \in \{ 0, 1, 2 \} \)). But then

\[
a_0/b_0 = c_1/d_1 = a_2/b_2 = c_0/d_0
\]

contradicting the equation \(a_0d_0 - b_0c_0 = 1 \).

Third solution: We work over the complex numbers, in which we have a primitive cube root \(\omega \) of 1. We also use without further comment unique factorization for polynomials in two variables over a field. And we keep the relabeling of the second solution.

Suppose the contrary. Since \(1 + xy + x^2 y^2 = (1 - xy/\omega)(1 - xy/\omega^2) \), the rational function \(a(\omega/y)d(y) - b(\omega/y)c(y) \) must vanish identically (that is, coefficient by coefficient). If one of the polynomials, say \(a \), vanished identically, then one of \(b \) or \(c \) would also, and the desired inequality could not hold. So none of them vanish identically, and we can write

\[
\frac{c(y)}{d(y)} = \frac{a(\omega/y)}{b(\omega/y)}.
\]

Likewise,

\[
\frac{c(y)}{d(y)} = \frac{a(\omega^2/y)}{b(\omega^2/y)}.
\]

Put \(f(x) = a(x)/b(x) \); then we have \(f(\omega x) = f(x) \) identically. That is, \(a(x)b(\omega x) = b(x)a(\omega x) \). Since \(a \) and \(b \) have no common factor (otherwise \(1 + xy + x^2 y^2 \) would have a factor divisible only by \(x \), which it doesn’t since it doesn’t vanish identically for any particular \(x \)), \(a(x) \) divides \(a(\omega x) \). Since they have the same degree, they are equal up to scalars. It follows that one of \(a(x) \), \(xa(x) \), \(x^2 a(x) \) is a polynomial in \(x^3 \) alone, and likewise for \(b \) (with the same power of \(x \)).

If \(xa(x) \) and \(xb(x) \), or \(x^2 a(x) \) and \(x^2 b(x) \), are polynomials in \(x^3 \), then \(a \) and \(b \) are divisible by \(x \), but we know \(a \) and \(b \) have no common factor. Hence \(a(x) \) and \(b(x) \) are polynomials in \(x^3 \). Likewise, \(c(y) \) and \(d(y) \) are polynomials in \(y^3 \). But then \(1 + xy + x^2 y^2 = a(x)d(y) - b(x)c(y) \) is a polynomial in \(x^3 \) and \(y^3 \), contradiction.

Note: The third solution only works over fields of characteristic not equal to 3, whereas the other two work over arbitrary fields. (In the first solution, one must replace \(-1\) by another value if working in characteristic 2.)

4.[2003-B4] **First solution:** Put \(g = r_1 + r_2, \ h = r_3 + r_4, \ u = r_1 r_2, \ v = r_3 r_4 \). We are given that \(g \) is rational. The following are also rational:

\[
\begin{align*}
\frac{-b}{a} &= g + h \\
\frac{c}{a} &= gh + u + v \\
\frac{-d}{a} &= gv + hu
\end{align*}
\]

From the first line, \(h \) is rational. From the second line, \(u + v \) is rational. From the third line, \(g(u + v) - (gv + hu) = (g - h)u \) is rational. Since \(g \neq h \), \(u \) is rational, as desired.

Second solution: This solution uses some basic Galois theory. We may assume \(r_1 \neq r_2 \), since otherwise they are both rational and so then is \(r_1 r_2 \).

Let \(\tau \) be an automorphism of the field of algebraic numbers; then \(\tau \) maps each \(r_i \) to another one, and fixes the rational number \(r_1 + r_2 \). If \(\tau(r_1) \) equals one of \(r_1 \) or \(r_2 \), then \(\tau(r_2) \) must equal the other one, and vice versa. Thus \(\tau \) either fixes the set \(\{ r_1, r_2 \} \) or moves it to \(\{ r_3, r_4 \} \). But if the latter happened, we would have \(r_1 + r_2 = r_3 + r_4 \), contrary to hypothesis. Thus \(\tau \) fixes the set \(\{ r_1, r_2 \} \) and in particular the number \(r_1 r_2 \). Since this is true for any \(\tau \), \(r_1 r_2 \) must be rational.

Note: The conclusion fails if we allow \(r_1 + r_2 = r_3 + r_4 \). For instance, take the polynomial \(x^4 - 2 \) and label its roots so that \((x - r_1)(x - r_2) = x^2 - \sqrt{2} \) and \((x - r_3)(x - r_4) = x^2 + \sqrt{2} \).
5.[2002-A1] By differentiating \(\frac{P_n(x)}{(x^k - 1)^{n+1}} \), we find that \(P_{n+1}(x) = (x^k - 1)P'_n(x) - (n+1)kx^{k-1}P_n(x) \); substituting \(x = 1 \) yields \(P_{n+1}(1) = -(n+1)kP_n(1) \). Since \(P_0(1) = 1 \), an easy induction gives \(P_n(1) = (-k)^n n! \) for all \(n \geq 0 \).

Note: one can also argue by expanding in Taylor series around 1. Namely, we have

\[
\frac{1}{x^k - 1} = \frac{1}{k(x-1)} + \ldots = \frac{1}{k} (x-1)^{-1} + \ldots,
\]

so

\[
\frac{d^n}{dx^n} \frac{1}{x^k - 1} = \frac{(-1)^n n!}{k(x-1)^{n-1}}
\]

and

\[
P_n(x) = (x^k - 1)^{n+1} \frac{d^n}{dx^n} \frac{1}{x^k - 1} = (k(x-1) + \ldots)^{n+1} \left(\frac{(-1)^n n!}{k} (x-1)^{-n-1} + \ldots \right) = (-k)^n n! + \ldots.
\]

6.[2001-A3] By the quadratic formula, if \(P_m(x) = 0 \), then \(x^2 = m \pm 2\sqrt{2m} + 2 \), and hence the four roots of \(P_m \) are given by \(S = \{ \pm \sqrt{m} \pm \sqrt{2} \} \). If \(P_m \) factors into two nonconstant polynomials over the integers, then some subset of \(S \) consisting of one or two elements form the roots of a polynomial with integer coefficients.

First suppose this subset has a single element, say \(\sqrt{m} \pm \sqrt{2} \); this element must be a rational number. Then \((\sqrt{m} \pm \sqrt{2})^2 = 2 + m \pm 2\sqrt{2m} \) is an integer, so \(m \) is twice a perfect square, say \(m = 2n^2 \). But then \(\sqrt{m} \pm \sqrt{2} = (n \pm 1)\sqrt{2} \) is only rational if \(n = \pm 1 \), i.e., if \(m = 2 \).

Next, suppose that the subset contains two elements; then we can take it to be one of \(\{ \sqrt{m} \pm \sqrt{2}, \sqrt{2} \pm \sqrt{m} \} \) or \(\{ \pm (\sqrt{m} + \sqrt{2}) \} \). In all cases, the sum and the product of the elements of the subset must be a rational number. In the first case, this means \(2\sqrt{m} \in Q \), so \(m \) is a perfect square. In the second case, we have \(2\sqrt{2} \in Q \), contradiction. In the third case, we have \((\sqrt{m} + \sqrt{2})^2 \in Q \), or \(m + 2 + 2\sqrt{2m} \in Q \), which means that \(m \) is twice a perfect square.

We conclude that \(P_m(x) \) factors into two nonconstant polynomials over the integers if and only if \(m \) is either a square or twice a square.

Note: a more sophisticated interpretation of this argument can be given using Galois theory. Namely, if \(m \) is neither a square nor twice a square, then the number fields \(Q(\sqrt{m}) \) and \(Q(\sqrt{2}) \) are distinct quadratic fields, so their compositum is a number field of degree 4, whose Galois group acts transitively on \(\{ \pm \sqrt{m} \pm \sqrt{2} \} \). Thus \(P_m \) is irreducible.

7.[2001-B2] By adding and subtracting the two given equations, we obtain the equivalent pair of equations

\[
\begin{align*}
2/x &= x^4 + 10x^2y^2 + 5y^4 \\
1/y &= 5x^4 + 10x^2y^2 + y^4.
\end{align*}
\]

Multiplying the former by \(x \) and the latter by \(y \), then adding and subtracting the two resulting equations, we obtain another pair of equations equivalent to the given ones,

\[
3 = (x + y)^5, \quad 1 = (x - y)^5.
\]

It follows that \(x = (3^{1/5} + 1)/2 \) and \(y = (3^{1/5} - 1)/2 \) is the unique solution satisfying the given equations.

8.[1999-A2] First solution: First factor \(p(x) = q(x)r(x) \), where \(q \) has all real roots and \(r \) has all complex roots. Notice that each root of \(q \) has even multiplicity, otherwise \(p \) would have a sign change at that root. Thus \(q(x) \) has a square root \(s(x) \).

Now write \(r(x) = \prod_{j=1}^k (x - a_j)(x - \overline{a_j}) \) (possible because \(r \) has roots in complex conjugate pairs). Write \(\prod_{j=1}^k (x - a_j) = t(x) + iu(x) \) with \(t, x \) having real coefficients. Then for \(x \) real,

\[
p(x) = q(x)r(x) = s(x)^2(t(x) + iu(x))(t(x) + iu(x)) = (s(x)t(x))^2 + (s(x)u(x))^2.
\]
(Alternatively, one can factor \(r(x) \) as a product of quadratic polynomials with real coefficients, write each as a sum of squares, then multiply together to get a sum of many squares.)

Second solution: We proceed by induction on the degree of \(p \), with base case where \(p \) has degree 0. As in the first solution, we may reduce to a smaller degree in case \(p \) has any real roots, so assume it has none. Then \(p(x) > 0 \) for all real \(x \), and since \(p(x) \to \infty \) for \(x \to \pm \infty \), \(p \) has a minimum value \(c \). Now \(p(x) - c \) has real roots, so as above, we deduce that \(p(x) - c \) is a sum of squares. Now add one more square, namely \((\sqrt{c})^2\), to get \(p(x) \) as a sum of squares.

9,[1999-A3] **First solution:** Computing the coefficient of \(x^{n+1} \) in the identity \((1 - 2x - x^2) \sum_{m=0}^{\infty} a_m x^m = 1 \) yields the recurrence \(a_{n+1} = 2a_n + a_{n-1} \); the sequence \(\{a_n\} \) is then characterized by this recurrence and the initial conditions \(a_0 = 1, a_1 = 2 \).

Define the sequence \(\{b_n\} \) by \(b_{2n} = a_{2n-1}^2 + a_{2n}^2, \ b_{2n+1} = a_n(a_{n-1} + a_{n+1}) \). Then

\[
2b_{2n+1} + b_{2n} = 2a_n a_{n+1} + 2a_n + 2a_{n-1} a_n + a_{n-1} a_{n+1} + a_n^2 = a_{n+1}^2 + a_n^2 = b_{2n+2},
\]

and similarly \(2b_{2n} + b_{2n-1} = b_{2n+1} \), so that \(\{b_n\} \) satisfies the same recurrence as \(\{a_n\} \). Since further \(b_0 = 1, b_1 = 2 \) (where we use the recurrence for \(\{a_n\} \) to calculate \(a_{-1} = 0 \)), we deduce that \(b_n = a_n \) for all \(n \). In particular, \(a_0^2 + a_1^2 = b_{2n+2} = a_{2n+2} \).

Second solution: Note that

\[
\frac{1}{1 - 2x - x^2} = \frac{1}{2\sqrt{2}} \left(\frac{\sqrt{2} + 1}{1 - (1 + \sqrt{2}) x} + \frac{\sqrt{2} - 1}{1 - (1 - \sqrt{2}) x} \right)
\]

and that

\[
\frac{1}{1 + (1 + \sqrt{2}) x} = \sum_{n=0}^\infty (1 + \sqrt{2})^n x^n,
\]

so that

\[
a_n = \frac{1}{2\sqrt{2}} \left((\sqrt{2} + 1)^{n+1} - (1 - \sqrt{2})^{n+1} \right).
\]

A simple computation (omitted here) now shows that \(a_n^2 + a_{n+1}^2 = a_{2n+2} \).

10,[1999-B2] **First solution:** Suppose that \(P \) does not have \(n \) distinct roots; then it has a root of multiplicity at least 2, which we may assume is \(x = 0 \) without loss of generality. Let \(x^k \) be the greatest power of \(x \) dividing \(P(x) \), so that \(P(x) = x^k R(x) \) with \(R(0) \neq 0 \); a simple computation yields

\[
P''(x) = (k^2 - k) x^{k-2} R(x) + 2k x^{k-1} R'(x) + x^k R''(x).
\]

Since \(R(0) \neq 0 \) and \(k \geq 2 \), we conclude that the greatest power of \(x \) dividing \(P''(x) \) is \(x^{k-2} \). But \(P(x) = Q(x) P''(x) \), and so \(x^2 \) divides \(Q(x) \). We deduce (since \(Q \) is quadratic) that \(Q(x) \) is a constant \(C \) times \(x^2 \); in fact, \(C = 1/(n(n-1)) \) by inspection of the leading-degree terms of \(P(x) \) and \(P''(x) \).

Now if \(P(x) = \sum_{j=0}^n a_j x^j \), then the relation \(P(x) = C x^2 P''(x) \) implies that \(a_j = C(j-1) a_j \) for all \(j \); hence \(a_j = 0 \) for \(j < n-1 \), and we conclude that \(P(x) = a_n x^n \), which has all identical roots.

Second solution (by Greg Kuperberg): Let \(f(x) = P''(x)/P(x) = 1/Q(x) \). By hypothesis, \(f \) has at most two poles (counting multiplicity).

Recall that for any complex polynomial \(P \), the roots of \(P' \) lie within the convex hull of \(P \). To show this, it suffices to show that if the roots of \(P \) lie on one side of a line, say on the positive side of the imaginary axis, then \(P' \) has no roots on the other side. That follows because if \(r_1, \ldots, r_n \) are the roots of \(P \),

\[
\frac{P'(z)}{P(z)} = \sum_{i=1}^n \frac{1}{z - r_i}
\]

and if \(z \) has negative real part, so does \(1/(z - r_i) \) for \(i = 1, \ldots, n \), so the sum is nonzero.
The above argument also carries through if \(z \) lies on the imaginary axis, provided that \(z \) is not equal to a root of \(P \). Thus we also have that no roots of \(P' \) lie on the sides of the convex hull of \(P \), unless they are also roots of \(P \).

From this we conclude that if \(r \) is a root of \(P \) which is a vertex of the convex hull of the roots, and which is not also a root of \(P' \), then \(f \) has a single pole at \(r \) (as \(r \) cannot be a root of \(P'' \)). On the other hand, if \(r \) is a root of \(P \) which is also a root of \(P' \), it is a multiple root, and then \(f \) has a double pole at \(r \).

If \(P \) has roots not all equal, the convex hull of its roots has at least two vertices.