PRIME PROBLEMS:
PRIMITIVE ROOTS AND ARITHMETIC FUNCTIONS

Problem 1.
(a) Find a primitive root mod 13.
(b) Find all primitive roots mod 13.

Solution. (a) We need to find a \(\in \mathbb{Z} \) with order \(\varphi(13) = 12 \), so it suffices to find a \(\in \mathbb{Z} \) coprime to 13 with \(a^4 \not\equiv 1 \mod 13 \) and \(a^8 \not\equiv 1 \mod 13 \). We compute \(2^4 \equiv 3 \mod 13 \) and \(2^8 \equiv -1 \mod 13 \), so 2 works.
(b) From a homework ord(\(\alpha^n \)) = ord(\(\alpha \))/gcd(e, ord(\(\alpha \))). Thus, the primitive roots are 2, 2\(^5\), 2\(^7\), 2\(^{11}\), and indeed we know there must be \(\varphi(12) = 2 \cdot 2 = 4 \) elements of order 12. Evaluating the powers, these

Problem 2. What is the order of 6 mod 19?

Solution. Let \(d = \text{ord}_9 (2) \) be the order of 6 mod 19. \(\varphi(19) = 18 = 2 \cdot 3^2 \), so \(d = 2, 3, 6, 9, 18 \). \(6^6 \equiv (-2)^3 \equiv -8 \), so \(d = 9 \) and \(6^9 \equiv (-8) \cdot (-2) \cdot 6 \equiv -18 \equiv 1 \). Thus, \(d = 9 \).

Problem 3. Find a primitive root mod 11\(^{100}\).

Solution. We know for an odd prime \(p \) that: (a) there is some \(a \in \mathbb{Z} \) that is a primitive root mod \(p \); (b) if \(a \in \mathbb{Z} \) is a primitive root mod \(p \), either \(a \) or \(a + p \) is a primitive root mod \(p^2 \); (c) if \(a \in \mathbb{Z} \) is a primitive root mod \(p^2 \) then it is a primitive root mod \(p^e \) for all \(e \geq 2 \). Thus, we compute: (a) 2 is primitive mod 11 since \(2^2 \not\equiv 1 \mod 11 \) and \(2^5 \not\equiv 1 \mod 11 \); (b) \(\text{ord}_{11^2} (2) \) is either 10 or 110, and since \(2^{110} \equiv 128 \cdot 8 \equiv 7 \cdot 8 \not\equiv 1 \mod 11^2 \),

Problem 4. Suppose we have distinct \(\alpha, \beta \in (\mathbb{Z}/n)^* \). Show that ord(\(\alpha \beta \))| lcm(ord(\(\alpha \)), ord(\(\beta \))). Must we have equality?

Solution. Let \(d = \text{lcm}(\text{ord}(\alpha), \text{ord}(\beta)) \). Certainly \(\alpha^d = 1 = \beta^d \), so \((\alpha \beta)^d = 1 \) and thus \(\text{ord}(\alpha \beta)|d \). If \(\alpha \) is not of order 2, then \(\beta = \alpha^{-1} \not\equiv \alpha \), and ord(\(\alpha \beta \)) = 1.

Problem 5. Find all solutions to \(x^5 \equiv -1 \mod 11^2 \)

Solution. Substituting \(x = 2^d \), and using the fact that \(-1 = 2^{55}\) (which we know because \(2^{55} \) must have order 2) the congruence is equivalent to \(5d \equiv 55 \mod 110 \), so we must have \(d \equiv 11 \mod 22 \), and the 5 solutions mod 110 are 11, 11 + 22, 11 + 2 · 22, 11 + 3 · 22, 11 + 4 · 22 = 11, 33, 55, 77, 99. Thus, the solutions to \(x^5 \equiv -1 \mod 11^2 \) are \(2^{11}, 2^{33}, 2^{55}, 2^{77}, 2^{99} \). If we really wanted to we could evaluate these to be 112, -1, -1, -1, -1.

Problem 6. Find all solutions to \(x^4 \equiv 5 \mod 2^{100} \)

Solution. Recall that 5 has order \(2^{e-2} \mod 2^e \), and that every invertible residue class mod \(2^e \) can be written as \(\pm 5^d \). Therefore substituting \(x = \pm 5^d \), the equation implies \(4d \equiv 1 \mod 8 \), which has no solutions.

Problem 7. Find all solutions to \(x^2 \equiv 16 \mod 77 \) (you may use the fact that 3, 2 are primitive roots mod 7, 11 respectively).

Solution. This is equivalent to solving \(x^2 \equiv 16 \mod 7 \) and \(x^2 \equiv 16 \mod 11 \). Both of these have the solution \(\pm 4 \), so there are 4 solutions mod 77 given by solving \(x \equiv \pm 4 \mod 7 \) and \(x \equiv \pm 4 \mod 11 \). \(x \equiv \pm 4 \mod 77 \) work, and so do \(x \equiv \pm 18 \mod 77 \) since \(18 \equiv 4 \mod 7 \) and \(18 \equiv -4 \mod 11 \). Note we didn’t even have to use primitive roots explicitly.
Problem 8. How many solutions does \(x^{11} \equiv -1 \mod 23^{1000000000} \) have?

Solution. There are clearly solutions because \(x \equiv -1 \) is a solution. The number of solutions is then \(\gcd(11, \varphi(n)) \) for \(n = 23^{1000000000} \), and since \(\varphi(23^{1000000000}) = 23^{999999999} \cdot 22 \), there are 11 solutions. Note we could have easily seen from our criterion that there are solutions since \((-1)^{\varphi(n)/\gcd(11, \varphi(n))} \equiv 1 \).

Problem 9. Show that there are no solutions to \(x^n \equiv -1 \mod 2^e \) for \(e \geq 3 \) and \(n \) even.

Solution. We know every invertible residue mod \(2^e \) is congruent to \(\pm 5^d \) for a unique choice of \(\pm \) and \(d \) with \(0 \leq d < 2^{e-2} \). Setting \(x = \pm 5^d \) and plugging in, we must have \(5^ad \equiv -1 \mod 2^e \). By uniqueness, we can never write \(-1 \) as \(+5^d \), so there cannot be any solutions.

Problem 10. Suppose we have two functions \(f, g : \mathbb{N} \to \mathbb{C} \) with \(f(n) = \sum_{d|n} g(d) \), and suppose further that \(f(n) \) is zero if \(n \) is divisible by a nontrivial square (i.e. \(m^2 \) for \(m > 1 \)). Show that \(g(n) \) is zero for \(n \) divisible by a nontrivial cube.

Solution. By Möbius inversion,
\[
g(n) = \sum_{de=n} f(d) \mu(e)
\]
If \(n \) is divisible by \(m^3 \) for \(m > 1 \), then for any factorization \(de = n \), either \(m^2|d \) or \(m^2|e \) in which case either \(f(d) = 0 \) or \(\mu(e) = 0 \).

Problem 11. Define a function \(f : \mathbb{N} \to \mathbb{C} \) implicitly by \(n^2 = \sum_{d|n} f(d) \). What is \(f(p^e q^f) \) for \(p, q \) distinct primes?

Solution. By Möbius inversion, \(f(n) = \sum_{d|n} d^2 \mu(n/d) \), so evaluating \(f(p^e) = (p^{e-1})^2(-1) + (p^e)^2 = p^{2e-2}(p^2-1) \), and similarly for \(f(q^f) \). The Dirichlet product of two multiplicative functions is multiplicative, so
\[
f(p^e q^f) = f(p^e) f(q^f) = p^{2e-2} q^{2f-2}(p^2 - 1)(q^2 - 1)
\]

Problem 12. Recall that \(\tau(n) = \sum_{d|n} 1 \). Express \(\sum_{d|n} \tau(d) \varphi(n/d) \) in terms of \(\sigma(n) = \sum_{d|n} d \).

Solution. This is easiest using the notion of Dirichlet product. Let \(u(n) = 1 \) for all \(n \in \mathbb{N} \) and \(N(n) = n \). Then \(\tau = u * u \) and we know \(N = u * \varphi \), so \(\tau * \varphi = u * u * \varphi = u * N = \sigma \).

Problem 13. Recall that \(\sigma_k(n) = \sum_{d|n} d^k \) for \(k \in \mathbb{Z} \). Show that \(n^k \sigma_{-k}(n) = \sigma(n) \).

Solution. We know if \(g(n) \) is multiplicative then \(f(n) = \sum_{d|n} g(d) \) is too. Thus, \(\sigma_k(n) \) is multiplicative for all \(k \), as is \(\rho_k(n) = n^k \sigma_{-k}(n) \). We just need to show that \(\rho_k \) and \(\sigma_k \) agree on prime powers:
\[
\rho_k(p^r) = (p^r)^k (1 + p^{-k} + (p^2)^{-k} + \cdots + (p^r)^{-k}) = (p^{r+k})^k + (p^{r-1+k})^k + (p^{r-2+k})^k + \cdots + 1 = \sigma_k(p^r)
\]