HOMEWORK 3
DUE: 10/3

For reference, consult sections 3.1, 3.2, 4.1 and 4.2 of J&J. Numbered examples/exercises refer to examples/exercises from J&J. For problems which partially or fully appear in J&J, or anywhere else, please do not look at solutions; feel free to look at all other solved problems.

Problem 1. Find all solutions to the following congruences in \(\mathbb{Z} / n \):
 (a) \(4x \equiv 10 \mod 11 \) (\(n = 11 \)).
 (b) \(7x \equiv 2 \mod 14 \) (\(n = 14 \)).
 (c) \(6x \equiv 4 \mod 14 \) (\(n = 14 \)).

Problem 2. Let \(p \) be a prime, \(a, b \in \mathbb{Z} \). Show that \((a + b)^p \equiv a^p + b^p \mod p \) by using the binomial theorem. (Hint: what is \(\binom{p}{k} \mod p \)?)

Problem 3. For \(k \) a field, we have seen that the ring \(k[t] \) of polynomials in \(t \) with coefficients in \(k \) is a Euclidean domain. A polynomial \(f \) is monic if its leading coefficient is 1. Since \(k[t]^{\times} = k \setminus 0 \), any \(f \in k[t] \) is an associate of a monic one of the same degree just by multiplying by the inverse of the leading coefficient. Note that \(f \in k[t] \) of degree 2 or 3 is not irreducible if and only if it is divisible by a linear factor.
 (a) Find all monic irreducible polynomials of degree 2 in \((\mathbb{Z}/5)[t] \).
 (b) Find all monic irreducible polynomials of degree 3 in \((\mathbb{Z}/3)[t] \).
 (c) Prove that \(f = t^2 + 6t - 4 \) and \(g = t^3 + 4t^2 + 8t - 2 \) have no roots in \(\mathbb{Z} \) (for the first don’t use the quadratic formula).

Problem 4. Find all the roots of \(3x^{25} + x^{19} + 2x^{14} - x^{12} + 1 \)
 (a) in \(\mathbb{Z}/5 \).
 (b) in \(\mathbb{Z}/7 \).

Problem 5. Fermat’s little theorem can also be used as a primality test. Prove that \(n \in \mathbb{N} \) is prime if and only if \(x^{n-1} \equiv 1 \mod n \) for all \(x \in \mathbb{Z} \) with \(x \neq 0 \mod n \).

Problem 6. Recall that a pseudoprime base \(a \) is a composite number \(n \) such that \(a^{n-1} \equiv 1 \mod n \).
 (a) Perform the base 2 test on the number 391.
 (b) Show that if \(n \) is an odd pseudoprime base \(a \), it is also a pseudoprime base \(n - a \).
 (c) Show that if \(n \) is a pseudoprime base \(a \) and \(\gcd(a,n) = 1 \), then it is a pseudoprime base \(c \) for any \(c \) such that \(ac \equiv 1 \mod n \).
 (d) Show that if \(n \) is a pseudoprime base \(a \) and \(b \), then it is a pseudoprime base \(ab \).

Problem 7. For \(a, b, c \in \mathbb{Z} \), \(n \in \mathbb{N} \), let \(d = \gcd(a,b,n) \). Show that \(ax + by \equiv c \mod n \) has solutions if and only if \(d|c \). Prove that there are precisely \(dn \) solutions in \(\mathbb{Z}/n \) if there are solutions.

Problem 8. We can just as easily consider arithmetic mod \(\pi \) for \(\pi \in \mathbb{Z}[i] \) a Gaussian integer. We say \(a \equiv b \mod \pi \) if \(\pi|a - b \) just as for \(\mathbb{Z} \) (and indeed the same works for any Euclidean domain). A congruence class mod \(\pi \) is a set of the form \([a] = \{ b \in \mathbb{Z}[i] | a \equiv b \mod \pi \} \).

The set of congruence classes mod \(\pi \) is denoted \(\mathbb{Z}[i]/\pi \) and similarly forms a ring.
 (a) Prove that there are exactly \(|\pi|^2 \) congruence classes mod \(\pi \). (Hint: Consider the tessellation of the plane by squares whose vertices are multiples of \(\pi \).)
 (b) Prove that if \(\pi \) is a Gaussian prime then \(\mathbb{Z}[i]/\pi \) is a field.
 (c) Compute representatives for the elements of \(\mathbb{Z}[i]/2, \mathbb{Z}[i]/3, \mathbb{Z}[i]/(2+i) \).
Problem 9. An addition (multiplication) table for a ring \(R \) is a table showing the sums (products) of all possible pairs of elements of \(R \). For example, the addition and multiplication tables of \(\mathbb{Z}/5 \) are:

\[
\begin{array}{ccccc}
+ & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 0 \\
2 & 2 & 3 & 4 & 0 & 1 \\
3 & 3 & 4 & 0 & 1 & 2 \\
4 & 4 & 0 & 1 & 2 & 3 \\
\end{array}
\quad
\begin{array}{ccccc}
\cdot & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 2 & 4 & 1 & 3 \\
3 & 0 & 3 & 1 & 4 & 2 \\
4 & 0 & 4 & 3 & 2 & 1 \\
\end{array}
\]

It’s possible for two rings to look the same as far as addition and multiplication are concerned, but have differently named elements. For example, the addition and multiplication tables of \(\mathbb{Z}/5 \) and \(\mathbb{Z}/9 \) are isomorphic. For example, the addition and multiplication tables of \(Z[i]/(2 + i) \) are

\[
\begin{array}{ccccc}
+ & 0 & 1 & 2 & i & 1+i \\
0 & 0 & 1 & 2 & i & 1+i \\
1 & 1 & 2 & i & 1+i & 0 \\
2 & 2 & i & 1+i & 0 & 1 \\
i & i & 1+i & 0 & 1 & 2 \\
1+i & 1+i & 0 & 1 & 2 & i \\
\end{array}
\quad
\begin{array}{ccccc}
\cdot & 0 & 1 & 2 & i & 1+i \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & i & 1+i \\
2 & 0 & 2 & 1+i & 1 & i \\
i & 0 & i & 1 & 1+i & 2 \\
1+i & 0 & 1+i & i & 2 & 1 \\
\end{array}
\]

which are clearly the same as those of \(\mathbb{Z}/5 \). In this case we say \(\mathbb{Z}/5 \) and \(\mathbb{Z}[i]/(2 + i) \) are isomorphic.

(a) Compute the multiplication table of \(\mathbb{Z}/4 \) and \(\mathbb{Z}/9 \).

(b) Find representatives for each congruence class mod 2 of \(\mathbb{Z}[i] \). (Use the fact that there are \(|x|^2 \) distinct congruence classes.)

(c) Compute the multiplication table of \(\mathbb{Z}/2 \).

(d) Find representatives for each congruence class mod 3 of \(\mathbb{Z}[i] \).

(e) Compute the multiplication table of \(\mathbb{Z}/3 \).

(f) Show that the multiplication tables of \(\mathbb{Z}/4 \) and \(\mathbb{Z}[i]/2 \) are the same after rearranging the elements (in fact, \(\mathbb{Z}[i]/2 \) and \(\mathbb{Z}/4 \) are still not isomorphic because they’re addition tables are different); show that \(\mathbb{Z}/9 \) and \(\mathbb{Z}[i]/3 \) are not.