HW 8

When I refer to specific theorem numbers, they're from the book “Elementary Number Theory” by Jones and Jones, published by Springer. I sometimes use the shorthand CRT for the Chinese Remainder Theorem. I use the notation \(\mathbb{Z}_n \) for the integers mod \(n \), and \(U_n = (\mathbb{Z}_n)^* \) for the group of units. Please let me know if there are any typos or mistakes by emailing arjun-at-cims-dot-nyu-dot-edu.

Problem 1.

Part (a): \(n = 43^5 \cdot 29^6 = n_1n_2 \). Since \(n \) is odd, we can multiply the quadratic by 4, and factorize as usual to get

\[
4(x^2 + 5x + 8) = (2x + 5)^2 - 25 + 32 = y^2 = -7 \mod n_1n_2,
\]

where \(y = 2x + 5 \). We can solve this equation for \(y \) iff \(-7\) is a quadratic residue mod \(43^5 \) and mod \(29^6 \). We know that \(-7\) is a quadratic residue mod an odd prime power \(p^e \) iff it is a quadratic residue mod \(p \); both \(n_1 \) and \(n_2 \) are odd prime powers.

So it’s enough to compute \(\left(\frac{-7}{43} \right) \) and \(\left(\frac{-7}{29} \right) \) and ensure that they’re both 1:

\[
\left(\frac{-7}{43} \right) = \left(\frac{-1}{43} \right) \left(\frac{43}{7} \right) = (-1) \left(-1 \right) \left(\frac{1}{7} \right) = 1.
\]

Here we’ve used quadratic reciprocity for \(\left(\frac{43}{7} \right) \), and the fact that \(-1 \in \mathbb{Q}_p \) iff \(p = 1 \mod 4 \).

Similarly,

\[
\left(\frac{-7}{29} \right) = 1 \cdot \left(\frac{29}{7} \right) = 1.
\]

When \(p \) is an odd prime, there is a primitive root in \(U_{p^e} \). Then, the number of solutions to \(y^2 = -7 \mod p^e \), if they exist at all, is 2. Therefore, there are a total for \(2 \cdot 2 = 4 \) solutions to \(y^2 = -7 \mod n_1n_2 \). Since both \(n_1 \) and \(n_2 \) are odd, 2 is coprime to both of them. Hence, \(2x + 5 = y \mod n_i \) has one solution for each \(y \). This gives a total of 4 solutions. You can always check your solutions on a computer. Example:

- **WolframAlpha command:** solve \(x^2 + 5x + 8 \) Mod \(43^5 \cdot 29^6 = 0 \)
- **Mathematica command:** Solve\([x^2 + 5x + 8 = 0, \text{Modulus} -> 43^5 \cdot 29^6] \)

Part (b): First, notice that \(x^2 + 5x + 4 = 0 \mod 2^{500} \) can be factorized as

\[
(x + 1)(x + 4) = 0 \mod 2^{500}.
\]

From this it follows that \(x = -1 \) and \(x = -4 \) are solutions. Are these the only solutions?

We could solve this problem as we did in part (a) by multiplying the equation by 4 and completing the square. However, 4 is not coprime to \(2^{500} \), and we must account this by changing the modulus:

\[
2^2 f(x) = 0 \mod 2^{e+2},
\]
where \(f(x) = x^2 + 5x + 1 \) and \(e = 500 \). However, a moment’s thought tells us that
\[
2^2 f(x) = 0 \mod 2^{e+2} \iff f(x) = 0 \mod 2^e,
\]
where \(x \in \mathbb{Z} \) (think about the congruences in terms of divisibility). This tells us that the integers solving both congruences are the same. Now, let’s look at equivalence classes of solutions mod \(2^e \) and \(2^{e+2} \). Because of the one-one correspondence between solutions, it follows that there are \(k \) solutions mod \(2^e \) iff there are \(4k \) solutions mod \(2^{e+2} \). This is because there are 4 copies of the group \(2^e \) in \(2^{e+2} \).

Completing the square, we get
\[
(2x + 5)^2 = 9 \mod 2^{e+2}
\]
Make the substitution \(y = 2x + 5 \) to get \(y^2 = 9 \mod 2^{e+2} \). We know that \(9 \in Q_{2^{e+2}} \) since \(3^2 = 9 \). Our theory also tells us that there are four square roots in \(U_{2^{e+2}} \) for each member of \(Q_{2^{e+2}} \). You can rederive this result yourself by recalling that \(U_{2^e} = \{ \pm 5^i \mid 0 \leq i \leq 2^{e-2} \} \) for \(e \geq 3 \). Each square root \(y \) is in \(U_{2^e} \), and hence \(y - 5 \) is even. Then, we can write
\[
x = \frac{y - 5}{2} \mod 2^{e+1}.
\]
Hence, for each of the four square root \(y \), there are two solutions for \(x \in Z_{2^{e+2}} \). This gives us a total of 8 solutions for \(x \). We noted earlier that if there are 8 solutions mod \(2^{e+2} \), there must be \(8/4 = 2 \) solutions mod \(2^e \). This is the final answer.

There is a much simpler way to solve this using lifting. Recall Hensel’s lemma: let \(f(x) \) be a polynomial and let \(p \) be prime. Suppose there is a \(r \in \mathbb{Z} \) s.t.
\[
f(r) = 0 \mod p \text{ and } f'(r) \neq 0.
\]
Then, for each \(e > 1 \), there is a unique \(s \in \mathbb{Z}_p^* \) such that
\[
f(s) = 0 \mod p^e \text{ and } r = s \mod p.
\]
Here, \(f(x) = x^2 + x \mod 2 \) has both 0 and 1 as solutions. \(f'(x) = 2x + 5 = 1 \mod p \). So both 0 and 1 lift uniquely to roots of \(f(x) = 0 \mod 2^e \) for all \(e > 1 \). In other words, there are exactly two roots mod \(2^e \) for all \(e: -1 \) and \(-4\).

Part (c): I’m going to assume that the intended equation was \(x^2 + 2px + 1 \). Otherwise the problem reduces to finding when \(-1\) is a quadratic residue mod \(p \), which we know how to solve. We can easily factorize the quadratic as
\[
x^2 + 2px + 1 = (x + p)^2 - (p + 1)(p - 1).
\]
Set \(x + p = y \), and note that both \((p + 1) \) and \((p - 1) \) \(\in U_{p^e} \). Hence, we only need to determine if \((p + 1)(p - 1) \) is a quadratic residue mod \(p^e \). Since \(a \in Q_{p^e} \iff Q_p \) for an odd prime \(p \) (see Theorem 7.13), let us compute the Legendre symbols
\[
\left(\frac{(p + 1)(p - 1)}{p} \right) = \left(\frac{1}{p} \right) \left(-1 \right).
\]
We know that \(1 \in Q_{p^e} \forall e \), but \(-1 \in Q_{p^e} \) iff \(p = 1 \mod 4 \) for an odd prime \(p \). So we can solve \(y^2 = (p + 1)(p - 1) \mod p^e \) iff \(p = 1 \mod 4 \). The equation \(x + p = y \) can always be solved uniquely. Then, there are 2 solutions if \(p \neq 1 \mod 4 \), and no solutions otherwise.
Problem 2. Begin by writing \(a = a_0 \mod p \), where \(0 \leq a_0 < p \); hence \(a = a_0 + k_1 p \). Iterate this procedure for \(k_1 \) to get \(k_1 = a_1 + k_2 \mod p \), where we similarly choose \(0 \leq a_1 < p \). Hence, we have

\[
a = a_0 + k_1 p = a_0 + a_1 p + k_2 p^2.
\]

Turning this idea into a inductive hypothesis, assume

\[
a = a_0 + a_1 p + \cdots a_{e-1} p^{e-1} + k_e p^e.
\]

Write, \(k_e = a_e + k_{e+1} p \), and substitute into the above equation to get

\[
a = a_0 + a_1 p + \cdots a_e p^e \mod p^{e+1}.
\]

Since we’ve already tackled the \(e = 1 \) case, we’ve completed the proof of the formula.

The proof that the formula is unique is again by induction. I will do the \(e = 0 \) case: suppose \(a = a_0 \mod p \), and \(a = b_0 \mod p \). Then \(a_0 = b_0 \mod p \), and since \(0 \leq a_0, b_0 < p, a_0 = b_0 \).

For the final part, let \(k \) be the largest number such that \(p^k | a \). If \(k \geq e \), we can write

\[
a = p^e \mod p^e,
\]

with \(b = 1 \). If \(k < e \), we must have \(a = bp^k \). \(b \) must be coprime to \(p \); for if not, \(b = cp \), and this means that \(p^{k+1} \) divides \(a \). This is contrary to our assumption on \(k \).

Problem 3.

Part (a): Let \(n = \prod p^e \), and suppose \(a \) is a square mod \(n \). Then, there is an \(x \) s.t. \(x^2 = a \mod n \). It follows from the properties of congruences that \(x^2 = a \mod p^e \) for every prime dividing \(n \).

For the other direction, suppose for each prime \(p \) dividing \(n \), there is an \(x_p \) s.t. \(x_p^2 = a \mod p^e \). The CRT tells us that there is a unique \(x \mod n \) such that \(x = x_p \mod p^e \). Again, by the CRT, there is a unique congruence class mod \(n \) equal to \(a \mod p^e \). Both \(a \) and \(x^2 \) satisfy \(x^2 = a \mod p^e \) for each prime \(p | n \).

Hence, \(x^2 = a \mod n \).

Part (b): Let \(a = bp^k \) as in problem 2. The case \(k = e \) is easy, since \(a = 0 \mod p^e \) is always a square. If \(k < e \), we need to show \(a \) is a square if \(k \) is even and \(x^2 = b \mod p^{e-k} \) has a solution. Now, \(a \) is a square if there is an \(x \) s.t. \(x^2 = a \mod p^e \). \(x \) has a decomposition like the one for \(a \) and we can write \(x = cp^r \mod p^e \). Then,

\[
x^2 = c^2 p^{2r} = bp^k \mod p^e \iff 2r = k \text{ and } c^2 = b \mod p^{e-k}.
\]

This is exactly we needed to prove.

We’ve determined that if \(a \) is a square, we can write it as

\[
a = (xp^{k/2})^2 \mod p^e,
\]

where \(x^2 = b \mod p^{e-k} \). Assuming \(b \) is a quadratic residue mod \(n \), let \(N(n) \) be the number of solutions to \(x^2 = b \mod n \). We know that if \(b \) is a quadratic residue mod \(p^e \) and \(p \) is an odd prime, \(N(p^e) = 2 \). If \(p = 2 \), we know that

\[
N(2^e) = \begin{cases}
1 \text{ if } e = 1, \\
2 \text{ if } e = 2, \\
4 \text{ if } e \geq 3.
\end{cases}
\]
If \(x^2 = b \mod p^{e-k} \) and \(j \) is an integer, any \(y \) of the form
\[
y = (x + j p^{e-k}) p^{k/2}
\]
is a solution to \(y^2 = a \mod p^e \). There are a total of \(p^{k/2} \) distinct \(y \) in \(\mathbb{Z}_{p^e} \), corresponding to \(j = 0, 1, \ldots, p^{k/2} - 1 \). Hence, the total number of square roots of \(a \) is
\[
N(p^{e-k}) p^{k/2}.
\]

Part (c): As in problem 2, let \(x = kp^i \). Then, \(x^2 = k^2 p^{2i} = 0 \mod p^e \) iff \(p^e | k^2 p^{2i} \).

Since \(k \) is coprime to \(p \), it follows that \(2i \geq e \). Let \(i \) be the smallest integer such that \(2i \geq e \). Each \(x \) of the form \(a p^i \) is a distinct solution to \(x^2 = 0 \mod p^e \). If \(x = bp^i = ap^i \), we have that \(b = a \mod p^{e-i} \). Hence, there are \(p^{e-i} \) solutions corresponding to \(a = 0, 1, \ldots, p^{e-i} - 1 \).

Remark 1. What we’ve done in Problems 2 and 3 is the following: we know how to find square roots of \(a \mod p^e \) when \(a \in U_{p^e} \); i.e., when \(a \) is coprime to \(p \). This was the theory of quadratic residues. When \(a \) is not coprime to \(p \), \(a \) must be divisible by a prime power \(p^k \), and we proved that we could write
\[
a = bp^k \mod p^e.
\]
The key here is that \(b \) is coprime to \(p \). This meant that we could use our theory of quadratic residues to solve \(x^2 = b \mod p^{e-k} \). The special case \(e = k \) had to be handled separately, and this was done in part (c).

Problem 4.

Part (a): To solve
\[
x^2 + 9x + 27 = 0 \mod 3^e
\]
for all \(e \). Completing the square, we have
\[
y^2 = 54 \mod 3^e,
\]
where \(y = 2x + 9 \). \(54 = 3^3 \cdot 2 \), and hence, if \(e > 3 \), we have no solutions by problem 3, part b. If \(e = 3 \), \(54 = 0 \mod 3^e \). Then, using problem 3 part (c), we find \(i = 2 \geq 3/2 \). Hence, there are \(3^{3-2} = 3 \) solutions. If \(e = 2 \), similarly, there are 3 solutions. If \(e = 1 \), there is one solution.

Part (b): Complete the square to get
\[
(2x + 3)^2 = 45 \mod 3^e.
\]
Note that 45 = \(3^2 \cdot 5 \). If \(e > 2 \), problem 3 part (b) tells us that 45 is a square if we can solve \(x^2 = 5 \mod 3^{e-2} \). That is, we want to determine whether 5 \(\in Q_{3^{e-2}} \) and so we compute the Legendre symbol,
\[
\left(\frac{5}{3} \right) = \left(\frac{3}{5} \right) = -1.
\]
Hence, 5 is not a square root, and we have no solutions for \(e > 2 \). For \(e = 1 \), we have 1 square root, and \(e = 2 \), we have 3 square roots as in part (a). Each of these square roots corresponds to a solution to the quadratic.

Part (c): Complete the square and get:
\[
y^2 = 4 \cdot 3^2 \mod 3^e
\]
where \(y = 2x + 3 \). For \(e > 2 \), we can always solve \(x^2 = 4 \mod 3^{e-2} \), since 4 is obviously a quadratic residue. There are 6 square roots mod \(3^e \), and each gives
a solution x to the quadratic. For $e = 1$ and $e = 2$, there are 1 and 3 solutions respectively.