HW 7

When I refer to specific theorem numbers, they’re from the book “Elementary Number Theory” by Jones and Jones, published by Springer. I sometimes use the shorthand CRT for the Chinese Remainder Theorem. I use the notation \mathbb{Z}_n for the integers mod n, and $U_n = (\mathbb{Z}_n)^*$ for the group of units. Please let me know if there are any typos or mistakes by emailing arjun-at-cims-dot-nyu-dot-edu.

Problem 1. Let $n = p_1^{a_1} \ldots p_k^{a_k}$ and $m = q_1^{b_1} \ldots q_j^{b_j}$ be coprime numbers. Clearly,

$$f(nm) = \prod_{i=1}^{k} (-1)^{a_i} \prod_{r=1}^{j} (-1)^{b_j},$$

from which it follows that f is multiplicative. By Lemma 8.1 in J & J,

$$h(n) = \sum_{d \mid n} f(d),$$

is also a multiplicative function.

The function $g(n)$ is also multiplicative: if n and m are coprime, $n \cdot m$ is a square iff both n and m are squares. This follows from inspecting the prime decomposition of n and m.

To show that $h(n) = g(n) \forall n$, it is enough to show that it is true when n is a prime power, since h and g are multiplicative functions (see Lemma 8.5 in J & J). For any prime p,

$$h(p^e) = \sum_{i=0}^{e} (-1)^i = \begin{cases} 0 & e \text{ odd} \\ 1 & e \text{ even} \end{cases},$$

since there are $e + 1$ alternating $+1$ and -1 entries in the sum. p^e is a square iff e is even, and this implies that g agrees with h.

Problem 2. If $n = p_1^{a_1} \ldots p_k^{a_k}$, Theorem 8.5 of J&J says that

$$\mu(n) = \begin{cases} 0 & \text{if some } a_i > 1 \\ (-1)^k & \text{if all } a_i = 1 \end{cases}.$$

If d is a divisor of n, it follows that $|\mu(d)| = 1$ iff d is a product of distinct primes. There are k primes in the prime factorization of n, and a product of any r of these primes for $0 \leq r \leq k$ produces a divisor d of n for which $|\mu(d)| = 1$. For each r, there are $\binom{k}{r}$ distinct divisors that are a product of r primes. So we must have,

$$\sum_{d \mid n} |\mu(d)| = \sum_{r=0}^{k} \binom{k}{r} = (1 + 1)^k,$$

where the last equality follows from the binomial theorem. The proof is similar to Theorem 8.8 in J&J.
Problem 3. Writing out the definitions, we see that

\[
D(n) = F_1 \mod 4(n) - F_3 \mod 4(n) = \sum_{d \mid n} f_1 \mod 4(d) - f_3 \mod 4(d).
\]

To show that \(D(n)\) is multiplicative, it’s clear from Lemma 8.1 that it’s enough to show that \(h(n) = f_1 \mod 4 - f_3 \mod 4(n)\) is multiplicative. This is just a matter of enumerating cases. Consider \(n \) and \(m\) coprime and notice that \(h(n)\) can take the values 1, \(-1\), or 0 depending on whether \(n\) is 1 mod 4, 3 mod 4 or 0 mod 2 respectively.

If either \(n\) or \(m\) is \(2\) or 0 mod 4, it’s clear that \(nm\) is \(2\) or 0 mod 4. Conversely, if \(nm\) is 2 or 0 mod 4, it means that at least one of \(n\) or \(m\) is 2 or 0 mod 4. Then, \(h(nm) = 0\) iff \(h(n)\) or \(h(m)\) = 0.

We may now assume that both \(n\) and \(m\) are \(1\) or \(3\) mod 4. Suppose \(h(n) = h(m) = \pm 1\); that is, they’re both of the form \(1\) mod 4 or \(3\) mod 4. Then, \(h(n)h(m) = 1\). Then, it follows from the basic rules for congruences that \(nm = 1\) mod 4 and hence \(h(nm) = 1\).

For the final case, assume \(n = 1\) mod 4 and \(m = 3\) mod 4. Then, \(nm = 3\) mod 4 and it follows that \(h(nm) = -1 = h(n)h(m)\). Since we’ve enumerated all cases and shown that \(h\) is multiplicative, we’re done.

Problem 4.

Part (a): For each solution \((x, y)\), let \(\alpha = x + iy\). This is a bijection from the solutions of \(x^2 + y^2 = n\) to the Gaussian integers such that \(|\alpha|^2 = n\): \(|\alpha|^2 = n\) iff \(x^2 + y^2 = n\).

Part (b): Let us say that \(\alpha\) is a solution to \(n\) if \(|\alpha|^2 = n\). There are four solutions associated to \(\alpha\) (through the four units): \(\{\alpha, i\alpha, -i\alpha\ \text{and} \ -\alpha\}\).

Let \(\alpha\) and \(\beta\) be the solutions in \(\mathbb{Z}[i]\) to \(m\) and \(n\) respectively. Then, \(\alpha\beta\) is a solution to \(mn\) since \(|\alpha\beta|^2 = mn\). Each of the four solutions \(\gamma \sim \alpha\) has a corresponding \(\delta \sim \beta\) such that \(\gamma\delta = \alpha\beta\). In other words, four distinct pairs of solutions for \(m\) and \(n\) map to one single solution to \(m \cdot n\). This means that

\[
\frac{1}{4} \square(m) \square(n) \leq \square(mn).
\]

We will show that the map is onto; i.e., that each solution \(\gamma\) to \(mn\) can be decomposed as \(\gamma = \alpha\beta\) to produce four pairs of solutions to \(m\) and \(n\).

Let \(m\) and \(n\) be coprime, and let them have the following prime decompositions in \(\mathbb{Z}\):

\[
m = p_1^{a_1} \cdots p_k^{a_k},
\]

\[
n = q_1^{b_1} \cdots q_j^{b_j}.
\]

As in HW 2 problem 5, we can either decompose each prime as \(p_i = c_i\bar{c}_i\), where \(c_i\) is irreducible, or the prime is irreducible in \(\mathbb{Z}[i]\). The same goes for the primes \(q_i\), and we will decompose them as \(q_i = d_i\bar{d}_i\) if possible. Therefore, rearranging the indices appropriately, we get

\[
mn = p_1^{a_1} \cdots p_k^{a_k} c \bar{c} q_1^{b_1} \cdots q_j^{b_j} d \bar{d},
\]

where \(c = \prod c_i\) and \(d = \prod d_i\). Suppose there is a solution \(\gamma\) to \(mn\), then all the real primes in the decomposition for \(mn\) must be raised to an even power, as we
showed in HW 2 Problem 5. Since the primes p_i and q_i are distinct due to the fact that m and n are coprime, it follows that

$$m = p^2 c \bar{c},$$
$$n = q^2 d \bar{d},$$

where $p = \prod p_i^{a_i}$ and $q = \prod q_i^{b_i}$. It follows that there is a pair of solutions $(\alpha, \beta) = (pc, qd)$. As before, this pair can be turned into 4 distinct pairs by multiplying with units. Hence we have that

\[
\frac{1}{4} \square(m) \square(n) \geq \square(mn),
\]

and we're done.

Part (c): As we discussed in problem 1, we only need to compare $D(n)$ and $\square(n)$ on prime powers. Let us see how $D(n)$ behaves first. Suppose $n = p^e$ for where p is prime, and suppose first that $p = 1$ mod 4. Then,

\[
D(p^e) = F_1 \mod 4(p^e) - F_3 \mod 4(p^e) = (e + 1) - 0 = e + 1.
\]

If $p = 3$ mod 4,

\[
D(p^e) = \begin{cases}
1 & e \text{ even}, \\
0 & e \text{ odd}.
\end{cases}
\]

Finally, if $n = 2^e$,

\[
D(2^e) = 1
\]

for all $e \geq 1$.

For the \square function, we need to count solutions. If $p = 1$ mod 4, we know it decomposes as $p = c \bar{c}$ in $\mathbb{Z}[i]$ where c and \bar{c} are both irreducibles. There are four such representations, obtained by multiplying c by the units $\{1, -1, i, -i\}$. We'd like to find solutions to p^e; i.e., a Gaussian integer α such that $p^e = \alpha \bar{\alpha}$. Uniqueness of the prime decomposition says that each factor of α must be associated to c or \bar{c} (through a unit). Then, α must be a product of k factors associated to c and j factors associated to \bar{c} such that $k + j = e$. That is,

\[
\alpha = uc^k \bar{c}^j,
\]

where u is a unit. There are $e + 1$ combinations $k + j = e$, and 4 possible units u. Hence we have a total of $4(e + 1)$ solutions.

If $n = 2^e$, something special happens. 2 decomposes as $2 = (1 + i)(1 - i) = c \bar{c}$. However, $(1+i)^2 = 2i, (1-i)^2 = -2i$ which implies that the products we constructed above only produce certain kinds of elements. If e is even, they produce elements of the form

\[
2^{e/2}u
\]

where u is a unit in $\mathbb{Z}[i]$, and if e is odd, the produce elements of the form

\[
2^{(e-1)/2}u(1 \pm i).
\]

There is further degeneracy since $(1+i) = i(1-i)$; i.e., they’re related through a unit. Hence, we get a total of only 4 solutions for all $e \geq 1$.

We skipped over this earlier, but we must verify that this degeneracy cannot happen for an odd prime power. If any of the solutions α we constructed for primes of the form $p = 1$ mod 4 are non-unique, we must have

\[
c^k \bar{c}^{-k} = uc^j \bar{c}^{-j}
\]
for distinct \(j \) and \(k \). A little manipulation results in the condition
\[
e^{k-j} = u e^{k-j}.
\]

If a complex number and its conjugate are associated to each other through a unit; i.e., \(x + iy = u(x - iy) \), we must have \(x = \pm y \). In particular, this means that
\[
e^{k-j} \bar{e}^{k-j} = 2x^2,
\]
where we assume without loss of generality that \(k > j \). Since
\[
p^e = e^e \bar{e}^e = 2x^2 e^{-(k-j)} \bar{e}^{-(k-j)},
\]
it follows that \(p \) must be divisible by 2. This is contrary to our assumption.

If \(p = 3 \mod 4 \), we know that it does not decompose in \(\mathbb{Z}[i] \). Then, it’s clear there are solutions to \(p^e \) iff \(e \) is even. There are a total of 4 solutions: \((\pm p^{e/2}, 0)\) and \((0, \pm p^{e/2})\).

Problem 5. Theorem 7.5 says
\[
\left(\frac{-5}{p}\right) = \left(\frac{5}{p}\right) \left(\frac{-1}{p}\right).
\]
We know \(-1 \in U_p\) for all primes \(p \), and using Gauss’ lemma (cf. Corollary 7.7), we get that \(-1 \in Q_p\) iff \(p = 1 \mod 4 \). Hence,
\[
\left(\frac{-1}{p}\right) = \begin{cases}
1 & p = 2 \\
1 & p = 1 \mod 4 \\
-1 & \text{otherwise}
\end{cases}
\]
Since \(5 = 1 \mod 4 \), quadratic reciprocity gives
\[
\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right).
\]
We know that
\[
U_5 = \{1, 2, 3, 4\} \text{ and } Q_5 = \{1, 4\}.
\]
Hence if \(p \neq 5 \),
\[
\left(\frac{p}{5}\right) = \begin{cases}
1 & p = 1 \mod 5 \text{ or } 4 \mod 5 \\
-1 & \text{otherwise}
\end{cases}.
\]
Combining the two results and using the Chinese remainder theorem, we get that
\[
\left(\frac{-5}{p}\right) = \begin{cases}
1 & p = 1 \mod 20 \text{ or } 9 \mod 20 \\
-1 & \text{otherwise}
\end{cases}.
\]

Problem 6.
Part (a): Using the basic rules of manipulating Legendre symbols,
\[
\left(\frac{331}{101}\right) = \left(\frac{28}{101}\right) = \left(\frac{2}{101}\right)^2 = \left(\frac{2}{101}\right) = \left(\frac{2}{7}\right) = \left(\frac{3}{7}\right) = -1
\]
using quadratic reciprocity.

4. HW 7
Part (b):

\[
\left(\frac{506}{301} \right) = \left(\frac{253}{301} \right) \left(\frac{2}{301} \right) = \left(\frac{401}{253} \right) \cdot 1 = \left(\frac{148}{253} \right) \text{ using Corollary 7.10}
\]

\[
= \left(\frac{37}{253} \right) \cdot 2^2 = \left(\frac{253}{37} \right)
\]

\[
= \left(\frac{31}{37} \right) = -1 \quad \text{we've skipped a few steps}
\]

Part (c): Write \(p^\pm = c \pm 1 \), and notice that \(p^+ = 1 \pmod{4} \). Then,

\[
\left(\frac{c - 1}{c + 1} \right) = \left(\frac{c + 1}{c - 1} \right) = \left(\frac{2}{c - 1} \right) = 1
\]

since \(c - 1 = -1 \pmod{8} \) (see Corollary 7.10).

Problem 7.

Part (a): Since \(n = 103 \) is prime, if we determine that \(7 \in \mathbb{Q}_{103} \), then it must have exactly two square roots. This follows from the fact \(\mathbb{Z}_p \) has a primitive root if \(p \) is prime.

\[
\left(\frac{7}{103} \right) = - \left(\frac{103}{7} \right) = - \left(\frac{6}{7} \right) = 1.
\]

Part (b): Theorem 7.15 says that \(7 \in \mathbb{Q}_{55} \iff 7 \in \mathbb{Q}_{11} \) and \(7 \in \mathbb{Q}_5 \). Calculate

\[
\left(\frac{7}{11} \right) = - \left(\frac{11}{7} \right) = - \left(\frac{4}{7} \right) = -1,
\]

and so \(7 \not\in \mathbb{Q}_{11} \). Hence it has no square roots mod 55.

Part (c): Again, 7 has no square roots mod 99 for the same reason as part (b).

Problem 8. Let \(u(n) = 1 \) for all \(n \), and note that \(\tau(n) = u * u \). We know that \(\mu \) and \(u \) are Dirichlet inverses (see example 8.4 in J & J). Using associativity of the Dirichlet product, we get

\[
(\mu * \mu) * \tau = (\mu * \mu) * (u * u) = I.
\]

Problem 9. There was a typo in the problem and I struggled a little to figure out what the problem was. Here is the correct definition of \(S(n) \):

\[
S(n) := \sum_{\gcd(i,n)=1} i^2.
\]

Let

\[
H(n) := \sum_{d \mid n} \frac{n^2}{d^2} S(d) = \sum_{d \mid n, \gcd(i,d)=1} \frac{n^2}{d^2} i^2.
\]

As indicated in the problem, there is one-one map from the summands in

\[
G(n) := \sum_{i=1}^{n} i^2
\]

to the summands in \(H(n) \). For each \(d \mid n \), there are \(\phi(d) \) different \(i \) that are coprime to \(d \), and this tells us that the total number of terms in the sum for \(H(n) \) is \(\sum_{d \mid n} \phi(d) = n \). So the total number of terms in \(H(n) \) is \(n \), each term sum is
smaller than or equal to \(n\), and each term if of the form \(k^2\) for some integer. Hence, to show that \(H(n) = G(n)\), we only need to show that all the terms in \(H(n)\) are distinct. But that is immediate, since for distinct divisors \(d_1\) and \(d_2\), we can never have \((n/d_1)i = (n/d_2)j\) for \(\gcd(i, d_1) = \gcd(j, d_2) = 1\). To prove this, suppose to the contrary that it happens for some \(d_1, d_2, i\) and \(j\). Then we would have

\[d_1j = d_2i. \]

However, this implies both that \(i|j\) and \(j|i\), from which we deduce that \(i = j\). This produces the contradiction \(d_1 = d_2\).

So we’ve proved that

\[G(n) = \frac{n(n + 1)(2n + 1)}{6} = N^2 * S, \]

where \(N^2(n) = n^2\). The Dirichlet inverse of \(N^2\) (by inspection) is just \(N^2\mu\) since

\[N^2 * (N^2\mu) = \sum_{d|n} \frac{n^2}{d^2} d^2 \mu(d) = n^2 \sum_{d|n} \mu(d) = I(n). \]

Hence,

\[S = G * N^2\mu = \sum_{d|n} \frac{n}{6d} \left(\frac{2n^2}{d^2} + \frac{3n}{d} + 1 \right) (d^2 \mu(d)). \]

Problem 10. The argument is similar to the proof of Theorem 5.8 in the textbook. Please review it. Let

\[\Omega_d := \{i \leq n \mid \gcd(i, n) = d\}. \]

If \(i\) is such that \(\gcd(i, n) = d\), we must have \(\gcd(i/d, n/d) = 1\). Then, \(|\Omega_d|\) is just the number of \(k \leq n/d\) such that \(\gcd(k, n/d) = 1\). Hence,

\[|\Omega_d| = \phi \left(\frac{n}{d} \right). \]

It’s clear that \(\cup_{d|n} \Omega_d = \mathbb{Z}_n\), and that it is a disjoint union of sets: every \(i \in \mathbb{Z}_n\) must be in one and only one of the \(\Omega_d\). Then we can write the expression for \(\triangle(n)\) as

\[\triangle(n) = \sum_{d|n} d|\Omega_d| = \sum_{d|n} d\phi(n/d) = N * \phi(n), \]

where \(N(n) = n\). Since \(\phi * u = N\), \(\triangle * u = N * N = \sum_{d|n} d(n/d) = n\tau\). This is exactly what we set out to prove.