Handout #4 Sept. 26, 2002

Yu Chen

Homework 3, Part II

Objective: Least-squares solution of under-determined linear system with the "physically relevant norms". Optimal design of narrow and wide bandwidth digital filters and high order quadrature formulae.

A filter f is required to be a smooth transition from 0 to 1, to be monotone ($f'(x) \ge 0$ for $x \in (a, b)$), and to have vanishing derivatives upto certain order at the two end points $a = -\pi$, $b = \pi$. If done correctly, the function

$$f_3(x) = \frac{1}{2\pi}(x+\pi) + \sum_{j=1}^n c_j \sin(jx)$$
 (1)

will satisfy the requirements (except $f' \geq 0$) with suitably chosen coefficients c_j . In Homework 2, you have set up an m-by-n linear system for c_j , solved it with m = n = 5 and got a solution which gives rise to an f_3 that happens to be monotone.

There is no reason that we must choose m=n and get a square linear system to which the solution is unique. On the contrary, we prefer m < n so that the linear system is under-determined: there are more degrees of freedom than the number of equations. When this happens, the solution is not unique, and therefore there is freedom to choose a solution with desirable properties

Question 1. Let $D \in \mathbb{R}^{n \times n}$ be invertible. Describe with no more than 40 words (plus necessary formulae) a procedure which uses SVD to solve our problem $A \cdot c = b$ and simultaneously minimizes the 2-norm of $x = D \cdot c$. Hint: Consider the equation $A \cdot D^{-1} \cdot D \cdot c = b$. Note: for this problem to make practical sense, it is assumed that m < n (what happens if m = n).

Question 2. Find out D if we want to solve our problem $A \cdot c = b$ and minimize the 2-norm of f'_3 , go to the end of this handout for details on the 2-norm of a constinuous function.

Question 3. For m=5, n=8, solve our problem $A \cdot c = b$ and minimize the 2-norm of $f_3^{(2m+2)}$. Show the condition number. Plot f_3 so constructed with 32 equispaced points in $[-\pi, \pi]$.

Question 4. For m=5, n=31, $\mu=0.01$, solve our problem $A \cdot c=b$ and minimize $||f_3'||_2^2 + \mu ||f_3^{(4)}||_2^2$. Show the condition number. Plot f_3 so constructed with 80 equispaced points in $[-\pi, \pi]$.

Appendix The 2-norm of a function f in [a, b] is defined by the formula

$$||f||_2 = \left(\frac{1}{b-a} \int_a^b f^2(x) dx\right)^{\frac{1}{2}};$$
 (2)

therefore it can verified that a sine or cosine series

$$f(x) = \sum_{j=1}^{n} a_j \sin(jx), \quad \text{or} \quad f(x) = \frac{1}{2}a_0 + \sum_{j=1}^{n} a_j \cos(jx)$$
 (3)

in $[a, b] = [-\pi, \pi]$ will have the 2-norm (up to a constant multiple)

$$||f||_2 = \left(\sum_{j=1}^n |a_j|^2\right)^{\frac{1}{2}}, \quad \text{or} \quad ||f||_2 = \left(\sum_{j=0}^n |a_j|^2\right)^{\frac{1}{2}}$$
 (4)