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Assignment 2

Objective: Optimal design of digital filters and high order quadrature formulae.

1. INTRODUCTION
A digital filter (see Figure 1 at the end) is a function f(z), z € [a, b] which provides a monotone,
smooth transition from the state 0 to state 1; in other words, we require that for a positive £

f(a)=0, f(B) =1, f'(z) >0, (monotone in [a, b]) M)
f € €CYa,b], (smooth in [a, b]) (2)
di f d f . .

—(a) =0, =—=(b) =0, j=1,2,...,£ (smooth transition at a and b) (3)

dei ™ 7 dai
Let’s from now on assume that
a=-—m, b =Tr. (4)

A good filter requires a reasonably large ¢, say, greater than 10, to ensure a smooth transition
between 0 and 1. As examples, the functions

fow) = T, wefemm ©)
f(z) = %[l—cos<x—gﬁ>] 2 € [—m ] (6)

are possible choices for a filter. But fy lacks the smoothness; it touches the floor 0 and the
celling 1 like a stick, and Condition (3) is satisfied only for £ = 0. This makes f, unsuitable as
a filter. f; satisfies all Conditions (1)—(3) with £ = 1, and therefore could be used as a filter
(the oil industries use it for signal processing of their seismic data). But this filter delivers
inferior sound quality if used in making CD’s, partially because of the low £ value, and partially
because the “physics” is not correctly built in.

A higher £ value is also needed for the so-called quadrature: a summation formula to approx-
imate integrals. As we know, the most fundamental operation in scientific computing is the
inner product. Nature does it in the form of integrals. So calculating an integral to a good
precision is a bread-butter issue in scientific computing.

2. DESCRIPTION OF THE PROBLEM
We will represent our filter, denoted by f3, as a sum of two functions fy and p

fo(@) = fol@)+p@), =€ [-m] (7)
p) = Y gsin(ia), we€l-mn] (8)

where p is a periodic function in [—m, 7], and the Fourier coefficients ¢; are to be determine
so as to satisfy Condition (3). Note that Conditions (1), (2) are already fulfilled, except the
requirement f'(z) > 0.

It is easy to verify that Condition (3) translates to

p'(m) = —%, (9)

p® V() = 0, i=23,...,m (10)

where m = |£/2], since p*? () is automatically zero.
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3. STATEMENT OF WORK
It is easy to see that the m equations in (9), (10) set up a system of linear equations for the
n unknows ¢ = [c1, ¢, ..., cy]?; let’s denote the system by Ac = b.

a.

b.

Write down expressions for A(i,5), b(7) for the m-by-n matrix A and the RHS b, for
1<i<mand1<j<n.

Write a matlab script for the solution of the linear system via SVD, under no assumption
on m and n as which is greater than the other. Then solve for the unknown c¢ in each of
the three cases (i) m=n =25 (ii) m =n =9 and (iii) m =5, n =9.

. Now with the Fourier coefficients ¢ available, evaluate f3(z) and plot it with 50 equispaced

x points in [—m, 7], for each of the three cases.

. Repeat Steps (b) and (c) with the SVD replaced by a QR factorization.

. Brief remarks (no longer than 120 words) on the results, as what is right and what may

have gone wrong.

filter f(x), and its derivative df / dx; ell = 10; narrow band
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Figure 1: A typical plot of a filter f(x) and its first derivative



