
General stochatsic differential equations and related PDE’s.

Consider the SDE

(1) dx(t) = σ(x(t)) · dβ(t) + b(x(t)) dt

where x(t) = {x1(t), x2(t), . . . , xd(t)} ∈ Rd, β(t) = {β1(t), β2(t), . . . , βk(t)} has k compo-
nents and σ(x) = {σi,r(x)} is a d × k matrix for each x. b(x) = {b1(x), b2(x), . . . , bd(x)}
has d components. this is to be viewed as the system

dxi(t) =

k
∑

r=1

σi,r(x(t))dβr(t) + bi(x(t))dt

with xi(0) = xi for 1 ≤ i ≤ d. Although usually k = d, it does not have to be. Associated
with this system there is differential operator

L =
1

2

∑

i,j

ai,j(x)
∂2

∂xi∂xj

+

d
∑

i=1

bi(x)
∂

∂xi

where

ai,j(x) =
k

∑

r=1

σi,r(x)σj,r(x)

or in matrix notation a = σσ∗. Note that if k < d the matrix a cannot be of full rank.
However a is always positive semi-definite. If σ(x) satisfies some regularity assumptions
(Lipshitz condition) on the dependence on x the equations (1) will have a unique solution
x(t) that of course will depend on the starting point x. The process x(t) satisfies these
properties and can be characterized by suitable subsets of properties 1 through 8.

1. It is a Markov process with continuous paths, (no jumps).

2. The two moments of the transition probabilities p(t, x, dy) satisfy

Bi(t, x) =

∫

(yi − xi)p(t, x, dy) = tbi(x) + o(t)

Ai,j(t, x) =

∫

(yi − xi)(yj − xj)p(t, x, dy) = tai,j(x) + o(t)

and any higher moment

δ(t, x) =

∫

|y − x|αp(t, x, dy) = o(t)

if α > 2.

3. In fact

u(t, x) =

∫

f(y)p(t, x, dy) = f(x) + t(Lf)(x) + o(t)

where

(Lf)(x) =
1

2

∑

i,j

ai,j(x)
∂2f

∂xi∂xj

(x) +

d
∑

i=1

bi(x)
∂f

∂xi

(x)

L is viewed as a differential operator acting on smooth function f(x).
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4. Note that while a is determined by σ the converse is not true. a = σσ∗ has many
solutions. These are different but equivalent models for the same process x(t).

Remark. If a is nonsingular then p(t, x, dy) will always have a density p(t, x, y)dy. Oth-
erwise it may or may not. Try the example

dx1(t) = dβ1(t), dx2(t) = x1(t)dt

with

a(x) =

(

1 0
0 0

)

and b(x) = (x1, 0). x1(t) = x1 + β(t) and x2(t) = x2 + t x1 +
∫ t

0
β1(s)ds. The distribution

of x1(t), x2(t) is a nonsingular bivariate Gaussian.

5. The ”Backward” Kolmogorov equations.

u(t, x) =

∫

f(y)p(t, x, dy)

stisfies
ut = Lu

with u(0, x) = f(x).

6. The ”Forward” Kolmogorov equations. In the non-degenerate case assuming more
regularity on a and b

v(t, y) =

∫

g(x)p(t, x, y)dx

satisfies
vt = L∗v

where Last is the adjoint of L

L∗g =
1

2

∑

i,j

∂2(ai,j(x)g(x))

∂xi∂xj

−
d

∑

i=1

∂(bi(x)g(x))

∂xi

defined by the relation
∫ Rd

Lf · g dx =

∫

Rd

f · L∗g dx

7. In fact p(t, x, y) itself satsfies
pt = Lp

as a function of t and x for fixed y and

pt = L∗p
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as a function of t and y for fixed x. Note that y is the forward variable and x is the
backward variable.

It is not hard to see (by differentiating with respect to t) that if u and v are solutions
respectively of the backward and forward equations, then

∫

u(T − t, x)v(t, x)dx

is independent of t in 0 ≤ t ≤ T . In particular E[f(x(t))] when x(0) is random and
distributed with density g(x)dx

E[g(x(T )] =

∫

f(x)v(T, x)dy =

∫

u(T, x)g(x)dx = E[u(T, x(0))]

Brownian motion corresponds to a = I, b = 0 or

L = L∗ =
1

2
∆ =

1

2

∑

i

∂2

∂x2
i

8. Itô’s formula holds.

du(t, x(t)) = (∇u)(t, x(t)) · dx(t) + ut(t, x(t))dt +
1

2

∑

i,j

ai,j(x(t))
∂2u

∂xi∂xj

(t, x(t))dt

= (ut + Lu)(t, x(t))dt +∇u · σ(x(t)) · dβ(t)

In particular

u(t, x(t)) = u(0, x) +

∫ t

0

[ut + Lu](s, x(s))ds + M(t)

where M(t) is a martingale.

9. Exit places. Dirichlet problem. Suppose G is a bounded open set in Rd with boundary
∂G and x ∈ G. Let

τ = inf{t : x(t) /∈ G} = inf{t : x(t) ∈ ∂G}

The expectation
u(x) = E[g(x(τ))|x(0) = x]

is the unique solution of the Dirichlet Problem

Lu = 0, u = g on ∂G

One can either solve the Dirichlet problem to find the exit distribution or the other way
around.
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One has to be sure that

P [τ < ∞ |x(0) = x] = 1 for all x ∈ G

11. Possibility of Monte-Carlo simulation in order to solve the Dirichlet Problem.

12. Exit times and places. For λ ≥ 0, the solution uλ(x) of

Lu = λu, u(x) = g on ∂G

is
uλ(x) = E[e−λτg(x(τ)) |x(0) = x]

Note that if λ > 0 we can have τ = ∞ with positive probability. But if λ = 0 this cannot
be allowed.

13. Regularity issues. Smooth solutions, weaker notions of solutions, distribution solutions
etc.

14. In general, in the non-degenerate or elliptic case solutions are as smooth as the
situation demands. For instance a solution of

(Lu)(x) = 0

will generally have two derivatives more than what the {ai,j} have.
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Examples.

1. Geometric Brownian Motion.

dX(t) = σX(t)dβ(t) + µX(t)dt

Try
X(t) = X(0) exp[σβ(t) + at]

Then

dX(t) = σX(t)dβ(t) + aX(t)dt +
σ2

2
X(t)dt

a = µ− σ2

2 does it!. X(t) = X(0) exp[σβ(t) + (µ− σ2

2 )t]. The solution of

ut =
x2

2
uxx + µxux u(0, x) = f(x)

is therefore given by

u(t, x) =

∫

1√
2πt

f(xeσy+(µ−σ2

2
)t)e−

y2

2t dy

2. Stochastic volatility models:

dx(t) = σ(t)x(t)dβ1(t) + µx(t)dt

dσ(t) = f(σ(t))dβ2(t) + g(σ(t))dt

3. Two state volatality models. σ = {1, 2}. A Markov chain with rate matrix

(

−a a
b −b

)

L
(

u1

u2

)

=

(

L1u1

L2u2

)

+

(

−a a
b −b

) (

u1

u2

)

4. Random Discount Models.

dx(t) = σx(t)dβ1(t)− r(t)x(t)dt

dr(t) = f(r(t))dβ2(t) + g(r(t))dt
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