
Dynamic programming;

Consider an asset allocation control problem:
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where the asset A is allocated between n securities. The weights ui ≥ 0 and
∑
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securities which could include cash, are all Black-Scholes with the generator of (x1, . . . , xn)
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At the end of time T one wishes to maximize the utility U(A) = |A|p where 0 < p < 1.
What is the optimal allocation rule?
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The equation to solve is
Vt + sup

u

LuV = 0, V (T, A) = Ap

Try V (t, A) = v(t)Ap.
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the optimal u is a constant chosen according to the mean variance optimization scheme.
In general if we can solve

Vt + sup
u

LuV = 0, V (T, x) = f(x)

then for any control u(t, x) that depends only on the current state (policy) ,the corre-
sponding process x(t) will have the property

Vt + Lu(t,x)V ≤ 0, V (T, x) = f(x)

By maximum principle the actual solution

Wt + Lu(t,x)W = 0, W (T, x) = f(x)

will have the property W ≤ V . On the other hand for the optimizing u, V is the solution.
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