
Maximum principle.

We will review our proof of the maximum principle from last week.

We consider a solution of

(1)
∂u(t, x)

∂t
=

1
2

∂2u(t, x)
∂x2

on [0, T ]×R with u(0, x) = f(x). What do we mean by it?

1. For t > 0 and x ∈ R, u has one continuous derivative in t and two continuous derivatives
in x and satisfies for t > 0 the equation (1).

2. u(t, x) is continuous on [0, T ]×R and u(0, x) = f(x).

Theorem. Given f(x) bounded and continuous, there exists a solution u which is bounded.
A bounded solution is unique.

Proof: Existence:
u(t, x) =

∫
R

1√
2πt

f(y)e−
(x−y)2

2t dy

doest it.

Uniqueness depends on the maximum principle.

If u is a bounded solution such that f(x) = u(0, x) ≥ 0 on R, then u(t, x) ≥ 0 on [0, T ]×R.
If we consider v = u1 − u2 then v will be a solution with v(0, x) = 0 and therefore v ≥ 0
as well as v ≤ 0 on [0, T ]×R, proving V ≡ 0 i.e. uniqueness.

The idea behind the maximum principle. Let u be a solution on [0, T ]× [A,B] with
with u ≥ 0 on {0}× [A,B], [0, T ]×{A} and [0, T ]×{B}. Suppose the minimum of u(t, x)
is attained at (t0, x0). If it is on the boundary {0} × [A,B], [0, T ]× {A} and [0, T ]× {B},
then u ≥ 0 throughout. Let us suppose it is either in the interior or on {T} × (A,B). In
any case

ut(t0, x0) ≤ 0, ux(t0, x0) = 0, uxx(t0, x0) ≥ 0

But ut = 1
2uxx. This looks like a contradiction except that both ut and uxx may be zero

at (t0, x0). We consider v(t, x) = u(t, x)e−ct. Consider the point where v has a minimum.
At that point vt(t0, x0) = ut(t0, x0)e−ct − cu(t0, x0)e−ct ≤ 0. Moreover vxx(t0, x0) =
uxx(t0, x0)e−ct ≥ 0. Since ut = 1

2uxx, this yields cu(t0, x0) ≤ 0. If c > 0, this implie that
u(t0, x0) ≥ 0 and we are done.

Another idea. Let us construct a solution gt = 1
2gxx that is non-negative, unbounded

and grows rapidly when x → ±∞. Example of one is

g(t, x) =
1√

k − t
e

x2
2(k−t)

This is a solution. If k > T this is a smooth solution on [0, T ] × R. If u is a bounded, in
fact even unbounded so long as it does not grow too fast

uε = u + εg
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is a solution that is nonnegative on {0}× [−A,A], [0, T ]×{−A} and [0, T ]×{A} provided
A is large enough. Therfore

u(t, x) + εg(t, x) ≥ 0

for every ε > 0. This will do.

The real idea behind the proof: Stochastics.

1. Itô’s formula to v(t, x) = u(T − t, x).

v(t, x(t)) = v(0, x) +
∫ t

0

vx(s, x(s))dx(s) +
1
2

∫
(vt +

1
2
vxx)(s, x(s))ds

=
∫ t

0

vx(s, x(s))dx(s)

= M(t)

where M(t) is a martingale. This requires

E[
∫ T

0

|vx(t, x(t))|2dt|x(0) = x] < ∞

2. Stopping times: If we denote by

τA = inf{t : |x(t)| = A}

then
v(0, x) = Ex[v(τ ∧ T, x(T ∧ τ))]

= Ex[f(x(T )) : τ > T ] + Ex[u(T − τ,−A) : τ ≤ T, x(τ) = −A]
+ Ex[u(T − τ,−A) : τ ≤ T, x(τ) = A]

Note that
P [τ < T ] ≤ 2e−

A2
2T

Therefore if
lim

A→∞
e−

A2
4T sup

0≤t≤T
[|u(t, A)|+ |u(t,−A)|] = 0

then
v(0, x) = Ex[f(x(T )] =

∫
f(y)

1√
2πT

e−
(x−y)2

2T dy

proving uniqueness as well as the maximum principle.
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