Test functions.

If we want to show that the Brownian motion in one dimension exits in a finite time
from the interval [1, 1], we know that the solution

1
3 Uaz = —1,u(£1) =0

will give E[7|X (0) = z]. The solution is of course (1 — z?). In general it is not necessary
to solve the equation explicitly. If we can find a function u(z) such that (Lu)(z) > ¢ >0
in a region G, then for any starting point x € G the expected exit time from G is finite i.e.

Blra|X(0) = o] < = sup u(z)

The proof uses [t0’s formula to conclude that

t
ualt) = [ (Cw)ao)ds
is a Martingale. Therefore if 7 is a bounded stopping time such that 7 < 74, then
Elu(z(r) —u(z) — cr|z(0) = 2] > 0
In particular
Elr At]2(0) = 2] < % sup [u(z)|

Since this is true for every t > 0 by letting t — oo we get our result.

Some times we need methods to conclude that P[r < oo] = 1 while E[r] may be
infinite. If for some ¢ > 0, we have a positive bounded function v on 0G satisfying

(Lu)(x) — cu(x) >0 for x € G

then
Ele™ ™ |z(0) = z] > u(x)

In particular P[r < oo|z(0) = x] > 0. To show that the probability is actually 1, we need
to construct sub-solutions u.(z) such that u.(x) — 1 as ¢ — 0. The proof is again by 1t6’s
formula.

d(e " u(x(t))) = (Lu — cu)e“dt + dM(t)

so that e~ “*u(x(t)) is a sub-martingale. In particular

Ele= "Dy (x(1 A t)] > ue(z)
Conversely if we have a super-solution with

(Lu)(x) — cu(x) <0 for x € G
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with u(z) — oo as ¢ — 0G, thenP[1 < oo|z(0) = z] = 0. Follows from
Ele= "y (z(r At))] < u(x)

or from the Martingale inequality

sup e “u(x(t)) < oo ae.

o<t<r

Allication: Non-explosion: If we can construct a function u(xz) > 0 such that u(zx) — oo

as |z| — oo and
o (E0)@

v u(z)

< 0

then the process cannot explode.

Example: If a(x) < Clz|?, |b(x)| < C|x|, then with u(z) =1 + |z|?,

Lu<Cu

Difference approximations to PDE

One way to numerically solve the heat equation
1
ug + 5 Uz = 0;u(T,z) = f(x)

is to approximate it by difference equations

S1((+ 1)6, 5h) — u(j, k)]
+ 2—;2[u<(j +1)8, (k+ 1)) +u((j + 1)8, (k — 1)h) — 2u((j + 1)d, kh)] = 0

Time t marches in steps of size § and the space z is made discrete with a spacing of h.
Assuming N§ = T', with u(NJ, kh) = f(kh), we iterate

u(j9, kh)
%[U(U +1)6, (k + 1)h) +u((j + 1)4, (k — 1)) — 2u((j + 1)d, kh)]
- 2%@((3‘ +1)6, (k+ 1)h) +u((j + 1)d, (k — 1)h)] + (1 — %)u((j +1)6, kh)

=u((j + 1)8, kh) +

We can let § — 0, h — 0 such that § < h?. Then u(jd, kh) will be an average of
uw((j+ 1)8, (k 4+ 1)h) and u((j + 1)8, kh). In particular if § = h?

un(j6, kh) = %[uh((j +1)8, (k + 1)h) + un((j + 1), (k — 1)A)]
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The convergence of up(0,0) to the solution u(0,0) of the heat equation given by

u(0,0) = / ) ¢217T—T6_%dy

is just the central limit theorem for the binomial distribution. Note that

N
0.0 =3 () st = 3m

r
r=0

where h = v/§ = N73.
We will give an alternate proof. Assume that f is smooth and the soution u(t,x) of
the heat equation has enough derivatives in ¢ and .

Then consider
&n = u(nd, X))

n —

where X is a Markov chain with transition probability
1 1
(@, dy) = 5 0s4n(dy) + 50:-n(dy)
It is easily seen that (note § = h?),

Elu(nd, X)X} 1] = Slu(nd, X;_y +h) +u(nd, Xjy_; — h)]

N | —

h2
=u(nd, X" )+ ?wa(n& X)) +o(h?)

h2
= u((n— 1), XJ_1) + 6uy(nd, X)i_;) + 5 Uz (10, X7 1)+ o(8)

=u((n—1)5,X!_;) + 0(5)
Therefore

E[f(XM)| Xl = 2] = Blu(T, %)X = 2] = u(0,2) + No(8) = u(0,z) + o(1)



