
Test functions.

If we want to show that the Brownian motion in one dimension exits in a finite time
from the interval [1, 1], we know that the solution

1

2
uxx = −1, u(±1) = 0

will give E[τ |X(0) = x]. The solution is of course (1− x2). In general it is not necessary
to solve the equation explicitly. If we can find a function u(x) such that (Lu)(x) ≥ c > 0
in a region G, then for any starting point x ∈ G the expected exit time from G is finite i.e.

E[τG|X(0) = x] ≤ 2

c
sup

x

|u(x)|

The proof uses Itô’s formula to conclude that

u(x(t))−
∫ t

0

(Lu)(x(s))ds

is a Martingale. Therefore if τ is a bounded stopping time such that τ ≤ τG, then

E[u(x(τ)− u(x)− cτ |x(0) = x] ≥ 0

In particular

E[τ ∧ t|x(0) = x] ≤ 2

c
sup

x

|u(x)|

Since this is true for every t > 0 by letting t →∞ we get our result.

Some times we need methods to conclude that P [τ < ∞] = 1 while E[τ ] may be
infinite. If for some c > 0, we have a positive bounded function u on ∂G satisfying

(Lu)(x)− cu(x) ≥ 0 for x ∈ G

then
E[e−cτG |x(0) = x] ≥ u(x)

In particular P [τ < ∞|x(0) = x] > 0. To show that the probability is actually 1, we need
to construct sub-solutions uc(x) such that uc(x) → 1 as c → 0. The proof is again by Itô’s
formula.

d(e−ctu(x(t))) = (Lu− cu)e−ctdt + dM(t)

so that e−ctu(x(t)) is a sub-martingale. In particular

E[e−c(τ∧t)uc(x(τ ∧ t))] ≥ uc(x)

Conversely if we have a super-solution with

(Lu)(x)− cu(x) ≤ 0 for x ∈ G
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with u(x) →∞ as x → ∂G, thenP [τ < ∞|x(0) = x] = 0. Follows from

E[e−c(τ∧t)u(x(τ ∧ t))] ≤ u(x)

or from the Martingale inequality

sup
0≤t<τ

e−ctu(x(t)) < ∞ a.e.

Allication: Non-explosion: If we can construct a function u(x) > 0 such that u(x) → ∞
as |x| → ∞ and

sup
x

(Lu)(x)

u(x)
< ∞

then the process cannot explode.

Example: If a(x) ≤ C|x|2, |b(x)| ≤ C|x|, then with u(x) = 1 + |x|2,

Lu ≤ Cu

Difference approximations to PDE

One way to numerically solve the heat equation

ut +
1

2
uxx = 0; u(T, x) = f(x)

is to approximate it by difference equations

1

δ
[u((j + 1)δ, kh)− u(jδ, kh)]

+
1

2h2
[u((j + 1)δ, (k + 1)h) + u((j + 1)δ, (k − 1)h)− 2u((j + 1)δ, kh)] = 0

Time t marches in steps of size δ and the space x is made discrete with a spacing of h.
Assuming Nδ = T , with u(Nδ, kh) = f(kh), we iterate

u(jδ, kh)

= u((j + 1)δ, kh) +
δ

2h2
[u((j + 1)δ, (k + 1)h) + u((j + 1)δ, (k − 1)h)− 2u((j + 1)δ, kh)]

=
δ

2h2
[u((j + 1)δ, (k + 1)h) + u((j + 1)δ, (k − 1)h)] + (1− δ

h2
)u((j + 1)δ, kh)

We can let δ → 0, h → 0 such that δ ≤ h2. Then u(jδ, kh) will be an average of
u((j + 1)δ, (k ± 1)h) and u((j + 1)δ, kh). In particular if δ = h2

uh(jδ, kh) =
1

2
[uh((j + 1)δ, (k + 1)h) + uh((j + 1)δ, (k − 1)h)]
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The convergence of uh(0, 0) to the solution u(0, 0) of the heat equation given by

u(0, 0) =

∫

f(y)
1√
2πT

e−
y2

2T dy

is just the central limit theorem for the binomial distribution. Note that

uh(0, 0) =
N

∑

r=0

(

N

r

)

1

2N
f((2r −N)h)

where h =
√

δ = N− 1

2 .
We will give an alternate proof. Assume that f is smooth and the soution u(t, x) of

the heat equation has enough derivatives in t and x.

Then consider
ξh
n = u(nδ, Xh

n)

where Xh
n is a Markov chain with transition probability

πh(x, dy) =
1

2
δx+h(dy) +

1

2
δx−h(dy)

It is easily seen that (note δ = h2),

E[u(nδ, Xh
n)|Xh

n−1] =
1

2
[u(nδ, Xh

n−1 + h) + u(nδ, Xh
n−1 − h)]

= u(nδ, Xh
n−1) +

h2

2
uxx(nδ, Xh

n−1) + o(h2)

= u((n− 1)δ, Xh
n−1) + δut(nδ, Xh

n−1) +
h2

2
uxx(nδ, Xh

n−1) + o(δ)

= u((n− 1)δ, Xh
n−1) + o(δ)

Therefore

E[f(Xh
N)|Xh

0 = x] = E[u(T, xh
N)|Xh

0 = x] = u(0, x) + No(δ) = u(0, x) + o(1)
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